
Verification and Synthesis for
Data Structures

Anders Miltner

1

Data Structures!

Key part of large software systems

Provides…

1. Data persistence

2. Mechanisms to restrict access to underlying data

And yet…

2

There’s relatively little work
surrounding them!

3

Why? 🤔

1. Data persistence 
 

2. Mechanisms to restrict access to underlying data

Must ensure the data structure is always safe

Sometimes safety of the overall system relies on the data
access restrictions

It’s HARD

Proving a data structure maintains a proper invariant solves both of these problems!
4

This talk…

o o

ooo

• Tool for data structure verification

• Focuses on the important task of invariant generation

• Tool for data structure synthesis

• Can synthesize recursive functions on data structures that  

ensure the invariants are upheld

5

But first…

What do I mean when I

say Data Structure

6

SET

7

Implementing SET

8

o o

ooo

for Verification

9

Time to Verify!

10

Time to Verify!

11

Is ListSet wrong?

12

No, it isn’t.

All Int Lists

Int Lists Satisfying

Specification

“Reachable” Int Lists

13

How do you verify this?

All Int Lists

Int Lists Satisfying

Specification

Int Lists Satisfying inv

“Reachable” Int Lists

14

How do you verify this?
Step 1: Find inv

All Int Lists

Int Lists Satisfying inv

15

How do you verify this?
Step 1: Find inv

Step 2: Prove lists
 satisfying inv
 satisfy the
 specification

All Int Lists

Int Lists Satisfying

Specification

Int Lists Satisfying inv

16

How do you verify this?

All Int Lists

Int Lists Satisfying

Specification

Int Lists Satisfying inv

“Reachable” Int Lists

Step 1: Find inv

Step 2: Prove lists
 satisfying inv
 satisfy the
 specification

Step 3: Prove inv is
 inductive —
 preserved by
 module
 operations

17

How do you verify this?
Step 1: Find inv

Step 2: Prove lists
 satisfying inv
 satisfy the
 specification

Step 3: Prove inv is
 inductive —
 preserved by
 module
 operations

All Int Lists

Int Lists Satisfying

Specification

Int Lists Satisfying inv

“Reachable” Int Lists

18

How do you verify this?

All Int Lists

Int Lists Satisfying

Specification

Int Lists Satisfying inv

“Reachable” Int Lists

Step 1: Find inv

Step 2: Prove lists
 satisfying inv
 satisfy the
 specification

Step 3: Prove inv is
 inductive —
 preserved by
 module
 operations

19

How do you verify this?

All Int Lists

Int Lists Satisfying

Specification

Int Lists Satisfying inv

“Reachable” Int Lists

Step 1: Find inv

Step 2: Prove lists
 satisfying inv
 satisfy the
 specification

Step 3: Prove inv is
 inductive —
 preserved by
 module
 operations

20

How do you verify this?

All Int Lists

Int Lists Satisfying

Specification

Int Lists Satisfying inv

“Reachable” Int Lists

Step 1: Find inv

Step 2: Prove lists
 satisfying inv
 satisfy the
 specification

Step 3: Prove inv is
 inductive —
 preserved by
 module
 operations

21

Time to Prove Correct!
Step 1: Find inv

Step 2: Prove lists
 satisfying inv
 satisfy the
 specification

Step 3: Prove inv is
 inductive —
 preserved by
 module
 operations

22

Time to Prove Correct!
Step 1: Find inv

Step 2: Prove lists
 satisfying inv
 satisfy the
 specification

Step 3: Prove inv is
 inductive —
 preserved by
 module
 operations

23

Time to Prove Correct!
Step 1: Find inv

Step 2: Prove lists
 satisfying inv
 satisfy the
 specification

Step 3: Prove inv is
 inductive —
 preserved by
 module
 operations

24

Time to Prove Correct!
Step 1: Find inv

Step 2: Prove lists
 satisfying inv
 satisfy the
 specification

Step 3: Prove inv is
 inductive —
 preserved by
 module
 operations

25

Time to Prove Correct!
Step 1: Find inv

Step 2: Prove lists
 satisfying inv
 satisfy the
 specification

Step 3: Prove inv is
 inductive —
 preserved by
 module
 operations

26

Time to Prove Correct!
Step 1: Find inv

Step 2: Prove lists
 satisfying inv
 satisfy the
 specification

Step 3: Prove inv is
 inductive —
 preserved by
 module
 operations

27

Time to Prove Correct!

?

Step 1: Find inv

Step 2: Prove lists
 satisfying inv
 satisfy the
 specification

Step 3: Prove inv is
 inductive —
 preserved by
 module
 operations

28

Time to Prove Correct!
Step 1: Find inv

Step 2: Prove lists
 satisfying inv
 satisfy the
 specification

Step 3: Prove inv is
 inductive —
 preserved by
 module
 operations

29

Time to Prove Correct!

?

Step 1: Find inv

Step 2: Prove lists
 satisfying inv
 satisfy the
 specification

Step 3: Prove inv is
 inductive —
 preserved by
 module
 operations

30

Time to Prove Correct!
Step 1: Find inv

Step 2: Prove lists
 satisfying inv
 satisfy the
 specification

Step 3: Prove inv is
 inductive —
 preserved by
 module
 operations

31

Time to Prove Correct!

…

Step 1: Find inv

Step 2: Prove lists
 satisfying inv
 satisfy the
 specification

Step 3: Prove inv is
 inductive —
 preserved by
 module
 operations

32

Time to Prove Correct!

…

Step 1: Find inv

Step 2: Prove lists
 satisfying inv
 satisfy the
 specification

Step 3: Prove inv is
 inductive —
 preserved by
 module
 operations

33

Time to Prove Correct!

All Int Lists

Int Lists Satisfying

Specification

Int Lists Satisfying inv

“Reachable” Int Lists

Step 1: Find inv

Step 2: Prove lists
 satisfying inv
 satisfy the
 specification

Step 3: Prove inv is
 inductive —
 preserved by
 module
 operations

34

o o

ooo

35

Algorithm

inv

Synthesizer Verifier

36

Synthesizer Verifier

Algorithm
candidate invariant inv

counterexample CEx

37

Synthesizer Verifier

candidate invariant inv

Examples Examples

Testbed

Algorithm

counterexample CEx

38

Synthesizer

Synthesizer

Examples Examples

Testbed

inv

inv() = true
inv() = false

39

Verifier

inv
Verifier

Examples Examples

Testbed

CEx

40

Full Algorithm
Examples Examples

Testbed

41

Full Algorithm

Synthesizer

inv

Examples Examples

Testbed

42

Full Algorithm

Verifier

spec

Synthesizer

inv

Examples Examples

Testbed

Check

Spec

43

Full Algorithm

Verifier

spec

CExSynthesizer

inv

Examples Examples

Testbed

Check

Spec

44

Full Algorithm

Verifier

spec

Synthesizer

inv

Examples Examples

Testbed

Check

Spec

CEx

45

Full Algorithm

Verifier

spec
Valid

Synthesizer

inv

Examples Examples

Testbed

Check

Spec

CEx

46

Full Algorithm

Verifier

spec
Valid

Synthesizer

inv

Examples Examples

inv

module
Testbed

Check

Spec

Check

Inductiveness

Verifier
CEx

47

Full Algorithm

Verifier

spec
Valid

Synthesizer

inv

Examples Examples

inv

module
Testbed

CEx

Check

Spec

Check

Inductiveness

Verifier

/

CEx

48

Verifier

spec
Valid

Synthesizer

inv

Examples Examples

inv

module

Valid

Testbed

Check

Spec

Check

Inductiveness

Verifier

Full Algorithm

/

CEx CEx

49

Verifier

spec
Valid

Synthesizer

inv

Examples Examples

inv

module

Valid

Testbed

Check

Spec

Check

Inductiveness

Verifier

Full Algorithm

/

CEx CEx

50

Verifying Inductiveness

51

Verifying Inductiveness

?

52

Verifying Inductiveness

53

Verifying Inductiveness

?

54

Verifying Inductiveness

55

Verifying Inductiveness

56

Verifying Inductiveness

57

Verifying Inductiveness

58

Verifying Inductiveness

59

Verifying Inductiveness

60

Synthesizer Verifier

Examples Examples

Testbed

Algorithm

counterexample CEx

candidate invariant inv

61

Synthesizer Verifier

Examples Examples

Testbed

Algorithm

counterexample CEx

candidate invariant inv

62

Synthesizer Verifier

Examples Examples

Testbed

All positive
examples must be

constructible through
module operations

Algorithm

counterexample CEx

candidate invariant inv

63

Visible Inductiveness
Can we find an inductiveness counterexample where the

inputs must be examples

Examples Examples

64

Visible Inductiveness
Can we find an inductiveness counterexample where the

inputs must be examples

Examples Examples

?

65

Visible Inductiveness
Can we find an inductiveness counterexample where the

inputs must be examples

Examples Examples

66

Visible Inductiveness
Can we find an inductiveness counterexample where the

inputs must be examples

Examples Examples

?

67

Visible Inductiveness
Can we find an inductiveness counterexample where the

inputs must be examples

Examples Examples

68

Visible Inductiveness
Can we find an inductiveness counterexample where the

inputs must be examples

Examples Examples

69

Visible Inductiveness
Can we find an inductiveness counterexample where the

inputs must be examples

Examples Examples

70

Visible Inductiveness
Can we find an inductiveness counterexample where the

inputs must be examples

Examples Examples

71

Visible Inductiveness
Can we find an inductiveness counterexample where the

inputs must be examples

Examples Examples

?

72

Visible Inductiveness
Can we find an inductiveness counterexample where the

inputs must be examples

Examples Examples

73

Visible Inductiveness
Can we find an inductiveness counterexample where the

inputs must be examples

Examples Examples

?

74

Visible Inductiveness
Can we find an inductiveness counterexample where the

inputs must be examples

Examples Examples

75

Visible Inductiveness
Can we find an inductiveness counterexample where the

inputs must be examples

Examples Examples

…

Visibly Inductive
76

Say we are visibly inductive…
Examples Examples

77

Then do a full inductiveness check!
Examples Examples

78

Verifying Full Inductiveness

?

79

Verifying Full Inductiveness

80

?

Verifying Full Inductiveness

81

Verifying Full Inductiveness

82

Verifying Full Inductiveness

83

Verifying Full Inductiveness

Add it to
negative set

84

Synthesizer

Verifier

spec
Valid

CExSynthesizer

inv

Examples Examples

inv

module

Valid

Testbed
CEx

Verifier

Check

Spec

Check

Inductiveness

Verifier

Full Algorithm

/

85

Synthesizer

Verifier

spec
Valid

Synthesizer

inv

Examples Examples

inv

module

Valid

Testbed

Verifier

Check

Spec

Check

Inductiveness

Verifier

Full Algorithm

/

Constraint:
 are always
reachable

CEx CEx

86

Synthesizer

Verifier

spec
Valid

Synthesizer

inv

Examples Examples

inv

module

Valid

Testbed

Verifier

Check

Spec

Check

Visible

Inductiveness

Constraint:
 are always
reachable

Verifier

Clear all

Full Algorithm

CEx CEx

87

Synthesizer

Verifier

spec
Valid

Synthesizer

inv

Examples Examples

inv

module

Valid

Testbed

Verifier

Check

Spec

Check

Visible

Inductiveness

Constraint:
 are always
reachable

Verifier

Valid

Check

Full

Inductiveness

Verifier
CEx

Clear all

Full Algorithm

CEx CEx

88

Correctness Theorem
If:

1. Our verifier is sound and complete

2. Our synthesizer is sound and complete

3. Our concrete data type only has a finite number of
elements

Then our algorithm will find a sufficient representation
invariant, if one exists

89

o o

ooo
90

o o

ooo

Synthesizer

[Osera and Zdancewic 2015]

91

o o

ooo

Synthesizer

[Osera and Zdancewic 2015]

92

o o

ooo

Synthesizer Verifier

Enumerative
Tester

[Osera and Zdancewic 2015]

93

o o

ooo

Synthesizer Verifier

Enumerative
Tester

👎 Unsound[Osera and Zdancewic 2015]

94

https://emojis.wiki/thumbs-down/

o o

ooo

Synthesizer Verifier

Enumerative
Tester

👎 Unsound

👍 Fast

👍 Guaranteed to terminate

[Osera and Zdancewic 2015]

95

https://emojis.wiki/thumbs-down/

o o

ooo

Synthesizer Verifier

[Osera and Zdancewic 2015]

Enumerative
Tester

👎 Unsound

👍 Fast

👍 Guaranteed to terminate

Theory doesn’t address higher-order functions.
Hanoi does (using higher-order contracts).

o o

ooo

96

https://emojis.wiki/thumbs-down/

Evaluation

97

Benchmark Suite Construction

• Verified Function Algorithms (5)

• VFAExt (3)

• Coq (14)

• Other (6)

98

Numbers

• Timeout of 30 minutes

• Inferred 22/28 Invariants

• All of our inferred invariants were correct, despite using a
tester for verification

99

Comparisons

[Padhi et al. 2016]

[Zhu et al. 2018]

0 100 200 300 400 500 600
Time (s)

0

5

10

15

20

25

B
en
ch
m
ar
ks

C
om

pl
et
ed

LoopInvGen
LinearArbitrary

Hanoi

100

for Synthesis

101

ListSet

102

ListSet
NOW WITH INVARIANTS!

103

ListSet++

104

ListSet++

105

ListSet++

106

ListSet++

107

108

What can do this?

109

1. Recursion

What else do we want?

110

1. Recursion

a. Non-inductive Specifications

What else do we want?

111

What else do we want?

1. Recursion

a. Non-inductive Specifications

2. No Top-Down Reasoning

112

Synthesizer Verifier

Algorithm

113

Synthesizer Verifier

Algorithm
candidate function f

counterexample CEx

114

Synthesizer Verifier

Algorithm
candidate function f

counterexample CEx

115

Synthesizer

?

116

Synthesizer

Ground Formulas

117

Let’s Simplify First

1. Recursion

a. Non-inductive Specifications

2. No Top-Down Reasoning

118

1. Recursion

a. Non-inductive Specifications Inductive IO Specs

2. No Top-Down Reasoning

Let’s Simplify First

119

FTA Synthesis [Wang 2017]

120

FTAs or Finite Tree Automata are automata

Where DFAs represent sets of strings, FTAs represent sets of trees

Programs are trees

FTAs can describe the set of all valid programs

Guarantee
e ↦ e’ and f ∈ A if, and only if f e →* e’

1 ↦ 9

Example Task

Synthesizer

121

FTA Synthesis [Wang 2017]

122

FTA Synthesis [Wang 2017]

123

[2,1,2]

[0]

s

is

FTA Synthesis [Wang 2017]

124

[2,1,2]

[0]

s

is

FTA Synthesis [Wang 2017]

125

[2,1,2]

[0]

s

is

FTA Synthesis [Wang 2017]

126

[2,1,2]

[0]

s

is

FTA Synthesis [Wang 2017]

127

[2,1,2]

[0] 2

s

is

head

FTA Synthesis [Wang 2017]

128

[2,1,2]

[0] 2 [1,2]

s

is

head tail

FTA Synthesis [Wang 2017]

129

[2,1,2]

[0] 2 [1,2]

s

is

head tail

cons

FTA Synthesis [Wang 2017]

130

[2,1,2]

[0] 2 [1,2]

s

is

head tail

cons

insert_all

?

FTA Synthesis with Recursion

131

[2,1,2]

[0] 2 [1,2]

s

is

head tail

cons

insert_all

?

FTA Synthesis with Recursion

132

[2,1,2]

[0] 2 [1,2]

s

is

head tail

cons

insert_all

[0,1,2]

FTA Synthesis with Recursion

133

FTA Synthesis over

Ground Specs

134

FTA Synthesis over

Ground Specs

135

FTA Synthesis over

Ground Specs

[2,1,2]

[0] 2 [1,2]

s

is

head tail

cons

136

FTA Synthesis over

Ground Specs

[2,1,2]

[0] 2 [1,2]

s

is

head tail

cons

insert_all

?

137

FTA Synthesis over

Ground Specs

[2,1,2]

[0] 2 [1,2]

s

is

head tail

cons

insert_all

?

138

We Add Everything.

139

where is the ground specification

140

FTA Synthesis over

Ground Specs

[2,1,2]

[0] 2 [1,2]

s

is

head tail

cons

insert_all

?

141

FTA Synthesis over

Ground Specs

[2,1,2]

[0] 2 [1,2]

s

is

head tail

cons

insert_all

[0,1,3]

142

FTA Synthesis over

Ground Specs

[2,1,2]

[0] 2 [1,2]

s

is

head tail

cons

insert_all

[0,1,3][1,2,3]

143

FTA Synthesis over

Ground Specs

[2,1,2]

[0] 2 [1,2]

s

is

head tail

cons

insert_all

[0,1,3] [0,1,2][1,2,3]

144

FTA Synthesis over

Ground Specs

[2,1,2]

[0] 2 [1,2]

s

is

head tail

cons

insert_all

[0,1,3] [0,1,2][1,2,3] …

145

Before, there was a
meaning to our FTAs

e ↦ e’ and f ∈ A if, and only if f e →* e’

Is there any meaning
to these FTAs?

146

and f ∈ A

if, and only if 

f e →* e’

Now, we ensure

147

Problem:

We are over approximating

148

Solution:

Backtracking Search

149

Synthesis Algorithm

150

Build
Automataton

Synthesis Algorithm

151

Build
Automataton

Synthesis Algorithm

A

152

Build
Automataton

Synthesis Algorithm

A Extract
Program

153

Build
Automataton

Synthesis Algorithm

A Extract
Program f

154

Build
Automataton

Synthesis Algorithm

A Extract
Program f return

155

Build
Automataton

Synthesis Algorithm

A Extract
Program f

Extract
Assumptions

return

156

Build
Automataton

Synthesis Algorithm

A Extract
Program f

Extract
Assumptions

return

φ

157

Build
Automataton

Synthesis Algorithm

A Extract
Program f

Extract
Assumptions

return

φRetry

158

Build
Automataton

Synthesis Algorithm

A Extract
Program f

Extract
Assumptions

return

φRetry

return

159

Build
Automataton

Synthesis Algorithm

A Extract
Program f

Extract
Assumptions

return

φRetry

return

Negate
Assumptions

160

Build
Automataton

Synthesis Algorithm

A Extract
Program f

Extract
Assumptions

return

φRetry

return

Negate
Assumptions-φ

161

Build
Automataton

Synthesis Algorithm

A Extract
Program f

Extract
Assumptions

return

φRetry

return

Negate
Assumptions-φRetry

162

Build
Automataton

Synthesis Algorithm

A Extract
Program f

Extract
Assumptions

return

φRetry

return

Negate
Assumptions-φRetry

return

163

Build
Automataton

Synthesis Algorithm

A Extract
Program f

Extract
Assumptions

return

φRetry

return

Negate
Assumptions-φRetry

return

no solution

164

Benchmark Suite Construction

• Myth Benchmark Suite (45)

• Example-Based

• Reimplementation

• Logical Specification

165

Numbers

• Timeout of 2 minutes

• Inferred:

• 43/45 for Example-based

• 43/45 for Reimplementation

• 41/45 for Logical

166

Future Work

Full Data Structure Synthesis

167

Future Work

Full Data Structure Synthesis

168

Future Work

Full Data Structure Synthesis

169

Future Work

Full Data Structure Synthesis

170

Future Work

Full Data Structure Synthesis

This is a relational specification

171

Future Work

Full Data Structure Synthesis

Relish [Wang 2018] synthesizes functions from relational specifications

This is a relational specification

172

Future Work

Full Data Structure Synthesis

Relish [Wang 2018] synthesizes functions from relational specifications

This is a relational specification

Can we integrate relational specification synthesis with recursive synthesis?

173

Summary
• Data structure verification & synthesis is an important

problem

• Find Representation Invariants with

• Visible inductiveness tames the ambiguity of
inductiveness counterexamples

• Synthesize functions that respect the invariant with

• Angelic synthesis extends prior approaches to work
with logical specifications

o o

ooo

174

Collaborators Slide

175

Verification Synthesis

Saswat Padhi

(AWS)

Todd Millstein

(UCLA)

David Walker

(Princeton)

Adrian Trejo Nuñez

(UT Austin)

Ana Brendel

(UT Austin)

Swarat Chaudhuri

(UT Austin)

Işil Dillig

(UT Austin)

Summary
• Data structure verification & synthesis is an important

problem

• Find Representation Invariants with

• Visible inductiveness tames the ambiguity of
inductiveness counterexamples

• Synthesize functions that respect the invariant with

• Angelic synthesis extends prior approaches to work
with logical specifications

o o

ooo

176

