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whoami

* Fuzzing for Automatic Vulnerability Discovery
 Making machines attack other machines.
* Focus on scalability, efficiency, and effectiveness.

* Foundations of Software Security
* Assurances in Software Security
 Fundamental limitations of existing approaches
* Drawing from multiple disciplines (information theory, biostatistics)



void crashme (char s@0,
int crash = 0;

if (s@ == 'b')
if (s1 == 'a')
if (s2 == 'd"')
if (s3 == “17)
crash = 1;
assert(crash !'= 1);

}

char s1, char s2, char s3) {



Whitebox Fuzzing

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b') 1 - tp
if (s1 == 'a')
if (s2 == 'd')
if (s3 == “1") 1
crash = 1;
if(crash == 1) abort();

}

Path Conditions
vV o1 = (s0 '= 'b")
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void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b')
if (sl == 'a')
if (s2 == 'd’
if (s3 ==
crash = 1;

)
17)

if(crash == 1) abort():
F

Path Conditions
vV o1 = (s0 '= 'b")
v 02 = (s0 == "b") /\ (sl != 'a')



Whitebox Fuzzing

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b')
if (sl == 'a')
if (s2 == 'd'")
if (s3 == ‘|
crash = 1;

if(crash == 1) abort();

}

Path Conditions
v 901 = (s0 != 'b")
v 92 = (s@0 == 'b"') /\ (s1 != 'a')
vV o3 = (s0 == "'b') /\ (s1 == "a"'") /\ (s2 !'='d")
V os = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd"') /\ (s3 !'= '"I")
X 05 = (s0 == "'b") /\ (s1 == "'a') /\ (s2 == "'d") /\ (s3 == "'!")




Whitebox Fuzzing: Most Effective!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b"')
if (sl == 'a')
if (s2 == 'd'
if (s3 ==
crash = 1;

)
17)

if(crash == 1) abort();

}

Path Conditions
v 901 = (s0 != 'b")
v 02 = (s0 == "b") /\ (sl !I="
vV 93 = (s0 == "'b') /\ (s1 =="
V 91 = (s@0 == 'b') /\ (sl =="
X ¢s = (s0 == "'b") /\ (s1 =="

")

') /\ (s2 != 'd")

') /\ (s2 == 'd') /\ (s3 I= '!")
') /\ (s2 == 'd') /\ (s3 == "!")

Q O v QD



Whitebox Fuzzing: Most Effective!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b')
if (s1 == 'a')
if (s2 == 'd‘
if (s3 ==
crash = 1;

)
17)

It can prove the absence of assertion violation,

if(crash == ¥) abort(); <~
} 2

Path Conditions
v 901 = (s0 != 'b")
v 92 = (s@0 == 'b"') /\ (s1 != 'a')
vV o3 = (s0 == "'b') /\ (s1 == "a"'") /\ (s2 !'='d")
V os = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd"') /\ (s3 !'= '"I")
X 05 = (s0 == "'b") /\ (s1 == "'a") /\ (s2 == "'d"') /\ (s3 == "'!")



Whitebox Fuzzing: Quite Efficient!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b')
if (s1 == 'a')
if (s2 == 'd‘
if (s3 ==
crash = 1;

)
17)

if(crash == 1) abort();

}

Path Conditions
v 901 = (s0 != 'b")
v 02 = (s0 == "b") /\ (sl !I="
vV 93 = (s0 == "'b') /\ (s1 =="
V 91 = (s@0 == 'b') /\ (sl =="
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")
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Whitebox Fuzzing: Quite Efficient!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b') We only need 3 inputs to find the bug, on average,
lfiés%sg_zza'()j-) U we choose each po&l« at random wikthout r&yta&emam&
if (s3 == *'1")
crash = 1; enumerate

if(crash == 1) abort():
F

Path Conditions
v 901 = (s0 != 'b")
v 92 = (s@0 == 'b"') /\ (s1 != 'a')
vV o3 = (s0 == "'b') /\ (s1 == "a"'") /\ (s2 !'='d")
V os = (s0 == 'b') /\ (s1 == 'a') /\ (s2 == 'd"') /\ (s3 !'= '"I")
X 05 = (s0 == "'b") /\ (s1 == "'a") /\ (s2 == "'d"') /\ (s3 == "'!")



Blackbox Fuzzing: just random, really.

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

1f (S@ == 'b')
if (sl == "'a') For each parameter, choose 1 of 256 values
lfiés%s?::d' )u ) uv\iﬂformtj ab random,
crash = 1:

if(crash == 1) abort():
F



Blackbox Fuzzing: just random, really.

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b')
if (s% == 'a') ) For each parameter, choose 1 of 286 values
it (s2 == 'd°’ - '
if (s3 == 17) uw;formtj ab random.
crash = 1;
if(crash == 1) abort(); €It can never prove the absence of assertion violation!

}

August 1969
NOTES ON STRUCTURED PROGRAMMING by prof.dr.bEdsger W.Dijkstrs

Un the reliability of mechanisms.
Corollary of the first part of this section:
Program testing can be used to show the presence of bugs, but never to show

their absence!

https://www.cs.utexas.edu/users/EWD/ewd02xx/EWD249.PDF



Blackbox Fuzzing: just random, really.

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b'")
if (s( == 'a') ) For each parameter, choose 1 of 256 values
1f (s2 == 'd' _ '
if (53 == “17) uw;formtv ak randowm,
crash = 1;
if(crash == 1) abort(); €It can never prove the absence of assertion violation!
! Well, that’s not e.m%ireztv true. We can estimate a “residual risike”,

[ESEC/FSE’21] Estimating Residual Risk in Greybox Fuzzing, M Béhme, D Liyanage, V Wustholz
[TOSEM’18] STADS: Software Testing as Species Discovery, M Bohme; ACM Trans. Softw. Eng. Meth.




Blackbox Fuzzing: just random, really.

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b"')
if (s% == 'a') ) For each parameter, choose 1 of 256 values
1f (s2 == 'd’ . n
if (53 == “17) us»\:,{ormtj ak randowm,
crash = 1;
if(crash == 1) abort();

}

* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.
* Blackbox Fuzzer: Discovers the bug after ((1/256)%)-1 = 4 billion inputs, in expectation.



Blackbox Fuzzing: just random, really.

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b"')
if (s% == 'a') ) For each parameter, choose 1 of 256 values
1f (s2 == 'd’ . n
if (53 == “17) uvwfc:vrmtj ak randowm,
crash = 1;
if(crash == 1) abort();

}

* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.
* Blackbox Fuzzer: Discovers the bug after ((1/256)%)-1 = 4 billion inputs, in expectation.

So, whitebox fuzzing is better, right?



Blackbox Fuzzing: just random, really.

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b"')
if (s% == 'a') ) For each parameter, choose 1 of 256 values
1f (s2 == 'd’ . n
if (53 == “17) uvwfc:vrmtj ak randowm,
crash = 1;
if(crash == 1) abort();

}

* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.
* Blackbox Fuzzer: Discovers the bug after ((1/256)%)-1 = 4 billion inputs, in expectation.

So, whitebox fuzzing is better, right? Wrong.
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IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 12, DECEMBER 1990

Partition Testing Does Not Inspire Confidence

Dick Hamlet, Member, IEEE, and Ross Taylor

This study was undertaken because partition testing did not
live up to its intuitive value in two earlier studies. In their brief
for random testing [3], Duran and Ntafos published a precise
comparison between it and partition testing. Their surprising
result is that the two methods are of almost equal value, under as-
sumptions that seem to favor partition testing. Random testing has
a decidedly spotty reputation, probably because it makes almost
no use of special information about the program being tested. It 1s
certainly counterintuitive that the best systematic method 1is little

improvement over the worst. Hamlet [5] corroborates this result §
‘using a different sampling model. He shows random testing to be }
‘superior to partition testing, its superiority increasing with more |
partitions and with the program confidence required. *_
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Blackbox Fuzzing: Super fast!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b')
if (s1 == 'a')
if (s2 == 'd‘
if (s3 ==
crash = 1;

)
17)

if(crash == 1) abort():
F



Blackbox Fuzzing: Super fast!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b') 1f our whitebox fuzzer takes koo long
if (s1 == 'a') . :
if (s2 == 'd') per inpul, our blackbox fuzzer QMEF'@.T{:OTMS.
if (s3 == ‘1")
crash = 1: » There s a maxinum time per Fesk EMFM%!
if(crash == 1) abort();

}

On my machine, this takes 6.3 seconds.
On 100 machines, it takes 63 milliseconds.
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Blackbox Fuzzing: Super fast!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b") 1f our whitebox fuzzer takes koo long
if (s1 == 'a') . :
if (s2 == 'd") per inpul, our blackbox fuzzer ou&p@.rnfarms.
if (s3 == *‘1")
crash = 1; » There is a maximum time per test imyu&!
if(crash == 1) abort();

}

* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

* Blackbox Fuzzer: Discovers the bug after ((1/256)%)-1 = 4 billion inputs, in expectation.
On my machine, this takes 6.3 seconds.
On 100 machines, it takes 63 milliseconds.



Bounds on Fuzzing Efficiency

e Our model: Error-based partitioning

e EITHER all inputs in a partition do reveal a bug
OR all inputs in a partition do not reveal a bug

The most effective testing technique

samples from error-based partitions!

— Weyuker and Jeng’ 9| h

[FSE’14] On the Efficiency of Automated Testing, M B6hme, S. Paul,
[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M B6hme, S. Paul; IEEE Trans. Softw. Eng.




Bounds on Fuzzing Efficiency

e Our model: Error-based partitioning

e EITHER all inputs in a partition do reveal a bug
OR all inputs in a partition do not reveal a bug

* However, we have no a-priori knowledge whether a partition is error-revealing.

e Partitions are of arbitrary size and number.

The most effective testing technique

samples from error-based partitions!

— Weyuker and Jeng’ 9| h

[FSE’14] On the Efficiency of Automated Testing, M B6hme, S. Paul,
[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M B6hme, S. Paul; IEEE Trans. Softw. Eng.




Bounds on Fuzzing Efficiency

e Our model: Error-based partitioning

e EITHER all inputs in a partition do reveal a bug
OR all inputs in a partition do not reveal a bug.

* A testing technigue samples the program’s input space and
discovers a partition Diwhen D; is sampled for the first time.

 The discovery of D; shows whether or not D, reveals a bug.
 Notice that we assume a test oracle.

[FSE’14] On the Efficiency of Automated Testing, M B6hme, S. Paul,
[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M B6hme, S. Paul; IEEE Trans. Softw. Eng.




Bounds on Fuzzing Efficiency

* Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

» A testing technique achieves a degree of confidence x when at least x% of the
program inputs reside in discovered partitions.

[FSE’14] On the Efficiency of Automated Testing, M B6hme, S. Paul,
[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M B6hme, S. Paul; IEEE Trans. Softw. Eng.




Bounds on Fuzzing Efficiency

* Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

[FSE’14] On the Efficiency of Automated Testing, M B6hme, S. Paul,
[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M B6hme, S. Paul; IEEE Trans. Softw. Eng.




Bounds on Fuzzing Efficiency

* Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

e Blackbox Fuzzing (R)
 Samples inputs randomly

 Some partitions several times, others not at all
1 time unit per input

. Whitebox Fuzzing (5)
 Samples inputs systematically
 Each partition exactly once!
 Most effectivel
* ¢ time units per input

[FSE’14] On the Efficiency of Automated Testing, M B6hme, S. Paul,
[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M B6hme, S. Paul; IEEE Trans. Softw. Eng.




Bounds on Fuzzing Efficiency

* Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

Confidence Achieved




Bounds on Fuzzing Efficiency

* Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.
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Bounds on Fuzzing Efficiency

* Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.
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Bounds on Fuzzing Efficiency

* Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.
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Bounds on Fuzzing Efficiency

* Achieving confidence: Whoever can show first that the
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Bounds on Fuzzing Efficiency

* Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.
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Bounds on Fuzzing Efficiency

* Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

1

e Answer: S is expected to lose if € > p— time units.

e Example:

R takes 1ms to sample one test input

e Establish correctness for x=90% of inputs
> So must take less than 4.1ms to sample one test input

> Otherwise, R is expected to achieve the 90%-degree of confidence first.

[FSE’14] On the Efficiency of Automated Testing, M B6hme, S. Paul,
[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M B6hme, S. Paul; IEEE Trans. Softw. Eng.




Bounds on Fuzzing Efficiency

* Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

. . 1 . .
e Answer: S is expected to lose if € > p— time units.

e Example:

R takes 1ms to sample one test input

e Establish correctness for x=99.9% of inputs
> So must take less than 370ms to sample one test input

> Otherwise, R is expected to achieve the 99.9%-degree of confidence first.

[FSE’14] On the Efficiency of Automated Testing, M B6hme, S. Paul,
[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M B6hme, S. Paul; IEEE Trans. Softw. Eng.
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| For ott programs |
e Example: e ——

R takes 1ms to sample one test input

e Establish correctness for X=99.9%) of inputs

> So must take less than 370ms to sample one test input

> Otherwise, R is expected to achieve the 99.9%-degree of confidence first.

[FSE’14] On the Efficiency of Automated Testing, M B6hme, S. Paul,
[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M B6hme, S. Paul; IEEE Trans. Softw. Eng.




Bounds on Fuzzing Efficiency

* Achieving confidence: Whoever can show first that the
program works correctly for x% of its inputs wins.

. . 1 . .
e Answer: S is expected to lose if € > p— time units.

| For ott programs |
e Example: e —

[\

worst-ca se

ar&é&s:oméhg

R takes 1ms to sample one test input

e Establish correctness for X=99.9%) of inputs

> So must take less than 370ms to sample one test input

> Otherwise, R is expected to achieve the 99.9%-degree of confidence first.

[FSE’14] On the Efficiency of Automated Testing, M B6hme, S. Paul,
[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M B6hme, S. Paul; IEEE Trans. Softw. Eng.




Bounds on Fuzzing Efficiency

* Our insight: Even the most effective fuzzing technique
IS less efficient than blackbox fuzzing if generating a test
takes relatively too long.

* \We shed light on a 40 year old riddle and demonstrate a
fundamental limitation of whitebox fuzzing.

[FSE’14] On the Efficiency of Automated Testing, M B6hme, S. Paul,
[TSE’15] A Probabilistic Analysis of the Efficiency of Automated Testing, M B6hme, S. Paul; IEEE Trans. Softw. Eng.




Blackbox Fuzzing: Super fast!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if ](c s? - 'b') ’ So, f we have suﬁacamﬂy many machines
if (s2 == rd) (ko maximize execs/sec), blackbox fuzzers
if (s3 == ‘1") . _
crash = 1: are the best we can qek, right?
if(crash == 1) abort();

}

* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.
* Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.
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* Discovers the bug after ((4-1)*(2-8))-1 = 1024 inputs, in expectation.
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if (s2 == rd) (ko maximize execs/sec), blackbox fuzzers
if (s3 == “1") . _
crash = 1: are the best we can qek, right?

Wroing.

if(crash == 1) abort():
s
* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.
* Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

e Mutational Blackbox Fuzzer mutates a random character in a seed.
e Started with the seed bad?

* Discovers the bug after ((4-1)*(2-8))-1 = 1024 inputs, in expectation.

t



Blackbox Fuzzing: Super fast!

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if ](c s? - 'b') ’ So, f we have swfﬂf&ci@imﬂfj many machines

if (s2 == rd) (ko maximize execs/sec), blackbox fuzzers
if (s3 == “1") . _
crash = 1: are the best we can qek, right?

Wroing.

if(crash == 1) abort():
s
* Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.
* Generational Blackbox Fuzzer: Discovers the bug after 4 billion inputs, in expectation.

e Mutational Blackbox Fuzzer mutates a random character in a seed.
e Started with the seed bad?

* Discovers the bug after ((4-1)*(2-8))-1 = 1024 inputs, in expectation.

t



Greybox Fuzzing: “Enumerate”

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b')
if (s1 == 'a')
if (s2 == 'd‘
if (s3 ==
crash = 1;

)
17)

if(crash == 1) abort();
}
 Greybox Fuzzing: Add generated inputs

to the corpus which increase coverage!

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain
M Béhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)




Greybox Fuzzing: “Enumerate”

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b") “Interesting”
if (s1 == "a') Input
if (s2 == 'd"') Seed corpus *
if (s3 == *17) B kkx prxx
crash = 1;
if(crash == 1) abort():
}

 Greybox Fuzzing: Add generated inputs
to the corpus which increase coverage!

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain
M Béhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

Expect_ed #inputs

(1x4-1 2-8)-1
= 1024



Greybox Fuzzing: “Enumerate”

void crashme (char s@, char sl1, char s2, char s3) {
int crash = 0;

if (s@ == 'b"')
if (s1 == 'a')
if (s2 == 'd"')
if (s3 == “1") kkkk phkk
crash = 1;
* %k %k %k
if(crash == 1) abort(); b*** bax*

}
 Greybox Fuzzing: Add generated inputs

to the corpus which increase coverage!

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain
M Béhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

(1x4-1x2-8)
= 1024
(1/2 x4-1x2-8)1
= 2048



void crashme (char s@, char sl1, char s2, char s3) {

int crash = 0;

if (s@ == 'b')
if (s1 == 'a')
if (s2 == 'd‘
if (s3 ==
crash = 1;

)
17)

if(crash == 1) abort();
}
 Greybox Fuzzing: Add generated inputs

to the corpus which increase coverage!

o Greybox Fuzzing started only with **** in

the seed corpus discovers the bug after
10K inputs (in 150 microseconds)!

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain
M Béhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

* % %k %k

* %k K %
b* **

* %k % %
b* **

ba* *
% %k % %

b* % *

ba**
bad*

Greybox Fuzzing: “Enumerate”

b***

ba**

bad*

bad!

(1x4-1x2-8)
= 1024
(1/2 x4-1x2-8)1
= 2048

(1/3 x4-1x2-8)
= 3072

(1/4 x4-1x2-8)
= 4096

Total: 10240



Greybox Fuzzing: “Enumerate”

 Greybox Fuzzing: Add generated inputs
to the corpus which increase coverage!

o Greybox Fuzzing started only with **** |n

the seed corpus discovers the bug after
10k inputs (in 150 microseconds)!

 Boosted Greybox Fuzzing started with ****

IN the seed corpus discovers the bug after
4K inputs (in 55 microseconds)!

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain
M Béhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

* % %k %k

* %k K %
b* **

* %k % %
b* **

ba**
* % %k %k

b* **

ba**
bad*

b***

ba**

bad*

bad!

(1x4-1x2-8)
= 1024

(1 x4-1x2-8)-1
= 1024

(1 x4-1x2-8)-1
= 1024

(1 x4-1x2-8)
= 1024

Total: 4096



More Machines!

Awesome! We have a really efficient fuzzers.
Lebs Ehrow mwore machines ab Ehe Frobtém!

* Blackbox Fuzzer: Discovers the bug after ((1/256)%)-1 = 4 billion inputs, in expectation.

On my machine, this takes 6.3 seconds.
-8 On 100 machines, it takes 63 milliseconds.




More Machines!

X Eivvies wmore machines meains
X times more buqgs, right?

* Blackbox Fuzzer: Discovers the bug after ((1/256)%)-1 = 4 billion inputs, in expectation.

On my machine, this takes 6.3 seconds.
On 100 machines, it takes 63 milliseconds.



More Machines!

X Eivvies wmore machines meains
X times more buqgs, right?

Wrohg,

* Blackbox Fuzzer: Discovers the bug after ((1/256)%)-1 = 4 billion inputs, in expectation.

On my machine, this takes 6.3 seconds.
On 100 machines, it takes 63 milliseconds.



Scalability

* 300+ OSS projects (OSSFuzz & Fuzzer-Test-Suite)
* 6 measures of code coverage (4) and bug finding effectiveness (2)

* 4+ CPU years worth of fuzzing campaigns
o 2 fuzzers (AFL and LibFuzzer)

 Open Science and Reproducibility
 Reproduce our results under other circumstances.

e Inspect our data and simulation @ Kaggle (Jupyter Notebook).
 Modify parameters in our simulation and analysis.

[FSE’20] Fuzzing: On the Exponential Cost of Vulnerability Discovery.
M. B6hme, Brandon Falk (Microsoft)




Scalability

e #Machines

* An abstraction of the #inputs the fuzzer can generate per minute.
 Example: Twice the #machines can generate twice #inputs per minute.

 We assume no synchronisation overhead. For greybox fuzzers,
new seeds immediately available to all fuzzers.

* \We use this definition for data scaling.

[FSE’20] Fuzzing: On the Exponential Cost of Vulnerability Discovery.
M. B6hme, Brandon Falk (Microsoft)
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Figure 1: Each vuln. discovery requires exponentially more
machines (left). Yet, exponentially more machines allow to
find the same vulnerabilities exponentially faster (right).

Fuzzer Test Suite (45min campaigns)
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Number of Additional Vulns Discovered
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Figure 2: (#Crashes, #Features, #Edges @ OSS-Fuzz). Average
number of additional species discovered when fuzzing all
263 programs in OSS-Fuzz simultaneously with LiBFuzzer
for 45 minutes as a function of available machines (4 reps).



Number of Additional Vulns Discovered

Number of more features covered

lcms-2017-03-21

RA2 (F)=97.42%

RA2 (E)=97.81%

o"'
-.

-------
-

OOOO

openssl-1.1.0c-x509

harfbuzz-1.3.2
4007 | RA2 (F)=99.29% 1200
200 A2 (E)=98.00% 0.
200 600 -
100 - 300 -
04 Zeer T 0 -
libxml2—v2.9.2
2500 1 TR"2 (F)=98.57% o
20001 | R"2 (E)=97.21% |~
400 -
200 -
............................. 0 -

RA2 (F)=97.92%

RA2 (E)=96.43%

--
........
-a-- -
'-—’
'-

150 -

100 ~

50 -

750 -

500 -

250 -

0 -

libjpeg—-turbo-07-2017

RA2 (F)=98.30%
RA2 (E)=94.16%

- -
-
------
-

-
---
------------
-

openthread-2018-02-27-radio

RA2 (F)=98.80%
RA2 (E)=97.39%

......

-
- -
------
...

(b) #Features and #Edges @ FTS. Average number of additional number of features /
edges covered when fuzzing these 12 programs in FTS with LiBFuzzgr for 45 minutes,
as the number of available machines increases (20 repetitions).




Probability to Discover Given Vulnerability

Griven the same non-deterministic “fuz.zﬁr,
discovering linearly more new species
within the same time budgel, requires
exgomem&auv more E;mgau%s per minute.




Probability to Discover Given Vulnerability

Probability to discover the vulnerability
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Probability to Discover Given Vulnerability
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species within a given time budget as the number of ma-
chines increases exponentially (solid line).
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Probability to Discover Given Vulnerability

e What does that mean for a non-deterministic fuzzer?

[FSE’20] Fuzzing: On the Exponential Cost of Vulnerability Discovery.
M. B6hme, Brandon Falk (Microsoft)




Probability to Discover Given Vulnerability

* What does that mean for a non-deterministic fuzzer?
* The probability of exposing a specific known vulnerability,

* the probability of reaching a specific program statement,
* the probability of violating a specific program assertion, etc.

* within a given time budget increases approximately linearly with the
number of available machines — up to a certain limit.

[FSE’20] Fuzzing: On the Exponential Cost of Vulnerability Discovery.
M. B6hme, Brandon Falk (Microsoft)




Probability to Discover Given Vulnerability

* What does that mean for a non-deterministic fuzzer?
* The probability of exposing all (known) vulnerabilities,

* the probability of reaching all program statements,
* the probability of violating all program assertions, etc.

* within a given time budget increases approximately linearly with the
number of available machines — up to a certain limit.

[FSE’20] Fuzzing: On the Exponential Cost of Vulnerability Discovery.
M. B6hme, Brandon Falk (Microsoft)
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Figure 10. Number of additional species discovered in a fixed time budget
as the number of machines increases (5 random samples of {qi}f:1 each.
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Figure 10. Number of additional species discovered in a fixed time budget
as the number of machines increases (5 random samples of {qi}f=1 each.
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Figure 10. Number of additional species discovered in a fixed time budget
as the number of machines increases (5 random samples of {qi}f=1 each.
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Explaining to Exponential Cost
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Figure 10. Number of additional species discovered in a fixed time budget
as the number of machines increases (5 random samples of {qi}f=1 each.



#more species discovered

1.00

Explaining to Exponential Cost

Total #Species: 1000
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Figure 10. Number of additional species discovered in a fixed time budget
as the number of machines increases (5 random samples of {qi}f=1 each.




Explaining to Exponential Cost

—§ Intuitively, each new vuLMQrabELE%v requires
some more resources (time or machines)
thaw the previous vuivx@.ro\bf,u%j«



On the Cost of Vulnerability Discovery

A constant rate of vulnerabilit ciisaoverj
requires exponential amount 02 resources,

*This iIs a fundamental limitation of fuzzing!

[FSE’20] Fuzzing: On the Exponential Cost of Vulnerability Discovery.
M. B6hme, Brandon Falk (Microsoft)
Nominated for ACM Distinguished Paper Award
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Whitebox Fuzzing: Most Effective! Blackbox Fuzzing: Super fast!

void crashme (char s@, char sl1, char s2, char s3) { void crashme (char s@, char sl1, char s2, char s3) {

int crash = 0; int crash = 0;
if (s@ == 'b') if (s@ == 'b") 1f our whitebox fuzzer takes too long

if (s1 == 'a') if (s1 == 'a') : :

if (s2 == 'd") if (52 == 'd"') per input, our blackbox fuzzer outperforms!
if (s3 == ‘1") if (s3 == 1‘1") |
crash = 1; crash = 1; » There is a maximum btime per best im[m&!

if(crash == 4§ abort(); 4— It can prove the absence of assertion violation, f(crash == 1) abort():

¥ 2 Iy

Path Conditions * Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.

v 01 = (s0 !'= 'b") * Blackbox Fuzzer: Discovers the bug after ((1/256)4)-1 = 4 billion inputs, in expectation.
J 92 = (s@ == "'b"') /\ (sl != 'a') On my machine, this takes 6.3 seconds.

Voes = (s@ == "b") /\ (sl =="a') /\ (s2 I="d") On 100 machines, it takes 63 milliseconds.

V ga = (s@ == 'b") /\ (sl =="'a') /\ (s2 == 'd') /\ (s3 !='1")

X 95 = (s0 == 'b") /\ (s1 == "'a') /\ (s2 == 'd') /\ (s3 == "1")

Greybox Fuzzing: “Enumerate” Exponential Cost of Vulnerability Discovery

5 Total #Species: 1 Total #Species: 1000
o)
* Greybox Fuzzing: Add generated inputs © 600 -
to the corpus which increase coverage! S
(92)
xxkx prrx  (1x4Tx28) O 400 -
— N
o Greybox Fuzzing started only with **** in x = 110248 1 .g
the seed corpus discovers the bug after pxx Da** ( X=4 ’ 6(224 ) Q 200 -
10k inputs (in 150 microseconds)! . k% 7
(1 x 4-1 x2—8)—1 ()]
b*** bad¥* =
Dok = 1024 2 0-
 Boosted Greybox Fuzzing started with ***x e ++ * : - r -
in the seed corpus discovers the bug after brxx 44y (1 x47x28)7 #machines 2 2 #macﬁines 2 2
4k inputs (in 55 microseconds)! ba** = 1024
bad*
: Total: 4096 Figure 10. Number of additional species discovered in a fixed time budget
[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain as the number of machines increases (5 random samples of {qi}f=1 each.

M Béhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)



Whitebox Fuzzing: Most Effective!

void crashme (char s@, char sl1, char s2, char s3) {

int crash = 0;

int crash = 0;

Blackbox Fuzzing: Super fast!

void crashme (char s@, char s1, char s2, char s3) {

if (s@ == 'b") if (s@ == 'b") 1f our whitebox fuzzer takes too long
if (s1 == 'a') if (s1 == 'a') i ' ;
if (s2 == 'd") if (52 == 'd') per input, our blackbox fuzzer outperforms!
if (s3 == ‘!') if (s3 == ‘1) |
crash = 1; crash = 1; » There is a maximum time per test im[m&!
if(crash == 4§ abort(); 4— It can prove the absence of assertion violation, f(crash == 1) abort():
¥ 2 Iy
Path Conditions * Whitebox Fuzzer: Discovers the bug after 3 inputs, in expectation.
Vo1 = (s0 !'= 'b") - et e e e s et e =3 ((1/256)4) 1 = 4 billion inputs, in expectation.
J 92 = (s@ == "'b"') /\ (sl != 'a') ] akes 6.3 seconds.
Ve =s0== 00 A si==an A2 =d0 0 If you want to take a deeper dive: tkes 63 milliseconds.
Y @2 = (s@ == 'b"') /\ (s1 =="'a') /\ (s2 == 'd') ,
X 05 = (s0 == 'b') /\ (s1=="a") /\ (s2 == 'd") * Read our interactive text book: The Fuzzing Book

Greybox Fuzzing: “Ent

* Greybox Fuzzing: Add generated inputs
to the corpus which increase coverage!

o Greybox Fuzzing started only with **** in

the seed corpus discovers the bug after
10k inputs (in 150 microseconds)!

« Boosted Greybox Fuzzing started with ****

in the seed corpus discovers the bug after
4K inputs (in 55 microseconds)!

[CCS’16] Coverage-based Greybox Fuzzing as Markov Chain
M Béhme, V.T. Pham, A. Roychoudhury (extended in IEEE TSE journal)

* Read our IEEE Software article: “Fuzzing: Challenges and Reflections”

* Apply for PhD / PostDoc in my group at MPI-SP, Bochum, Germany.

Web: https://mboehme.github.com Twitter: @mboehme_

fulnerability Discovery

Total #Species: 1000
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. »n 0.25 A
b*** bad¥* (1 %471 276y D
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bad*
2 Total: 4096 Figure 10. Number of additional species discovered in a fixed time budget

as the number of machines increases (5 random samples of {qi}f=1 each.
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