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Can	you	implement	a	function,	
which	takes	an	integer	i,	
and	returns	the	result	of	42	divided	by	i?
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div42 i = 42 / i
div42 :: Int -> Int
div42 i =
  if i == 0
  then error “divided by Zero”
  else 42 / i

divn :: Int -> Int
divn i =
  n <- getUserInput ()
  if i == 0
  then error “divided by Zero”
  else n / i

divn :: Int -> Int
divn i =
  n <- getUserInput ()
  if i == 0
  then error “divided by Zero”
  else writeLog “success”
       n / i
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div42 :: Int -> Int
div42 i = 42 / i
div42 :: Int -> Int
div42 i =
  if i == 0
  then error “divided by Zero”
  else 42 / i

divn :: Int -> Int
divn i =
  n <- getUserInput ()
  if i == 0
  then error “divided by Zero”
  else n / i

divn :: Int -> Int
divn i =
  n <- getUserInput ()
  if i == 0
  then error “divided by Zero”
  else writeLog “success”
       n / i

2

divn :: Int -> Int
divn i =
  n <- getUserInput ()
  if i == 0
  then error “divided by Zero”
  else writeLog “success”
       count += 1
       n / i
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1. How	to	compose	computational	effects?	
2. How	to		handle	effects	according	to	applications?	
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PLDI	2021

https://discuss.ocaml.org/t/multicore-ocaml-september-2021-effect-handlers-will-be-in-ocaml-5-0/8554

One specific way of typing continuations and the 
values communicated back and forth is by 
following the approach taken by so-called effect 
handlers, one modern way of representing 
delimited continuations,…

https://github.com/WebAssembly/design/issues/1359
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React:	A	JavaScript	library	for	
building	user	interfaces

https://reesew.io/posts/react-algebraic-effects/

PYRO:	Deep	Universal	
Probabilistic	Programming	
Language

https://docs.pyro.ai/en/dev/poutine.html
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• Algebraic	effects	101	

• Examples,	and	more	examples	

• Efficient	compilation	of	algebraic	effects	

• Koka:	algebraic	effects	via	evidence-passing	semantics
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effect read { 
  ask : () -> int 
}

handler { 
  ask x k -> k 1 
} 
(\_.
  perform ask () + perform ask ()
) // 2

effect	handler

computation

operation

implementation

perform	an	effect

effect	signature

argument resumption
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effect exn {
  throw : () -> a
}

div m n
  = if n == 0
    then perform throw ()
    else m / n

handler {
  throw x k -> Nothing
} (\_.
 Just (div 42 0)
) // Nothing

handler {
  throw x k -> Nothing
} (\_.
  Just (div 42 2)
) // Just 21
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effect exn {
  throw : () -> a
}

div m n
  = if n == 0
    then perform throw ()
    else m / n

handler {
  throw x k -> Nothing
  return v  -> Just v
} (\_.
  div 42 2
) // Just 21

handler {
  throw x k -> Nothing
  return v  -> Just v
} (\_.
 div 42 0
) // Nothing
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effect exn {
  throw : () -> a
}

div m n
  = if n == 0
    then perform throw ()
    else m / n

handler {
  throw x k -> []
  return v  -> [v]
} (\_.
  div 42 2
) // Just 21

handler {
  throw x k -> []
  return v  -> [v]
} (\_.
 div 42 0
) // Nothing
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    divByZero x k -> Error
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    divByZero x k ->
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ios_div m n =
  handle {
    divByZero x k -> Error
  } (div m n)
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    divByZero x k ->
      if x == 0 then Error
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ios_div m n =
  handle {
    divByZero x k -> Error
  } (div m n)

google_div m n =
  handle {
    divByZero x k ->
      if x == 0 then Error
      else Infinity
  } (div m n)

coq_div m n =
  handle {
    divByZero x k -> k 0
  } (div m n)
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resume	with	
default	value

calculator

effect divByZero {
  divByZero : Int -> Int
}

div m n
  = if n == 0
    then perform divByZero m
    else m / n
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effect st<a> {
  get : () -> a
  set : a -> ()
}

(handler {
  get x k -> (\y. k y y)
  set x k -> (\y. k () x)
  return x -> (\_. x)
} (\_.
 perform set 21; w <- perform get (); w + w))
0
// 42
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handler {
  flip   x k -> k True ++ k False 
  return x   -> [x] 
} (\_.

)

effect choice {
  flip : () -> bool
}

// [True

 x <- perform flip ()
 y <- perform flip ()
 x && y

, False, False, False]
x
y

True
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False False
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effect choice {
  flip : () -> bool
}

effect exn {
  throw : () -> a
}

handler {

} (\_.
handler {

} (\_.
 x <- perform flip ()
 if x then
    perform flip ()
 else
    perform throw ()
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effect choice {
  flip : () -> bool
}
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} (\_.
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effect choice {
  flip : () -> bool
}
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  throw : () -> a
}

handler {

} (\_.
handler {

} (\_.
 x <- perform flip ()
 if x then
    perform flip ()
 else
    perform throw ()
))
// [Just True

  flip   x k -> k True ++ k False 
  return x   -> [x] 

  throw  x k -> Nothing
  return x   -> Just x 

, Just False, Nothing]
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effect choice {
  flip : () -> bool
}

effect exn {
  throw : () -> a
}

handler {

} (\_.
handler {

} (\_.
 x <- perform flip ()
 if x then
    perform flip ()
 else
    perform throw ()
))

  flip   x k -> k True ++ k False 
  return x   -> [x] 

  throw  x k -> Nothing
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effect choice {
  flip : () -> bool
}

effect exn {
  throw : () -> a
}

handler {

} (\_.
handler {

} (\_.
 x <- perform flip ()
 if x then
    perform flip ()
 else
    perform throw ()
))
// Nothing

  flip   x k -> k True ++ k False 
  return x   -> [x] 

  throw  x k -> Nothing
  return x   -> Just x 
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effect select<a> {
  select : [a] -> a
}

failed = perform select []

 x <- perform select [1..15]
 y <- perform select [1..15]
 z <- perform select [1..15]
 if x * x + y * y == z * z
 then (x,y,z)
 else failed
)

handler {
  select xs k -> concatMap k xs
  return x    -> [x] 
} (\_.
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effect select<a> {
  select : [a] -> a
}

failed = perform select []

 x <- perform select [1..15]
 y <- perform select [1..15]
 z <- perform select [1..15]
 if x * x + y * y == z * z
 then (x,y,z)
 else failed
)
//  [(3,4,5),(4,3,5),(5,12,13),(6,8,10)
//  ,(8,6,10),(9,12,15),(12,5,13),(12,9,15)]

handler {
  select xs k -> concatMap k xs
  return x    -> [x] 
} (\_.
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effect select<a> {
  select : [a] -> a
}

failed = perform select []

 x <- perform select [1..15]
 y <- perform select [1..15]
 z <- perform select [1..15]
 if x * x + y * y == z * z
 then (x,y,z)
 else failed
)

handler {
  select xs k ->
    let f ys = case ys of
      []     -> Nothing
      y’:ys’ -> case k y’ of Nothing -> f ys’
      r                      Just v  -> Just v
    in f xs
  return x    -> Just x
)

// Just (3,4,5)
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effect select<a> {
  select : [a] -> bool
}

failed = perform select []
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nQueens n = fold f [] [1..n] where
    f rows col = row <- perform select [1..n]
                 if (safeAddition rows row 1)
                 then (row : rows)
                 else failed

// is it safe to add the new queen?
safeAddition rows r i = 
  case rows of
    []       -> True
    (r:rows) ->
      row /= r &&
      abs (row - r) /= i &&
      safeAddition rows row (i + 1)

effect select<a> {
  select : [a] -> bool
}

failed = perform select []
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1. algebraic	effects	define	a	family	of	operations	
2. effect	handlers	give	semantics	to	operations	
3. every	computation	either	calls	an	operation	or	returns	a	value	

read, exn, state, choice, select, coop, …

Key	ideas:

Examples:

Algebraic	effects	Summary
Composable	and	modular	computational	effects
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Challenges

e2	[x:=v,	k:=		]

handle

handle

handle

1. Searching
a	linear	search	through	the	current	
evaluation	context

2. Capturing
capture	the	evaluation	context	(i.e.,	
stacks	and	registers)	up	to	the	found	
handler,	and	create	a	resumption	
function

handle

perform	op	v

handle

handle

Can	we	implement	algebraic	effects	
efficiently?

op x k -> e2

handle
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effect exn {
  throw : () -> a
}

div m n
  = if n == 0
    then perform throw ()
    else m / n

div m n throw
  = if n == 0
    then perform throw ()
    else m / n

handler {
  throw x k -> Nothing
} (\_.
 div 42 0
) // Nothing

handle {
  throw x k -> Nothing
}
(div 42 0 throw)
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Rewriting

Efficient	lexically	scoped	handlers Source-to-source	transformations
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handle

perform	op	v

Challenge

handle

handle e2	[x:=v,	k:=		]

handle

handle

handle

1. Searching	
a	linear	search	through	the	current	
evaluation	context	

2. Capturing	
capture	the	evaluation	context	(i.e.,	
stacks	and	registers)	up	to	the	found	
handler,	and	create	a	resumption	
function

op x k -> e2
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handler h1
(\_.
 perform ask () + perform ask ())

handler h1
(\_. 
  perform ask ()  (\x. 
    perform ask ()  (\y. 
      Pure (x + y))))
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such, this optimization works best when used together with tail-resumptive optimization). Only in
the (hopefully rare) case that full yield is needed, the slow path along the Yield case is taken and a
resumption is constructed on demand. When such a resumption is resumed, the execution is a bit
slower as well as it takes the code path along the joinn de�nitions where the binds are not inlined –
this is the price we pay for limiting the expansion. Note though that if the function is recursive,
any further recursive calls will again start at the fast path.

2.11 Compiling to C
At this point we can use regular compilation techniques to compile the plain lambda calculus to a
target platform. As an example, we show here how Koka compiles to standard C. In our �nal calculus
all e�ectful functions return a monadic result, either Pure or Yield. Since this monad is internal to
the compiler we can optimize its representation: we always return results normally assuming Pure,
and set a (thread-local) �ag to indicate yielding (in which case the actual returned value is ignored).
Moreover, every function has one extra parameter that holds the (thread-local) context ctx which
contains the current evidence vector (ctx!w), and the yielding �ag (ctx!is_yielding). For
example, the expression __. perform ask () + perform ask () translates essentially as:
int expr( unit_t u, context_t* ctx) {

int x = perform_ask( ctx!w[0], unit, ctx );

if (ctx!is_yielding) { yield_extend(&join2,ctx); return 0; }

int y = perform_ask( ctx!w[0], unit, ctx );

if (ctx!is_yielding) { yield_extend(alloc_closure_join1(x,ctx),ctx); return 0; }

return (x+y); }

Here we see how the evidence for the read handler is selected from the current evidence vector as
ctx!w[0]. Here the o�set 0 is known as the e�ect type is hreadi and Koka uses canonical evidence
vectors. If the e�ect row type was not fully known, e.g., a polymorphic row type hread | `i, the code
would instead be find_ev(ctx!w,tag_read) to �nd the evidence dynamically. When yielding,
the yield_extend calls are used to extend the currently build up resumption (as part of the ctx)
with the current continuation (which is usually a join point).

There is still an overhead in always needing to check after every e�ectful call if we are yielding or
not. Fortunately, this seems quite cheap on modern processors and the condition can be predicted
well. In the future we would like to leverage C compiler primitives to implement the is_yielding
�ag in the processor carry �ag as suggested by recent C++ proposals for error handling [Sutter 2019].

2.12 Generalized Evidence Passing
The closest related work to our approach is [Xie et al. 2020], which uses evidence-passing translation
(EPT). Even though similar in its purpose, EPT di�ers fundamentally from our approach. First, while
our evidence-passing semantics provides a set of direct evaluation rules for the algebraic e�ect
calculus, EPT is de�ned via elaboration from the algebraic e�ect calculus into an evidence calculus.
Second, our generalized evidence-passing semantics works for all algebraic e�ect handler programs,
whereas in EPT resumptions are limited to scoped resumptions only – that is, resumptions can only
be used under the same handler context as captured by the handler.

Speci�cally, in EPT, as the evidence vector is passed statically during elaboration, it is determined
before running the program. However, the statically passed-in evidence vector may, as the program
evaluates, no longer match the handlers in the current dynamic evaluation context (and in such
case, EPT raises a runtime error). Scoped resumptions restrict the expressiveness of algebraic
e�ects, including the use of shallow handlers [Hillerström and Lindley 2018] and code migration
that resumes continuations on a di�erent host [Kiselyov et al. 2006].
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such, this optimization works best when used together with tail-resumptive optimization). Only in
the (hopefully rare) case that full yield is needed, the slow path along the Yield case is taken and a
resumption is constructed on demand. When such a resumption is resumed, the execution is a bit
slower as well as it takes the code path along the joinn de�nitions where the binds are not inlined –
this is the price we pay for limiting the expansion. Note though that if the function is recursive,
any further recursive calls will again start at the fast path.

2.11 Compiling to C
At this point we can use regular compilation techniques to compile the plain lambda calculus to a
target platform. As an example, we show here how Koka compiles to standard C. In our �nal calculus
all e�ectful functions return a monadic result, either Pure or Yield. Since this monad is internal to
the compiler we can optimize its representation: we always return results normally assuming Pure,
and set a (thread-local) �ag to indicate yielding (in which case the actual returned value is ignored).
Moreover, every function has one extra parameter that holds the (thread-local) context ctx which
contains the current evidence vector (ctx!w), and the yielding �ag (ctx!is_yielding). For
example, the expression __. perform ask () + perform ask () translates essentially as:
int expr( unit_t u, context_t* ctx) {

int x = perform_ask( ctx!w[0], unit, ctx );

if (ctx!is_yielding) { yield_extend(&join2,ctx); return 0; }

int y = perform_ask( ctx!w[0], unit, ctx );

if (ctx!is_yielding) { yield_extend(alloc_closure_join1(x,ctx),ctx); return 0; }

return (x+y); }

Here we see how the evidence for the read handler is selected from the current evidence vector as
ctx!w[0]. Here the o�set 0 is known as the e�ect type is hreadi and Koka uses canonical evidence
vectors. If the e�ect row type was not fully known, e.g., a polymorphic row type hread | `i, the code
would instead be find_ev(ctx!w,tag_read) to �nd the evidence dynamically. When yielding,
the yield_extend calls are used to extend the currently build up resumption (as part of the ctx)
with the current continuation (which is usually a join point).

There is still an overhead in always needing to check after every e�ectful call if we are yielding or
not. Fortunately, this seems quite cheap on modern processors and the condition can be predicted
well. In the future we would like to leverage C compiler primitives to implement the is_yielding
�ag in the processor carry �ag as suggested by recent C++ proposals for error handling [Sutter 2019].

2.12 Generalized Evidence Passing
The closest related work to our approach is [Xie et al. 2020], which uses evidence-passing translation
(EPT). Even though similar in its purpose, EPT di�ers fundamentally from our approach. First, while
our evidence-passing semantics provides a set of direct evaluation rules for the algebraic e�ect
calculus, EPT is de�ned via elaboration from the algebraic e�ect calculus into an evidence calculus.
Second, our generalized evidence-passing semantics works for all algebraic e�ect handler programs,
whereas in EPT resumptions are limited to scoped resumptions only – that is, resumptions can only
be used under the same handler context as captured by the handler.

Speci�cally, in EPT, as the evidence vector is passed statically during elaboration, it is determined
before running the program. However, the statically passed-in evidence vector may, as the program
evaluates, no longer match the handlers in the current dynamic evaluation context (and in such
case, EPT raises a runtime error). Scoped resumptions restrict the expressiveness of algebraic
e�ects, including the use of shallow handlers [Hillerström and Lindley 2018] and code migration
that resumes continuations on a di�erent host [Kiselyov et al. 2006].
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such, this optimization works best when used together with tail-resumptive optimization). Only in
the (hopefully rare) case that full yield is needed, the slow path along the Yield case is taken and a
resumption is constructed on demand. When such a resumption is resumed, the execution is a bit
slower as well as it takes the code path along the joinn de�nitions where the binds are not inlined –
this is the price we pay for limiting the expansion. Note though that if the function is recursive,
any further recursive calls will again start at the fast path.

2.11 Compiling to C
At this point we can use regular compilation techniques to compile the plain lambda calculus to a
target platform. As an example, we show here how Koka compiles to standard C. In our �nal calculus
all e�ectful functions return a monadic result, either Pure or Yield. Since this monad is internal to
the compiler we can optimize its representation: we always return results normally assuming Pure,
and set a (thread-local) �ag to indicate yielding (in which case the actual returned value is ignored).
Moreover, every function has one extra parameter that holds the (thread-local) context ctx which
contains the current evidence vector (ctx!w), and the yielding �ag (ctx!is_yielding). For
example, the expression __. perform ask () + perform ask () translates essentially as:
int expr( unit_t u, context_t* ctx) {

int x = perform_ask( ctx!w[0], unit, ctx );

if (ctx!is_yielding) { yield_extend(&join2,ctx); return 0; }

int y = perform_ask( ctx!w[0], unit, ctx );

if (ctx!is_yielding) { yield_extend(alloc_closure_join1(x,ctx),ctx); return 0; }

return (x+y); }

Here we see how the evidence for the read handler is selected from the current evidence vector as
ctx!w[0]. Here the o�set 0 is known as the e�ect type is hreadi and Koka uses canonical evidence
vectors. If the e�ect row type was not fully known, e.g., a polymorphic row type hread | `i, the code
would instead be find_ev(ctx!w,tag_read) to �nd the evidence dynamically. When yielding,
the yield_extend calls are used to extend the currently build up resumption (as part of the ctx)
with the current continuation (which is usually a join point).

There is still an overhead in always needing to check after every e�ectful call if we are yielding or
not. Fortunately, this seems quite cheap on modern processors and the condition can be predicted
well. In the future we would like to leverage C compiler primitives to implement the is_yielding
�ag in the processor carry �ag as suggested by recent C++ proposals for error handling [Sutter 2019].

2.12 Generalized Evidence Passing
The closest related work to our approach is [Xie et al. 2020], which uses evidence-passing translation
(EPT). Even though similar in its purpose, EPT di�ers fundamentally from our approach. First, while
our evidence-passing semantics provides a set of direct evaluation rules for the algebraic e�ect
calculus, EPT is de�ned via elaboration from the algebraic e�ect calculus into an evidence calculus.
Second, our generalized evidence-passing semantics works for all algebraic e�ect handler programs,
whereas in EPT resumptions are limited to scoped resumptions only – that is, resumptions can only
be used under the same handler context as captured by the handler.

Speci�cally, in EPT, as the evidence vector is passed statically during elaboration, it is determined
before running the program. However, the statically passed-in evidence vector may, as the program
evaluates, no longer match the handlers in the current dynamic evaluation context (and in such
case, EPT raises a runtime error). Scoped resumptions restrict the expressiveness of algebraic
e�ects, including the use of shallow handlers [Hillerström and Lindley 2018] and code migration
that resumes continuations on a di�erent host [Kiselyov et al. 2006].
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such, this optimization works best when used together with tail-resumptive optimization). Only in
the (hopefully rare) case that full yield is needed, the slow path along the Yield case is taken and a
resumption is constructed on demand. When such a resumption is resumed, the execution is a bit
slower as well as it takes the code path along the joinn de�nitions where the binds are not inlined –
this is the price we pay for limiting the expansion. Note though that if the function is recursive,
any further recursive calls will again start at the fast path.

2.11 Compiling to C
At this point we can use regular compilation techniques to compile the plain lambda calculus to a
target platform. As an example, we show here how Koka compiles to standard C. In our �nal calculus
all e�ectful functions return a monadic result, either Pure or Yield. Since this monad is internal to
the compiler we can optimize its representation: we always return results normally assuming Pure,
and set a (thread-local) �ag to indicate yielding (in which case the actual returned value is ignored).
Moreover, every function has one extra parameter that holds the (thread-local) context ctx which
contains the current evidence vector (ctx!w), and the yielding �ag (ctx!is_yielding). For
example, the expression __. perform ask () + perform ask () translates essentially as:
int expr( unit_t u, context_t* ctx) {

int x = perform_ask( ctx!w[0], unit, ctx );

if (ctx!is_yielding) { yield_extend(&join2,ctx); return 0; }

int y = perform_ask( ctx!w[0], unit, ctx );

if (ctx!is_yielding) { yield_extend(alloc_closure_join1(x,ctx),ctx); return 0; }

return (x+y); }

Here we see how the evidence for the read handler is selected from the current evidence vector as
ctx!w[0]. Here the o�set 0 is known as the e�ect type is hreadi and Koka uses canonical evidence
vectors. If the e�ect row type was not fully known, e.g., a polymorphic row type hread | `i, the code
would instead be find_ev(ctx!w,tag_read) to �nd the evidence dynamically. When yielding,
the yield_extend calls are used to extend the currently build up resumption (as part of the ctx)
with the current continuation (which is usually a join point).

There is still an overhead in always needing to check after every e�ectful call if we are yielding or
not. Fortunately, this seems quite cheap on modern processors and the condition can be predicted
well. In the future we would like to leverage C compiler primitives to implement the is_yielding
�ag in the processor carry �ag as suggested by recent C++ proposals for error handling [Sutter 2019].

2.12 Generalized Evidence Passing
The closest related work to our approach is [Xie et al. 2020], which uses evidence-passing translation
(EPT). Even though similar in its purpose, EPT di�ers fundamentally from our approach. First, while
our evidence-passing semantics provides a set of direct evaluation rules for the algebraic e�ect
calculus, EPT is de�ned via elaboration from the algebraic e�ect calculus into an evidence calculus.
Second, our generalized evidence-passing semantics works for all algebraic e�ect handler programs,
whereas in EPT resumptions are limited to scoped resumptions only – that is, resumptions can only
be used under the same handler context as captured by the handler.

Speci�cally, in EPT, as the evidence vector is passed statically during elaboration, it is determined
before running the program. However, the statically passed-in evidence vector may, as the program
evaluates, no longer match the handlers in the current dynamic evaluation context (and in such
case, EPT raises a runtime error). Scoped resumptions restrict the expressiveness of algebraic
e�ects, including the use of shallow handlers [Hillerström and Lindley 2018] and code migration
that resumes continuations on a di�erent host [Kiselyov et al. 2006].
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such, this optimization works best when used together with tail-resumptive optimization). Only in
the (hopefully rare) case that full yield is needed, the slow path along the Yield case is taken and a
resumption is constructed on demand. When such a resumption is resumed, the execution is a bit
slower as well as it takes the code path along the joinn de�nitions where the binds are not inlined –
this is the price we pay for limiting the expansion. Note though that if the function is recursive,
any further recursive calls will again start at the fast path.

2.11 Compiling to C
At this point we can use regular compilation techniques to compile the plain lambda calculus to a
target platform. As an example, we show here how Koka compiles to standard C. In our �nal calculus
all e�ectful functions return a monadic result, either Pure or Yield. Since this monad is internal to
the compiler we can optimize its representation: we always return results normally assuming Pure,
and set a (thread-local) �ag to indicate yielding (in which case the actual returned value is ignored).
Moreover, every function has one extra parameter that holds the (thread-local) context ctx which
contains the current evidence vector (ctx!w), and the yielding �ag (ctx!is_yielding). For
example, the expression __. perform ask () + perform ask () translates essentially as:
int expr( unit_t u, context_t* ctx) {

int x = perform_ask( ctx!w[0], unit, ctx );

if (ctx!is_yielding) { yield_extend(&join2,ctx); return 0; }

int y = perform_ask( ctx!w[0], unit, ctx );

if (ctx!is_yielding) { yield_extend(alloc_closure_join1(x,ctx),ctx); return 0; }

return (x+y); }

Here we see how the evidence for the read handler is selected from the current evidence vector as
ctx!w[0]. Here the o�set 0 is known as the e�ect type is hreadi and Koka uses canonical evidence
vectors. If the e�ect row type was not fully known, e.g., a polymorphic row type hread | `i, the code
would instead be find_ev(ctx!w,tag_read) to �nd the evidence dynamically. When yielding,
the yield_extend calls are used to extend the currently build up resumption (as part of the ctx)
with the current continuation (which is usually a join point).

There is still an overhead in always needing to check after every e�ectful call if we are yielding or
not. Fortunately, this seems quite cheap on modern processors and the condition can be predicted
well. In the future we would like to leverage C compiler primitives to implement the is_yielding
�ag in the processor carry �ag as suggested by recent C++ proposals for error handling [Sutter 2019].

2.12 Generalized Evidence Passing
The closest related work to our approach is [Xie et al. 2020], which uses evidence-passing translation
(EPT). Even though similar in its purpose, EPT di�ers fundamentally from our approach. First, while
our evidence-passing semantics provides a set of direct evaluation rules for the algebraic e�ect
calculus, EPT is de�ned via elaboration from the algebraic e�ect calculus into an evidence calculus.
Second, our generalized evidence-passing semantics works for all algebraic e�ect handler programs,
whereas in EPT resumptions are limited to scoped resumptions only – that is, resumptions can only
be used under the same handler context as captured by the handler.

Speci�cally, in EPT, as the evidence vector is passed statically during elaboration, it is determined
before running the program. However, the statically passed-in evidence vector may, as the program
evaluates, no longer match the handlers in the current dynamic evaluation context (and in such
case, EPT raises a runtime error). Scoped resumptions restrict the expressiveness of algebraic
e�ects, including the use of shallow handlers [Hillerström and Lindley 2018] and code migration
that resumes continuations on a di�erent host [Kiselyov et al. 2006].
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such, this optimization works best when used together with tail-resumptive optimization). Only in
the (hopefully rare) case that full yield is needed, the slow path along the Yield case is taken and a
resumption is constructed on demand. When such a resumption is resumed, the execution is a bit
slower as well as it takes the code path along the joinn de�nitions where the binds are not inlined –
this is the price we pay for limiting the expansion. Note though that if the function is recursive,
any further recursive calls will again start at the fast path.

2.11 Compiling to C
At this point we can use regular compilation techniques to compile the plain lambda calculus to a
target platform. As an example, we show here how Koka compiles to standard C. In our �nal calculus
all e�ectful functions return a monadic result, either Pure or Yield. Since this monad is internal to
the compiler we can optimize its representation: we always return results normally assuming Pure,
and set a (thread-local) �ag to indicate yielding (in which case the actual returned value is ignored).
Moreover, every function has one extra parameter that holds the (thread-local) context ctx which
contains the current evidence vector (ctx!w), and the yielding �ag (ctx!is_yielding). For
example, the expression __. perform ask () + perform ask () translates essentially as:
int expr( unit_t u, context_t* ctx) {

int x = perform_ask( ctx!w[0], unit, ctx );

if (ctx!is_yielding) { yield_extend(&join2,ctx); return 0; }

int y = perform_ask( ctx!w[0], unit, ctx );

if (ctx!is_yielding) { yield_extend(alloc_closure_join1(x,ctx),ctx); return 0; }

return (x+y); }

Here we see how the evidence for the read handler is selected from the current evidence vector as
ctx!w[0]. Here the o�set 0 is known as the e�ect type is hreadi and Koka uses canonical evidence
vectors. If the e�ect row type was not fully known, e.g., a polymorphic row type hread | `i, the code
would instead be find_ev(ctx!w,tag_read) to �nd the evidence dynamically. When yielding,
the yield_extend calls are used to extend the currently build up resumption (as part of the ctx)
with the current continuation (which is usually a join point).

There is still an overhead in always needing to check after every e�ectful call if we are yielding or
not. Fortunately, this seems quite cheap on modern processors and the condition can be predicted
well. In the future we would like to leverage C compiler primitives to implement the is_yielding
�ag in the processor carry �ag as suggested by recent C++ proposals for error handling [Sutter 2019].

2.12 Generalized Evidence Passing
The closest related work to our approach is [Xie et al. 2020], which uses evidence-passing translation
(EPT). Even though similar in its purpose, EPT di�ers fundamentally from our approach. First, while
our evidence-passing semantics provides a set of direct evaluation rules for the algebraic e�ect
calculus, EPT is de�ned via elaboration from the algebraic e�ect calculus into an evidence calculus.
Second, our generalized evidence-passing semantics works for all algebraic e�ect handler programs,
whereas in EPT resumptions are limited to scoped resumptions only – that is, resumptions can only
be used under the same handler context as captured by the handler.

Speci�cally, in EPT, as the evidence vector is passed statically during elaboration, it is determined
before running the program. However, the statically passed-in evidence vector may, as the program
evaluates, no longer match the handlers in the current dynamic evaluation context (and in such
case, EPT raises a runtime error). Scoped resumptions restrict the expressiveness of algebraic
e�ects, including the use of shallow handlers [Hillerström and Lindley 2018] and code migration
that resumes continuations on a di�erent host [Kiselyov et al. 2006].
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Fig. 6. Execution time averaged over 10 runs

such, the results are meant to establish if the e�ect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe speci�c
aspects of e�ect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
This time Koka is 1.5⇥ faster than OCaml: due to evidence passing, the execution times of
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• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
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such, the results are meant to establish if the e�ect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe speci�c
aspects of e�ect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
This time Koka is 1.5⇥ faster than OCaml: due to evidence passing, the execution times of
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such, the results are meant to establish if the e�ect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe speci�c
aspects of e�ect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
This time Koka is 1.5⇥ faster than OCaml: due to evidence passing, the execution times of
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such, the results are meant to establish if the e�ect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe speci�c
aspects of e�ect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
This time Koka is 1.5⇥ faster than OCaml: due to evidence passing, the execution times of
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