
Efficient	Compilation	of		
Algebraic	Effect	Handlers

Ningning	Xie	

2

Can	you	implement	a	function,	
which	takes	an	integer	i,	
and	returns	the	result	of	42	divided	by	i?

div42 :: Int -> Int
div42 i = 42 / i

2

div42 :: Int -> Int
div42 i = 42 / i
div42 :: Int -> Int
div42 i =
 if i == 0
 then error “divided by Zero”
 else 42 / i

2

div42 :: Int -> Int
div42 i = 42 / i
div42 :: Int -> Int
div42 i =
 if i == 0
 then error “divided by Zero”
 else 42 / i

divn :: Int -> Int
divn i =
 n <- getUserInput ()
 if i == 0
 then error “divided by Zero”
 else n / i

2

div42 :: Int -> Int
div42 i = 42 / i
div42 :: Int -> Int
div42 i =
 if i == 0
 then error “divided by Zero”
 else 42 / i

divn :: Int -> Int
divn i =
 n <- getUserInput ()
 if i == 0
 then error “divided by Zero”
 else n / i

divn :: Int -> Int
divn i =
 n <- getUserInput ()
 if i == 0
 then error “divided by Zero”
 else writeLog “success”
 n / i

2

div42 :: Int -> Int
div42 i = 42 / i
div42 :: Int -> Int
div42 i =
 if i == 0
 then error “divided by Zero”
 else 42 / i

divn :: Int -> Int
divn i =
 n <- getUserInput ()
 if i == 0
 then error “divided by Zero”
 else n / i

divn :: Int -> Int
divn i =
 n <- getUserInput ()
 if i == 0
 then error “divided by Zero”
 else writeLog “success”
 n / i

2

divn :: Int -> Int
divn i =
 n <- getUserInput ()
 if i == 0
 then error “divided by Zero”
 else writeLog “success”
 count += 1
 n / i

3

calculator

3

calculator

3Coq	proof	assistant

calculator 0	/	0

3Coq	proof	assistant

calculator 0	/	0

0
3Coq	proof	assistant

calculator 0	/	0 1	/	0

0
3Coq	proof	assistant

calculator 0	/	0 1	/	0

0 0
3Coq	proof	assistant

calculator 0	/	0 1	/	0

0 0

1	+	(1	/	0)

3Coq	proof	assistant

calculator 0	/	0 1	/	0

0 0

1	+	(1	/	0)

1
3Coq	proof	assistant

calculator 0	/	0 1	/	0

0 0

1	+	(1	/	0)

1
3Coq	proof	assistant

calculator 0	/	0 1	/	0

0 0

1	+	(1	/	0)

1
3Coq	proof	assistant

calculator 0	/	0 1	/	0

0 0

1	+	(1	/	0)

1
3Coq	proof	assistant

1. How	to	compose	computational	effects?	
2. How	to		handle	effects	according	to	applications?	

4

Algebraic	effects	and	handlers

5

Composable	and	modular	computational	effects

Algebraic	effects	and	handlers

5

Composable	and	modular	computational	effects

Algebraic	effects	and	handlers

5

Composable	and	modular	computational	effects

algebraic	effects	

define	a	family	of	operations

Algebraic	effects	and	handlers

5

Composable	and	modular	computational	effects

algebraic	effects	

define	a	family	of	operations give	semantics	to	operations

effect	handlers

Algebraic	effects	and	handlers

5

Applied	Categorical	Structures	2003

Composable	and	modular	computational	effects

algebraic	effects	

define	a	family	of	operations give	semantics	to	operations

effect	handlers

Algebraic	effects	and	handlers

5

Logical	Methods	in	Computer	Science	2013

Applied	Categorical	Structures	2003

ESOP	2019

Composable	and	modular	computational	effects

algebraic	effects	

define	a	family	of	operations give	semantics	to	operations

effect	handlers

6

6

Journal	of	Logical	and	Algebraic	Methods	in	Programming	2015

Eff

6

Journal	of	Logical	and	Algebraic	Methods	in	Programming	2015

Eff

Mathematically	Structured	Functional	Programming	2014

6

Journal	of	Logical	and	Algebraic	Methods	in	Programming	2015

Eff

Mathematically	Structured	Functional	Programming	2014

TLDI	2012

Links

6

Journal	of	Logical	and	Algebraic	Methods	in	Programming	2015

Eff

Mathematically	Structured	Functional	Programming	2014

POPL	2017

Frank

TLDI	2012

Links

6

Journal	of	Logical	and	Algebraic	Methods	in	Programming	2015

Eff

Mathematically	Structured	Functional	Programming	2014

OOPSLA	2020

POPL	2017

Frank

TLDI	2012

Links

7

PLDI	2021

7

PLDI	2021

https://discuss.ocaml.org/t/multicore-ocaml-september-2021-effect-handlers-will-be-in-ocaml-5-0/8554

7

PLDI	2021

https://discuss.ocaml.org/t/multicore-ocaml-september-2021-effect-handlers-will-be-in-ocaml-5-0/8554

https://github.com/WebAssembly/design/issues/1359

7

PLDI	2021

https://discuss.ocaml.org/t/multicore-ocaml-september-2021-effect-handlers-will-be-in-ocaml-5-0/8554

One specific way of typing continuations and the
values communicated back and forth is by
following the approach taken by so-called effect
handlers, one modern way of representing
delimited continuations,…

https://github.com/WebAssembly/design/issues/1359

8

React:	A	JavaScript	library	for	
building	user	interfaces

https://reesew.io/posts/react-algebraic-effects/

PYRO:	Deep	Universal	
Probabilistic	Programming	
Language

https://docs.pyro.ai/en/dev/poutine.html

9

Agenda

10

• Algebraic	effects	101	

• Examples,	and	more	examples	

• Efficient	compilation	of	algebraic	effects	

• Koka:	algebraic	effects	via	evidence-passing	semantics

Algebraic	effects	101

11

Algebraic	effects	101

11

effect read {
 ask : () -> int
}

handler {
 ask x k -> k 1
}
(_.
 perform ask () + perform ask ()
)

Algebraic	effects	101

11

effect read {
 ask : () -> int
}

handler {
 ask x k -> k 1
}
(_.
 perform ask () + perform ask ()
)

Algebraic	effects	101

11

effect read {
 ask : () -> int
}

handler {
 ask x k -> k 1
}
(_.
 perform ask () + perform ask ()
)

Algebraic	effects	101

11

effect read {
 ask : () -> int
}

handler {
 ask x k -> k 1
}
(_.
 perform ask () + perform ask ()
)

Algebraic	effects	101

11

effect read {
 ask : () -> int
}

handler {
 ask x k -> k 1
}
(_.
 perform ask () + perform ask ()
)

effect	signature

Algebraic	effects	101

11

effect read {
 ask : () -> int
}

handler {
 ask x k -> k 1
}
(_.
 perform ask () + perform ask ()
)

operation
effect	signature

Algebraic	effects	101

11

effect read {
 ask : () -> int
}

handler {
 ask x k -> k 1
}
(_.
 perform ask () + perform ask ()
)

effect	handler

operation
effect	signature

Algebraic	effects	101

11

effect read {
 ask : () -> int
}

handler {
 ask x k -> k 1
}
(_.
 perform ask () + perform ask ()
)

effect	handler

operation

implementation

effect	signature

Algebraic	effects	101

11

effect read {
 ask : () -> int
}

handler {
 ask x k -> k 1
}
(_.
 perform ask () + perform ask ()
)

effect	handler

operation

implementation

effect	signature

argument

Algebraic	effects	101

11

effect read {
 ask : () -> int
}

handler {
 ask x k -> k 1
}
(_.
 perform ask () + perform ask ()
)

effect	handler

operation

implementation

effect	signature

argument resumption

Algebraic	effects	101

11

effect read {
 ask : () -> int
}

handler {
 ask x k -> k 1
}
(_.
 perform ask () + perform ask ()
)

effect	handler

computation

operation

implementation

effect	signature

argument resumption

Algebraic	effects	101

11

effect read {
 ask : () -> int
}

handler {
 ask x k -> k 1
}
(_.
 perform ask () + perform ask ()
)

effect	handler

computation

operation

implementation

perform	an	effect

effect	signature

argument resumption

Algebraic	effects	101

11

effect read {
 ask : () -> int
}

handler {
 ask x k -> k 1
}
(_.
 perform ask () + perform ask ()
) // 2

effect	handler

computation

operation

implementation

perform	an	effect

effect	signature

argument resumption

Exception

12

effect exn {
 throw : () -> a
}

Exception

12

effect exn {
 throw : () -> a
}

div m n
 = if n == 0
 then perform throw ()
 else m / n

Exception

12

effect exn {
 throw : () -> a
}

div m n
 = if n == 0
 then perform throw ()
 else m / n

handler {
 throw x k -> Nothing
} (_.
 Just (div 42 0)
) // Nothing

handler {
 throw x k -> Nothing
} (_.
 Just (div 42 2)
) // Just 21

Exception

12

effect exn {
 throw : () -> a
}

div m n
 = if n == 0
 then perform throw ()
 else m / n

handler {
 throw x k -> Nothing
 return v -> Just v
} (_.
 div 42 2
) // Just 21

handler {
 throw x k -> Nothing
 return v -> Just v
} (_.
 div 42 0
) // Nothing

Exception

12

effect exn {
 throw : () -> a
}

div m n
 = if n == 0
 then perform throw ()
 else m / n

handler {
 throw x k -> []
 return v -> [v]
} (_.
 div 42 2
) // Just 21

handler {
 throw x k -> []
 return v -> [v]
} (_.
 div 42 0
) // Nothing

13

13

2 * (1 + 20)

13

2	*	

1	+

20

2 * (1 + 20)

13

2	*	

1	+

20

2	*	

21

2 * (1 + 20) 2 * 21

13

2	*	

1	+

20

2	*	

21

42

2 * (1 + 20) 2 * 21 42

14

handle

14

handle

return x -> e1

14

handle

return x -> e1
op x k -> e2

14

handle

return x -> e1
op x k -> e2

14

handle

every	computation	either	calls	an	operation	or	returns	a	value	

return x -> e1
op x k -> e2

14

handle

handle

every	computation	either	calls	an	operation	or	returns	a	value	

return x -> e1
op x k -> e2

14

handle

handle handle

v

every	computation	either	calls	an	operation	or	returns	a	value	

return x -> e1
op x k -> e2

14

handle

handle handle

v

e1	[x:=v]

every	computation	either	calls	an	operation	or	returns	a	value	

return x -> e1
op x k -> e2

14

handle

handle handle

v

e1	[x:=v]

handle

perform	op	v

every	computation	either	calls	an	operation	or	returns	a	value	

return x -> e1
op x k -> e2

14

handle

handle handle

v

e1	[x:=v]

handle

perform	op	v

e2	[x:=v,	k:=]

every	computation	either	calls	an	operation	or	returns	a	value	

return x -> e1
op x k -> e2

14

handle

handle handle

v

e1	[x:=v]

handle

perform	op	v

e2	[x:=v,	k:=]

every	computation	either	calls	an	operation	or	returns	a	value	

return x -> e1
op x k -> e2

14

handle

handle handle

v

e1	[x:=v]

handle

perform	op	v

handle

e2	[x:=v,	k:=]

every	computation	either	calls	an	operation	or	returns	a	value	

return x -> e1
op x k -> e2

return x -> e1
op x k -> e2

handle handle

v

e1	[x:=v]

15

handle

handle

perform	op	v

handle

e2	[x:=v,	k:=]

every	computation	either	calls	an	operation	or	returns	a	value	

handle handle

v

e1	[x:=v]

15

handle

handle

perform	op	v

handle

e2	[x:=v,	k:=]

every	computation	either	calls	an	operation	or	returns	a	value	

handler {
 throw x k -> Nothing
 return v -> Just v
} (_.
div 42 2)

handle handle

v

e1	[x:=v]

15

handle

handle

perform	op	v

handle

e2	[x:=v,	k:=]

every	computation	either	calls	an	operation	or	returns	a	value	

handler {
 throw x k -> Nothing
 return v -> Just v
} (_.
div 42 2)

handle handle

v

e1	[x:=v]

15

handle

handle

div 42	

2

handle

perform	op	v

handle

e2	[x:=v,	k:=]

every	computation	either	calls	an	operation	or	returns	a	value	

handler {
 throw x k -> Nothing
 return v -> Just v
} (_.
div 42 2)

handle handle

v

e1	[x:=v]

15

handle

handle

div 42	

2

handle

21

handle

perform	op	v

handle

e2	[x:=v,	k:=]

every	computation	either	calls	an	operation	or	returns	a	value	

handler {
 throw x k -> Nothing
 return v -> Just v
} (_.
div 42 2)

handle handle

v

e1	[x:=v]

15

handle

handle

div 42	

2

handle

21

Just 21

handle

perform	op	v

handle

e2	[x:=v,	k:=]

every	computation	either	calls	an	operation	or	returns	a	value	

handler {
 throw x k -> Nothing
 return v -> Just v
} (_.
div 42 2)

handle handle

v

e1	[x:=v]

16

handle

handle

div 42	

2

handle

21

Just 21

handle

perform	op	v

handle

e2	[x:=v,	k:=]

every	computation	either	calls	an	operation	or	returns	a	value	

handler {
 throw x k -> Nothing
 return v -> Just v
} (_.
 div 42 0)

handle handle

v

e1	[x:=v]

16

handle

handle

div 42	

2

handle

21

Just 21

handle

perform	op	v

handle

e2	[x:=v,	k:=]

every	computation	either	calls	an	operation	or	returns	a	value	

handler {
 throw x k -> Nothing
 return v -> Just v
} (_.
 div 42 0)

handle handle

v

e1	[x:=v]

16

handle

handle

div 42	

2

handle

21

Just 21

handle

perform	op	v

handle

e2	[x:=v,	k:=]

every	computation	either	calls	an	operation	or	returns	a	value	

handler {
 throw x k -> Nothing
 return v -> Just v
} (_.
 div 42 0)

handle handle

v

e1	[x:=v]

16

handle

handle

div 42	

2

handle

21

Just 21

handle

perform	op	v

handle

e2	[x:=v,	k:=]

every	computation	either	calls	an	operation	or	returns	a	value	

handler {
 throw x k -> Nothing
 return v -> Just v
} (_.
 div 42 0)

handle

perform	throw	()

handle handle

v

e1	[x:=v]

16

handle

handle

div 42	

2

handle

21

Just 21

handle

perform	op	v

handle

e2	[x:=v,	k:=]

every	computation	either	calls	an	operation	or	returns	a	value	

handler {
 throw x k -> Nothing
 return v -> Just v
} (_.
 div 42 0)

handle

perform	throw	()

Nothing[k:=]

Nothing[k:=]

17

handle

handle

div 42	

2

handle

21

Just 42

handle

perform	throw	()

handle

every	computation	either	calls	an	operation	or	returns	a	value	

handler {
 throw x k -> k 0
 return v -> Just v
} (_.
 div 42 0)

Nothing[k:=]

17

handle

handle

div 42	

2

handle

21

Just 42

handle

perform	throw	()

handle

every	computation	either	calls	an	operation	or	returns	a	value	

handler {
 throw x k -> k 0
 return v -> Just v
} (_.
 div 42 0)

Nothing[k:=]

17

handle

handle

div 42	

2

handle

21

Just 42

handle

perform	throw	()

handle

							(k	0)[k:=]

every	computation	either	calls	an	operation	or	returns	a	value	

handler {
 throw x k -> k 0
 return v -> Just v
} (_.
 div 42 0)

Nothing[k:=]

17

handle

handle

div 42	

2

handle

21

Just 42

handle

perform	throw	()

handle

							(k	0)[k:=]

every	computation	either	calls	an	operation	or	returns	a	value	

handler {
 throw x k -> k 0
 return v -> Just v
} (_.
 div 42 0)

handle

0

18

calculator

effect divByZero {
 divByZero : Int -> Int
}

div m n
 = if n == 0
 then perform divByZero m
 else m / n

18

calculator

effect divByZero {
 divByZero : Int -> Int
}

div m n
 = if n == 0
 then perform divByZero m
 else m / n

18

ios_div m n =
 handle {
 divByZero x k -> Error
 } (div m n)

google_div m n =
 handle {
 divByZero x k ->
 if x == 0 then Error
 else Infinity
 } (div m n)

coq_div m n =
 handle {
 divByZero x k -> k 0
 } (div m n)

calculator

effect divByZero {
 divByZero : Int -> Int
}

div m n
 = if n == 0
 then perform divByZero m
 else m / n

18

ios_div m n =
 handle {
 divByZero x k -> Error
 } (div m n)

google_div m n =
 handle {
 divByZero x k ->
 if x == 0 then Error
 else Infinity
 } (div m n)

coq_div m n =
 handle {
 divByZero x k -> k 0
 } (div m n)

calculator

effect divByZero {
 divByZero : Int -> Int
}

div m n
 = if n == 0
 then perform divByZero m
 else m / n

18

ios_div m n =
 handle {
 divByZero x k -> Error
 } (div m n)

google_div m n =
 handle {
 divByZero x k ->
 if x == 0 then Error
 else Infinity
 } (div m n)

coq_div m n =
 handle {
 divByZero x k -> k 0
 } (div m n)

calculator

effect divByZero {
 divByZero : Int -> Int
}

div m n
 = if n == 0
 then perform divByZero m
 else m / n

18

ios_div m n =
 handle {
 divByZero x k -> Error
 } (div m n)

google_div m n =
 handle {
 divByZero x k ->
 if x == 0 then Error
 else Infinity
 } (div m n)

coq_div m n =
 handle {
 divByZero x k -> k 0
 } (div m n)

argument

calculator

effect divByZero {
 divByZero : Int -> Int
}

div m n
 = if n == 0
 then perform divByZero m
 else m / n

18

ios_div m n =
 handle {
 divByZero x k -> Error
 } (div m n)

google_div m n =
 handle {
 divByZero x k ->
 if x == 0 then Error
 else Infinity
 } (div m n)

coq_div m n =
 handle {
 divByZero x k -> k 0
 } (div m n)

argument

calculator

effect divByZero {
 divByZero : Int -> Int
}

div m n
 = if n == 0
 then perform divByZero m
 else m / n

18

ios_div m n =
 handle {
 divByZero x k -> Error
 } (div m n)

google_div m n =
 handle {
 divByZero x k ->
 if x == 0 then Error
 else Infinity
 } (div m n)

coq_div m n =
 handle {
 divByZero x k -> k 0
 } (div m n)

argument

resume	with	
default	value

calculator

effect divByZero {
 divByZero : Int -> Int
}

div m n
 = if n == 0
 then perform divByZero m
 else m / n

State

19

State

19

effect st<a> {
 get : () -> a
 set : a -> ()
}

State

19

effect st<a> {
 get : () -> a
 set : a -> ()
}

(handler {
 get x k -> (\y. k y y)
 set x k -> (\y. k () x)
 return x -> (_. x)
} (_.
 perform set 21; w <- perform get (); w + w))
0

State

19

effect st<a> {
 get : () -> a
 set : a -> ()
}

(handler {
 get x k -> (\y. k y y)
 set x k -> (\y. k () x)
 return x -> (_. x)
} (_.
 perform set 21; w <- perform get (); w + w))
0

State

19

effect st<a> {
 get : () -> a
 set : a -> ()
}

(handler {
 get x k -> (\y. k y y)
 set x k -> (\y. k () x)
 return x -> (_. x)
} (_.
 perform set 21; w <- perform get (); w + w))
0
// 42

Choice

20

Choice

20

effect choice {
 flip : () -> bool
}

Choice

20

effect choice {
 flip : () -> bool
}

 x <- perform flip ()
 y <- perform flip ()
 x && y

Choice

20

handler {
 flip x k -> k True ++ k False
 return x -> [x]
} (_.

)

effect choice {
 flip : () -> bool
}

 x <- perform flip ()
 y <- perform flip ()
 x && y

Choice

20

handler {
 flip x k -> k True ++ k False
 return x -> [x]
} (_.

)

effect choice {
 flip : () -> bool
}

 x <- perform flip ()
 y <- perform flip ()
 x && y

x True

Choice

20

handler {
 flip x k -> k True ++ k False
 return x -> [x]
} (_.

)

effect choice {
 flip : () -> bool
}

 x <- perform flip ()
 y <- perform flip ()
 x && y

x
y

True
True

Choice

20

handler {
 flip x k -> k True ++ k False
 return x -> [x]
} (_.

)

effect choice {
 flip : () -> bool
}

// [True

 x <- perform flip ()
 y <- perform flip ()
 x && y

x
y

True
True

Choice

20

handler {
 flip x k -> k True ++ k False
 return x -> [x]
} (_.

)

effect choice {
 flip : () -> bool
}

// [True

 x <- perform flip ()
 y <- perform flip ()
 x && y

x
y

True
True

True

Choice

20

handler {
 flip x k -> k True ++ k False
 return x -> [x]
} (_.

)

effect choice {
 flip : () -> bool
}

// [True

 x <- perform flip ()
 y <- perform flip ()
 x && y

x
y

True
True

True
False

Choice

20

handler {
 flip x k -> k True ++ k False
 return x -> [x]
} (_.

)

effect choice {
 flip : () -> bool
}

// [True

 x <- perform flip ()
 y <- perform flip ()
 x && y

, False
x
y

True
True

True
False

Choice

20

handler {
 flip x k -> k True ++ k False
 return x -> [x]
} (_.

)

effect choice {
 flip : () -> bool
}

// [True

 x <- perform flip ()
 y <- perform flip ()
 x && y

, False
x
y

True
True

True
False

False

Choice

20

handler {
 flip x k -> k True ++ k False
 return x -> [x]
} (_.

)

effect choice {
 flip : () -> bool
}

// [True

 x <- perform flip ()
 y <- perform flip ()
 x && y

, False
x
y

True
True

True
False

False False

Choice

20

handler {
 flip x k -> k True ++ k False
 return x -> [x]
} (_.

)

effect choice {
 flip : () -> bool
}

// [True

 x <- perform flip ()
 y <- perform flip ()
 x && y

, False
x
y

True
True

True
False

False False
True

Choice

20

handler {
 flip x k -> k True ++ k False
 return x -> [x]
} (_.

)

effect choice {
 flip : () -> bool
}

// [True

 x <- perform flip ()
 y <- perform flip ()
 x && y

, False, False
x
y

True
True

True
False

False False
True

Choice

20

handler {
 flip x k -> k True ++ k False
 return x -> [x]
} (_.

)

effect choice {
 flip : () -> bool
}

// [True

 x <- perform flip ()
 y <- perform flip ()
 x && y

, False, False
x
y

True
True

True
False

False False
True False

Choice

20

handler {
 flip x k -> k True ++ k False
 return x -> [x]
} (_.

)

effect choice {
 flip : () -> bool
}

// [True

 x <- perform flip ()
 y <- perform flip ()
 x && y

, False, False, False]
x
y

True
True

True
False

False False
True False

Choice	and	Exception

21

Choice	and	Exception

21

effect choice {
 flip : () -> bool
}

effect exn {
 throw : () -> a
}

Choice	and	Exception

21

effect choice {
 flip : () -> bool
}

effect exn {
 throw : () -> a
}

handler {

} (_.
handler {

} (_.

Choice	and	Exception

21

effect choice {
 flip : () -> bool
}

effect exn {
 throw : () -> a
}

handler {

} (_.
handler {

} (_.
 x <- perform flip ()
 if x then
 perform flip ()
 else
 perform throw ()
))

 flip x k -> k True ++ k False
 return x -> [x]

 throw x k -> Nothing
 return x -> Just x

Choice	and	Exception

21

effect choice {
 flip : () -> bool
}

effect exn {
 throw : () -> a
}

handler {

} (_.
handler {

} (_.
 x <- perform flip ()
 if x then
 perform flip ()
 else
 perform throw ()
))
// [Just True

 flip x k -> k True ++ k False
 return x -> [x]

 throw x k -> Nothing
 return x -> Just x

Choice	and	Exception

21

effect choice {
 flip : () -> bool
}

effect exn {
 throw : () -> a
}

handler {

} (_.
handler {

} (_.
 x <- perform flip ()
 if x then
 perform flip ()
 else
 perform throw ()
))
// [Just True

 flip x k -> k True ++ k False
 return x -> [x]

 throw x k -> Nothing
 return x -> Just x

, Just False

Choice	and	Exception

21

effect choice {
 flip : () -> bool
}

effect exn {
 throw : () -> a
}

handler {

} (_.
handler {

} (_.
 x <- perform flip ()
 if x then
 perform flip ()
 else
 perform throw ()
))
// [Just True

 flip x k -> k True ++ k False
 return x -> [x]

 throw x k -> Nothing
 return x -> Just x

, Just False, Nothing]

Choice	and	Exception

21

effect choice {
 flip : () -> bool
}

effect exn {
 throw : () -> a
}

handler {

} (_.
handler {

} (_.
 x <- perform flip ()
 if x then
 perform flip ()
 else
 perform throw ()
))

 flip x k -> k True ++ k False
 return x -> [x]

 throw x k -> Nothing
 return x -> Just x

Choice	and	Exception

21

effect choice {
 flip : () -> bool
}

effect exn {
 throw : () -> a
}

handler {

} (_.
handler {

} (_.
 x <- perform flip ()
 if x then
 perform flip ()
 else
 perform throw ()
))
// Nothing

 flip x k -> k True ++ k False
 return x -> [x]

 throw x k -> Nothing
 return x -> Just x

Select

22

Select

22

effect select<a> {
 select : [a] -> a
}

failed = perform select []

Select

22

effect select<a> {
 select : [a] -> a
}

failed = perform select []

 x <- perform select [1..15]
 y <- perform select [1..15]
 z <- perform select [1..15]
 if x * x + y * y == z * z
 then (x,y,z)
 else failed

Select

22

effect select<a> {
 select : [a] -> a
}

failed = perform select []

 x <- perform select [1..15]
 y <- perform select [1..15]
 z <- perform select [1..15]
 if x * x + y * y == z * z
 then (x,y,z)
 else failed
)

handler {
 select xs k -> concatMap k xs
 return x -> [x]
} (_.

Select

22

effect select<a> {
 select : [a] -> a
}

failed = perform select []

 x <- perform select [1..15]
 y <- perform select [1..15]
 z <- perform select [1..15]
 if x * x + y * y == z * z
 then (x,y,z)
 else failed
)
// [(3,4,5),(4,3,5),(5,12,13),(6,8,10)
// ,(8,6,10),(9,12,15),(12,5,13),(12,9,15)]

handler {
 select xs k -> concatMap k xs
 return x -> [x]
} (_.

Select

22

effect select<a> {
 select : [a] -> a
}

failed = perform select []

 x <- perform select [1..15]
 y <- perform select [1..15]
 z <- perform select [1..15]
 if x * x + y * y == z * z
 then (x,y,z)
 else failed
)

handler {
 select xs k ->
 let f ys = case ys of
 [] -> Nothing
 y’:ys’ -> case k y’ of Nothing -> f ys’
 r Just v -> Just v
 in f xs
 return x -> Just x
)

Select

22

effect select<a> {
 select : [a] -> a
}

failed = perform select []

 x <- perform select [1..15]
 y <- perform select [1..15]
 z <- perform select [1..15]
 if x * x + y * y == z * z
 then (x,y,z)
 else failed
)

handler {
 select xs k ->
 let f ys = case ys of
 [] -> Nothing
 y’:ys’ -> case k y’ of Nothing -> f ys’
 r Just v -> Just v
 in f xs
 return x -> Just x
)

// Just (3,4,5)

N-Queens

23

effect select<a> {
 select : [a] -> bool
}

failed = perform select []

N-Queens

23

nQueens n = fold f [] [1..n] where
 f rows col = row <- perform select [1..n]
 if (safeAddition rows row 1)
 then (row : rows)
 else failed

// is it safe to add the new queen?
safeAddition rows r i =
 case rows of
 [] -> True
 (r:rows) ->
 row /= r &&
 abs (row - r) /= i &&
 safeAddition rows row (i + 1)

effect select<a> {
 select : [a] -> bool
}

failed = perform select []

Cooperative	multi-threading

24

Cooperative	multi-threading

24

effect queue {
 enqueue : (() -> ()) -> ()
 dequeue : () -> (() -> ())
}
effect coop {
 yield : () -> ()
 fork : (() -> ()) -> ()
}

Cooperative	multi-threading

24

effect queue {
 enqueue : (() -> ()) -> ()
 dequeue : () -> (() -> ())
}
effect coop {
 yield : () -> ()
 fork : (() -> ()) -> ()
}

scheduler f =
 handler {
 yield _ k ->
 perform enqueue k
 next <- perform dequeue ();
 next ()
 fork g k ->
 perform enqueue k
 schedule g
 return _ ->
 next <- perform dequeue ()
 next ()
 }
 f

Cooperative	multi-threading

24

effect queue {
 enqueue : (() -> ()) -> ()
 dequeue : () -> (() -> ())
}
effect coop {
 yield : () -> ()
 fork : (() -> ()) -> ()
}

scheduler f =
 handler {
 yield _ k ->
 perform enqueue k
 next <- perform dequeue ();
 next ()
 fork g k ->
 perform enqueue k
 schedule g
 return _ ->
 next <- perform dequeue ()
 next ()
 }
 f

scheduler (_.
 print “A”; perform fork (_. print “B”; perform yield (); print “E”);
 print “C”; perform fork (_. print “D”; perform yield (); print “G”); print “F”
)

Cooperative	multi-threading

24

effect queue {
 enqueue : (() -> ()) -> ()
 dequeue : () -> (() -> ())
}
effect coop {
 yield : () -> ()
 fork : (() -> ()) -> ()
}

scheduler f =
 handler {
 yield _ k ->
 perform enqueue k
 next <- perform dequeue ();
 next ()
 fork g k ->
 perform enqueue k
 schedule g
 return _ ->
 next <- perform dequeue ()
 next ()
 }
 f

scheduler (_.
 print “A”; perform fork (_. print “B”; perform yield (); print “E”);
 print “C”; perform fork (_. print “D”; perform yield (); print “G”); print “F”
) // A

Cooperative	multi-threading

24

effect queue {
 enqueue : (() -> ()) -> ()
 dequeue : () -> (() -> ())
}
effect coop {
 yield : () -> ()
 fork : (() -> ()) -> ()
}

scheduler f =
 handler {
 yield _ k ->
 perform enqueue k
 next <- perform dequeue ();
 next ()
 fork g k ->
 perform enqueue k
 schedule g
 return _ ->
 next <- perform dequeue ()
 next ()
 }
 f

scheduler (_.
 print “A”; perform fork (_. print “B”; perform yield (); print “E”);
 print “C”; perform fork (_. print “D”; perform yield (); print “G”); print “F”
) // A B

Cooperative	multi-threading

24

effect queue {
 enqueue : (() -> ()) -> ()
 dequeue : () -> (() -> ())
}
effect coop {
 yield : () -> ()
 fork : (() -> ()) -> ()
}

scheduler f =
 handler {
 yield _ k ->
 perform enqueue k
 next <- perform dequeue ();
 next ()
 fork g k ->
 perform enqueue k
 schedule g
 return _ ->
 next <- perform dequeue ()
 next ()
 }
 f

scheduler (_.
 print “A”; perform fork (_. print “B”; perform yield (); print “E”);
 print “C”; perform fork (_. print “D”; perform yield (); print “G”); print “F”
) // A B C

Cooperative	multi-threading

24

effect queue {
 enqueue : (() -> ()) -> ()
 dequeue : () -> (() -> ())
}
effect coop {
 yield : () -> ()
 fork : (() -> ()) -> ()
}

scheduler f =
 handler {
 yield _ k ->
 perform enqueue k
 next <- perform dequeue ();
 next ()
 fork g k ->
 perform enqueue k
 schedule g
 return _ ->
 next <- perform dequeue ()
 next ()
 }
 f

scheduler (_.
 print “A”; perform fork (_. print “B”; perform yield (); print “E”);
 print “C”; perform fork (_. print “D”; perform yield (); print “G”); print “F”
) // A B C D

Cooperative	multi-threading

24

effect queue {
 enqueue : (() -> ()) -> ()
 dequeue : () -> (() -> ())
}
effect coop {
 yield : () -> ()
 fork : (() -> ()) -> ()
}

scheduler f =
 handler {
 yield _ k ->
 perform enqueue k
 next <- perform dequeue ();
 next ()
 fork g k ->
 perform enqueue k
 schedule g
 return _ ->
 next <- perform dequeue ()
 next ()
 }
 f

scheduler (_.
 print “A”; perform fork (_. print “B”; perform yield (); print “E”);
 print “C”; perform fork (_. print “D”; perform yield (); print “G”); print “F”
) // A B C D E

Cooperative	multi-threading

24

effect queue {
 enqueue : (() -> ()) -> ()
 dequeue : () -> (() -> ())
}
effect coop {
 yield : () -> ()
 fork : (() -> ()) -> ()
}

scheduler f =
 handler {
 yield _ k ->
 perform enqueue k
 next <- perform dequeue ();
 next ()
 fork g k ->
 perform enqueue k
 schedule g
 return _ ->
 next <- perform dequeue ()
 next ()
 }
 f

scheduler (_.
 print “A”; perform fork (_. print “B”; perform yield (); print “E”);
 print “C”; perform fork (_. print “D”; perform yield (); print “G”); print “F”
) // A B C D E F

Cooperative	multi-threading

24

effect queue {
 enqueue : (() -> ()) -> ()
 dequeue : () -> (() -> ())
}
effect coop {
 yield : () -> ()
 fork : (() -> ()) -> ()
}

scheduler f =
 handler {
 yield _ k ->
 perform enqueue k
 next <- perform dequeue ();
 next ()
 fork g k ->
 perform enqueue k
 schedule g
 return _ ->
 next <- perform dequeue ()
 next ()
 }
 f

scheduler (_.
 print “A”; perform fork (_. print “B”; perform yield (); print “E”);
 print “C”; perform fork (_. print “D”; perform yield (); print “G”); print “F”
) // A B C D E F G

25

Algebraic	effects	Summary
Composable	and	modular	computational	effects

25

Key	ideas:

Algebraic	effects	Summary
Composable	and	modular	computational	effects

25

1. algebraic	effects	define	a	family	of	operations	
2. effect	handlers	give	semantics	to	operations	
3. every	computation	either	calls	an	operation	or	returns	a	value	

Key	ideas:

Algebraic	effects	Summary
Composable	and	modular	computational	effects

25

1. algebraic	effects	define	a	family	of	operations	
2. effect	handlers	give	semantics	to	operations	
3. every	computation	either	calls	an	operation	or	returns	a	value	

Key	ideas:

Examples:

Algebraic	effects	Summary
Composable	and	modular	computational	effects

25

1. algebraic	effects	define	a	family	of	operations	
2. effect	handlers	give	semantics	to	operations	
3. every	computation	either	calls	an	operation	or	returns	a	value	

read, exn, state, choice, select, coop, …

Key	ideas:

Examples:

Algebraic	effects	Summary
Composable	and	modular	computational	effects

26

Challenges

26

Challenges

handle

perform	op	v

handle

handle

26

Challenges

handle

perform	op	v

handle

handlehandle

26

Challenges

handle

perform	op	v

handle

handlehandle

26

Challenges

handle

perform	op	v

handle

handlehandle

26

Challenges

handle

perform	op	v

handle

handlehandle

26

Challenges

handle

perform	op	v

handle

handle

op x k -> e2

handle

26

Challenges

handle

perform	op	v

handle

handle

op x k -> e2

handle

26

Challenges

e2	[x:=v,	k:=]

handle

handle

handle

handle

perform	op	v

handle

handle

op x k -> e2

handle

26

Challenges

e2	[x:=v,	k:=]

handle

handle

handle

1. Searching
a	linear	search	through	the	current	
evaluation	context

handle

perform	op	v

handle

handle

op x k -> e2

handle

26

Challenges

e2	[x:=v,	k:=]

handle

handle

handle

1. Searching
a	linear	search	through	the	current	
evaluation	context

2. Capturing
capture	the	evaluation	context	(i.e.,	
stacks	and	registers)	up	to	the	found	
handler,	and	create	a	resumption	
function

handle

perform	op	v

handle

handle

op x k -> e2

handle

26

Challenges

e2	[x:=v,	k:=]

handle

handle

handle

1. Searching
a	linear	search	through	the	current	
evaluation	context

2. Capturing
capture	the	evaluation	context	(i.e.,	
stacks	and	registers)	up	to	the	found	
handler,	and	create	a	resumption	
function

handle

perform	op	v

handle

handle

Can	we	implement	algebraic	effects	
efficiently?

op x k -> e2

handle

27

Segmented	Stacks

Capability-passing	style

Continuation-passing	style

Rewriting

Dolan	et	al	2014,	2015	
Sivaramakrishnan		et	al	2021	
……

Schuster	et	al	2020	
Brachthäuser	et	al	2020	
……	

Eff
Kiselyov	and	Sivaramakrishnan	2018	
Saleh	et	al.	2018	
Karachalias	et	al	2021	
……	

Links Hillerström	et	al	2017,	2020

Leijen	2017	
Schuster	et	al	2020	
……

27

Segmented	Stacks

Capability-passing	style

Continuation-passing	style

Rewriting

Dolan	et	al	2014,	2015	
Sivaramakrishnan		et	al	2021	
……

Schuster	et	al	2020	
Brachthäuser	et	al	2020	
……	

Eff
Kiselyov	and	Sivaramakrishnan	2018	
Saleh	et	al.	2018	
Karachalias	et	al	2021	
……	

Closure	allocation	cost

28

handle

handle

handle

perform	op	v

28

handle

handle

handle

perform	op	v

28

handle

handle

handle

perform	op	v
Fiber

28

handle

handle

handle

perform	op	v
Fiber

raise	Unhandled	()

28

handle

handle

handle

perform	op	v
Fiber

28

handle

handle

handle

perform	op	v
Fiber

28

handle

handle

handle

perform	op	v
Fiber

op x k -> e2

28

handle

handle

handle

perform	op	v
Fiber

28

handle

handle

handle

perform	op	v

	e2	[x:=v,	k:=]

28

handle

handle

handle

perform	op	v

k	0
1	+

28

handle

handle

handle

perform	op	v

1	+

28

handle

handle

handle

perform	op	v

1	+

0

29

Segmented	Stacks

Capability-passing	style

Continuation-passing	style

Dolan	et	al	2014,	2015	
Sivaramakrishnan		et	al	2021	
……

Schuster	et	al	2020	
Brachthäuser	et	al	2020	
……	

Closure	allocation	cost

Rewriting

Eff
Kiselyov	and	Sivaramakrishnan	2018	
Saleh	et	al.	2018	
Karachalias	et	al	2021	
……	

29

Segmented	Stacks

Capability-passing	style

Continuation-passing	style

Schuster	et	al	2020	
Brachthäuser	et	al	2020	
……	

Closure	allocation	cost Efficient	one-shot	resumption

Rewriting

Eff
Kiselyov	and	Sivaramakrishnan	2018	
Saleh	et	al.	2018	
Karachalias	et	al	2021	
……	

30

30

effect exn {
 throw : () -> a
}

div m n
 = if n == 0
 then perform throw ()
 else m / n

30

effect exn {
 throw : () -> a
}

div m n
 = if n == 0
 then perform throw ()
 else m / n

div m n throw
 = if n == 0
 then perform throw ()
 else m / n

30

effect exn {
 throw : () -> a
}

div m n
 = if n == 0
 then perform throw ()
 else m / n

div m n throw
 = if n == 0
 then perform throw ()
 else m / n

handler {
 throw x k -> Nothing
} (_.
 div 42 0
) // Nothing

30

effect exn {
 throw : () -> a
}

div m n
 = if n == 0
 then perform throw ()
 else m / n

div m n throw
 = if n == 0
 then perform throw ()
 else m / n

handler {
 throw x k -> Nothing
} (_.
 div 42 0
) // Nothing

handle {
 throw x k -> Nothing
}
(div 42 0 throw)

31

handle

handle

handle

_.	perform	op	v

31

handle

handle

handle

_.	perform	op	v

handle

31

handle

handle

handle

_.	perform	op	v

handle

handle

handle

_.	perform	op	v

handle

31

handle

handle

handle

_.	perform	op	v

handle

handle

_.	perform	op	v

handle

31

handle

handle

handle

_.	perform	op	v

handle

handle

_.	perform	op	v

handle

handle

_.	perform	op	v

handle

31

handle

handle

handle

_.	perform	op	v

handle

handle

_.	perform	op	v

handle

handle

handle

perform	op	v

handle

32

Segmented	Stacks

Capability-passing	style

Continuation-passing	style

Schuster	et	al	2020	
Brachthäuser	et	al	2020	
……	

Closure	allocation	cost Efficient	one-shot	resumption

Rewriting

Eff
Kiselyov	and	Sivaramakrishnan	2018	
Saleh	et	al.	2018	
Karachalias	et	al	2021	
……	

32

Segmented	Stacks

Capability-passing	style

Continuation-passing	style

Closure	allocation	cost Efficient	one-shot	resumption

Rewriting

Eff
Kiselyov	and	Sivaramakrishnan	2018	
Saleh	et	al.	2018	
Karachalias	et	al	2021	
……	

Efficient	lexically	scoped	handlers

32

Segmented	Stacks

Capability-passing	style

Continuation-passing	style

Closure	allocation	cost Efficient	one-shot	resumption

Rewriting

Efficient	lexically	scoped	handlers Source-to-source	transformations

Algebraic	effects	and	evidence-passing	semantics	in	Koka

33

https://koka-lang.github.io/

https://koka-lang.github.io/

Algebraic	effects	and	evidence-passing	semantics	in	Koka

Koka:	Programming	with	Row	Polymorphic	Effect	Types		
Leijen,	MSFP	2014

Type	Directed	Compilation	of	Row-Typed	Algebraic	Effects	
Leijen,	POPL	2017

Implementing	Algebraic	Effects	in	C	
Leijen,	APLAS	2017

33

https://koka-lang.github.io/

https://koka-lang.github.io/

Algebraic	effects	and	evidence-passing	semantics	in	Koka

Koka:	Programming	with	Row	Polymorphic	Effect	Types		
Leijen,	MSFP	2014

Type	Directed	Compilation	of	Row-Typed	Algebraic	Effects	
Leijen,	POPL	2017

Implementing	Algebraic	Effects	in	C	
Leijen,	APLAS	2017

33

https://koka-lang.github.io/

https://koka-lang.github.io/

Algebraic	effects	and	evidence-passing	semantics	in	Koka

Koka:	Programming	with	Row	Polymorphic	Effect	Types		
Leijen,	MSFP	2014

Type	Directed	Compilation	of	Row-Typed	Algebraic	Effects	
Leijen,	POPL	2017

Effect	Handlers,	Evidently	
Xie,	Brachthäuser,	Hillerström,	Schuster	and	Leijen,	ICFP	2020

Effect	Handlers	in	Haskell,	Evidently	
Xie	and	Leijen,	Haskell	2020

Implementing	Algebraic	Effects	in	C	
Leijen,	APLAS	2017

Generalized	Evidence	Passing	for	Effect	Handlers	(Efficient	Compilation	of	Effect	Handlers	to	C)	
Xie	and	Leijen,	ICFP	2021

33

https://koka-lang.github.io/

https://koka-lang.github.io/

Algebraic	effects	and	evidence-passing	semantics	in	Koka

Koka:	Programming	with	Row	Polymorphic	Effect	Types		
Leijen,	MSFP	2014

Type	Directed	Compilation	of	Row-Typed	Algebraic	Effects	
Leijen,	POPL	2017

Effect	Handlers,	Evidently	
Xie,	Brachthäuser,	Hillerström,	Schuster	and	Leijen,	ICFP	2020

Effect	Handlers	in	Haskell,	Evidently	
Xie	and	Leijen,	Haskell	2020

Implementing	Algebraic	Effects	in	C	
Leijen,	APLAS	2017

Generalized	Evidence	Passing	for	Effect	Handlers	(Efficient	Compilation	of	Effect	Handlers	to	C)	
Xie	and	Leijen,	ICFP	2021

Perceus:	Garbage	Free	Reference	Counting	with	Reuse		
Reinking*,	Xie*,	de	Moura	and	Leijen,	PLDI	2021

33

https://koka-lang.github.io/

https://koka-lang.github.io/

Algebraic	effects	and	evidence-passing	semantics	in	Koka

Koka:	Programming	with	Row	Polymorphic	Effect	Types		
Leijen,	MSFP	2014

Type	Directed	Compilation	of	Row-Typed	Algebraic	Effects	
Leijen,	POPL	2017

Effect	Handlers,	Evidently	
Xie,	Brachthäuser,	Hillerström,	Schuster	and	Leijen,	ICFP	2020

Effect	Handlers	in	Haskell,	Evidently	
Xie	and	Leijen,	Haskell	2020

Implementing	Algebraic	Effects	in	C	
Leijen,	APLAS	2017

Generalized	Evidence	Passing	for	Effect	Handlers	(Efficient	Compilation	of	Effect	Handlers	to	C)	
Xie	and	Leijen,	ICFP	2021

Perceus:	Garbage	Free	Reference	Counting	with	Reuse		
Reinking*,	Xie*,	de	Moura	and	Leijen,	PLDI	2021

First-class	Handler	Names		
Xie,	Cong	and	Leijen,	HOPE	2021 33

https://koka-lang.github.io/

https://koka-lang.github.io/

Evidence-passing	semantics

Evidence-passing	semantics

Algebraic	effects

Efficient	C	(with	no	special	runtime	support)

Evidence-passing	semantics

Algebraic	effects

Multi-prompt	delimited	control	[Forster	et	al.	2019;	Gunter	et	al.	1995]	
	

Efficient	C	(with	no	special	runtime	support)

Evidence-passing	semantics

Algebraic	effects

Multi-prompt	delimited	control	[Forster	et	al.	2019;	Gunter	et	al.	1995]	
	

Efficient	C	(with	no	special	runtime	support)

Evidence-passing	semantics

Evidence-passing	semantics

Algebraic	effects

Multi-prompt	delimited	control	[Forster	et	al.	2019;	Gunter	et	al.	1995]	
	

Efficient	C	(with	no	special	runtime	support)

Evidence-passing	semantics

Bubbling	Yields	[Pretnar	2015]

Evidence-passing	semantics

Algebraic	effects

Multi-prompt	delimited	control	[Forster	et	al.	2019;	Gunter	et	al.	1995]	
	

Efficient	C	(with	no	special	runtime	support)

Evidence-passing	semantics

Bubbling	Yields	[Pretnar	2015]

Monadic	translation

Evidence-passing	semantics

Algebraic	effects

Multi-prompt	delimited	control	[Forster	et	al.	2019;	Gunter	et	al.	1995]	
	

Efficient	C	(with	no	special	runtime	support)

Evidence-passing	semantics

Bubbling	Yields	[Pretnar	2015]

Monadic	translation

short-cut	resumption	[Kiselyov	and	Ishii	2015]

bind-inlining	and	join-point	sharing

optimization	of	tail-resumptive	operations	
insertion-	versus	canonical	ordered	evidence	vector

Evidence-passing	semantics

Algebraic	effects

Multi-prompt	delimited	control	[Forster	et	al.	2019;	Gunter	et	al.	1995]	
	

Efficient	C	(with	no	special	runtime	support)

Evidence-passing	semantics

Bubbling	Yields	[Pretnar	2015]

Monadic	translation

short-cut	resumption	[Kiselyov	and	Ishii	2015]

bind-inlining	and	join-point	sharing

optimization	of	tail-resumptive	operations	
insertion-	versus	canonical	ordered	evidence	vector

PLDI	2021

Evidence-passing	semantics

Algebraic	effects

Multi-prompt	delimited	control	[Forster	et	al.	2019;	Gunter	et	al.	1995]	
	

Efficient	C	(with	no	special	runtime	support)

Evidence-passing	semantics

Bubbling	Yields	[Pretnar	2015]

Monadic	translation

short-cut	resumption	[Kiselyov	and	Ishii	2015]

bind-inlining	and	join-point	sharing

optimization	of	tail-resumptive	operations	
insertion-	versus	canonical	ordered	evidence	vector

PLDI	2021

35

handle

perform	op	v

Challenge

handle

handle e2	[x:=v,	k:=]

handle

handle

handle

1. Searching	
a	linear	search	through	the	current	
evaluation	context	

2. Capturing	
capture	the	evaluation	context	(i.e.,	
stacks	and	registers)	up	to	the	found	
handler,	and	create	a	resumption	
function

op x k -> e2

36

Multi-prompt	semantics
separating	searching	from	capturing

36

Multi-prompt	semantics
separating	searching	from	capturing

handle

handle

perform	op	v

handle

36

Multi-prompt	semantics
separating	searching	from	capturing

handle

handle

perform	op	v

handle

handle

36

Multi-prompt	semantics
separating	searching	from	capturing

handle

handle

perform	op	v

handle

handle

handle

perform	op	v

handle

handle

36

Multi-prompt	semantics
separating	searching	from	capturing

handle

handle

perform	op	v

handle

handle

handle

perform	op	v

handle

handle

prompt	m1

36

Multi-prompt	semantics
separating	searching	from	capturing

handle

handle

perform	op	v

handle

handle

handle

perform	op	v

handle

handle

prompt	m1
m1:	a	unique	marker	
identifying	handlers

36

Multi-prompt	semantics
separating	searching	from	capturing

handle

handle

perform	op	v

handle

handle

handle

perform	op	v

handle

handle

prompt	m1

prompt	m2
m1:	a	unique	marker	
identifying	handlers

36

Multi-prompt	semantics
separating	searching	from	capturing

handle

handle

perform	op	v

handle

handle

handle

perform	op	v

handle

handle

prompt	m1

prompt	m2

prompt	m3

m1:	a	unique	marker	
identifying	handlers

36

Multi-prompt	semantics
separating	searching	from	capturing

handle

handle

perform	op	v

handle

handle

handle

perform	op	v

handle

handle

prompt	m1

prompt	m2

prompt	m3

m1:	a	unique	marker	
identifying	handlers

yield	m1	v

36

Multi-prompt	semantics
separating	searching	from	capturing

handle

handle

perform	op	v

handle

handle

handle

perform	op	v

handle

handle

prompt	m1

prompt	m2

prompt	m3

m1:	a	unique	marker	
identifying	handlers

yield	m1	v
yielding	to	a	handler	
identified	by	m1

36

Multi-prompt	semantics
separating	searching	from	capturing

handle

handle

perform	op	v

handle

handle

handle

perform	op	v

handle

handle

prompt	m1

prompt	m2

prompt	m3

m1:	a	unique	marker	
identifying	handlers

yield	m1	v

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

yielding	to	a	handler	
identified	by	m1

36

Multi-prompt	semantics
separating	searching	from	capturing

handle

handle

perform	op	v

handle

handle

handle

perform	op	v

handle

handle

prompt	m1

prompt	m2

prompt	m3

m1:	a	unique	marker	
identifying	handlers

yield	m1	v

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

Searching

yielding	to	a	handler	
identified	by	m1

36

Multi-prompt	semantics
separating	searching	from	capturing

handle

handle

perform	op	v

handle

handle

handle

perform	op	v

handle

handle

prompt	m1

prompt	m2

prompt	m3

m1:	a	unique	marker	
identifying	handlers

yield	m1	v

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

Searching capturing

yielding	to	a	handler	
identified	by	m1

37

Evidence-passing	semantics
make	performs	local:	push	down	the	current	handlers	as	an	evidence	vector

37

handle

handle

handle

prompt	m1

prompt	m2

prompt	m3

yield	m1	v

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

handle

handle

perform	op	v

handle

handle

37

Evidence-passing	semantics
make	performs	local:	push	down	the	current	handlers	as	an	evidence	vector

37

handle

handle

handle

prompt	m1

prompt	m2

prompt	m3

yield	m1	v

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫
handle

handle

perform	op	v

handle

handle

37

Evidence-passing	semantics
make	performs	local:	push	down	the	current	handlers	as	an	evidence	vector

37

handle

handle

handle

prompt	m1

prompt	m2

prompt	m3

yield	m1	v

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

handle

handle

perform	op	v

handle

handle

37

Evidence-passing	semantics
make	performs	local:	push	down	the	current	handlers	as	an	evidence	vector

37

handle

handle

handle

prompt	m1

prompt	m2

prompt	m3

yield	m1	v

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

handle

handle

perform	op	v

handle

handle

37

Evidence-passing	semantics
make	performs	local:	push	down	the	current	handlers	as	an	evidence	vector

37

handle

handle

handle

prompt	m1

prompt	m2

prompt	m3

yield	m1	v

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

,
				
					

≪ !1:("1, h1)
 !2:("2, h2),
!3:("3, h3) ≫

handle

handle

perform	op	v

handle

handle

37

Evidence-passing	semantics
make	performs	local:	push	down	the	current	handlers	as	an	evidence	vector

37

handle

handle

handle

prompt	m1

prompt	m2

prompt	m3

yield	m1	v

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

,
				
					

≪ !1:("1, h1)
 !2:("2, h2),
!3:("3, h3) ≫

handle

handle

perform	op	v

handle

handle

. $% = (&%, '%)

37

Evidence-passing	semantics
make	performs	local:	push	down	the	current	handlers	as	an	evidence	vector

37

handle

handle

handle

prompt	m1

prompt	m2

prompt	m3

yield	m1	v

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

,
				
					

≪ !1:("1, h1)
 !2:("2, h2),
!3:("3, h3) ≫

handle

handle

perform	op	v

handle

handle

. $% = (&%, '%)

Constant-time	Searching

3838

handle

handle

handle

prompt	m1

prompt	m2

prompt	m3

yield	m1	v

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

,
				
					

≪ !1:("1, h1)
 !2:("2, h2),
!3:("3, h3) ≫

handle

handle

perform	op	v

handle

handle

. $% = (&%, '%)

Optimization	of	tail-resumptive	operations
avoid	yields:	evaluate	tail-resumptive	operations	in-place

3838

handle

handle

handle

prompt	m1

prompt	m2

prompt	m3

yield	m1	v

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

,
				
					

≪ !1:("1, h1)
 !2:("2, h2),
!3:("3, h3) ≫

handle

handle

perform	op	v

handle

handle

. $% = (&%, '%)

Optimization	of	tail-resumptive	operations
avoid	yields:	evaluate	tail-resumptive	operations	in-place

3838

handle

handle

handle

prompt	m1

prompt	m2

prompt	m3

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

,
				
					

≪ !1:("1, h1)
 !2:("2, h2),
!3:("3, h3) ≫

handle

handle

perform	op	v

handle

handle

. $% = (&%, '%)

Optimization	of	tail-resumptive	operations
avoid	yields:	evaluate	tail-resumptive	operations	in-place

3838

handle

handle

handle

prompt	m1

prompt	m2

prompt	m3

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

,
				
					

≪ !1:("1, h1)
 !2:("2, h2),
!3:("3, h3) ≫

handle

handle

perform	op	v

handle

handle

. $% = (&%, '%)

Optimization	of	tail-resumptive	operations
avoid	yields:	evaluate	tail-resumptive	operations	in-place

under	 	!1

3838

handle

handle

handle

prompt	m1

prompt	m2

prompt	m3

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

,
				
					

≪ !1:("1, h1)
 !2:("2, h2),
!3:("3, h3) ≫

handle

handle

perform	op	v

handle

handle

. $% = (&%, '%)

Optimization	of	tail-resumptive	operations
avoid	yields:	evaluate	tail-resumptive	operations	in-place

under	 	!1
≪ ≫

3838

handle

handle

handle

prompt	m1

prompt	m2

prompt	m3

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

,
				
					

≪ !1:("1, h1)
 !2:("2, h2),
!3:("3, h3) ≫

handle

handle

perform	op	v

handle

handle

. $% = (&%, '%)

Optimization	of	tail-resumptive	operations
avoid	yields:	evaluate	tail-resumptive	operations	in-place

under	 	!1
≪ ≫

39

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

,
				
					

≪ !1:("1, h1)
 !2:("2, h2),
!3:("3, h3) ≫

handle

handle

perform	op	v

handle

handle

. $% = (&%, '%)

handleprompt	m1

prompt	m2

prompt	m3

yield	m1	v

39

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

,
				
					

≪ !1:("1, h1)
 !2:("2, h2),
!3:("3, h3) ≫

handle

handle

perform	op	v

handle

handle

. $% = (&%, '%)

handleprompt	m1

prompt	m2

prompt	m3

yield	m1	v

39

Bubbling	yields
make	yields	local:	bubbling	it	up	until	it	meets	its	corresponding	prompt	frame

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

,
				
					

≪ !1:("1, h1)
 !2:("2, h2),
!3:("3, h3) ≫

handle

handle

perform	op	v

handle

handle

. $% = (&%, '%)

handleprompt	m1

prompt	m2

prompt	m3

yield	m1	v

39

Bubbling	yields
make	yields	local:	bubbling	it	up	until	it	meets	its	corresponding	prompt	frame

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

,
				
					

≪ !1:("1, h1)
 !2:("2, h2),
!3:("3, h3) ≫

handle

handle

perform	op	v

handle

handle

. $% = (&%, '%)

handleprompt	m1

prompt	m2

prompt	m3

yield	m1	v

39

Bubbling	yields
make	yields	local:	bubbling	it	up	until	it	meets	its	corresponding	prompt	frame

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

,
				
					

≪ !1:("1, h1)
 !2:("2, h2),
!3:("3, h3) ≫

handle

handle

perform	op	v

handle

handle

. $% = (&%, '%)

handleprompt	m1

prompt	m2

prompt	m3

yield	m1	v

39

Bubbling	yields
make	yields	local:	bubbling	it	up	until	it	meets	its	corresponding	prompt	frame

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

,
				
					

≪ !1:("1, h1)
 !2:("2, h2),
!3:("3, h3) ≫

handle

handle

perform	op	v

handle

handle

. $% = (&%, '%)

handleprompt	m1

prompt	m2

prompt	m3

yield	m1	v

39

Bubbling	yields
make	yields	local:	bubbling	it	up	until	it	meets	its	corresponding	prompt	frame

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

,
				
					

≪ !1:("1, h1)
 !2:("2, h2),
!3:("3, h3) ≫

handle

handle

perform	op	v

handle

handle

. $% = (&%, '%)

handleprompt	m1

prompt	m2

yield	m1	v

prompt	m3

39

Bubbling	yields
make	yields	local:	bubbling	it	up	until	it	meets	its	corresponding	prompt	frame

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

,
				
					

≪ !1:("1, h1)
 !2:("2, h2),
!3:("3, h3) ≫

handle

handle

perform	op	v

handle

handle

. $% = (&%, '%)

handleprompt	m1

prompt	m2

prompt	m3

yield	m1	v

39

Bubbling	yields
make	yields	local:	bubbling	it	up	until	it	meets	its	corresponding	prompt	frame

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

,
				
					

≪ !1:("1, h1)
 !2:("2, h2),
!3:("3, h3) ≫

handle

handle

perform	op	v

handle

handle

. $% = (&%, '%)

handleprompt	m1

prompt	m2

prompt	m3

yield	m1	v

39

Bubbling	yields
make	yields	local:	bubbling	it	up	until	it	meets	its	corresponding	prompt	frame

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

,
				
					

≪ !1:("1, h1)
 !2:("2, h2),
!3:("3, h3) ≫

handle

handle

perform	op	v

handle

handle

. $% = (&%, '%)

handleprompt	m1

prompt	m3

prompt	m2

yield	m1	v

39

Bubbling	yields
make	yields	local:	bubbling	it	up	until	it	meets	its	corresponding	prompt	frame

e2	[x:=v,	k:=]

prompt	m3

prompt	m2

prompt	m1

≪ ≫

≪ !1: ("1, h1) ≫

,
					
≪ !1:("1, h1)

!2:("2, h2) ≫

,
				
					

≪ !1:("1, h1)
 !2:("2, h2),
!3:("3, h3) ≫

handle

handle

perform	op	v

handle

handle

. $% = (&%, '%)

handleprompt	m1

prompt	m3

prompt	m2

yield	m1	v

40

Monadic	translation
all	transitions	are	local:	translate	algebraic	effects	into	a	pure	lambda	calculus	with	a	multi-prompt	delimited	control	monad	

A	evidence-passing	multi-prompt	delimited	control	monad

handler h1
(_.
 perform ask () + perform ask ())

handler h1
(_.
 perform ask () (\x.
 perform ask () (\y.
 Pure (x + y))))

⇝

40

Monadic	translation
all	transitions	are	local:	translate	algebraic	effects	into	a	pure	lambda	calculus	with	a	multi-prompt	delimited	control	monad	

A	evidence-passing	multi-prompt	delimited	control	monad
evidence	passing

handler h1
(_.
 perform ask () + perform ask ())

handler h1
(_.
 perform ask () (\x.
 perform ask () (\y.
 Pure (x + y))))

⇝

40

Monadic	translation
all	transitions	are	local:	translate	algebraic	effects	into	a	pure	lambda	calculus	with	a	multi-prompt	delimited	control	monad	

A	evidence-passing	multi-prompt	delimited	control	monad
evidence	passing

handler h1
(_.
 perform ask () + perform ask ())

control	monad

handler h1
(_.
 perform ask () (\x.
 perform ask () (\y.
 Pure (x + y))))

⇝

40

Monadic	translation
all	transitions	are	local:	translate	algebraic	effects	into	a	pure	lambda	calculus	with	a	multi-prompt	delimited	control	monad	

A	evidence-passing	multi-prompt	delimited	control	monad
evidence	passing

handler h1
(_.
 perform ask () + perform ask ())

control	monad

handler h1
(_.
 perform ask () (\x.
 perform ask () (\y.
 Pure (x + y))))

pass	the	result	and	the	current	evidence

⇝

40

Monadic	translation
all	transitions	are	local:	translate	algebraic	effects	into	a	pure	lambda	calculus	with	a	multi-prompt	delimited	control	monad	

bubbling

A	evidence-passing	multi-prompt	delimited	control	monad
evidence	passing

handler h1
(_.
 perform ask () + perform ask ())

control	monad

handler h1
(_.
 perform ask () (\x.
 perform ask () (\y.
 Pure (x + y))))

pass	the	result	and	the	current	evidence

⇝

Compiling	to	C

41

handler h1
(_.
 perform ask () + perform ask ())

handler h1
(_.
 perform ask () (\x.
 perform ask () (\y.
 Pure (x + y))))

⇝

71:12 Ninging Xie and Daan Leijen

such, this optimization works best when used together with tail-resumptive optimization). Only in
the (hopefully rare) case that full yield is needed, the slow path along the Yield case is taken and a
resumption is constructed on demand. When such a resumption is resumed, the execution is a bit
slower as well as it takes the code path along the joinn de�nitions where the binds are not inlined –
this is the price we pay for limiting the expansion. Note though that if the function is recursive,
any further recursive calls will again start at the fast path.

2.11 Compiling to C
At this point we can use regular compilation techniques to compile the plain lambda calculus to a
target platform. As an example, we show here how Koka compiles to standard C. In our �nal calculus
all e�ectful functions return a monadic result, either Pure or Yield. Since this monad is internal to
the compiler we can optimize its representation: we always return results normally assuming Pure,
and set a (thread-local) �ag to indicate yielding (in which case the actual returned value is ignored).
Moreover, every function has one extra parameter that holds the (thread-local) context ctx which
contains the current evidence vector (ctx!w), and the yielding �ag (ctx!is_yielding). For
example, the expression __. perform ask () + perform ask () translates essentially as:
int expr(unit_t u, context_t* ctx) {

int x = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(&join2,ctx); return 0; }

int y = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(alloc_closure_join1(x,ctx),ctx); return 0; }

return (x+y); }

Here we see how the evidence for the read handler is selected from the current evidence vector as
ctx!w[0]. Here the o�set 0 is known as the e�ect type is hreadi and Koka uses canonical evidence
vectors. If the e�ect row type was not fully known, e.g., a polymorphic row type hread | `i, the code
would instead be find_ev(ctx!w,tag_read) to �nd the evidence dynamically. When yielding,
the yield_extend calls are used to extend the currently build up resumption (as part of the ctx)
with the current continuation (which is usually a join point).

There is still an overhead in always needing to check after every e�ectful call if we are yielding or
not. Fortunately, this seems quite cheap on modern processors and the condition can be predicted
well. In the future we would like to leverage C compiler primitives to implement the is_yielding
�ag in the processor carry �ag as suggested by recent C++ proposals for error handling [Sutter 2019].

2.12 Generalized Evidence Passing
The closest related work to our approach is [Xie et al. 2020], which uses evidence-passing translation
(EPT). Even though similar in its purpose, EPT di�ers fundamentally from our approach. First, while
our evidence-passing semantics provides a set of direct evaluation rules for the algebraic e�ect
calculus, EPT is de�ned via elaboration from the algebraic e�ect calculus into an evidence calculus.
Second, our generalized evidence-passing semantics works for all algebraic e�ect handler programs,
whereas in EPT resumptions are limited to scoped resumptions only – that is, resumptions can only
be used under the same handler context as captured by the handler.

Speci�cally, in EPT, as the evidence vector is passed statically during elaboration, it is determined
before running the program. However, the statically passed-in evidence vector may, as the program
evaluates, no longer match the handlers in the current dynamic evaluation context (and in such
case, EPT raises a runtime error). Scoped resumptions restrict the expressiveness of algebraic
e�ects, including the use of shallow handlers [Hillerström and Lindley 2018] and code migration
that resumes continuations on a di�erent host [Kiselyov et al. 2006].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Compiling	to	C

41

evidence	passing

handler h1
(_.
 perform ask () + perform ask ())

handler h1
(_.
 perform ask () (\x.
 perform ask () (\y.
 Pure (x + y))))

⇝

71:12 Ninging Xie and Daan Leijen

such, this optimization works best when used together with tail-resumptive optimization). Only in
the (hopefully rare) case that full yield is needed, the slow path along the Yield case is taken and a
resumption is constructed on demand. When such a resumption is resumed, the execution is a bit
slower as well as it takes the code path along the joinn de�nitions where the binds are not inlined –
this is the price we pay for limiting the expansion. Note though that if the function is recursive,
any further recursive calls will again start at the fast path.

2.11 Compiling to C
At this point we can use regular compilation techniques to compile the plain lambda calculus to a
target platform. As an example, we show here how Koka compiles to standard C. In our �nal calculus
all e�ectful functions return a monadic result, either Pure or Yield. Since this monad is internal to
the compiler we can optimize its representation: we always return results normally assuming Pure,
and set a (thread-local) �ag to indicate yielding (in which case the actual returned value is ignored).
Moreover, every function has one extra parameter that holds the (thread-local) context ctx which
contains the current evidence vector (ctx!w), and the yielding �ag (ctx!is_yielding). For
example, the expression __. perform ask () + perform ask () translates essentially as:
int expr(unit_t u, context_t* ctx) {

int x = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(&join2,ctx); return 0; }

int y = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(alloc_closure_join1(x,ctx),ctx); return 0; }

return (x+y); }

Here we see how the evidence for the read handler is selected from the current evidence vector as
ctx!w[0]. Here the o�set 0 is known as the e�ect type is hreadi and Koka uses canonical evidence
vectors. If the e�ect row type was not fully known, e.g., a polymorphic row type hread | `i, the code
would instead be find_ev(ctx!w,tag_read) to �nd the evidence dynamically. When yielding,
the yield_extend calls are used to extend the currently build up resumption (as part of the ctx)
with the current continuation (which is usually a join point).

There is still an overhead in always needing to check after every e�ectful call if we are yielding or
not. Fortunately, this seems quite cheap on modern processors and the condition can be predicted
well. In the future we would like to leverage C compiler primitives to implement the is_yielding
�ag in the processor carry �ag as suggested by recent C++ proposals for error handling [Sutter 2019].

2.12 Generalized Evidence Passing
The closest related work to our approach is [Xie et al. 2020], which uses evidence-passing translation
(EPT). Even though similar in its purpose, EPT di�ers fundamentally from our approach. First, while
our evidence-passing semantics provides a set of direct evaluation rules for the algebraic e�ect
calculus, EPT is de�ned via elaboration from the algebraic e�ect calculus into an evidence calculus.
Second, our generalized evidence-passing semantics works for all algebraic e�ect handler programs,
whereas in EPT resumptions are limited to scoped resumptions only – that is, resumptions can only
be used under the same handler context as captured by the handler.

Speci�cally, in EPT, as the evidence vector is passed statically during elaboration, it is determined
before running the program. However, the statically passed-in evidence vector may, as the program
evaluates, no longer match the handlers in the current dynamic evaluation context (and in such
case, EPT raises a runtime error). Scoped resumptions restrict the expressiveness of algebraic
e�ects, including the use of shallow handlers [Hillerström and Lindley 2018] and code migration
that resumes continuations on a di�erent host [Kiselyov et al. 2006].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Compiling	to	C

41

evidence	passing

constant-time	look-up

handler h1
(_.
 perform ask () + perform ask ())

handler h1
(_.
 perform ask () (\x.
 perform ask () (\y.
 Pure (x + y))))

⇝

71:12 Ninging Xie and Daan Leijen

such, this optimization works best when used together with tail-resumptive optimization). Only in
the (hopefully rare) case that full yield is needed, the slow path along the Yield case is taken and a
resumption is constructed on demand. When such a resumption is resumed, the execution is a bit
slower as well as it takes the code path along the joinn de�nitions where the binds are not inlined –
this is the price we pay for limiting the expansion. Note though that if the function is recursive,
any further recursive calls will again start at the fast path.

2.11 Compiling to C
At this point we can use regular compilation techniques to compile the plain lambda calculus to a
target platform. As an example, we show here how Koka compiles to standard C. In our �nal calculus
all e�ectful functions return a monadic result, either Pure or Yield. Since this monad is internal to
the compiler we can optimize its representation: we always return results normally assuming Pure,
and set a (thread-local) �ag to indicate yielding (in which case the actual returned value is ignored).
Moreover, every function has one extra parameter that holds the (thread-local) context ctx which
contains the current evidence vector (ctx!w), and the yielding �ag (ctx!is_yielding). For
example, the expression __. perform ask () + perform ask () translates essentially as:
int expr(unit_t u, context_t* ctx) {

int x = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(&join2,ctx); return 0; }

int y = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(alloc_closure_join1(x,ctx),ctx); return 0; }

return (x+y); }

Here we see how the evidence for the read handler is selected from the current evidence vector as
ctx!w[0]. Here the o�set 0 is known as the e�ect type is hreadi and Koka uses canonical evidence
vectors. If the e�ect row type was not fully known, e.g., a polymorphic row type hread | `i, the code
would instead be find_ev(ctx!w,tag_read) to �nd the evidence dynamically. When yielding,
the yield_extend calls are used to extend the currently build up resumption (as part of the ctx)
with the current continuation (which is usually a join point).

There is still an overhead in always needing to check after every e�ectful call if we are yielding or
not. Fortunately, this seems quite cheap on modern processors and the condition can be predicted
well. In the future we would like to leverage C compiler primitives to implement the is_yielding
�ag in the processor carry �ag as suggested by recent C++ proposals for error handling [Sutter 2019].

2.12 Generalized Evidence Passing
The closest related work to our approach is [Xie et al. 2020], which uses evidence-passing translation
(EPT). Even though similar in its purpose, EPT di�ers fundamentally from our approach. First, while
our evidence-passing semantics provides a set of direct evaluation rules for the algebraic e�ect
calculus, EPT is de�ned via elaboration from the algebraic e�ect calculus into an evidence calculus.
Second, our generalized evidence-passing semantics works for all algebraic e�ect handler programs,
whereas in EPT resumptions are limited to scoped resumptions only – that is, resumptions can only
be used under the same handler context as captured by the handler.

Speci�cally, in EPT, as the evidence vector is passed statically during elaboration, it is determined
before running the program. However, the statically passed-in evidence vector may, as the program
evaluates, no longer match the handlers in the current dynamic evaluation context (and in such
case, EPT raises a runtime error). Scoped resumptions restrict the expressiveness of algebraic
e�ects, including the use of shallow handlers [Hillerström and Lindley 2018] and code migration
that resumes continuations on a di�erent host [Kiselyov et al. 2006].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Compiling	to	C

41

evidence	passing

control	
monad

constant-time	look-up

handler h1
(_.
 perform ask () + perform ask ())

handler h1
(_.
 perform ask () (\x.
 perform ask () (\y.
 Pure (x + y))))

⇝

71:12 Ninging Xie and Daan Leijen

such, this optimization works best when used together with tail-resumptive optimization). Only in
the (hopefully rare) case that full yield is needed, the slow path along the Yield case is taken and a
resumption is constructed on demand. When such a resumption is resumed, the execution is a bit
slower as well as it takes the code path along the joinn de�nitions where the binds are not inlined –
this is the price we pay for limiting the expansion. Note though that if the function is recursive,
any further recursive calls will again start at the fast path.

2.11 Compiling to C
At this point we can use regular compilation techniques to compile the plain lambda calculus to a
target platform. As an example, we show here how Koka compiles to standard C. In our �nal calculus
all e�ectful functions return a monadic result, either Pure or Yield. Since this monad is internal to
the compiler we can optimize its representation: we always return results normally assuming Pure,
and set a (thread-local) �ag to indicate yielding (in which case the actual returned value is ignored).
Moreover, every function has one extra parameter that holds the (thread-local) context ctx which
contains the current evidence vector (ctx!w), and the yielding �ag (ctx!is_yielding). For
example, the expression __. perform ask () + perform ask () translates essentially as:
int expr(unit_t u, context_t* ctx) {

int x = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(&join2,ctx); return 0; }

int y = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(alloc_closure_join1(x,ctx),ctx); return 0; }

return (x+y); }

Here we see how the evidence for the read handler is selected from the current evidence vector as
ctx!w[0]. Here the o�set 0 is known as the e�ect type is hreadi and Koka uses canonical evidence
vectors. If the e�ect row type was not fully known, e.g., a polymorphic row type hread | `i, the code
would instead be find_ev(ctx!w,tag_read) to �nd the evidence dynamically. When yielding,
the yield_extend calls are used to extend the currently build up resumption (as part of the ctx)
with the current continuation (which is usually a join point).

There is still an overhead in always needing to check after every e�ectful call if we are yielding or
not. Fortunately, this seems quite cheap on modern processors and the condition can be predicted
well. In the future we would like to leverage C compiler primitives to implement the is_yielding
�ag in the processor carry �ag as suggested by recent C++ proposals for error handling [Sutter 2019].

2.12 Generalized Evidence Passing
The closest related work to our approach is [Xie et al. 2020], which uses evidence-passing translation
(EPT). Even though similar in its purpose, EPT di�ers fundamentally from our approach. First, while
our evidence-passing semantics provides a set of direct evaluation rules for the algebraic e�ect
calculus, EPT is de�ned via elaboration from the algebraic e�ect calculus into an evidence calculus.
Second, our generalized evidence-passing semantics works for all algebraic e�ect handler programs,
whereas in EPT resumptions are limited to scoped resumptions only – that is, resumptions can only
be used under the same handler context as captured by the handler.

Speci�cally, in EPT, as the evidence vector is passed statically during elaboration, it is determined
before running the program. However, the statically passed-in evidence vector may, as the program
evaluates, no longer match the handlers in the current dynamic evaluation context (and in such
case, EPT raises a runtime error). Scoped resumptions restrict the expressiveness of algebraic
e�ects, including the use of shallow handlers [Hillerström and Lindley 2018] and code migration
that resumes continuations on a di�erent host [Kiselyov et al. 2006].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

bubbling

Compiling	to	C

41

evidence	passing

control	
monad

constant-time	look-up

handler h1
(_.
 perform ask () + perform ask ())

handler h1
(_.
 perform ask () (\x.
 perform ask () (\y.
 Pure (x + y))))

⇝

71:12 Ninging Xie and Daan Leijen

such, this optimization works best when used together with tail-resumptive optimization). Only in
the (hopefully rare) case that full yield is needed, the slow path along the Yield case is taken and a
resumption is constructed on demand. When such a resumption is resumed, the execution is a bit
slower as well as it takes the code path along the joinn de�nitions where the binds are not inlined –
this is the price we pay for limiting the expansion. Note though that if the function is recursive,
any further recursive calls will again start at the fast path.

2.11 Compiling to C
At this point we can use regular compilation techniques to compile the plain lambda calculus to a
target platform. As an example, we show here how Koka compiles to standard C. In our �nal calculus
all e�ectful functions return a monadic result, either Pure or Yield. Since this monad is internal to
the compiler we can optimize its representation: we always return results normally assuming Pure,
and set a (thread-local) �ag to indicate yielding (in which case the actual returned value is ignored).
Moreover, every function has one extra parameter that holds the (thread-local) context ctx which
contains the current evidence vector (ctx!w), and the yielding �ag (ctx!is_yielding). For
example, the expression __. perform ask () + perform ask () translates essentially as:
int expr(unit_t u, context_t* ctx) {

int x = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(&join2,ctx); return 0; }

int y = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(alloc_closure_join1(x,ctx),ctx); return 0; }

return (x+y); }

Here we see how the evidence for the read handler is selected from the current evidence vector as
ctx!w[0]. Here the o�set 0 is known as the e�ect type is hreadi and Koka uses canonical evidence
vectors. If the e�ect row type was not fully known, e.g., a polymorphic row type hread | `i, the code
would instead be find_ev(ctx!w,tag_read) to �nd the evidence dynamically. When yielding,
the yield_extend calls are used to extend the currently build up resumption (as part of the ctx)
with the current continuation (which is usually a join point).

There is still an overhead in always needing to check after every e�ectful call if we are yielding or
not. Fortunately, this seems quite cheap on modern processors and the condition can be predicted
well. In the future we would like to leverage C compiler primitives to implement the is_yielding
�ag in the processor carry �ag as suggested by recent C++ proposals for error handling [Sutter 2019].

2.12 Generalized Evidence Passing
The closest related work to our approach is [Xie et al. 2020], which uses evidence-passing translation
(EPT). Even though similar in its purpose, EPT di�ers fundamentally from our approach. First, while
our evidence-passing semantics provides a set of direct evaluation rules for the algebraic e�ect
calculus, EPT is de�ned via elaboration from the algebraic e�ect calculus into an evidence calculus.
Second, our generalized evidence-passing semantics works for all algebraic e�ect handler programs,
whereas in EPT resumptions are limited to scoped resumptions only – that is, resumptions can only
be used under the same handler context as captured by the handler.

Speci�cally, in EPT, as the evidence vector is passed statically during elaboration, it is determined
before running the program. However, the statically passed-in evidence vector may, as the program
evaluates, no longer match the handlers in the current dynamic evaluation context (and in such
case, EPT raises a runtime error). Scoped resumptions restrict the expressiveness of algebraic
e�ects, including the use of shallow handlers [Hillerström and Lindley 2018] and code migration
that resumes continuations on a di�erent host [Kiselyov et al. 2006].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

bubbling

Compiling	to	C

41

evidence	passing

control	
monad

constant-time	look-up

handler h1
(_.
 perform ask () + perform ask ())

handler h1
(_.
 perform ask () (\x.
 perform ask () (\y.
 Pure (x + y))))

⇝

71:12 Ninging Xie and Daan Leijen

such, this optimization works best when used together with tail-resumptive optimization). Only in
the (hopefully rare) case that full yield is needed, the slow path along the Yield case is taken and a
resumption is constructed on demand. When such a resumption is resumed, the execution is a bit
slower as well as it takes the code path along the joinn de�nitions where the binds are not inlined –
this is the price we pay for limiting the expansion. Note though that if the function is recursive,
any further recursive calls will again start at the fast path.

2.11 Compiling to C
At this point we can use regular compilation techniques to compile the plain lambda calculus to a
target platform. As an example, we show here how Koka compiles to standard C. In our �nal calculus
all e�ectful functions return a monadic result, either Pure or Yield. Since this monad is internal to
the compiler we can optimize its representation: we always return results normally assuming Pure,
and set a (thread-local) �ag to indicate yielding (in which case the actual returned value is ignored).
Moreover, every function has one extra parameter that holds the (thread-local) context ctx which
contains the current evidence vector (ctx!w), and the yielding �ag (ctx!is_yielding). For
example, the expression __. perform ask () + perform ask () translates essentially as:
int expr(unit_t u, context_t* ctx) {

int x = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(&join2,ctx); return 0; }

int y = perform_ask(ctx!w[0], unit, ctx);

if (ctx!is_yielding) { yield_extend(alloc_closure_join1(x,ctx),ctx); return 0; }

return (x+y); }

Here we see how the evidence for the read handler is selected from the current evidence vector as
ctx!w[0]. Here the o�set 0 is known as the e�ect type is hreadi and Koka uses canonical evidence
vectors. If the e�ect row type was not fully known, e.g., a polymorphic row type hread | `i, the code
would instead be find_ev(ctx!w,tag_read) to �nd the evidence dynamically. When yielding,
the yield_extend calls are used to extend the currently build up resumption (as part of the ctx)
with the current continuation (which is usually a join point).

There is still an overhead in always needing to check after every e�ectful call if we are yielding or
not. Fortunately, this seems quite cheap on modern processors and the condition can be predicted
well. In the future we would like to leverage C compiler primitives to implement the is_yielding
�ag in the processor carry �ag as suggested by recent C++ proposals for error handling [Sutter 2019].

2.12 Generalized Evidence Passing
The closest related work to our approach is [Xie et al. 2020], which uses evidence-passing translation
(EPT). Even though similar in its purpose, EPT di�ers fundamentally from our approach. First, while
our evidence-passing semantics provides a set of direct evaluation rules for the algebraic e�ect
calculus, EPT is de�ned via elaboration from the algebraic e�ect calculus into an evidence calculus.
Second, our generalized evidence-passing semantics works for all algebraic e�ect handler programs,
whereas in EPT resumptions are limited to scoped resumptions only – that is, resumptions can only
be used under the same handler context as captured by the handler.

Speci�cally, in EPT, as the evidence vector is passed statically during elaboration, it is determined
before running the program. However, the statically passed-in evidence vector may, as the program
evaluates, no longer match the handlers in the current dynamic evaluation context (and in such
case, EPT raises a runtime error). Scoped resumptions restrict the expressiveness of algebraic
e�ects, including the use of shallow handlers [Hillerström and Lindley 2018] and code migration
that resumes continuations on a di�erent host [Kiselyov et al. 2006].

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

Metatheory

efficient	C

42

Algebraic	effects

Multi-prompt	
delimited	control

Evidence-passing	
semantics Bubbling

Monadic	translation

ICFP	2021

Metatheory

efficient	C

42

Algebraic	effects

Multi-prompt	
delimited	control

Evidence-passing	
semantics Bubbling

Monadic	translation

ICFP	2021

Metatheory

efficient	C

42

Algebraic	effects

Multi-prompt	
delimited	control

Evidence-passing	
semantics Bubbling

Monadic	translation

ICFP	2021

Metatheory

efficient	C

42

Algebraic	effects

Multi-prompt	
delimited	control

Evidence-passing	
semantics Bubbling

Monadic	translation

ICFP	2021

71:26 Ninging Xie and Daan Leijen

counter counter1 counter10 mstate nqueens triple
0s

1s

2s

3s

4s

5s

1.
14
s

1.
15
s

1.
15
s

1.
83
s

0.
75
s 1.
06
s

1.
04
s

1.
75
s

··
·7
.6
4s

0.
37
s

3.
96
s

2.
88
s

3.
97
s

4.
06
s

··
·4
.7
9s

1.
46
s

1.
21
s

1.
42
s

0.
25
s

2.
46
s

3.
09
s

0.
56
s

0.
61
s

0.
68
s

0.
72
s

0.
81
s

1.
93
s 2.

45
s

1.
42
s

2.
50
s

1.
14
s

2.
72
s

··
·1
0.
09
s

1.
80
s

0.
74
s 1.
10
s

1.
13
s

1.
15
s

1.
14
s

2.
00
s

0.
84
s

1.
06
s1.
43
s

1.
44
s

1.
43
s 1.
85
s

0.
76
s 1.
09
s

··
·1
1.
68
s

··
·1
6.
43
s

··
·4
4.
08
s

1.
81
s

0.
74
s 1.
06
s

el
ap

se
d
tim

e
(lo

w
er

is
be
�e

r)

Koka multi-core OCaml Mp.E� (Haskell) Ev.E� (Haskell) libhandler (C)

Koka, Insertion-ordered Koka, No short-cut resumption Koka, No bind-inlining Koka, No tail-resumptive opt.

Fig. 6. Execution time averaged over 10 runs

such, the results are meant to establish if the e�ect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe speci�c
aspects of e�ect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
This time Koka is 1.5⇥ faster than OCaml: due to evidence passing, the execution times of

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

ICFP	2021
Benchmarks

43

https://koka-lang.github.io/

https://koka-lang.github.io/

71:26 Ninging Xie and Daan Leijen

counter counter1 counter10 mstate nqueens triple
0s

1s

2s

3s

4s

5s

1.
14
s

1.
15
s

1.
15
s

1.
83
s

0.
75
s 1.
06
s

1.
04
s

1.
75
s

··
·7
.6
4s

0.
37
s

3.
96
s

2.
88
s

3.
97
s

4.
06
s

··
·4
.7
9s

1.
46
s

1.
21
s

1.
42
s

0.
25
s

2.
46
s

3.
09
s

0.
56
s

0.
61
s

0.
68
s

0.
72
s

0.
81
s

1.
93
s 2.

45
s

1.
42
s

2.
50
s

1.
14
s

2.
72
s

··
·1
0.
09
s

1.
80
s

0.
74
s 1.
10
s

1.
13
s

1.
15
s

1.
14
s

2.
00
s

0.
84
s

1.
06
s1.
43
s

1.
44
s

1.
43
s 1.
85
s

0.
76
s 1.
09
s

··
·1
1.
68
s

··
·1
6.
43
s

··
·4
4.
08
s

1.
81
s

0.
74
s 1.
06
s

el
ap

se
d
tim

e
(lo

w
er

is
be
�e

r)

Koka multi-core OCaml Mp.E� (Haskell) Ev.E� (Haskell) libhandler (C)

Koka, Insertion-ordered Koka, No short-cut resumption Koka, No bind-inlining Koka, No tail-resumptive opt.

Fig. 6. Execution time averaged over 10 runs

such, the results are meant to establish if the e�ect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe speci�c
aspects of e�ect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
This time Koka is 1.5⇥ faster than OCaml: due to evidence passing, the execution times of

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

ICFP	2021
Benchmarks

43

71:26 Ninging Xie and Daan Leijen

counter counter1 counter10 mstate nqueens triple
0s

1s

2s

3s

4s

5s

1.
14
s

1.
15
s

1.
15
s

1.
83
s

0.
75
s 1.
06
s

1.
04
s

1.
75
s

··
·7
.6
4s

0.
37
s

3.
96
s

2.
88
s

3.
97
s

4.
06
s

··
·4
.7
9s

1.
46
s

1.
21
s

1.
42
s

0.
25
s

2.
46
s

3.
09
s

0.
56
s

0.
61
s

0.
68
s

0.
72
s

0.
81
s

1.
93
s 2.

45
s

1.
42
s

2.
50
s

1.
14
s

2.
72
s

··
·1
0.
09
s

1.
80
s

0.
74
s 1.
10
s

1.
13
s

1.
15
s

1.
14
s

2.
00
s

0.
84
s

1.
06
s1.
43
s

1.
44
s

1.
43
s 1.
85
s

0.
76
s 1.
09
s

··
·1
1.
68
s

··
·1
6.
43
s

··
·4
4.
08
s

1.
81
s

0.
74
s 1.
06
s

el
ap

se
d
tim

e
(lo

w
er

is
be
�e

r)

Koka multi-core OCaml Mp.E� (Haskell) Ev.E� (Haskell) libhandler (C)

Koka, Insertion-ordered Koka, No short-cut resumption Koka, No bind-inlining Koka, No tail-resumptive opt.

Fig. 6. Execution time averaged over 10 runs

such, the results are meant to establish if the e�ect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe speci�c
aspects of e�ect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
This time Koka is 1.5⇥ faster than OCaml: due to evidence passing, the execution times of

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

ICFP	2021
Benchmarks

43

71:26 Ninging Xie and Daan Leijen

counter counter1 counter10 mstate nqueens triple
0s

1s

2s

3s

4s

5s

1.
14
s

1.
15
s

1.
15
s

1.
83
s

0.
75
s 1.
06
s

1.
04
s

1.
75
s

··
·7
.6
4s

0.
37
s

3.
96
s

2.
88
s

3.
97
s

4.
06
s

··
·4
.7
9s

1.
46
s

1.
21
s

1.
42
s

0.
25
s

2.
46
s

3.
09
s

0.
56
s

0.
61
s

0.
68
s

0.
72
s

0.
81
s

1.
93
s 2.

45
s

1.
42
s

2.
50
s

1.
14
s

2.
72
s

··
·1
0.
09
s

1.
80
s

0.
74
s 1.
10
s

1.
13
s

1.
15
s

1.
14
s

2.
00
s

0.
84
s

1.
06
s1.
43
s

1.
44
s

1.
43
s 1.
85
s

0.
76
s 1.
09
s

··
·1
1.
68
s

··
·1
6.
43
s

··
·4
4.
08
s

1.
81
s

0.
74
s 1.
06
s

el
ap

se
d
tim

e
(lo

w
er

is
be
�e

r)

Koka multi-core OCaml Mp.E� (Haskell) Ev.E� (Haskell) libhandler (C)

Koka, Insertion-ordered Koka, No short-cut resumption Koka, No bind-inlining Koka, No tail-resumptive opt.

Fig. 6. Execution time averaged over 10 runs

such, the results are meant to establish if the e�ect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe speci�c
aspects of e�ect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
This time Koka is 1.5⇥ faster than OCaml: due to evidence passing, the execution times of

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

ICFP	2021
Benchmarks

43

71:26 Ninging Xie and Daan Leijen

counter counter1 counter10 mstate nqueens triple
0s

1s

2s

3s

4s

5s

1.
14
s

1.
15
s

1.
15
s

1.
83
s

0.
75
s 1.
06
s

1.
04
s

1.
75
s

··
·7
.6
4s

0.
37
s

3.
96
s

2.
88
s

3.
97
s

4.
06
s

··
·4
.7
9s

1.
46
s

1.
21
s

1.
42
s

0.
25
s

2.
46
s

3.
09
s

0.
56
s

0.
61
s

0.
68
s

0.
72
s

0.
81
s

1.
93
s 2.

45
s

1.
42
s

2.
50
s

1.
14
s

2.
72
s

··
·1
0.
09
s

1.
80
s

0.
74
s 1.
10
s

1.
13
s

1.
15
s

1.
14
s

2.
00
s

0.
84
s

1.
06
s1.
43
s

1.
44
s

1.
43
s 1.
85
s

0.
76
s 1.
09
s

··
·1
1.
68
s

··
·1
6.
43
s

··
·4
4.
08
s

1.
81
s

0.
74
s 1.
06
s

el
ap

se
d
tim

e
(lo

w
er

is
be
�e

r)

Koka multi-core OCaml Mp.E� (Haskell) Ev.E� (Haskell) libhandler (C)

Koka, Insertion-ordered Koka, No short-cut resumption Koka, No bind-inlining Koka, No tail-resumptive opt.

Fig. 6. Execution time averaged over 10 runs

such, the results are meant to establish if the e�ect handler compilation strategies described in this
paper are viable and can be competitive, but should not be interpreted as a measure of absolute
performance between systems and languages. Execution times are shown in Figure 6. The execution
times are averaged over 10 runs, on an AMD 5950X at 3.4Ghz with 32GiB memory running Ubuntu
20.04, with Koka v2.1.2, multi-core OCaml 4.10, libhandler v0.5, and GHC 8.6.5.

Our benchmarks are taken from [Kiselyov and Ishii 2015], and each is designed to probe speci�c
aspects of e�ect handling with minimal other computation and allocation overheads:

• counter shows how the most common tail-resumptive e�ects are handled;
• counter1 and counter10 emphasize the impact of nested handlers;
• mstate demonstrates the use of full �rst-class resumptions (captured under a lambda);
• nqueens and triple uses multi-shot resumptions.

Below we discuss the benchmark results.
• counter. This benchmark implements a state e�ect using a mutable reference such that both
get and set operations are tail-resumptive. It then performs 200M get and set operations
in a tight loop. The tail-resumptive optimization in Koka and the fast stack switching in
OCaml seem to perform similarly and the execution times are very close. The libhandler C
implementation is 1.5⇥ faster than Koka – we believe this is because it does no allocation at
all. In contrast, both Koka and OCaml still allocate at each operation (for example, OCaml
allocates a continuation object per resumption [Sivaramakrishnan et al. 2021]).
Moreover, Mp.E� is about 4⇥ slower as Koka, but Ev.E� is 4⇥ faster! This is because GHC is
able to fully inline the handler and operations and optimizes almost all e�ect handling code
away. When we remove the inline pragma on the state handler de�nition, the benchmark
takes about 2.02s which is more in line with the results seen in counter1 and counter10. We
also ran this benchmark with the tail-resumption optimization turned o�; this causes Koka to
always allocate a resumption and take the slow path through the monadic bindings making
it 10⇥ slower than the optimized version.

• counter1. This is the same as counter but with one (unused) reader e�ect handler in between.
This time Koka is 1.5⇥ faster than OCaml: due to evidence passing, the execution times of

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

ICFP	2021
Benchmarks

43

Take-aways

44

Take-aways

44

1. How	to	compose	computational	effects?	
2. How	to		handle	effects	according	to	applications?

Take-aways

44

1. How	to	compose	computational	effects?	
2. How	to		handle	effects	according	to	applications?

Algebraic	effects	and	handlers:	composable	and	modular	
computational	effects	

Take-aways

44

1. How	to	compose	computational	effects?	
2. How	to		handle	effects	according	to	applications?

3.				Can	we	implement	algebraic	effects	efficiently?

Algebraic	effects	and	handlers:	composable	and	modular	
computational	effects	

Take-aways

44

1. How	to	compose	computational	effects?	
2. How	to		handle	effects	according	to	applications?

3.				Can	we	implement	algebraic	effects	efficiently?

Algebraic	effects	and	handlers:	composable	and	modular	
computational	effects	

Evidence-passing	semantics

Take-aways

44

1. How	to	compose	computational	effects?	
2. How	to		handle	effects	according	to	applications?

3.				Can	we	implement	algebraic	effects	efficiently?

Algebraic	effects	and	handlers:	composable	and	modular	
computational	effects	

Evidence-passing	semantics

Efficient	Compilation	of		
Algebraic	Effect	Handlers

Ningning	Xie	

