
2 Machine Programming Research (MPR), Intel Labs

Machine Programming & Data-Driven
Dependable and Secure Software Systems

Justin Gottschlich
Principal AI Scientist & Director/Founder of Machine Programming Research
(Intel Labs)

Adjunct Assistant Professor
(University of Pennsylvania)

Steering Committee Chair, ACM Machine Programming Symposium (MAPS)

Contributors:
Todd Anderson, Saman Amarasinghe, Regina Barzilay,
Michael Carbin, Alvin Cheung, Pradeep Dubey, Henry
Gabb, Niranjan Hasabnis, Adam Herr, Jim Held, Tim
Kraska, Insup Lee, Geoff Lowney, Shanto Mandal, Tim
Mattson, Pranav Mehta, Abdullah Muzahid, Paul Petersen,
Alex Ratner, Martin Rinard, Vivek Sarkar, Koushik Sen,
Armando Solar-Lezama, Joe Tarango, Nesime Tatbul, Josh
B. Tenenbaum, Jesmin Tithi, Javier Turek, Abdul Wasay,
Rich Uhlig, Anand Venkat, Fangke Ye, Xin Zhang, Shengtian
Zhou … and many others.

3 Machine Programming Research (MPR), Intel Labs

Legal Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Results have been estimated or simulated.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and noninfringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

4 Machine Programming Research (MPR), Intel Labs

Overview

• Machine Programming Research @ Intel

• Discussion of The Three Pillars of MP
• Separation of Intention is Critical

• The Bifurcated Space of MP
• Stochastic and Deterministic

• Machine Programming Emphasis @ Intel

• ControlFlag: a Self-Supervised Systems for MP

• MISIM: a Code Semantics Similarity System

5 Machine Programming Research (MPR), Intel Labs

Overview

• Machine Programming Research @ Intel

• Discussion of The Three Pillars of MP
• Separation of Intention is Critical

• The Bifurcated Space of MP
• Stochastic and Deterministic

• Machine Programming Emphasis @ Intel

• ControlFlag: a Self-Supervised Systems for MP

• MISIM: a Code Semantics Similarity System

6 Machine Programming Research (MPR), Intel Labs

Machine Programming Research (MPR)

A New Pioneering Research Initiative at

Definition: Machine Programming (MP) is the automation of
software and hardware development

7 Machine Programming Research (MPR), Intel Labs

Intel Labs’ MPR Goals
Machine Programming (MP) is the automation of software and hardware development

Quality:
Better software than
the best human
programmers*

*Measured as superhuman
correctness, performance,
security, etc.

Time:
Reduce development
time of all aspects of
software development

*Measured as 1000x+
improvement over human
work performed today

8 Machine Programming Research (MPR), Intel Labs

Intel Labs’ MPR Goals
Machine Programming (MP) is the automation of software and hardware development

Quality:
Better software than
the best human
programmers*

*Measured as superhuman
correctness, performance,
security, etc.

Time:
Reduce development
time of all aspects of
software development

*Measured as 1000x+
improvement over human
work performed today

Concrete Data Point:
“Automatically Translating Image Processing

Libraries to Halide” (Ahmad et al., 2019)*

*Funded by Intel’s CAPA Research Center

9 Machine Programming Research (MPR), Intel Labs

Overview

• Machine Programming Research @ Intel

• Discussion of The Three Pillars of MP
• Separation of Intention is Critical

• The Bifurcated Space of MP
• Stochastic and Deterministic

• Machine Programming Emphasis @ Intel

• ControlFlag: a Self-Supervised Systems for MP

• MISIM: a Code Semantics Similarity System

10 Machine Programming Research (MPR), Intel Labs

The Three Pillars of Machine Programming

Machine Programming (MP) is the
automation of software and
hardware development

• Intention: Discover the intent of a
programmer; lift meaning from software

• Invention: Create new algorithms and
data structures; compositional novelty

• Adaptation: Evolve in a changing
hardware/software world

Intention

Invention

Adaptation

DataData

Data

11 Machine Programming Research (MPR), Intel Labs

Machine Programming (MP) is the
automation of software and
hardware development

• Intention: Discover the intent of a
programmer; lift meaning from software

• Invention: Create new algorithms and
data structures; compositional novelty

• Adaptation: Evolve in a changing
hardware/software world

Intention

Invention

Adaptation

DataData

Data

Data is a principal driver for all MP systems

The Three Pillars of Machine Programming

12 Machine Programming Research (MPR), Intel Labs

Separation of Intention is Critical

• Requires user only supply core idea
(improving productivity)

• Enables machine to explore a wider range of possible
solutions (improving MP-generated solutions)

• Enables automatic SW adaptation & evolution

We anticipate this separation will give rise to:

• Intentional Programming Languages

Example: Halide/Verified Lifting (Adobe Photoshop)

programmer is
forced to stay on
this side of the line

separation of

concerns

Intention

Invention

Adaptation

13 Machine Programming Research (MPR), Intel Labs

Separation of Intention is Critical

• Requires user only supply core idea
(improving productivity)

• Enables machine to explore a wider range of possible
solutions (improving MP-generated solutions)

• Enables automatic SW adaptation & evolution

We anticipate this separation will give rise to:

• Intentional Programming Languages

Example: Halide/Verified Lifting (Adobe Photoshop)

programmer is
forced to stay on
this side of the line

separation of

concerns

Intention

Invention

Adaptation

Leverages Separation of Intention
from Invention & Adaptation

“Automatically Translating Image Processing
Libraries to Halide” (Ahmad et al., 2019)

14 Machine Programming Research (MPR), Intel Labs

Overview

• Machine Programming Research @ Intel

• Discussion of The Three Pillars of MP
• Separation of Intention is Critical

• The Bifurcated Space of MP
• Stochastic and Deterministic

• Machine Programming Emphasis @ Intel

• ControlFlag: a Self-Supervised Systems for MP

• MISIM: a Code Semantics Similarity System

15 Machine Programming Research (MPR), Intel Labs

The Bifurcated Space of Machine Programming

Stochastic Deterministic

Machine Learning
(Neural networks, reinforcement

learning, genetic algorithms,
Bayesian networks, etc.)

Formal Methods
(Formal verifiers, spatial and

temporal logics, formal
program synthesizers, etc.)

Progressively more approximate Progressively more precise

Techniques
used in MP
systems

Components
used in MP
systems

Software
Programming languages,
algorithms, data structures, etc.

Hardware
Compute, communications, and
memory architectures, etc.

16 Machine Programming Research (MPR), Intel Labs

Components
used in MP
systems

Techniques
used in MP
systems

The Bifurcated Space of Machine Programming

Stochastic Deterministic

Machine Learning
(Neural networks, reinforcement

learning, genetic algorithms,
Bayesian networks, etc.)

Formal Methods
(Formal verifiers, spatial and

temporal logics, formal
program synthesizers, etc.)

Progressively more approximate Progressively more precise

Software
Programming languages,
algorithms, data structures, etc.

Hardware
Compute, communications, and
memory architectures, etc.

Stochastic MP systems tend
to improve w/ more iid data

17 Machine Programming Research (MPR), Intel Labs

The Bifurcated Space of Machine Programming

Stochastic Deterministic

Machine Learning
(Neural networks, reinforcement

learning, genetic algorithms,
Bayesian networks, etc.)

Formal Methods
(Formal verifiers, spatial and

temporal logics, formal
program synthesizers, etc.)

Progressively more approximate Progressively more precise

Techniques
used in MP
systems

Components
used in MP
systems

Software
Programming languages,
algorithms, data structures, etc.

Hardware
Compute, communications, and
memory architectures, etc.

Halide uses stochastic
techniques for
optimization

Verified lifting uses
formal methods (CEGIS)

for semantics verification

18 Machine Programming Research (MPR), Intel Labs

Concretizing The Two Sides of MP with Neuro-Symbolism

Machine
learning

ML Model

Specification

Programming Language Constructs

Formal
Synthesizer

Program

[1, 8, 5] --> [1, 5, 8]

for (…) if (…)

swap(…) peek(…)

Credit: Jeevana Inala &
Armando Solar-Lezama

[4, 0] --> [0, 4]

Stochastic (Neuro) Deterministic (Symbolic)

19 Machine Programming Research (MPR), Intel Labs

Overview

• Machine Programming Research @ Intel

• Discussion of The Three Pillars of MP
• Separation of Intention is Critical

• The Bifurcated Space of MP
• Stochastic and Deterministic

• Machine Programming Emphasis @ Intel

• ControlFlag: a Self-Supervised Systems for MP

• MISIM: a Code Semantics Similarity System

20 Machine Programming Research (MPR), Intel Labs

Numerous MP Efforts @ Intel

Debugging / Profiling / Productivity
• ControlFlag, MISIM, & AutoPerf

Automated Performance Extraction
• Inteon’s Tiger Shark (Intel venture)

• MP-based general-purpose compiler (e.g., ML-
learned code optimizations)

And Many More …

21 Machine Programming Research (MPR), Intel Labs

Numerous MP Efforts @ Intel

Debugging / Profiling / Productivity
• ControlFlag, MISIM, & AutoPerf

Automated Performance Extraction
• Inteon’s Tiger Shark (Intel venture)

• MP-based general-purpose compiler (e.g., ML-
learned code optimizations)

And Many More …

*Beats SOTA by ~2x with 400k labeled data samples
**Beats SOTA by ~5x with 1M labeled data samples
(independently confirmed by IBM/MIT)

*“MISIM: A Neural Code Semantics Similarity System Using the Context-Aware Semantics Structure”
by Ye et al. (https://arxiv.org/abs/2006.05265)

**“CodeNet: A Large-Scale AI for Code Dataset for Learning a Diversity of Coding Tasks” by Puri et
al. (https://arxiv.org/abs/2105.12655)

22 Machine Programming Research (MPR), Intel Labs

Numerous MP Efforts @ Intel

Debugging / Profiling / Productivity
• ControlFlag, MISIM, & AutoPerf

Automated Performance Extraction
• Inteon’s Tiger Shark (Intel venture)

• MP-based general-purpose compiler (e.g., ML-
learned code optimizations)

And Many More …

What can we build without labeled data?

23 Machine Programming Research (MPR), Intel Labs

Productivity –
Debugging

University of Cambridge
(http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.370.9611&rep=rep1&type=pdf)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.370.9611&rep=rep1&type=pdf

24 Machine Programming Research (MPR), Intel Labs

Productivity –
Debugging

University of Cambridge
(http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.370.9611&rep=rep1&type=pdf)

50% of the cost of software
development is debugging.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.370.9611&rep=rep1&type=pdf

25 Machine Programming Research (MPR), Intel Labs

Debugging: Finding Code Anomalies

What is a code anomaly?
• A piece of code that is irregular

Why care about code anomalies?
• Anomalous code can lead to defects, technical

debt, delayed software development (hard to
understand code), loss of customer trust

26 Machine Programming Research (MPR), Intel Labs

Anomaly found in CURL (~30-year-old software)

Re: Potential confusion in http_proxy.c
and a recommendation
•Contemporary messages sorted: [by date] [by thread] [by subject] [by
author] [by messages with attachments]
From: Daniel Stenberg via curl-library <curl-library_at_cool.haxx.se>
Date: Mon, 9 Nov 2020 23:51:20 +0100 (CET)

On Mon, 9 Nov 2020, Hasabnis, Niranjan via curl-library wrote:

> We believe that using “if (s->keepon > 1)” would eliminate this confusion
> and capture the intended semantics precisely.

I think you've pointed out code that could be written clearer, yes. But I
think an even better improvement to this logic would be to use an enum or
defined values that include all three used values as state names.

What do you think about my proposal over at:
https://github.com/curl/curl/pull/6193

CURL developers rewrite flagged piece of
code found with ControlFlag

https://curl.se/mail/lib-2020-11/0028.html

https://curl.se/mail/lib-2020-11/date.html
https://curl.se/mail/lib-2020-11/index.html
https://curl.se/mail/lib-2020-11/subject.html
https://curl.se/mail/lib-2020-11/author.html
https://curl.se/mail/lib-2020-11/attachment.html
mailto:curl-library_at_cool.haxx.se?Subject=Re%3A%20Potential%20confusion%20in%20http_proxy.c%20and%20a%20recommendation
https://github.com/curl/curl/pull/6193

27 Machine Programming Research (MPR), Intel Labs

Anomaly found in CURL (~30-year-old software)

Re: Potential confusion in http_proxy.c
and a recommendation
•Contemporary messages sorted: [by date] [by thread] [by subject] [by
author] [by messages with attachments]
From: Daniel Stenberg via curl-library <curl-library_at_cool.haxx.se>
Date: Mon, 9 Nov 2020 23:51:20 +0100 (CET)

On Mon, 9 Nov 2020, Hasabnis, Niranjan via curl-library wrote:

> We believe that using “if (s->keepon > 1)” would eliminate this confusion
> and capture the intended semantics precisely.

I think you've pointed out code that could be written clearer, yes. But I
think an even better improvement to this logic would be to use an enum or
defined values that include all three used values as state names.

What do you think about my proposal over at:
https://github.com/curl/curl/pull/6193

CURL developers rewrite flagged piece of
code found with ControlFlag

https://curl.se/mail/lib-2020-11/0028.html

https://curl.se/mail/lib-2020-11/date.html
https://curl.se/mail/lib-2020-11/index.html
https://curl.se/mail/lib-2020-11/subject.html
https://curl.se/mail/lib-2020-11/author.html
https://curl.se/mail/lib-2020-11/attachment.html
mailto:curl-library_at_cool.haxx.se?Subject=Re%3A%20Potential%20confusion%20in%20http_proxy.c%20and%20a%20recommendation
https://github.com/curl/curl/pull/6193

28 Machine Programming Research (MPR), Intel Labs

Limitations in Existing Code Anomaly Detectors

Tools & techniques to identify software defects
• Testing (unit tests, QA, etc.)
• Static analysis

• Compilers, linters

Limitations
• Continuous manual effort to maintain and update

(i.e., adding new rules as things evolve)
• Manual efforts can be error-prone

29 Machine Programming Research (MPR), Intel Labs

ControlFlag

A Self-Supervised
Anomalous Code
Detection System

Technical Lead:
Dr. Niranjan Hasabnis
Intel Labs

Step 1.0
Source Code
Repositories

Codebase

Step 1.1
Mine patterns in
control structures

Source
code

parser

Patterns

Step 1.3
Self-supervised clustering
using decision tree

Syntax Trees for Patterns

Step 1.2
Build representation
for patterns

Step 1: Pattern mining
Semi-trust
(humans must decide this)

Self-supervision;
no labels

Learn idiosyncratic
patterns in code

Step 2: Scanning for erroneous patterns

Step 2.0
Target Code
Repositories

Codebase

Step 2.1
Mine patterns in
control structures

Source
code

parser

Patterns

Step 2.3:
Find “nearest” patterns
in decision tree

Syntax Trees

Step 2.2
Build representation
for patterns

Nearest patterns
in training dataset

Step 2.4:
Is pattern an
anomaly?

“ControlFlag: A Self-Supervised Idiosyncratic Pattern Detection System for Software Control Structures” by Hasabnis & Gottschlich, MAPS ‘21

30 Machine Programming Research (MPR), Intel Labs

ControlFlag In The News

31 Machine Programming Research (MPR), Intel Labs

Step 1.0
Source Code
Repositories

Codebase

Step 1.1
Mine patterns in
control structures

Source
code

parser

Patterns

Step 1.3
Self-supervised clustering
using decision tree

Syntax Trees for Patterns

Step 1.2
Build representation
for patterns

Step 1: Pattern mining
Semi-trust
(humans must decide this)

Self-supervision;
no labels

Learn idiosyncratic
patterns in code

Step 2: Scanning for erroneous patterns

Step 2.0
Target Code
Repositories

Codebase

Step 2.1
Mine patterns in
control structures

Source
code

parser

Patterns

Step 2.3:
Find “nearest” patterns
in decision tree

Syntax Trees

Step 2.2
Build representation
for patterns

Nearest patterns
in training dataset

Step 2.4:
Is pattern an
anomaly?

Design Take-Aways:
Self-Supervised (No Labels)

Self-Evolving (Little Manual Effort)
No Compilation (Integration in IDEs)

A Self-Supervised
Anomalous Code
Detection System

Technical Lead:
Dr. Niranjan Hasabnis
Intel Labs

“ControlFlag: A Self-Supervised Idiosyncratic Pattern Detection System for Software Control Structures” by Hasabnis & Gottschlich, MAPS ‘21

ControlFlag

32 Machine Programming Research (MPR), Intel Labs

Anomalies in Production-Quality, Open-Source Software

Evaluation: Setup
Training repository selection
• 6000 GitHub repos for

C language having
more than 100 stars

• 2.57M programs
• 1.1B Lines of code

• 38M patterns

Test repositories
• openssl, curl, ffmpeg
• git, vlc, lcx, lz4, reactos

Repo GitHub
stars

Found
Anomalies

Scanned
Expressions

Types of anomalies found

IoLanguage/io 2.3K 5 1635 Confusing expressions; missing parenthesis

Git/git 38.9K 6 6341 Confusing expression; character comparison
using greater than or less than

Rubinius/rubinius 3K 2 10135 Character comparison using greater than or less
than; missing parenthesis

FreeRADIUS/
freeradius-server

1.5K 3 20621 Character comparison using greater than or less
than

Davidfstr/rdiscount 755 4 472 Character comparison using greater than or less
than; missing parenthesis

Libharu/libharu 1.2K 1 2785 Character comparison using greater than or less
than

Macournoyer/tinyrb 454 3 4369 Character comparison using greater than or less
than

Rhomobile/rhodes 1K 14 76128 Confusing expressions; missing parenthesis;
character comparison using greater or less than

“ControlFlag: A Self-Supervised Idiosyncratic Pattern Detection System for Software Control Structures” by Hasabnis & Gottschlich, MAPS ‘21

33 Machine Programming Research (MPR), Intel Labs

Anomaly Found in Proprietary & Deployed Software

Three defects:

1. Duplicate expression in
lines 11 and 12

2. Possible out-of-bounds
memory access (memory
error) in line 14

3. Information leak, security
vulnerability in line 11

Anomaly flagged by
ControlFlag: in 12
if (address % 4)

An Example of
ControlFlag’s Finding

“ControlFlag: A Self-Supervised Idiosyncratic Pattern Detection System for Software Control Structures” by Hasabnis & Gottschlich, MAPS ‘21

34 Machine Programming Research (MPR), Intel Labs

RESULTS: Summary of 1st Proprietary Repo Analysis

Identified 104
potential defects
• 812 scanned files (.C and .H)
• 353K scanned lines of code
• 4600 scanned expressions

3 hours total analysis time (approx.)
• 56 Intel CPU cores

Description Count Comments

Anomalies that are critical bugs 2 Type error; memory error; security
vulnerability

Anomalies that can lead to
unwanted side-effects

39 Missing NULL check; possible divide
by 0; missing return value check

Anomalies that point to confusing
programming style

4 Double parenthesis around
expressions, when not required

Anomalies that point to
improvements in programming styles

59 Not using named constants; constant
on right hand of equality;

Total unique anomalies reported 104 Not including false positives

“ControlFlag: A Self-Supervised Idiosyncratic Pattern Detection System for Software Control Structures” by Hasabnis & Gottschlich, MAPS ‘21

35 Machine Programming Research (MPR), Intel Labs

RESULTS: Summary of 2nd Proprietary Repo Analysis

Identified 191
potential defects
• 19K scanned files (.C and .H)
• 10.9M scanned lines of code
• 18.7K scanned expressions

8 hours total analysis time (approx.)
• 12 Intel CPU cores

Description Count Comments

Bugs found (confirmed by group) 5 Bitwise operation instead of Boolean
logic operation

Confusing programming styles that
could lead to bugs 22 Overly complex code

E.g., ((xxxx[pstate].yyy & 0x1) >> 0)

Syntactic improvements to code
according to standard style guides 164 Stylistic deviations from standards

Total unique anomalies reported 191 Not including false positives

“ControlFlag: A Self-Supervised Idiosyncratic Pattern Detection System for Software Control Structures” by Hasabnis & Gottschlich, MAPS ‘21

36 Machine Programming Research (MPR), Intel Labs

RESULTS: Summary of 2nd Proprietary Repo Analysis

Identified 191
potential defects
• 19K scanned files(.C and .H)
• 10.9M scanned lines of code
• 18.7K scanned expressions

8 hours total analysis time (approx.)
• 12 Intel CPU cores

Description Count Comments

Bugs found (confirmed by group) 5 Bitwise operation instead of Boolean
logic operation

Confusing programming styles that
could lead to bugs 22

Overly complex code
E.g., ((xxxx[pstate].yyy & 0x1) >> 0)

Syntactic improvements to code
according to standard style guides 164 Stylistic deviations from standards

Total unique anomalies reported 191 Not including false positives

Working on a larger scan of ~65M lines of code,
which identified 25,000 anomalies.

Intel’s partner is working to integrate ControlFlag as a
permanent component of their continuous integration process.

“ControlFlag: A Self-Supervised Idiosyncratic Pattern Detection System for Software Control Structures” by Hasabnis & Gottschlich, MAPS ‘21

37 Machine Programming Research (MPR), Intel Labs

Code Semantics

38 Machine Programming Research (MPR), Intel Labs

Code Semantics
What are code semantics?

The meaning behind the syntax.

Why should we care?
Many reasons: code comprehension
and reasoning (Microsoft/GitHub
Co-Pilot), bug detection, etc.

39 Machine Programming Research (MPR), Intel Labs

Code Semantics
What are code semantics?

The meaning behind the syntax.

Formally, at the highest level
For some set of inputs, I
And two programs Pi and Pj

If programs, Pi and Pj are executed using inputs I and
produce an identical set of outputs O
We say they are semantically equivalent

Why should we care?
Many reasons: code comprehension
and reasoning (Microsoft/GitHub
Co-Pilot), bug detection, etc.

40 Machine Programming Research (MPR), Intel Labs

Code Semantics

These code snippets are semantically equivalent (according to our prior definition)

41 Machine Programming Research (MPR), Intel Labs

Code Semantics

These code snippets are semantically equivalent (according to our prior definition)

My Opinion:
The Most Important Critical Open Problem

for MP is Code Semantics Similarity

(this is a strong claim, I generally don’t make such claims unless I
feel strongly about something)

42 Machine Programming Research (MPR), Intel Labs

Code Semantics: Program-Derived Semantics Graph (PSG)

42

PSG is a graphical,
hierarchical representation
of code semantics

43 Machine Programming Research (MPR), Intel Labs

PSG of Exponentiation (Power) implemented Recursively

43

PSG = PROGRAM-DERIVED SEMANTICS GRAPH

44 Machine Programming Research (MPR), Intel Labs

44

PSG of Exponentiation (Power) implemented Recursively & Iteratively

PSG = PROGRAM-DERIVED SEMANTICS GRAPH

45 Machine Programming Research (MPR), Intel Labs

45

PSG of Exponentiation (Power) implemented Recursively & Iteratively

PSG = PROGRAM-DERIVED SEMANTICS GRAPH

Compared to Aroma’s simplified parse
tree (OOPSLA ‘19), PSG has greater

graph node matching.

46 Machine Programming Research (MPR), Intel Labs

46

PSG of Exponentiation (Power) implemented Recursively & Iteratively

PSG = PROGRAM-DERIVED SEMANTICS GRAPH

Each sub-semantic may be useful
Can influence code comprehension, call stacks,
speculative execution (branch prediction), etc.

Some sub-semantic properties

Both implement exponentiation (only integers)
Both are correct
One is recursive
One is iterative
One has multiple branches
One has one branch path

Compared to Aroma’s simplified parse
tree (OOPSLA ‘19), PSG has greater

graph node matching.

47 Machine Programming Research (MPR), Intel Labs

MISIM (Machine Inferred Code Similarity)

47

Code semantics similarity system using:
– Determinism:

– new code representation (context-aware semantics structure (CASS))

– Stochasticism:
– learned neural scoring algorithm

48 Machine Programming Research (MPR), Intel Labs

Machine Inferred Code Similarity (MISIM)

48

[Deterministic] Novel code representation:
context-aware semantics structure (CASS)

[Stochastic] Novel learned neural scoring algorithm

MISIM has two core novelties: one is deterministic, one is stochastic

49 Machine Programming Research (MPR), Intel Labs 49

§ Compared to SOTA: code2vec, code2seq, NCC, and Aroma.

§ Tested on ~19M LOC, 350,000 full C/C++ programs, 400 unique classes.

MISIM =

Other systems = misim’s ACCURACY

50 Machine Programming Research (MPR), Intel Labs 50

§ IBM/MIT’s Project CodeNet analysis (2021)

misim’s ACCURACY

§ The C++1000 dataset consists of 1000 classes with 500k programs

§ The C++1400 dataset consists of 1400 classes with 420k programs

§ MISIM performed 4.4-5.0x better than Aroma for Project CodeNet
across ~1M programs

§ We are using MISIM (and similar systems) in-house for an upcoming
new MP system

https://arxiv.org/pdf/2105.12655.pdf

51 Machine Programming Research (MPR), Intel Labs

Conclusion
• Machine Programming Research charter

• Discussion of The Three Pillars of MP
• Separation of intention, lifting code semantics

• Intentional programming languages

• The Bifurcated Space in MP
• Stochastic and Deterministic

• ControlFlag: A Self-Supervised Systems for MP

• MISIM: A Code Semantics Similarity System

52 Machine Programming Research (MPR), Intel Labs

Future and Open Invitation for Collaboration
Future directions
• Growing MP investment across all of Intel
• MPR is hiring PhD+ researchers; please reach out to me

Industrial and academic collaborations
• Teaching MP fundamentals at Berkeley and MIT, Fall 2021
• New Intel/NSF Machine Programming Research Center
• MAPS ‘22: Program Chair Prof. Dr. Charles Sutton (Google AI)

Stay current with MP and our open-sourcing
• Intel’s Website, LinkedIn, Twitter, and YouTube MP Channel
• ControlFlag’s open-source link:

• https://github.com/IntelLabs/control-flag

53 Machine Programming Research (MPR), Intel Labs

