
On the Surprising Efficiency and  
Exponential Cost of Fuzzing

Marcel Böhme

Software Security

MPI-SP & Monash

Keywords: Vulnerability Discovery,
Automated Software Testing,

Effectiveness, Efficiency,  
Scalability, Guarantees

• Fuzzing for Automatic Vulnerability Discovery

• Making machines attack other machines.

• Focus on scalability, efficiency, and effectiveness.

• Foundations of Software Security

• Assurances in Software Security

• Fundamental limitations of existing approaches

• Drawing from multiple disciplines (information theory, biostatistics)

whoami

2

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 assert(crash != 1);
}

Whitebox Fuzzing

φ1 = (s0 != 'b')
Path Conditions

✓

s1 != 'b'

φ1

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Whitebox Fuzzing

φ1 = (s0 != 'b')
Path Conditions

✓

s1 != 'b' s1 == 'b'

s2 != 'a'
φ1

φ2

φ2 = (s0 == 'b') /\ (s1 != 'a')✓

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Whitebox Fuzzing

φ1 = (s0 != 'b')
Path Conditions

✓

s1 != 'b' s1 == 'b'

s2 == 'a's2 != 'a'

s3 != 'd' s3 == 'd'

s4 != '!' s4 != '!'

φ1

φ2

φ3

φ4 φ5
φ2 = (s0 == 'b') /\ (s1 != 'a')
φ3 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 != 'd')
φ4 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 != '!')
φ5 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 == '!')

✓
✓
✓
✗

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

φ1 = (s0 != 'b')
Path Conditions

✓
φ2 = (s0 == 'b') /\ (s1 != 'a')
φ3 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 != 'd')
φ4 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 != '!')
φ5 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 == '!')

✓
✓
✓
✗

Whitebox Fuzzing: Most Effective!

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

It can prove the absence of assertion violation,
by enumerating all paths and modulo some assumptions.

φ1 = (s0 != 'b')
Path Conditions

✓
φ2 = (s0 == 'b') /\ (s1 != 'a')
φ3 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 != 'd')
φ4 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 != '!')
φ5 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 == '!')

✓
✓
✓
✗

Whitebox Fuzzing: Most Effective!

2

φ1 = (s0 != 'b')
Path Conditions

✓
φ2 = (s0 == 'b') /\ (s1 != 'a')
φ3 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 != 'd')
φ4 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 != '!')
φ5 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 == '!')

✓
✓
✓
✗

Whitebox Fuzzing: Quite Efficient!
void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

φ1 = (s0 != 'b')
Path Conditions

✓
φ2 = (s0 == 'b') /\ (s1 != 'a')
φ3 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 != 'd')
φ4 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 != '!')
φ5 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 == '!')

✓
✓
✓
✗

Whitebox Fuzzing: Quite Efficient!
void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

We only need 3 inputs to find the bug, on average,
if we choose each path at random without replacement.

Choose a random path from the multivariate hypergeometric (i.e., enumerate).
Choose some input that exercises that path (by constraint solving).

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: just random, really.

For each parameter, choose 1 of 256 values
uniformly at random.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: just random, really.

For each parameter, choose 1 of 256 values
uniformly at random.

It can never prove the absence of assertion violation!

https://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: just random, really.

For each parameter, choose 1 of 256 values
uniformly at random.

It can never prove the absence of assertion violation!
Well, that’s not entirely true. We can estimate a “residual risk”.

[ESEC/FSE’21] Estimating Residual Risk in Greybox Fuzzing, M Böhme, D Liyanage, V Wüstholz

[TOSEM’18] STADS: Software Testing as Species Discovery, M Böhme; ACM Trans. Softw. Eng. Meth.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: just random, really.

For each parameter, choose 1 of 256 values
uniformly at random.

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: just random, really.

For each parameter, choose 1 of 256 values
uniformly at random.

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

So, whitebox fuzzing is better, right?

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: just random, really.

For each parameter, choose 1 of 256 values
uniformly at random.

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

So, whitebox fuzzing is better, right? Wrong. At least not always.

“Whitebox Fuzzing”

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

If our whitebox fuzzer takes too long
per input, our blackbox fuzzer outperforms!

» There is a maximum time per test input!

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

On 100 machines, it takes 63 milliseconds.
On my machine, this takes 6.3 seconds.

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

If our whitebox fuzzer takes too long
per input, our blackbox fuzzer outperforms!

» There is a maximum time per test input!

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

On 100 machines, it takes 63 milliseconds.
On my machine, this takes 6.3 seconds.

Blackbox Fuzzing: Super fast!

• Our model: Error-based partitioning

• EITHER all inputs in a partition do reveal a bug 

OR all inputs in a partition do not reveal a bug

Bounds on Fuzzing Efficiency

The most effective testing technique
samples from error-based partitions!

 — Weyuker and Jeng’91

[FSE’14] On the Efficiency of Automated Testing, M Böhme, S. Paul,

[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M Böhme, S. Paul; IEEE Trans. Softw. Eng.

• Our model: Error-based partitioning

• EITHER all inputs in a partition do reveal a bug 

OR all inputs in a partition do not reveal a bug

• However, we have no a-priori knowledge whether a partition is error-revealing.

• Partitions are of arbitrary size and number.

Bounds on Fuzzing Efficiency

The most effective testing technique
samples from error-based partitions!

 — Weyuker and Jeng’91

[FSE’14] On the Efficiency of Automated Testing, M Böhme, S. Paul,

[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M Böhme, S. Paul; IEEE Trans. Softw. Eng.

• Our model: Error-based partitioning

• EITHER all inputs in a partition do reveal a bug 

OR all inputs in a partition do not reveal a bug.

• A testing technique samples the program’s input space and  
discovers a partition Di when Di is sampled for the first time.

• The discovery of Di shows whether or not Di reveals a bug.

• Notice that we assume a test oracle.

Bounds on Fuzzing Efficiency

[FSE’14] On the Efficiency of Automated Testing, M Böhme, S. Paul,

[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M Böhme, S. Paul; IEEE Trans. Softw. Eng.

• A testing technique achieves a degree of confidence x when at least x% of the
program inputs reside in discovered partitions.

• Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

Bounds on Fuzzing Efficiency

[FSE’14] On the Efficiency of Automated Testing, M Böhme, S. Paul,

[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M Böhme, S. Paul; IEEE Trans. Softw. Eng.

• Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

Bounds on Fuzzing Efficiency

[FSE’14] On the Efficiency of Automated Testing, M Böhme, S. Paul,

[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M Böhme, S. Paul; IEEE Trans. Softw. Eng.

• Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

• Blackbox Fuzzing (R)
• Samples inputs randomly

• Some partitions several times, others not at all

• 1 time unit per input

• Whitebox Fuzzing (S)

• Samples inputs systematically

• Each partition exactly once!

• Most effective!

• c time units per input

Bounds on Fuzzing Efficiency

[FSE’14] On the Efficiency of Automated Testing, M Böhme, S. Paul,

[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M Böhme, S. Paul; IEEE Trans. Softw. Eng.

• Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

Bounds on Fuzzing Efficiency

TimeC
on

fid
en

ce
 A

ch
ie

ve
d

• Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

Bounds on Fuzzing Efficiency

Whitebox Fuzzing

TimeC
on

fid
en

ce
 A

ch
ie

ve
d Expected to

achieve 100% in
c· k time units

S

• Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

Bounds on Fuzzing Efficiency

TimeC
on

fid
en

ce
 A

ch
ie

ve
d R

Blackbox Fuzzing

Expected to
achieve 100% in
∞ time units

S

• Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

Bounds on Fuzzing Efficiency

TimeC
on

fid
en

ce
 A

ch
ie

ve
d

x
R

S

• Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

Bounds on Fuzzing Efficiency

TimeC
on

fid
en

ce
 A

ch
ie

ve
d

x
R

S

• Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

Bounds on Fuzzing Efficiency

TimeC
on

fid
en

ce
 A

ch
ie

ve
d

x
R

c=1

S

• Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

Bounds on Fuzzing Efficiency

TimeC
on

fid
en

ce
 A

ch
ie

ve
d

x
R

S

• Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

Bounds on Fuzzing Efficiency

TimeC
on

fid
en

ce
 A

ch
ie

ve
d

x
R

S

• Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

Bounds on Fuzzing Efficiency

TimeC
on

fid
en

ce
 A

ch
ie

ve
d

x
R

Increasing c of S,
increases time to achieve

 same degree of confidence!

S

• Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

Bounds on Fuzzing Efficiency

TimeC
on

fid
en

ce
 A

ch
ie

ve
d

x
R

c0

S

• Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

Bounds on Fuzzing Efficiency

Blackbox Fuzzing wins —
if the average time to sample
 one test input exceeds c0

TimeC
on

fid
en

ce
 A

ch
ie

ve
d

x
R

c0

S

• Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

•

Bounds on Fuzzing Efficiency

• Answer: S is expected to lose if c > time units.

• Example:

• R takes 1ms to sample one test input

• Establish correctness for x=90% of inputs

S0 must take less than 4.1ms to sample one test input

Otherwise, R is expected to achieve the 90%-degree of confidence first.

0.8 0.85 0.9 0.95 1
0

2

4

6

8

10

(x = 0.99, c0 = 4.65)

Confidence Bound x (in %)

C
o
st

c 0

Figure 2: If the average analysis cost of S0 exceeds c0
for a given degree of confidence x, then R is generally

more e�cient than S0 (here for pi = 1
k).

3.3 Bounds on the Expected Size of the Input
Space Discovered for Random Testing

Under the simplified conditions of the example, where
each partition has the same size, |D1| = · · · = |Dk|, we have
shown that the confidence achieved per unit of time decays

exponentially for random testing. In the following, we prove
that this is the case for partitions of arbitrary sizes. Towards
that, we define two quantities pmin and pmax.

pmax = maxk
i=1{pi} and pmin = mink

i=1{pi} (16)

where the functions max and min compute the maximum
and minimum number in a given set, respectively. Note that
pmax � 1/k and pmin 1/k. We claim

Lemma 4 (Approximate Bounds)

fr(n) is bounded above and below approximately as

|D|[1� kpmine
�npmin] . fr(n) . |D|[1� kpmaxe

�npmax]

Proof : Let us denote the quantity
Pk

i=1 pi(1� pi)n by q(n).
Let Imax ✓ {1, 2, . . . , k} be the set of indices such that

pmax � pi > 0 i↵ i 2 Imax. Then, for all i 2 Imax we

have
ln(pmax)�ln(pi)

pmax�pi
> 0. Let

ni �
ln(pmax)� ln(p)

pmax � pi
(17)

Note, pmax 6= pi for i 2 Imax. This implies

e�nipi

e�nipmax
�

pmax

pi
(18)

whence we get

pmaxe
�nipmax pie

�nipi (19)

Let nmax = maxi2Imax{ni} Thus for all n � nmax we have

kX

i=1

pie
�npi =

X

i2Imax

pie
�npi +

X

i/2Imax

pie
�npi

=

X

i2Imax

pie
�npi +

X

i/2Imax

pmaxe
�npmax

[since pi = pmax for i /2 Imax]

�
X

i2Imax

pmaxe
�npmax +

X

i/2Imax

pmaxe
�npmax

[by Eqn. (19)]

= kpmaxe
�npmax

Similarly, let Imin ✓ {1, 2, . . . , k} be the set of indices of

the error-based partitions such that pi�pmin > 0 i↵ i 2 Imin
Let

nmin = maxi2Imin

⇢
ln(pi)� ln(pmin)

pi � pmin

�
(20)

We can show for all n � nmin that

kX

i=1

pie
�npi kpmine

�npmin (21)

So, for all n � max{nmin, nmax}, we have

kpmaxe
�npmax

kX

i=1

pie
�npi kpmine

�npmin (22)

kpmaxe
�npmax . q(n) . kpmine

�npmin [by Rósen [22]]

(23)

Hence

|D|[1� kpmine
�npmin] . fr(n) . |D|[1� kpmaxe

�npmax]

(24)

Thus fr(n) being bounded above and below by exponential
functions also behaves like one.

3.4 Relative Efficiency of S0 (Confidence)
We evaluate the e�ciency of the systematic testing tech-

nique S0 relative to that of random testing R. Because of
the additional analysis cost, sampling a test input using S0

takes c times longer than sampling a test input using R.
Since in general the achieved confidence per unit of time
decays exponentially for R while it grows linearly for S0,
there is a point where S0 and R are expected to break even.
Its coordinates depend on the value of c.
Given a degree of confidence x, we compute the maximum

cost c0 such that the expected time it takes for S0 to achieve
x is at most the same as the expected time it takes R to
achieve x and S0 remains more e�cient than R.

Proposition 1

Given a degree of confidence x : 1 � e�1 x < 1, let ns

and nr be the time at which S0 and R are expected to
achieve x, respectively. For all programs P, the maximum
cost c0 of S0, such that ns nr, is bounded above as

c0 . 1
ex� ex2

Proof : Fix a program P which in turn fixes the number of

partitions k and also the probabilities pi for all i : 1 i k.
Let cP0 be the cost of S0, such that ns = nr for P. Now,

setting fs(n) = |D|x yields

n = xkcP0 (25)

Setting fr(n) = |D|x gives

x ⇠ 1�
kX

i=1

pie
�npi (26)

& 1� kpmine
�npmin [by Lemma 4] (27)

& 1� kpmine
�xkcP0 pmin [by Eqn. (25)] (28)

Solving for cP0 gives,

cP0 .
ln

⇣
kpmin
1�x

⌘

kxpmin
(29)

[FSE’14] On the Efficiency of Automated Testing, M Böhme, S. Paul,

[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M Böhme, S. Paul; IEEE Trans. Softw. Eng.

• Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

•

Bounds on Fuzzing Efficiency

• Answer: S is expected to lose if c > time units.

• Example:

• R takes 1ms to sample one test input

• Establish correctness for x=99.9% of inputs

S0 must take less than 370ms to sample one test input

Otherwise, R is expected to achieve the 99.9%-degree of confidence first.

0.8 0.85 0.9 0.95 1
0

2

4

6

8

10

(x = 0.99, c0 = 4.65)

Confidence Bound x (in %)

C
o
st

c 0

Figure 2: If the average analysis cost of S0 exceeds c0
for a given degree of confidence x, then R is generally

more e�cient than S0 (here for pi = 1
k).

3.3 Bounds on the Expected Size of the Input
Space Discovered for Random Testing

Under the simplified conditions of the example, where
each partition has the same size, |D1| = · · · = |Dk|, we have
shown that the confidence achieved per unit of time decays

exponentially for random testing. In the following, we prove
that this is the case for partitions of arbitrary sizes. Towards
that, we define two quantities pmin and pmax.

pmax = maxk
i=1{pi} and pmin = mink

i=1{pi} (16)

where the functions max and min compute the maximum
and minimum number in a given set, respectively. Note that
pmax � 1/k and pmin 1/k. We claim

Lemma 4 (Approximate Bounds)

fr(n) is bounded above and below approximately as

|D|[1� kpmine
�npmin] . fr(n) . |D|[1� kpmaxe

�npmax]

Proof : Let us denote the quantity
Pk

i=1 pi(1� pi)n by q(n).
Let Imax ✓ {1, 2, . . . , k} be the set of indices such that

pmax � pi > 0 i↵ i 2 Imax. Then, for all i 2 Imax we

have
ln(pmax)�ln(pi)

pmax�pi
> 0. Let

ni �
ln(pmax)� ln(p)

pmax � pi
(17)

Note, pmax 6= pi for i 2 Imax. This implies

e�nipi

e�nipmax
�

pmax

pi
(18)

whence we get

pmaxe
�nipmax pie

�nipi (19)

Let nmax = maxi2Imax{ni} Thus for all n � nmax we have

kX

i=1

pie
�npi =

X

i2Imax

pie
�npi +

X

i/2Imax

pie
�npi

=

X

i2Imax

pie
�npi +

X

i/2Imax

pmaxe
�npmax

[since pi = pmax for i /2 Imax]

�
X

i2Imax

pmaxe
�npmax +

X

i/2Imax

pmaxe
�npmax

[by Eqn. (19)]

= kpmaxe
�npmax

Similarly, let Imin ✓ {1, 2, . . . , k} be the set of indices of

the error-based partitions such that pi�pmin > 0 i↵ i 2 Imin
Let

nmin = maxi2Imin

⇢
ln(pi)� ln(pmin)

pi � pmin

�
(20)

We can show for all n � nmin that

kX

i=1

pie
�npi kpmine

�npmin (21)

So, for all n � max{nmin, nmax}, we have

kpmaxe
�npmax

kX

i=1

pie
�npi kpmine

�npmin (22)

kpmaxe
�npmax . q(n) . kpmine

�npmin [by Rósen [22]]

(23)

Hence

|D|[1� kpmine
�npmin] . fr(n) . |D|[1� kpmaxe

�npmax]

(24)

Thus fr(n) being bounded above and below by exponential
functions also behaves like one.

3.4 Relative Efficiency of S0 (Confidence)
We evaluate the e�ciency of the systematic testing tech-

nique S0 relative to that of random testing R. Because of
the additional analysis cost, sampling a test input using S0

takes c times longer than sampling a test input using R.
Since in general the achieved confidence per unit of time
decays exponentially for R while it grows linearly for S0,
there is a point where S0 and R are expected to break even.
Its coordinates depend on the value of c.
Given a degree of confidence x, we compute the maximum

cost c0 such that the expected time it takes for S0 to achieve
x is at most the same as the expected time it takes R to
achieve x and S0 remains more e�cient than R.

Proposition 1

Given a degree of confidence x : 1 � e�1 x < 1, let ns

and nr be the time at which S0 and R are expected to
achieve x, respectively. For all programs P, the maximum
cost c0 of S0, such that ns nr, is bounded above as

c0 . 1
ex� ex2

Proof : Fix a program P which in turn fixes the number of

partitions k and also the probabilities pi for all i : 1 i k.
Let cP0 be the cost of S0, such that ns = nr for P. Now,

setting fs(n) = |D|x yields

n = xkcP0 (25)

Setting fr(n) = |D|x gives

x ⇠ 1�
kX

i=1

pie
�npi (26)

& 1� kpmine
�npmin [by Lemma 4] (27)

& 1� kpmine
�xkcP0 pmin [by Eqn. (25)] (28)

Solving for cP0 gives,

cP0 .
ln

⇣
kpmin
1�x

⌘

kxpmin
(29)

[FSE’14] On the Efficiency of Automated Testing, M Böhme, S. Paul,

[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M Böhme, S. Paul; IEEE Trans. Softw. Eng.

• Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

•

Bounds on Fuzzing Efficiency

• Answer: S is expected to lose if c > time units.

• Example:

• R takes 1ms to sample one test input

• Establish correctness for x=99.9% of inputs

S0 must take less than 370ms to sample one test input

Otherwise, R is expected to achieve the 99.9%-degree of confidence first.

0.8 0.85 0.9 0.95 1
0

2

4

6

8

10

(x = 0.99, c0 = 4.65)

Confidence Bound x (in %)

C
o
st

c 0

Figure 2: If the average analysis cost of S0 exceeds c0
for a given degree of confidence x, then R is generally

more e�cient than S0 (here for pi = 1
k).

3.3 Bounds on the Expected Size of the Input
Space Discovered for Random Testing

Under the simplified conditions of the example, where
each partition has the same size, |D1| = · · · = |Dk|, we have
shown that the confidence achieved per unit of time decays

exponentially for random testing. In the following, we prove
that this is the case for partitions of arbitrary sizes. Towards
that, we define two quantities pmin and pmax.

pmax = maxk
i=1{pi} and pmin = mink

i=1{pi} (16)

where the functions max and min compute the maximum
and minimum number in a given set, respectively. Note that
pmax � 1/k and pmin 1/k. We claim

Lemma 4 (Approximate Bounds)

fr(n) is bounded above and below approximately as

|D|[1� kpmine
�npmin] . fr(n) . |D|[1� kpmaxe

�npmax]

Proof : Let us denote the quantity
Pk

i=1 pi(1� pi)n by q(n).
Let Imax ✓ {1, 2, . . . , k} be the set of indices such that

pmax � pi > 0 i↵ i 2 Imax. Then, for all i 2 Imax we

have
ln(pmax)�ln(pi)

pmax�pi
> 0. Let

ni �
ln(pmax)� ln(p)

pmax � pi
(17)

Note, pmax 6= pi for i 2 Imax. This implies

e�nipi

e�nipmax
�

pmax

pi
(18)

whence we get

pmaxe
�nipmax pie

�nipi (19)

Let nmax = maxi2Imax{ni} Thus for all n � nmax we have

kX

i=1

pie
�npi =

X

i2Imax

pie
�npi +

X

i/2Imax

pie
�npi

=

X

i2Imax

pie
�npi +

X

i/2Imax

pmaxe
�npmax

[since pi = pmax for i /2 Imax]

�
X

i2Imax

pmaxe
�npmax +

X

i/2Imax

pmaxe
�npmax

[by Eqn. (19)]

= kpmaxe
�npmax

Similarly, let Imin ✓ {1, 2, . . . , k} be the set of indices of

the error-based partitions such that pi�pmin > 0 i↵ i 2 Imin
Let

nmin = maxi2Imin

⇢
ln(pi)� ln(pmin)

pi � pmin

�
(20)

We can show for all n � nmin that

kX

i=1

pie
�npi kpmine

�npmin (21)

So, for all n � max{nmin, nmax}, we have

kpmaxe
�npmax

kX

i=1

pie
�npi kpmine

�npmin (22)

kpmaxe
�npmax . q(n) . kpmine

�npmin [by Rósen [22]]

(23)

Hence

|D|[1� kpmine
�npmin] . fr(n) . |D|[1� kpmaxe

�npmax]

(24)

Thus fr(n) being bounded above and below by exponential
functions also behaves like one.

3.4 Relative Efficiency of S0 (Confidence)
We evaluate the e�ciency of the systematic testing tech-

nique S0 relative to that of random testing R. Because of
the additional analysis cost, sampling a test input using S0

takes c times longer than sampling a test input using R.
Since in general the achieved confidence per unit of time
decays exponentially for R while it grows linearly for S0,
there is a point where S0 and R are expected to break even.
Its coordinates depend on the value of c.
Given a degree of confidence x, we compute the maximum

cost c0 such that the expected time it takes for S0 to achieve
x is at most the same as the expected time it takes R to
achieve x and S0 remains more e�cient than R.

Proposition 1

Given a degree of confidence x : 1 � e�1 x < 1, let ns

and nr be the time at which S0 and R are expected to
achieve x, respectively. For all programs P, the maximum
cost c0 of S0, such that ns nr, is bounded above as

c0 . 1
ex� ex2

Proof : Fix a program P which in turn fixes the number of

partitions k and also the probabilities pi for all i : 1 i k.
Let cP0 be the cost of S0, such that ns = nr for P. Now,

setting fs(n) = |D|x yields

n = xkcP0 (25)

Setting fr(n) = |D|x gives

x ⇠ 1�
kX

i=1

pie
�npi (26)

& 1� kpmine
�npmin [by Lemma 4] (27)

& 1� kpmine
�xkcP0 pmin [by Eqn. (25)] (28)

Solving for cP0 gives,

cP0 .
ln

⇣
kpmin
1�x

⌘

kxpmin
(29)

[FSE’14] On the Efficiency of Automated Testing, M Böhme, S. Paul,

[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M Böhme, S. Paul; IEEE Trans. Softw. Eng.

• Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

•

Bounds on Fuzzing Efficiency

• Answer: S is expected to lose if c > time units.

• Example:

• R takes 1ms to sample one test input

• Establish correctness for x=99.9% of inputs

S0 must take less than 370ms to sample one test input

Otherwise, R is expected to achieve the 99.9%-degree of confidence first.

For all programs

0.8 0.85 0.9 0.95 1
0

2

4

6

8

10

(x = 0.99, c0 = 4.65)

Confidence Bound x (in %)

C
o
st

c 0

Figure 2: If the average analysis cost of S0 exceeds c0
for a given degree of confidence x, then R is generally

more e�cient than S0 (here for pi = 1
k).

3.3 Bounds on the Expected Size of the Input
Space Discovered for Random Testing

Under the simplified conditions of the example, where
each partition has the same size, |D1| = · · · = |Dk|, we have
shown that the confidence achieved per unit of time decays

exponentially for random testing. In the following, we prove
that this is the case for partitions of arbitrary sizes. Towards
that, we define two quantities pmin and pmax.

pmax = maxk
i=1{pi} and pmin = mink

i=1{pi} (16)

where the functions max and min compute the maximum
and minimum number in a given set, respectively. Note that
pmax � 1/k and pmin 1/k. We claim

Lemma 4 (Approximate Bounds)

fr(n) is bounded above and below approximately as

|D|[1� kpmine
�npmin] . fr(n) . |D|[1� kpmaxe

�npmax]

Proof : Let us denote the quantity
Pk

i=1 pi(1� pi)n by q(n).
Let Imax ✓ {1, 2, . . . , k} be the set of indices such that

pmax � pi > 0 i↵ i 2 Imax. Then, for all i 2 Imax we

have
ln(pmax)�ln(pi)

pmax�pi
> 0. Let

ni �
ln(pmax)� ln(p)

pmax � pi
(17)

Note, pmax 6= pi for i 2 Imax. This implies

e�nipi

e�nipmax
�

pmax

pi
(18)

whence we get

pmaxe
�nipmax pie

�nipi (19)

Let nmax = maxi2Imax{ni} Thus for all n � nmax we have

kX

i=1

pie
�npi =

X

i2Imax

pie
�npi +

X

i/2Imax

pie
�npi

=

X

i2Imax

pie
�npi +

X

i/2Imax

pmaxe
�npmax

[since pi = pmax for i /2 Imax]

�
X

i2Imax

pmaxe
�npmax +

X

i/2Imax

pmaxe
�npmax

[by Eqn. (19)]

= kpmaxe
�npmax

Similarly, let Imin ✓ {1, 2, . . . , k} be the set of indices of

the error-based partitions such that pi�pmin > 0 i↵ i 2 Imin
Let

nmin = maxi2Imin

⇢
ln(pi)� ln(pmin)

pi � pmin

�
(20)

We can show for all n � nmin that

kX

i=1

pie
�npi kpmine

�npmin (21)

So, for all n � max{nmin, nmax}, we have

kpmaxe
�npmax

kX

i=1

pie
�npi kpmine

�npmin (22)

kpmaxe
�npmax . q(n) . kpmine

�npmin [by Rósen [22]]

(23)

Hence

|D|[1� kpmine
�npmin] . fr(n) . |D|[1� kpmaxe

�npmax]

(24)

Thus fr(n) being bounded above and below by exponential
functions also behaves like one.

3.4 Relative Efficiency of S0 (Confidence)
We evaluate the e�ciency of the systematic testing tech-

nique S0 relative to that of random testing R. Because of
the additional analysis cost, sampling a test input using S0

takes c times longer than sampling a test input using R.
Since in general the achieved confidence per unit of time
decays exponentially for R while it grows linearly for S0,
there is a point where S0 and R are expected to break even.
Its coordinates depend on the value of c.
Given a degree of confidence x, we compute the maximum

cost c0 such that the expected time it takes for S0 to achieve
x is at most the same as the expected time it takes R to
achieve x and S0 remains more e�cient than R.

Proposition 1

Given a degree of confidence x : 1 � e�1 x < 1, let ns

and nr be the time at which S0 and R are expected to
achieve x, respectively. For all programs P, the maximum
cost c0 of S0, such that ns nr, is bounded above as

c0 . 1
ex� ex2

Proof : Fix a program P which in turn fixes the number of

partitions k and also the probabilities pi for all i : 1 i k.
Let cP0 be the cost of S0, such that ns = nr for P. Now,

setting fs(n) = |D|x yields

n = xkcP0 (25)

Setting fr(n) = |D|x gives

x ⇠ 1�
kX

i=1

pie
�npi (26)

& 1� kpmine
�npmin [by Lemma 4] (27)

& 1� kpmine
�xkcP0 pmin [by Eqn. (25)] (28)

Solving for cP0 gives,

cP0 .
ln

⇣
kpmin
1�x

⌘

kxpmin
(29)

[FSE’14] On the Efficiency of Automated Testing, M Böhme, S. Paul,

[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M Böhme, S. Paul; IEEE Trans. Softw. Eng.

• Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

•

Bounds on Fuzzing Efficiency

• Answer: S is expected to lose if c > time units.

• Example:

• R takes 1ms to sample one test input

• Establish correctness for x=99.9% of inputs

S0 must take less than 370ms to sample one test input

Otherwise, R is expected to achieve the 99.9%-degree of confidence first.

For all programs

worst-case
partitioning

0.8 0.85 0.9 0.95 1
0

2

4

6

8

10

(x = 0.99, c0 = 4.65)

Confidence Bound x (in %)

C
o
st

c 0

Figure 2: If the average analysis cost of S0 exceeds c0
for a given degree of confidence x, then R is generally

more e�cient than S0 (here for pi = 1
k).

3.3 Bounds on the Expected Size of the Input
Space Discovered for Random Testing

Under the simplified conditions of the example, where
each partition has the same size, |D1| = · · · = |Dk|, we have
shown that the confidence achieved per unit of time decays

exponentially for random testing. In the following, we prove
that this is the case for partitions of arbitrary sizes. Towards
that, we define two quantities pmin and pmax.

pmax = maxk
i=1{pi} and pmin = mink

i=1{pi} (16)

where the functions max and min compute the maximum
and minimum number in a given set, respectively. Note that
pmax � 1/k and pmin 1/k. We claim

Lemma 4 (Approximate Bounds)

fr(n) is bounded above and below approximately as

|D|[1� kpmine
�npmin] . fr(n) . |D|[1� kpmaxe

�npmax]

Proof : Let us denote the quantity
Pk

i=1 pi(1� pi)n by q(n).
Let Imax ✓ {1, 2, . . . , k} be the set of indices such that

pmax � pi > 0 i↵ i 2 Imax. Then, for all i 2 Imax we

have
ln(pmax)�ln(pi)

pmax�pi
> 0. Let

ni �
ln(pmax)� ln(p)

pmax � pi
(17)

Note, pmax 6= pi for i 2 Imax. This implies

e�nipi

e�nipmax
�

pmax

pi
(18)

whence we get

pmaxe
�nipmax pie

�nipi (19)

Let nmax = maxi2Imax{ni} Thus for all n � nmax we have

kX

i=1

pie
�npi =

X

i2Imax

pie
�npi +

X

i/2Imax

pie
�npi

=

X

i2Imax

pie
�npi +

X

i/2Imax

pmaxe
�npmax

[since pi = pmax for i /2 Imax]

�
X

i2Imax

pmaxe
�npmax +

X

i/2Imax

pmaxe
�npmax

[by Eqn. (19)]

= kpmaxe
�npmax

Similarly, let Imin ✓ {1, 2, . . . , k} be the set of indices of

the error-based partitions such that pi�pmin > 0 i↵ i 2 Imin
Let

nmin = maxi2Imin

⇢
ln(pi)� ln(pmin)

pi � pmin

�
(20)

We can show for all n � nmin that

kX

i=1

pie
�npi kpmine

�npmin (21)

So, for all n � max{nmin, nmax}, we have

kpmaxe
�npmax

kX

i=1

pie
�npi kpmine

�npmin (22)

kpmaxe
�npmax . q(n) . kpmine

�npmin [by Rósen [22]]

(23)

Hence

|D|[1� kpmine
�npmin] . fr(n) . |D|[1� kpmaxe

�npmax]

(24)

Thus fr(n) being bounded above and below by exponential
functions also behaves like one.

3.4 Relative Efficiency of S0 (Confidence)
We evaluate the e�ciency of the systematic testing tech-

nique S0 relative to that of random testing R. Because of
the additional analysis cost, sampling a test input using S0

takes c times longer than sampling a test input using R.
Since in general the achieved confidence per unit of time
decays exponentially for R while it grows linearly for S0,
there is a point where S0 and R are expected to break even.
Its coordinates depend on the value of c.
Given a degree of confidence x, we compute the maximum

cost c0 such that the expected time it takes for S0 to achieve
x is at most the same as the expected time it takes R to
achieve x and S0 remains more e�cient than R.

Proposition 1

Given a degree of confidence x : 1 � e�1 x < 1, let ns

and nr be the time at which S0 and R are expected to
achieve x, respectively. For all programs P, the maximum
cost c0 of S0, such that ns nr, is bounded above as

c0 . 1
ex� ex2

Proof : Fix a program P which in turn fixes the number of

partitions k and also the probabilities pi for all i : 1 i k.
Let cP0 be the cost of S0, such that ns = nr for P. Now,

setting fs(n) = |D|x yields

n = xkcP0 (25)

Setting fr(n) = |D|x gives

x ⇠ 1�
kX

i=1

pie
�npi (26)

& 1� kpmine
�npmin [by Lemma 4] (27)

& 1� kpmine
�xkcP0 pmin [by Eqn. (25)] (28)

Solving for cP0 gives,

cP0 .
ln

⇣
kpmin
1�x

⌘

kxpmin
(29)

[FSE’14] On the Efficiency of Automated Testing, M Böhme, S. Paul,

[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M Böhme, S. Paul; IEEE Trans. Softw. Eng.

• Our insight: Even the most effective fuzzing technique  
is less efficient than blackbox fuzzing if generating a test
takes relatively too long.

• We shed light on a 40 year old riddle and demonstrate a
fundamental limitation of whitebox fuzzing.  
(including grammar-based whitebox fuzzing)

Bounds on Fuzzing Efficiency

[FSE’14] On the Efficiency of Automated Testing, M Böhme, S. Paul,

[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M Böhme, S. Paul; IEEE Trans. Softw. Eng.

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

So, if we have sufficiently many machines
(to maximize execs/sec), blackbox fuzzers
are the best we can get, right?

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

So, if we have sufficiently many machines
(to maximize execs/sec), blackbox fuzzers
are the best we can get, right?

Wrong.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.
Generational

So, if we have sufficiently many machines
(to maximize execs/sec), blackbox fuzzers
are the best we can get, right?

Wrong.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.
Generational
• Mutational Blackbox Fuzzer mutates a random character in a seed.

So, if we have sufficiently many machines
(to maximize execs/sec), blackbox fuzzers
are the best we can get, right?

Wrong.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

• Mutational Blackbox Fuzzer mutates a random character in a seed.

• Started with the seed bad?

• Discovers the bug after ((4-1)*(2-8))-1 ≈ 1024 inputs, in expectation.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

So, if we have sufficiently many machines
(to maximize execs/sec), blackbox fuzzers
are the best we can get, right?

Wrong.

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

• Mutational Blackbox Fuzzer mutates a random character in a seed.

• Started with the seed bad?

• Discovers the bug after ((4-1)*(2-8))-1 ≈ 1024 inputs, in expectation.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

So, if we have sufficiently many machines
(to maximize execs/sec), blackbox fuzzers
are the best we can get, right?

Wrong.

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

• Mutational Blackbox Fuzzer mutates a random character in a seed.

• Started with the seed bad?

• Discovers the bug after ((4-1)*(2-8))-1 ≈ 1024 inputs, in expectation.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

So, if we have sufficiently many machines
(to maximize execs/sec), blackbox fuzzers
are the best we can get, right?

Wrong.

Blackbox Fuzzing: Super fast!

• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

• Mutational Blackbox Fuzzer mutates a random character in a seed.

• Started with the seed bad?

• Discovers the bug after ((4-1)*(2-8))-1 ≈ 1024 inputs, in expectation.

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

So, if we have sufficiently many machines
(to maximize execs/sec), blackbox fuzzers
are the best we can get, right?

Wrong.

Greybox Fuzzing: “Enumerate”

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain  
M Böhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

• Greybox Fuzzing: Add generated inputs  
to the corpus which increase coverage!

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

**** b*** (1✕ 4-1 ✕ 2-8)-1 
= 1024

b*** ba** (1/2 ✕ 4-1 ✕ 2-8)-1 

= 2048

b***
ba**

bad* (1/3 ✕ 4-1 ✕ 2-8)-1 
= 3072

b***
ba**
bad*

bad! (1/4 ✕ 4-1 ✕ 2-8)-1 
= 4096

Total: 10240

Seed corpus

Expected #inputs“Interesting” 
Input

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain  
M Böhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

• Greybox Fuzzing: Add generated inputs  
to the corpus which increase coverage!

Greybox Fuzzing: “Enumerate”
void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

**** b*** (1✕ 4-1 ✕ 2-8)-1 
= 1024

b*** ba** (1/2 ✕ 4-1 ✕ 2-8)-1 

= 2048

b***
ba**

bad* (1/3 ✕ 4-1 ✕ 2-8)-1 
= 3072

b***
ba**
bad*

bad! (1/4 ✕ 4-1 ✕ 2-8)-1 
= 4096

Total: 10240
[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain  
M Böhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

• Greybox Fuzzing: Add generated inputs  
to the corpus which increase coverage!

Greybox Fuzzing: “Enumerate”
void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain  
M Böhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

• Greybox Fuzzing: Add generated inputs  
to the corpus which increase coverage!

• Greybox Fuzzing started only with **** in  
the seed corpus discovers the bug after 
10k inputs (in 150 microseconds)!

**** b*** (1✕ 4-1 ✕ 2-8)-1 
= 1024

b*** ba** (1/2 ✕ 4-1 ✕ 2-8)-1 

= 2048

b***
ba**

bad* (1/3 ✕ 4-1 ✕ 2-8)-1 
= 3072

b***
ba**
bad*

bad! (1/4 ✕ 4-1 ✕ 2-8)-1 
= 4096

Total: 10240

Greybox Fuzzing: “Enumerate”
void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain  
M Böhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

• Greybox Fuzzing: Add generated inputs  
to the corpus which increase coverage!

• Greybox Fuzzing started only with **** in  
the seed corpus discovers the bug after 
10k inputs (in 150 microseconds)!

• Boosted Greybox Fuzzing started with ****  
in the seed corpus discovers the bug after 
4k inputs (in 55 microseconds)!

**** b*** (1✕ 4-1 ✕ 2-8)-1 
= 1024

b*** ba** (1 ✕ 4-1 ✕ 2-8)-1 

= 1024

b***
ba**

bad* (1 ✕ 4-1 ✕ 2-8)-1 
= 1024

b***
ba**
bad*

bad! (1 ✕ 4-1 ✕ 2-8)-1 
= 1024

Total: 4096

Greybox Fuzzing: “Enumerate”

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

More Machines!

Awesome! We have a really efficient fuzzers.
Let’s throw more machines at the problem!

On 100 machines, it takes 63 milliseconds.
On my machine, this takes 6.3 seconds.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

More Machines!

X times more machines means
X times more bugs, right?

On 100 machines, it takes 63 milliseconds.
On my machine, this takes 6.3 seconds.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

More Machines!

X times more machines means
X times more bugs, right?

Wrong.

On 100 machines, it takes 63 milliseconds.
On my machine, this takes 6.3 seconds.

Scalability

• 300+ OSS projects (OSSFuzz & Fuzzer-Test-Suite)

• 6 measures of code coverage (4) and bug finding effectiveness (2)

• 4+ CPU years worth of fuzzing campaigns

• 2 fuzzers (AFL and LibFuzzer)

• Open Science and Reproducibility

• Reproduce our results under other circumstances.

• Inspect our data and simulation @ Kaggle (Jupyter Notebook).

• Modify parameters in our simulation and analysis.

[FSE’20] Fuzzing: On the Exponential Cost of Vulnerability Discovery. 
M. Böhme, Brandon Falk (Microsoft)

• #Machines
• An abstraction of the #inputs the fuzzer can generate per minute.

• Example: Twice the #machines can generate twice #inputs per minute.

• We assume no synchronisation overhead. For greybox fuzzers,  

new seeds immediately available to all fuzzers.

• We use this definition for data scaling.

[FSE’20] Fuzzing: On the Exponential Cost of Vulnerability Discovery. 
M. Böhme, Brandon Falk (Microsoft)

Scalability

•

Fuzzer Test Suite (45min campaigns)
23

Number of Additional Vulns Discovered 

Number of Additional Vulns Discovered 

Probability to Discover Given Vulnerability 

Given the same non-deterministic fuzzer,
discovering linearly more new species
within the same time budget, requires
exponentially more inputs per minute.

Probability to Discover Given Vulnerability 

Probability to Discover Given Vulnerability 

Probability to Discover Given Vulnerability 

Inflection Point

Inflection Point

Probability to Discover Given Vulnerability 

Inflection Point

Inflection Point

Between origin and inflection point,
an exponential curve grows slower

than discovery probability!

Probability to Discover Given Vulnerability 

• What does that mean for a non-deterministic fuzzer?

Probability to Discover Given Vulnerability 

[FSE’20] Fuzzing: On the Exponential Cost of Vulnerability Discovery.  
M. Böhme, Brandon Falk (Microsoft)

• What does that mean for a non-deterministic fuzzer?

• The probability of exposing a specific known vulnerability,

• the probability of reaching a specific program statement,

• the probability of violating a specific program assertion, etc.

• within a given time budget increases approximately linearly with the

number of available machines — up to a certain limit.

Probability to Discover Given Vulnerability 

[FSE’20] Fuzzing: On the Exponential Cost of Vulnerability Discovery.  
M. Böhme, Brandon Falk (Microsoft)

• What does that mean for a non-deterministic fuzzer?

• The probability of exposing all (known) vulnerabilities,

• the probability of reaching all program statements,

• the probability of violating all program assertions, etc.

• within a given time budget increases approximately linearly with the

number of available machines — up to a certain limit.

Probability to Discover Given Vulnerability 

[FSE’20] Fuzzing: On the Exponential Cost of Vulnerability Discovery.  
M. Böhme, Brandon Falk (Microsoft)

Explaining to Exponential Cost 

Figure 10. Number of additional species discovered in a fixed time budget  
as the number of machines increases (5 random samples of each.

Figure 10. Number of additional species discovered in a fixed time budget  
as the number of machines increases (5 random samples of each.

Explaining to Exponential Cost 

Figure 10. Number of additional species discovered in a fixed time budget  
as the number of machines increases (5 random samples of each.

Explaining to Exponential Cost 

Figure 10. Number of additional species discovered in a fixed time budget  
as the number of machines increases (5 random samples of each.

Explaining to Exponential Cost 

Figure 10. Number of additional species discovered in a fixed time budget  
as the number of machines increases (5 random samples of each.

Explaining to Exponential Cost 

Intuitively, each new vulnerability requires
some more resources (time or machines)

than the previous vulnerability.

Explaining to Exponential Cost 

On the Cost of Vulnerability Discovery

A constant rate of vulnerability discovery
requires exponential amount of resources.

*This is a fundamental limitation of fuzzing!

26
[FSE’20] Fuzzing: On the Exponential Cost of Vulnerability Discovery.  
M. Böhme, Brandon Falk (Microsoft)

Nominated for ACM Distinguished Paper Award

Wrap up slide

26

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

It can prove the absence of assertion violation,
by enumerating all paths and modulo some assumptions.

φ1 = (s0 != 'b')
Path Conditions

✓
φ2 = (s0 == 'b') /\ (s1 != 'a')
φ3 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 != 'd')
φ4 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 != '!')
φ5 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 == '!')

✓
✓
✓
✗

Whitebox Fuzzing: Most Effective!

2
• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

If our whitebox fuzzer takes too long
per input, our blackbox fuzzer outperforms!

» There is a maximum time per test input!

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

On 100 machines, it takes 63 milliseconds.
On my machine, this takes 6.3 seconds.

Blackbox Fuzzing: Super fast!

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain  
M Böhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

• Greybox Fuzzing: Add generated inputs  
to the corpus which increase coverage!

• Greybox Fuzzing started only with **** in  
the seed corpus discovers the bug after 
10k inputs (in 150 microseconds)!

• Boosted Greybox Fuzzing started with ****  
in the seed corpus discovers the bug after 
4k inputs (in 55 microseconds)!

**** b*** (1✕ 4-1 ✕ 2-8)-1 
= 1024

b*** ba** (1 ✕ 4-1 ✕ 2-8)-1 

= 1024

b***
ba**

bad* (1 ✕ 4-1 ✕ 2-8)-1 
= 1024

b***
ba**
bad*

bad! (1 ✕ 4-1 ✕ 2-8)-1 
= 1024

Total: 4096

Greybox Fuzzing: “Enumerate”

Figure 10. Number of additional species discovered in a fixed time budget  
as the number of machines increases (5 random samples of each.

Exponential Cost of Vulnerability Discovery 

Wrap up slide

26

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

It can prove the absence of assertion violation,
by enumerating all paths and modulo some assumptions.

φ1 = (s0 != 'b')
Path Conditions

✓
φ2 = (s0 == 'b') /\ (s1 != 'a')
φ3 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 != 'd')
φ4 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 != '!')
φ5 = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd') /\ (s3 == '!')

✓
✓
✓
✗

Whitebox Fuzzing: Most Effective!

2
• Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

• Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 ≈ 4 billion inputs, in expectation.

If our whitebox fuzzer takes too long
per input, our blackbox fuzzer outperforms!

» There is a maximum time per test input!

void crashme (char s0, char s1, char s2, char s3) {
 int crash = 0;

 if (s0 == 'b')
 if (s1 == 'a')
 if (s2 == 'd')
 if (s3 == ‘!’)
 crash = 1;

 if(crash == 1) abort();
}

On 100 machines, it takes 63 milliseconds.
On my machine, this takes 6.3 seconds.

Blackbox Fuzzing: Super fast!

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain  
M Böhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

• Greybox Fuzzing: Add generated inputs  
to the corpus which increase coverage!

• Greybox Fuzzing started only with **** in  
the seed corpus discovers the bug after 
10k inputs (in 150 microseconds)!

• Boosted Greybox Fuzzing started with ****  
in the seed corpus discovers the bug after 
4k inputs (in 55 microseconds)!

**** b*** (1✕ 4-1 ✕ 2-8)-1 
= 1024

b*** ba** (1 ✕ 4-1 ✕ 2-8)-1 

= 1024

b***
ba**

bad* (1 ✕ 4-1 ✕ 2-8)-1 
= 1024

b***
ba**
bad*

bad! (1 ✕ 4-1 ✕ 2-8)-1 
= 1024

Total: 4096

Greybox Fuzzing: “Enumerate”

Figure 10. Number of additional species discovered in a fixed time budget  
as the number of machines increases (5 random samples of each.

Exponential Cost of Vulnerability Discovery 

If you want to take a deeper dive:
* Read our interactive text book: The Fuzzing Book

* Read our IEEE Software article: “Fuzzing: Challenges and Reflections”

* Apply for PhD / PostDoc in my group at MPI-SP, Bochum, Germany.

Web: https://mboehme.github.com Twitter: @mboehme_

https://mboehme.github.com

