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Data Structures!

Key part of large software systems


Provides…


1. Data persistence


2. Mechanisms to restrict access to underlying data


And yet…
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There’s relatively little work 
surrounding them!
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Why? 🤔

1. Data persistence 
 

2. Mechanisms to restrict access to underlying data

Must ensure the data structure is always safe

Sometimes safety of the overall system relies on the data 
access restrictions

It’s HARD

Proving a data structure maintains a proper invariant solves both of these problems!
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This talk…

o o

ooo

• Tool for data structure verification

• Focuses on the important task of invariant generation

• Tool for data structure synthesis

• Can synthesize recursive functions on data structures that  

ensure the invariants are upheld
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But first…

What do I mean when I 

say Data Structure
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SET
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Implementing SET
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for Verification
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Time to Verify!
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Is ListSet wrong?
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No, it isn’t.

All Int Lists

Int Lists Satisfying

Specification

“Reachable” Int Lists
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Algorithm

inv

Synthesizer Verifier
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Synthesizer Verifier

Algorithm
candidate invariant inv

counterexample CEx
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Synthesizer Verifier

candidate invariant inv

Examples    Examples

Testbed

Algorithm

counterexample CEx
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Synthesizer

Synthesizer

Examples    Examples

Testbed

inv

inv( ) = true
inv( ) = false
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Verifier

inv
Verifier

Examples    Examples

Testbed

CEx
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Full Algorithm
Examples Examples

Testbed
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Full Algorithm
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Verifier
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Synthesizer Verifier

Examples    Examples

Testbed

Algorithm

counterexample CEx

candidate invariant inv
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Synthesizer Verifier

Examples    Examples

Testbed

All positive 
examples must be 

constructible through 
module operations

Algorithm

counterexample CEx

candidate invariant inv

63



Visible Inductiveness
Can we find an inductiveness counterexample where the 

inputs must be  examples

Examples Examples
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Visible Inductiveness
Can we find an inductiveness counterexample where the 

inputs must be  examples

Examples Examples

…

Visibly Inductive
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Say we are visibly inductive…
Examples Examples
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Then do a full inductiveness check!
Examples Examples
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Verifying Full Inductiveness

?
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Verifying Full Inductiveness
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?

Verifying Full Inductiveness
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Verifying Full Inductiveness
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Verifying Full Inductiveness
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Verifying Full Inductiveness

Add it to 
negative set
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Synthesizer
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Correctness Theorem
If:


1. Our verifier is sound and complete


2. Our synthesizer is sound and complete


3. Our concrete data type only has a finite number of 
elements


Then our algorithm will find a sufficient representation 
invariant, if one exists
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Synthesizer

[Osera and Zdancewic 2015]
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Synthesizer

[Osera and Zdancewic 2015]
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Synthesizer Verifier

Enumerative 
Tester

[Osera and Zdancewic 2015]
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Synthesizer Verifier

Enumerative 
Tester

👎 Unsound[Osera and Zdancewic 2015]
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Synthesizer Verifier

Enumerative 
Tester

👎 Unsound

👍 Fast

👍 Guaranteed to terminate

[Osera and Zdancewic 2015]
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Synthesizer Verifier

[Osera and Zdancewic 2015]

Enumerative 
Tester

👎 Unsound

👍 Fast

👍 Guaranteed to terminate

Theory doesn’t address higher-order functions. 
Hanoi does (using higher-order contracts).

o o

ooo
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Evaluation
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Benchmark Suite Construction

• Verified Function Algorithms (5)


• VFAExt (3)


• Coq (14)


• Other (6)
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Numbers

• Timeout of 30 minutes


• Inferred 22/28 Invariants


• All of our inferred invariants were correct, despite using a 
tester for verification
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Comparisons

[Padhi et al. 2016]

[Zhu et al. 2018]
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for Synthesis
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ListSet
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ListSet
NOW WITH INVARIANTS!
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ListSet++
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ListSet++
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ListSet++
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ListSet++
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What can do this?

109



1. Recursion

What else do we want?
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1. Recursion


a. Non-inductive Specifications

What else do we want?
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What else do we want?

1. Recursion


a. Non-inductive Specifications


2. No Top-Down Reasoning
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Synthesizer Verifier

Algorithm
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Synthesizer Verifier

Algorithm
candidate function f

counterexample CEx
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Synthesizer Verifier

Algorithm
candidate function f

counterexample CEx
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Synthesizer

?
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Synthesizer

Ground Formulas
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Let’s Simplify First

1. Recursion


a. Non-inductive Specifications


2. No Top-Down Reasoning
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1. Recursion


a. Non-inductive Specifications   Inductive IO Specs


2. No Top-Down Reasoning

Let’s Simplify First
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FTA Synthesis [Wang 2017]

120

FTAs or Finite Tree Automata are automata


Where DFAs represent sets of strings, FTAs represent sets of trees 

Programs are trees


FTAs can describe the set of all valid programs

Guarantee
e ↦ e’ and f ∈ A if, and only if f e →* e’

1 ↦ 9



Example Task

Synthesizer
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FTA Synthesis [Wang 2017]
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We Add Everything.
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where is the ground specification
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FTA Synthesis over
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FTA Synthesis over
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FTA Synthesis over

Ground Specs

[2,1,2]

[0] 2 [1,2]

s

is

head tail

cons

insert_all

[0,1,3] [0,1,2][1,2,3] …
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Before, there was a 
meaning to our FTAs

e ↦ e’ and f ∈ A if, and only if f e →* e’

Is there any meaning 
to these FTAs?
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and f ∈ A

if, and only if 

f e →* e’

Now, we ensure
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Problem:


We are over approximating
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Solution:


Backtracking Search
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Synthesis Algorithm
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Build 
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Build 
Automataton

Synthesis Algorithm

A Extract 
Program f

Extract 
Assumptions

return

φRetry

return

Negate 
Assumptions-φRetry

return

no solution
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Benchmark Suite Construction

• Myth Benchmark Suite (45)


• Example-Based


• Reimplementation


• Logical Specification
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Numbers

• Timeout of 2 minutes


• Inferred:


• 43/45 for Example-based


• 43/45 for Reimplementation


• 41/45 for Logical
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Future Work

Full Data Structure Synthesis

Relish [Wang 2018] synthesizes functions from relational specifications

This is a relational specification

Can we integrate relational specification synthesis with recursive synthesis?
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Summary
• Data structure verification & synthesis is an important 

problem


• Find Representation Invariants with


• Visible inductiveness tames the ambiguity of 
inductiveness counterexamples


• Synthesize functions that respect the invariant with


• Angelic synthesis extends prior approaches to work 
with logical specifications

o o

ooo
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