Machine Programming & Data-Driven
Dependable and Secure Software Systems

Justin Gottschlich Contributors: |
Todd Anderson, Saman Amarasinghe, Regina Barzilay,
.. Michael Carbin, Alvin Cheung, Pradeep Dubey, Henry
Zn:cllfalloA)l Scientist & Director/Founder of Machine Programming Research elsls, N [eEalss, el e i ek, i
ntel Labs

Kraska, Insup Lee, Geoff Lowney, Shanto Mandal, Tim
Mattson, Pranav Mehta, Abdullah Muzahid, Paul Petersen,
Adjunct Assistant Professor Alex Ratner, Martin Rinard, Vivek Sarkar, Koushik Sen,
Ui off Bermad vars Armando Solar-Lezama, Joe Tarango, Nesime Tatbul, Josh
(y y) B. Tenenbaum, Jesmin Tithi, Javier Turek, Abdul Wasay,
Rich Uhlig, Anand Venkat, Fangke Ye, Xin Zhang, Shengtian

Steering Committee Chair, ACM Machine Programming Symposium (MAPS) Zhou ... and many others.

Machine Programming Research (MPR), Intel Labs

Legal Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Results have been estimated or simulated.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and noninfringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

Machine Programming Research (MPR), Intel Labs

Overview

* Machine Programming Research @ Intel

e Discussion of The Three Pillars of MP

* Separation of Intention is Critical
 The Bifurcated Space of MP

e Stochastic and Deterministic

* Machine Programming Emphasis @ Intel

e ControlFlag: a Self-Supervised Systems for MP
* MISIM: a Code Semantics Similarity System

¢ Machine Programming Research (MPR), Intel Labs

Overview

* Machine Programming Research @ Intel

Machine Programming Research (MPR), Intel Labs

Definition: Machine Programming (MP) is the automation of
software and hardware development

Machine Programming Research (MPR)

A New Pioneering Research Initiative at

Intel |abs

Machine Programming Research (MPR), Intel Labs

Intel Labs’ MPR Goals

Machine Programming (MP) is the automation of software and hardware development

Time: Quality:
7 B

Reduce development Better software than
time of all aspects of the best human
software development programmers*
*Measured as 1000x+ *Measured as superhuman
improvement over human correctness, performance,
work performed today security, etc.

Machine Programming Research (MPR), Intel Labs

Intel Labs’ MPR Goals

Concrete Data Point: \

“Automatically Translating Image Processing
Libraries to Halide” (Ahmad et al., 2019)*

*Funded by Intel’s CAPA Research Center /

Time: Quality:

Machine Programm d hardware development

x86 Performance

Translated Function

Machine Programming Research (MPR), Intel Labs

Overview

e Discussion of The Three Pillars of MP

* Separation of Intention is Critical

Machine Programming Research (MPR), Intel Labs

10

The Three Pillars of Machine Programming

Machine Programming (MP) is the

. Data Data
automation of software and vention
hardware development

Intention aptation
* Intention: Discover the intent of a

programmer; lift meaning from software
Data

* Invention: Create new algorithms and
data structures; compositional novelty

The Three Pillars of Machine Programming

Justin Gottschlich Armando Solar-Lezama Nesime Tatbul
Intel Labs, USA MIT, USA Intel Labs and MIT, USA
justin.gottschlich@intel.com asolar@csail.mit.edu tatbul@csail.mit.edu
[]

° & A Michael Carbin Martin Rinard Regina Barzila:
* Adaptation: Evolve in a changing hacl Ca otin R el Barlay
mcarbin@csail.mit.edu rinard@csail.mit.edu regina@csail.mit.edu

h a rd Wa re / S Oftwa re WO rl d Saman Amarasinghe Joshua B. Tenenbaum Tim Mattson

MIT, USA MIT, USA Intel Labs, USA
saman(@csail.mit.edu jbt@mit.edu timothy.g. mattson@intel.com

Machine Programming Research (MPR), Intel Labs

11

The Three Pillars of Machine Programming

Machine Programming (MP) is the
automation of software and
hardware development

* Intention: Discover the intent of a
programmer; lift meaning from software

* Invention: Create new algorithms and
data structures; compositional novelty

* Adaptation: Evolve in a changing
hardware/software world

Data Data

L Y

Data is a principal driver for all MP systems

1L i1ikiIvil ' "uuptullull

Data

The Three Pillars of Machine Programming

Justin Gottschlich Armando Solar-Lezama Nesime Tatbul
Intel Labs, USA MIT, USA Intel Labs and MIT, USA
justin.gottschlich@intel.com asolar@csail.mit.edu tatbul@csail.mit.edu

Michael Carbin Martin Rinard Regina Barzilay
MIT, USA MIT, USA MIT, USA
mcarbin@csail.mit.edu rinard@csail.mit.edu regina@csail.mit.edu

Saman Amarasinghe Joshua B. Tenenbaum Tim Mattson
MIT, USA MIT, USA Intel Labs, USA
saman(@csail.mit.edu jbt@mit.edu timothy.g. mattson@intel.com

Machine Programming Research (MPR), Intel Labs

12

Separation of Intention is Critical

* Requires user only supply core idea . w%\\
(improving productivity) %o N
Q/. (}6 \
* Enables machine to explore a wider range of possible % ')o,\\ Invention
solutions (improving MP-generated solutions) \\
\
* Enables automatic SW adaptation & evolution N
Intention N
\
\
We anticipate this separation will give rise to: AN

programmer is =
forced to stay on

Example: Halide/Verified Lifting (Adobe Photoshop) this side of the line

* Intentional Programming Languages

Machine Programming Research (MPR), Intel Labs

Separation of Intention is Critical

- Leverages Separation of Intention o N
[(3 o 0 \
from Invention & Adaptation % 0
Q/. /N N\
. “Automatically Translating Image Processing Sl 2% °'>o N Invention
Libraries to Halide” (Ahmad et al., 2019) ~ N
\\
\
x86 Performance N\
Intention AN
\
\
\
\

programmer is
to stay on
this side of the line

Translated Function

= Machine Programming Research (MPR), Intel Labs

Overview

 The Bifurcated Space of MP

e Stochastic and Deterministic

H Machine Programming Research (MPR), Intel Labs

15

The Bifurcated Space of Machine Programming

Techniques
used in MP
systems

Components
used in MP
systems

Stochastic

Deterministic

/

Machine Learning

(Neural networks, reinforcement

learning, genetic algorithms,
Bayesian networks, etc.)

'S

Formal Methods

(Formal verifiers, spatial and
temporal logics, formal
program synthesizers, etc.)

N

Progressively more approximate

Progressively more precise

Software

Programming languages,

algorithms, data structures, etc.

Hardware

Compute, communications, and
memory architectures, etc.

Machine Programming Research (MPR), Intel Labs

The Bifurcated Space of Machine Programming

Stochastic Deterministic
Techniques / Machine Learning 7/ Formal Methods \
used in MP (Neural networks, reinforcement (Formal verifiers, spatial and
systems learning, genetic algorithms, temporal logics, formal

\ Bayesian networks, etc.) E\ program synthesizers, etc.) /
N Lo ____—_. 5

Progressively more precise

to improve w/ more iid data [are Hardware
ming languages, Compute, communications, and
\ s, data structures, etc. memory architectures, etc.
N

o Machine Programming Research (MPR), Intel Labs

The Bifurcated Space of Machine Programming

Stochastic Deterministic
Techniques / Machine Learning K Formal Methods \
used in MP (Neural networks, reinforcement (Formal verifiers, spatial and
systems learning, genetic algorithms, temporal logics, formal

Bayesian networks, etc.) program synthesizers, etc.)

< - -=->
P cise

Components
used in MP Programming languages, Compute, communications, and
systems algorithms, data structures, etc. memory architectures, etc.

Y Machine Programming Research (MPR), Intel Labs

18

Concretizing The Two Sides of MP with Neuro-Symbolism

Stochastic (Neuro)

Machine
learning

v

ML Model

Deterministic (Symbolic)

Specification

[1,8,5]-->[1,5, 8]
[4, 0] --> [0, 4]

Program

Programming Language Constructs

e

for (...)

swap(...)

N
if (...)

peek(...)
J

Credit: Jeevana Inala &
Armando Solar-Lezama

Machine Programming Research (MPR), Intel Labs

Overview

* Machine Programming Emphasis @ Intel

e ControlFlag: a Self-Supervised Systems for MP
* MISIM: a Code Semantics Similarity System

o Machine Programming Research (MPR), Intel Labs

Numerous MP Efforts @ Intel

Debugging / Profiling / Productivity

* ControlFlag, MISIM, & AutoPerf

Automated Performance Extraction

* Inteon’s Tiger Shark (Intel venture)
INTEON SHARKTOWN
 MP-based general-purpose compiler (e.g., ML-

learned code optimizations)

Turbocharge Deep Learning Code

Sharktown is a new platform that converts deep
learning models into optimized high-performance

And Many More ces binaries that run faster on a wide range of processors

20 Machine Programming Research (MPR), Intel Labs

Numerous MP Efforts @ Intel

Debugging / Profiling / Productivity

*Beats SOTA by ~2x with 400k labeled data samples
**Beats SOTA by ~“5x with 1M labeled data samples

* ControlFlag, MISIM, & AutoPerf
w“ / (independently confirmed by IBM/MIT)

Automated Performance Extraction

* Inteon’s Tiger Shark (Intel venture)
INTEON SHARKTOWN

* MP_baSEd general_purpose Compiler (e-g-r ML- Turbocharge Deep Learning Code

learned code optimizations) p—

Sharktown is a new platform that converts deep
learning models into optimized high-performance

And Many More ces binaries that run faster on a wide range of processors

**MISIM: A Neural Code Semantics Similarity System Using the Context-Aware Semantics Structure”
by Ye et al. (https://arxiv.org/abs/2006.05265)

Machine Programming Research (MPR) Intel Labs **“CodeNet: A Large-Scale Al for Code Dataset for Learning a Diversity of Coding Tasks” by Puri et
’ al. (https://arxiv.org/abs/2105.12655)

Numerous MP Efforts @ Intel

Debugging / Profiling / Productivity

e ControlFlag, MISIM, & AutV What can we build without labeled data?
“——

Automated Performance Extraction

* Inteon’s Tiger Shark (Intel venture)
INTEON SHARKTOWN
 MP-based general-purpose compiler (e.g., ML-

learned code optimizations)

Turbocharge Deep Learning Code

Sharktown is a new platform that converts deep
learning models into optimized high-performance

And Many More ces binaries that run faster on a wide range of processors

Machine Programming Research (MPR), Intel Labs

RESULTS: The global cost of software development is

Productivity — Haskas Ellion
Software development cost structure (US$ billion)

Debugging waso seas

| 25% ~ Fixing Bugs
Debugging -

M 25% ~ Making Code Work

H20% ~ Designing Code

H30% ~ Writing Code

Programming Programming
Wages Wages

University of Cambridge s
(http://citeseerx.ist.psu.edu/viewdoc/download? {adnsin) (development) “ z:‘;;::;;g:‘;:‘::;’(gzg)' Payscale (2012),

doi=10.1.1.370.9611&rep=repl&type=pdf)

Machine Programming Research (MPR), Intel Labs

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.370.9611&rep=rep1&type=pdf

RESULTS: The global cost of software development is
US$$1.25 trillion

Productivity —
Software development cost structure (US$ billion)
Debugging waso seas

50% of the cost of software Debusgindl "25% - Fsing Bugs

development is debugging. | #25% - Making Code Work

H20% ~ Designing Code

H30% ~ Writing Code

Overhead Programming Programming
Wages Wages

(http://citeseerx.ist.psu.edu/viewdoc/download? (odmin) (Gevelopment) Source: zm:;;g:‘;':::;(zzm)' Payscale (2012),

doi=10.1.1.370.9611&rep=repl&type=pdf)

University of Cambridge

% Machine Programming Research (MPR), Intel Labs

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.370.9611&rep=rep1&type=pdf

Debugging: Finding Code Anomalies

What is a code anomaly?

* A piece of code that is irregular

Why care about code anomalies?

e Anomalous code can lead to defects, technical
debt, delayed software development (hard to
understand code), loss of customer trust

» Machine Programming Research (MPR), Intel Labs

Anomaly found in CURL (~30-year-old software)

CURL developers rewrite flagged piece of e
code found with ControlFlag reak
Re: Potential confusion in http_proxy.c St
and a recommendation if(s->keepon == KEEPON_IGNORE) {

/¥ This means we are currently ignoring a response-body *
*Contemporary messages sorted: [by date] [by thread][by subject][by
author] [by messages with attachments]

From: Daniel Stenberg via curl-library <curl-library at cool.haxx.se>
Date: Mon, 9 Nov 2020 23:51:20 +0100 (CET)

v 6 mmmm~ lib/urldata.h (7

)) .)) @@ -802,7 +802,11 @@ struct proxy_info {
On Mon, 9 Nov 2020, Hasabnis, Niranjan via curl-library wrote: P ———————
struct 14 P ONNE(state aata *x/

, — ” .. , , struct http_connect_state {
> We believe that using ‘if (s->keepon > 1)” would eliminate this confusion P

A . , struc f f;
> and capture the intended semantics precisely. t dynbuf rcvbu

int keepon;

| think you've pointed out code that could be written clearer, yes. But | enum keeponval {
think an even better improvement to this logic would be to use an enum or KEEPON_DONE,
defined values that include all three used values as state names. KEEPON_CONNECT,
KEEPON_IGNORE
What do you think about my proposal over at: } keepon;
https://github.com/curl/curl/pull/6193 curl_off_t cl; /* size of content to read and ignore

enum {
TUNNEL_INIT, /* init/default/no tunnel state

https://curl.se/mail/lib-2020-11/0028.html

Machine Programming Research (MPR), Intel Labs

https://curl.se/mail/lib-2020-11/date.html
https://curl.se/mail/lib-2020-11/index.html
https://curl.se/mail/lib-2020-11/subject.html
https://curl.se/mail/lib-2020-11/author.html
https://curl.se/mail/lib-2020-11/attachment.html
mailto:curl-library_at_cool.haxx.se?Subject=Re%3A%20Potential%20confusion%20in%20http_proxy.c%20and%20a%20recommendation
https://github.com/curl/curl/pull/6193

Anomaly found in CURL (~30-year-old software)

CURL developers rewrite flagged piece of e
code found with ControlFlag reak
Re: Potential confusion in http_proxy.c rpT——
and a recommendation if(s—>keepon == KEEPON_IGNORE) {

/¥ This means we are currently ignoring a response-body *
*Contemporary messages sorted: [by date] [by thread][by subject][by
author] [by messages with attachments]

From: Daniel Stenberg via curl-library <curl-library at cool.haxx.se>
Date: Mon, 9 Nov 2020 23:51:20 +0100 (CET)

v 6 mmmm~ lib/urldata.h [°)

)) .)) @@ -802,7 +802,11 @@ struct proxy_info {
On Mon, 9 Nov 2020, Hasabnis, Niranjan via curl-library wrote: Cruct for HTTE COMMECT <tate d
Struct) r ONINE(state data x/

, — ” .. , , struct http_connect_state {
> We believe that using ‘if (s->keepon > 1)” would eliminate this confusion >

A . , struc f f;
> and capture the intended semantics precisely. t dynbuf rcvbu

int keepon;

| think you've pointed out code that could be written clearer, yes. But | enum keeponval {
think an even better improvement to this logic would be to use an enum or Antnll 2Ll
defined values that include all three used values as state names. KEEPON_CONNECT,
KEEPON_IGNORE
What do you think about my proposal over at: } keepon;
https://github.com/curl/curl/pull/6193 curl_off_t cl; /* size of content to read and ignore

enum {
TUNNEL_INIT, /* init/default/no tunnel state

https://curl.se/mail/lib-2020-11/0028.html

Machine Programming Research (MPR), Intel Labs

https://curl.se/mail/lib-2020-11/date.html
https://curl.se/mail/lib-2020-11/index.html
https://curl.se/mail/lib-2020-11/subject.html
https://curl.se/mail/lib-2020-11/author.html
https://curl.se/mail/lib-2020-11/attachment.html
mailto:curl-library_at_cool.haxx.se?Subject=Re%3A%20Potential%20confusion%20in%20http_proxy.c%20and%20a%20recommendation
https://github.com/curl/curl/pull/6193

Limitations in Existing Code Anomaly Detectors

Tools & techniques to identify software defects
 Testing (unit tests, QA, etc.)

e Static analysis

e Compilers, linters

Limitations

 Continuous manual effort to maintain and update
(i.e., adding new rules as things evolve)

 Manual efforts can be error-prone

2 Machine Programming Research (MPR), Intel Labs

ControlFlag

A Self-Supervised
Anomalous Code
Detection System

Technical Lead:

Dr. Niranjan Hasabnis
Intel Labs

Step 1: Pattern mining

Semi-trust Learn idiosyncratic Self-supervision;
(humans must decide this) patterns in code no labels

Step 1.0 Step 1.1 Step 1.2 Step 1.3

Source Code Mine patterns in Build representation Self-supervised clustering
Repositories : control structures : for patterns using decision tree

—‘ : Source
- |:|J> code
parser
Codebase Patterns Syntax Trees for Patterns

Step 2: Scanning for erroneous patterns

Step 2.0 Step 2.1 Step 2.2 Step 2.3: Step 2.4:
Target Code Mine patterns in Build representation Find “nearest” patterns Is pattern an
Repositories control structures 5 for patterns . in decision tree . anomaly?
: Source
- I:l;> code I:IJ> I:lg> |:l;> T "_“X o <a Vo ed
parser -

: : i Nearest patterns
Codebase g Patterns i Syntax Trees i intraining dataset :

29

ControlFlag. A Self-Supervised Idiosyncratic Pattern Detection System for Software Control Structures” by Hasabnis & Gottschlich, MAPS ‘21

Machine Programming Research (MPR), Intel Labs

ControlFlag In The News

ZDNet | ¢

funure

Developers: Intel's automated debugging tool
ControlFlag is now open source

ControlFlag can automatically detect anomlies in sof and it could spare developers hours of tedious work.

@ in@ f ° o0 2oTone Cockroach Labs

Worry-free,
fastand
indestructible

Ecsy, fast,and free start.
Nocredit card.

Nocommitment.

VB fvents Gameseat Jobs Low Code/ NoCode Summit BocomeaMember | Signin
The Machine Q =
Intel open-sources Al-powered oo

October 20,2021 11:53 AM

tool to spot bugs in code
— f¥in

“

intel)

The rise in cyber risks in
the new hybrid work
environment

Let the 0SS Enterprise newsletter guide your open source journey! Sign up here.

Intel today ope ced ControlFlag, a tool that uses machine learning to

problems in computer code — ideally to reduce the time required to d

the company’s machine progeamming research team

mmr pro IT INSIGHTS FOR BUSINESS

A News

Windows 11 pros & cons for business Best hybrid working tech Microsoft Teams ug

Reviews Security ~ Websites VPN Insights

chase through links on our site, we may eam an affi

Intel wants to make it easier than eve
spot coding errors

advanced

1S ed its ControlFlag tool, which the company claims u

self-supervised machine-learning (ML) techniques to detect c

Resource

ses

dir

Register here ontrolFlag has found hundreds of defects in proprietary,
“production-quality” , demonstrating fulne:

30

Machine Programming Research (MPR), Intel Labs

Blaze

Trends

HOME WORLD v TECH v SPORTS v ENTERTAINMENT v BUSINESS v SCIENCE v CORONAVIRUS CONTACT

Home » Tech » Ief

Intel's ControlFlag debugging tool uses
artificial intelligence to clean up code

By Tery Scott - October 23,2021

_unamunpoqs

M PSG streaming: at what time and h

industry

debugging. Th
Vauclus

trafficking

phoronix

ARTICLES & REVIEWS ~ NEWSARCHIVE ~FORUMS PREMIUM O CATEGORIES

Leose 0 2022 BMW)G sDrive30ifor
$489/mo with $3,999 due ot signing.

Offer Detalls
Oponal equpment shonn.

Intel Makes ControlFlag Open-Source For Helping Tc

Michael Larabel ntel on 20 ober 2) PM EDT. 2 |

Last year Intel announced ControlFlag as a machine learning tool for helping to uncover bugs within code. ControlFlag promised impressive
ults after being trained on more than one billion lines of code and at the end of 2020 was alre being used internally on Intel's code-
bases from firmware to software applications. We hadn't heard anything more about ControlFlag this year... Until today. Intel has now made

ControlFlag open-source for helping to autonomously detect more programming bugs.

ed Idiosyncratic Patter Detection System for Software Control

ControlFlag is described by Intel Labs engineers as
ases of many open-source projects, it detects anomalous patterns

Structures” but what it comes down to is basically from mining patterns within C/C-
in use de.

ControlFlag can be built for Linux and macOS systems. Intel has made training data available that they generated from 6,000 open-source GitHub
repositories. From there it's possible to easily scan C/C++ code in looking for potential anomalies.

ut it has already "found hundreds of confirmed software def in proprietary,
n post by Intel's Justin Gottschlich

Intel reported today that not only is the open-source code
production-quality software.” More details can be found via f

-source ControlFlag code is hosted under Intel Lz GitHub.

ControlFlag

A Self-Supervised
Anomalous Code
Detection System

Technical Lead:

Dr. Niranjan Hasabnis
Intel Labs

Step 1: Pattern mining

Semi-trust
(humans must decide this)

Learn idiosyncratic

Self-supervision;
patterns in code

no labels

Step 1.0 Step 1.1 Step 1.2 Step 1.3
Source Code Mine patterns in Build representation

Self-supervised clustering
Repositories : control structures : for patterns

using decision tree

. I:lg>‘ Source N — I\ g& _J\ 4

Design Take-Aways:
Step 2: Scann

Self-Supervised (No Labels)

Step 2.0 Self-Evolving (Little Manual Effort) Step 2.4:

Target Code Is pattern an

Repositories No Compilation (Integration in IDEs) anomaly?
Sourc :

. |:l¥> codee E> -|| |:l¥>oiv&o o -II I:lg> 5 (};'ﬁaf 1{231 s <a V) eC
parser _ :

Codebase Patterns Syntax Trees Nearest patterns

{ intraining dataset

31

“ControlFlag. A Self-Supervised Idiosyncratic Pattern Detection System for Software Control Structures” by Hasabnis & Gottschlich, MAPS ‘21

Machine Programming Research (MPR), Intel Labs

Anomalies in Production-Quality, Open-Source Software

Evaluation: Setup

Training repository selection

e 6000 GitHub repos for
C language having
more than 100 stars

* 2.57M programs
 1.1B Lines of code
* 38M patterns

Test repositories
* openssl, curl, ffmpeg

e git, vic, Icx, |z4, reactos

Repo GitHub Found Scanned Types of anomalies found
stars Anomalies Expressions

loLanguage/io 2.3K 5 1635 Confusing expressions; missing parenthesis

Git/git 38.9K 6 6341 Confusing expression; character comparison
using greater than or less than

Rubinius/rubinius 3K 2 10135 Character comparison using greater than or less
than; missing parenthesis

FreeRADIUS/ 1.5K 3 20621 Character comparison using greater than or less

freeradius-server than

Davidfstr/rdiscount 755 4 472 Character comparison using greater than or less
than; missing parenthesis

Libharu/libharu 1.2K 1 2785 Character comparison using greater than or less
than

Macournoyer/tinyrb 454 3 4369 Character comparison using greater than or less
than

Rhomobile/rhodes 1K 14 76128 Confusing expressions; missing parenthesis;

character comparison using greater or less than

“ControlFlag. A Self-Supervised Idiosyncratic Pattern Detection System for Software Control Structures” by Hasabnis & Gottschlich, MAPS ‘21

32

Machine Programming Research (MPR), Intel Labs

33

Anomaly Found in Proprietary & Deployed Software

. void func() {

uint32_t* p32;
imeaaty b An Example of

uint32_t index = @, other_index = <function_calls; Contro|F|ag’s Finding

BwWN R

for(j =0; § < ..; j++) {
if (array[j+1] == some_value) {
index = j + 1; Three defects:
break;

}} 1. Duplicate expression in

lines 11 and 12

2. Possible out-of-bounds

Anomaly ﬂag_gEd by . if ((uint32_t) &arrayl[other_index].array2[index] % 4) { memory access (memory
ControIFIag: in12 . p32 = (uint32_t*)(pl6 - 1); in [14
if (address % 4) . *p32 = (*p32 & Ox@OOOFFFF) | (uin32_t) (mask); error) in line
. } else { 3. Information leak, security
p32 = (uint32_t*) pi6; cier a1
*p32 = (*p32 & OxFFFFe000) | some_other mask; vulnerability in line 11

5.
6.
7.
8.
9.
1o0.

. pl6 = &arrayl[other_index].array2[index];

-}
-}

“ControlFlag. A Self-Supervised Idiosyncratic Pattern Detection System for Software Control Structures” by Hasabnis & Gottschlich, MAPS ‘21

Machine Programming Research (MPR), Intel Labs

RESULTS: Summary of 1 Proprietary Repo Analysis

|dentified 104
potential defects

e 812 scanned files (.C and .H)
e 353K scanned lines of code
e 4600 scanned expressions

3 hours total analysis time (approx.)
* 56 Intel CPU cores

Description Count Comments

Anomalies that are critical bugs 2 Type error; memory error; security
vulnerability

Anomalies that can lead to 39 Missing NULL check; possible divide

unwanted side-effects by 0; missing return value check

Anomalies that point to confusing 4 Double parenthesis around

programming style expressions, when not required

Anomalies that point to 59 Not using named constants; constant

improvements in programming styles on right hand of equality;

Total unique anomalies reported 104 Not including false positives

“ControlFlag. A Self-Supervised Idiosyncratic Pattern Detection System for Software Control Structures” by Hasabnis & Gottschlich, MAPS ‘21

34

Machine Programming Research (MPR), Intel Labs

RESULTS: Summary of 2"“ Proprietary Repo Analysis

|dentified 191
potential defects

* 19K scanned files (.C and .H)
e 10.9M scanned lines of code
e 18.7K scanned expressions

8 hours total analysis time (approx.)
* 12 Intel CPU cores

Description Count Comments
o .. f Bool

N e e — c Bltwlse operatlon instead of Boolean

logic operation
Confusing programming styles that 29 Overly complex code
could lead to bugs E.g., ((xxxx[pstate].yyy & 0x1) >> 0)
Syntac’Flc 'mprovements to cogle 164 Stylistic deviations from standards
according to standard style guides
Total unique anomalies reported 191 Not including false positives

“ControlFlag. A Self-Supervised Idiosyncratic Pattern Detection System for Software Control Structures” by Hasabnis & Gottschlich, MAPS ‘21

35

Machine Programming Research (MPR), Intel Labs

RESULTS: Summary of 2" Proprietary Repo Analysis

Identified 191

potential defects

Description Count

Comments

Bugs found (confirmed by group))

Bitwise operation instead of Boolean

e 19K scanned f
* 10.9M scannec
e 18.7K scanned

8 hours total anal
e 12 Intel CPU cor¢

'-'—-—-Ttion

Working on a larger scan of “65M lines of code, |, code

which identified 25,000 anomalies.

pstate].yyy & 0x1) >> 0)

Number of files (.C and .H) 126,896 Liations from standards

Number of expressions 1,374,028

Number of lines of code 64,690,054

Intel’s partner is working to integrate ControlFlag as a

permanent component of their continuous integration process.

Ing false positives

“ControlFlag.: A Self-Supervised Idiosyncratic Pattern Detection System for Software Control Structures” by Hasabnis & Gottschlich, MAPS

36

Machine Programming Research (MPR), Intel Labs

21

37

GODE SEMANTICS

Machine Programming Research (MPR), Intel Labs

GODE SEMANTICS

What are code semantics? Why should we care?

The meaning behind the syntax. Many reasons: code comprehension
and reasoning (Microsoft/GitHub
Co-Pilot), bug detection, etc.

% Machine Programming Research (MPR), Intel Labs

GODE SEMANTICS

What are code semantics? Why should we care?

The meaning behind the syntax. Many reasons: code comprehension
and reasoning (Microsoft/GitHub

Co-Pilot), bug detection, etc.

Formally, at the highest level

For some set of inputs, /
And two programs P; and P,

If programs, P; and P; are executed using inputs / and
produce an identical set of outputs O

We say they are semantically equivalent

> Machine Programming Research (MPR), Intel Labs

GODE SEMANTICS

Program A Program B

int a; char *p, x*head, c;
// algorithm p = (char *) malloc(sizeof(char) * 30);
while (!'cin.eof()) { head = p; scanf("/c", p);

while (!cin.eof() && !'isdigit(cin.peek())) while (*p != ’\n’) { p++; *p = getchar();}

cin.get(); // ignore *p = ’\0’; p = head;
// print out result for (; *p !'= °\0’; p++) {

if (¥p <= ’9° && *p >= 20?){printf("’c",*p);}
else if (*(p+1) < 58 && *(p+1) > 47){putchar(’\n’);}
}

if (cin >> a)
cout << a << endl;

These code snippets are semantically equivalent (according to our prior definition)

0 Machine Programming Research (MPR), Intel Labs

GODE SEMANTICS

Program A

int a; ° °
// algorithm My Oplnlon: char) * 30);
while (!'cin.eof()) {

hile (!cin.eof() && !i e
) 2iz.ge1?(1;l; " e The Most Important Critical Open Problem

// print out result for MP is Code Semantics Similarity
if (cin >> a)) {printf ("%c",*p);}

cout << a << endl; p+1) > 47){putchar(’\n’);}

p = getchar();}

(this is a strong claim, | generally don’t make such claims unless |
feel strongly about something)

These code snippets are semantically equivalent (according to our prior definition)

“ Machine Programming Research (MPR), Intel Labs

CODE SEMANTICS: PROGRAM-DERIVED SEMANTICS GRAPH (PSG)

P S G I S a g ra p h I Ca l, Software Language Comprehension using a

- - - Program-Derived Semantics Graph
hierarchical representation
of code semantics o veri of Cliomis, Los Angeles Il Labs & Unversyof penmgivania USA

Los Angeles, CA, 90095, USA Santa Clara, CA, 95054, USA

{roshnigiyer, yzsun, weiwang } @cs.ucla.edu justin.gottschlich@intel.com

SeAL Level: 0
SyAL Level: -n

SeAL Level: 1

SyAL Level: -n+1 |

SeAL Level: 2
SYAL Level: -n+2

SeAL Level: n Code Level SyAL

SyAL Level: 0
SeAL Level: n+1
SyAL Level: 1
SeAL Level: n+2
SyAL Level: 2

Capturing Syntactic Information

Figure 1: PSG Abstraction Level Spectrum for Semantic Abstraction Levels (SeAL) and Syntactic
Abstraction Levels (SyAL), distinguished by color-coding.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Computer-Assisted Programming
42 Workshop, Vancouver, Canada. Copyright 2020 by the author(s).

Machine Programming Research (MPR), Intel Labs

PSG OF EXPONENTIATION (POWER) IMPLEMENTED RECURSIVELY

Software Language Comprehension using a Program-Derived Semantic Graph

perations for
handling data)

Data Data Code-
Structures Transformation repetition

Computation

Arithmetic
Operations

multiply
-divide

Preprint, April, 2020

Control (code
structure and flow)

Forced-

Conditionals
control

Short-circuited
conditionals

Comparison

if, else if, else return

Figure 5: PSG of Recursive Power Function. The shaded region denotes overlap in the nodes of the PSG for the iterative power function
shown in Figure 6. These total 17 of the 24 total nodes, a 70.83% overlap.

Implementation 1
signed int recursive_power (signed int X, unsigned int y)
{

if (y == 0)
return 1;
else if (y % 2 == 0)
return recursive power(x, y [o2)5*
recursive power(x, y / 2);

0
1
2
3
4
5

else
return x * recursive power(x, y / 2) *
recursive power(x, y / 2);

Implementation 2

0 signed int iterative power (signed int x, unsigned int y)
o B

}

return val;

43

Machine Programming Research (MPR), Intel Labs

PSG = PROGRAM-DERIVED SEMANTICS GRAPH

PSG OF EXPONENTIATION (POWER) IMPLEMENTED RECURSIVELY & ITERATIVELY

Software Language Comprehension using a Program-Derived Semantic Graph Preprint, April, 2020

Implementation 1

== 0)
return recursive power(x, y / 2) *
recursive power(x, y / 2);
else
return x * recursive power(x, y / 2) *
recursive power(x, y / 2);

Figure 5: PSG of Recursive Power Function. The shaded region denotes overlap in the nodes of the PSG for the iterative power function
shown in Figure 6. These total 17 of the 24 total nodes, a 70.83% overlap.

Implementation 2

signed int iterative power (signed int x, unsigned int y)
{

0

1

2 signed int val = 1;
3 while (y > 0) {

4 val *= x;

5 vy = 1;

6

7

8

Arthmetic
Operations.

}

return val;

}

Figure 6: PSG of Iterative Power Function. The shaded region denotes overlap in the nodes of the PSG for the recursive power function psﬁ = PRUGRAM_DERIVED sEM ANTIcs GRAPH

shown in Figure 5. These total 19 of the 27 total nodes, a 70.37% overlap.

Machine Programming Research (MPR), Intel Labs

PSG OF EXPONENTIATION (POWER) IMPLEMENTED RECURSIVELY & ITERATIVELY

Software Language Comprehension using Program-Derived Semantic Graph | breprint, Apri, 2020 C omp are d t o Ar omals Simplifi e d pars e
tree (OOPSLA ‘19), PSG has greater
graph node matching.

return 1;
else if (y % 2 == 0)
return recursive power(x, y / 2) *
recursive power(x, y / 2);
else
return x * recursive power(x, y / 2) *
recursive power(x, y / 2);

Figure 5: PSG of Recursive Power Function. The shaded region denotes overlap in the nodes of the PSG for the iterative power function
shown in Figure 6. These total 17 of the 24 total nodes, a 70.83% overlap.

Implementation 2

signed int iterative power (signed int x, unsigned int y)
{

0

1

2 signed int val = 1;
3 while (y > 0) {

4 val *= x;

5 vy = 1;

6 }

7 return val;

8

}

Figure 6: PSG of Iterative Power Function. The shaded region denotes overlap in the nodes of the PSG for the recursive power function PSG = PRU G RAM_D ERIVED SEMANTI Cs GRAPH

shown in Figure 5. These total 19 of the 27 total nodes, a 70.37% overlap.

® Machine Programming Research (MPR), Intel Labs

PSG OF EXPONENTIATION (POWER) IMPLEMENTED RECURSIVELY & ITERATIVELY

Software Language Comprehension using a Program-Derived Semantic Graph] Preprint, April, 2020 C omp a re d t o Aromals Simplifi e d p a rs e
| tree (OOPSLA ‘19), PSG has greater
graph node matching.

return 1;
else if (y % 2 == 0)

Some sub-semantic properties return recursive power(x, y / 2) *

recursive power(x, y / 2);

else

Both implement exponentiation (only integers) ESCHENS XS S KecUES Ve POWEE (it

recursive power(x, y / 2);
Both are correct
o aes meeee] ONE is recursive
One is iterative Implementation 2
One has multiple branches
One has one branch path

Vi 82)i0x

0 signed int iterative power (signed int x, unsigned int y)

signed int wval = 1;
while (y > 0) {
Each sub-semantic may be useful M

}
Can influence code comprehension, call stacks, return val;

speculative execution (branch prediction), etc.

Figure 6: PSG of Iterative Power Function. The shaded region denotes overlap in the nodes of the PSG for the recursive power function
shown in Figure 5. These total 19 of the 27 total nodes, a 70.37% overlap.

Machine Programming Research (MPR), Intel Labs

MISIM (MACHINE INFERRED CODE SIMILARITY)

Code semantics similarity system using:

— Determinism:
— new code representation (context-aware semantics structure (CASS))

— Stochasticism:
— learned neural scoring algorithm

o
s
L ¢

e .
%“’w e

9
ol &
- c g

Y Machine Programming Research (MPR), Intel Labs

Machine Inferred Code Similarity (MISIM)

MISIM has two core novelties: one is deterministic, one is stochastic

[Deterministic | Novel code representation:
context-aware semantics structure (CASS)

Global attributes table (GAT,
(GAT) #compound_stmt#{#}
vy | o]

#eall_expr#
#arg_list#

D G5

CASS (1-2-0-0-1)

* Machine Programming Research (MPR), Intel Labs

| Stochastic] Novel leamed neural scoring algorithm

Phase 0 : source code Phase 1: CASS featurization Phase 2 : twin code semantic DNN training
L 1 1
O Global Attributes Table

]
i nippet 1 CASS

= O Op==my -

Nole)

] ‘ Metric learning loss

i CASS i, Featured CASS i, Twin code ((e.g., circle loss,

Training Code Snippet iy tic DNN
semantic

Q Global Attributes Table
- ' d O fun:
o
o)

CASS|,

Inference

Eu CASS representation
network

(e.g., RNN, ‘ * Manual features
GNN) A \ « Serialized CASS
* CASStree

Similarity
metric » Score

Testing Code Snippet j;

Sub-) DNN

network ; , * Neural bag-of-features
(e.g., RNN, * Recurrent neural net
GNN) ' * Graph neural net

Frmmmmmm e me— s m————————
Buippaquia 3

Testing Code Snippet j, Featured CASS j,

j=0.T,,,, where T, is the maximum number of testing tuples.

N, M, X, Y are the maximum number of functions for code snippets i, i,, j, j, respectively Phase 3 : code similarity scoring

Figure 2. Overview of the MISIM System.

49

Other systems = .

MISIM =

MISIM'S ACGURACY

* Compared to SOTA: code2vec, code2seq, NCC, and Aroma.
* Tested on ~19M LOC, 350,000 full C/C++ programs, 400 unique classes.

~
w

MAP@R (%)

¢ s o8
’Qq;Q é’xﬁﬁx&'

R

(e) AP on POJ-104. (f) AUPRG on POJ-104.

(d) MAP@R on POJ-104.

Machine Programming Research (MPR), Intel Labs

49

50

MISIM'S ACGURACY

E I G NS EREINS A POPA VI Table 3: Similarity MAP@R score from
CodeNet (credit: [Puri et al., 2021])).

| C++1000 C++1400
Aroma 0.17 0.15
MISIM 0.75 0.75

The C++1000 dataset consists of 1000 classes with 500k programs

https://arxiv.org/pdf/2105.12655.pdf

The C++1400 dataset consists of 1400 classes with 420k programs

MISIM performed 4.4-5.0x better than Aroma for Project CodeNet
across ~1M programs

We are using MISIM (and similar systems) in-house for an upcoming
new MP system

Machine Programming Research (MPR), Intel Labs

50

Conclusion

* Machine Programming Research charter

* Discussion of The Three Pillars of MP
e Separation of intention, lifting code semantics

* Intentional programming languages

 The Bifurcated Space in MP

e Stochastic and Deterministic
e ControlFlag: A Self-Supervised Systems for MP
 MISIM: A Code Semantics Similarity System

>t Machine Programming Research (MPR), Intel Labs

52

Future and Open Invitation for Collaboration

Future directions

 Growing MP investment across all of Intel
e MPR s hiring PhD+ researchers; please reach out to me

Industrial and academic collaborations

e Teaching MP fundamentals at Berkeley and MIT, Fall 2021
* New Intel/NSF Machine Programming Research Center
* MAPS ‘22: Program Chair Prof. Dr. Charles Sutton (Google Al)

Stay current with MP and our open-sourcing
* Intel’s Website, LinkedIn, Twitter, and YouTube MP Channel

e ControlFlag’s open-source link:
e https://github.com/IntelLabs/control-flag

Machine Programming Research (MPR), Intel Labs

53

Intel labs

Machine Programming Research (MPR), Intel Labs

