The Quest for Efficient and Trustworthy Systems

Baris Kasikci

Every 2 years, we create 2x more data than what we have created in all of human history¹

Efficiency of computer systems needs to catch up

[1] Kirk Bresniker, World Economic Forum, 2018

Total cost of poor software quality > \$2 Trillion in the US²

Trustworthiness (Reliability + Security) needs to improve

[2] Consortium for Information & Software Quality, 2021 Report 3

My Approach

- Designing efficient and trustworthy systems
- based on a systematic understanding of program behavior

Efficiency	Trustworthiness
Datacenter Efficiency Whisper [MICRO'22] Thermometer [IS0	CA'22] Failure Reproduction and Analysis OmniTable [OSDI'22]
Twig [MICRO'21] PDede [MICRO'2 DMon [OSDI'21] I-SPY [MICRO'20]	ER [PLDI'21] REPT [OSDI'18] Snorlax [SOSP'17]
Heterogeneous Systems Suppo Persistent Memory Indexing [FAST'21	
Optimus [ASPLOS'20] Systems Security	Hardware Security MOESI-prime [ISCA'22]
Architecture PL My work app in major ven in all these a	nues

5

Outline

	Offline	Online
Datacenter Efficiency	Data-driven optimizations	Lightweight profiling
Failure Reproduction and Analysis		
Hardware Security		

Datacenters consume massive energy

- 3% of the global energy, large carbon footprint¹
- \$35 million/year savings from 1% less work²

Responsiveness impacts revenue

- 400ms delay decreases Google Search users by 0.4%²
- Two second delay on search responses reduces Microsoft Bing's revenue by 4.3%²

[1] Rano Danilak, Why Energy Is A Big And Rapidly Growing Problem For Data Centers?, 2017[2] Kathryn McKinley , Tail Latency: Beyond Queuing Theory, 2017

Google

AutoFDO: Automatic Feedback-Directed Optimization for Warehouse-Scale Applications

Dehao Chen Google Inc. dehao@google.com David Xinliang Li Google Inc. davidxl@google.com Tipp Moseley Google Inc. tipp@google.com

BOLT: A Practical Binary Optimizer for Data Centers and Beyond

Maksim Panchenko, Rafael Auler, Bill Nell, Guilherme Ottoni Facebook, Inc. Menlo Park, CA, USA {maks,rafaelauler,bnell,ottoni}@fb.com

Vulcan

Binary transformation in a distributed environment

Amitabh Srivastava

Andrew Edwards

Hoi Vo

Profile-Guided Optimizations, PGO e.g., use a profile of branch traces for reordering code to make it cache-friendly

Cooperative Prefetching: Compiler and Hardware Support for Effective Instruction Prefetching in Modern Processors

Chi-Keung Luk Temporal Instruction Fetch Streaming

Limitations: Significant hardware modifications Impractical on-chip space overhead Limited gains due to on-chip space limits

Lawrence Sp Lawrence Sp

Rakesh Kumar^{*} Uppsala University Boris Grot University of Edinburgh Vijay Nagarajan University of Edinburgh 11

Profile-Guided Software Optimizations

On-Chip Analysis and Optimizations

Profile-Guided Software and Hardware Optimizations

Online Lightweight Profiling

Profile-Guided Software and Hardware Optimizations

Online Lightweight Profiling

Performance improvement of up to 90% of the theoretical limit Little-to-No hardware modifications (Intel & ARM technology transfer)

I-SPY: Context-Driven Conditional Instruction Prefetching with Coalescing

Tanvir Ahmed Khan^{*} Akshitha Sriraman^{*} Joseph Devietti[†] Gilles Pokam[‡] Heiner Litz[§] Baris Kasikci^{*} ^{*}University of Michigan [†]University of Pennsylvania [‡]Intel Corporation [§]University of California, Santa Cruz ^{*}{takh, akshitha, barisk}@umich.edu [†]devietti@cis.upenn.edu [‡]gilles.a.pokam@intel.com [§]hlitz@ucsc.edu

Performance Impact of Instruction Cache Misses

20-70% performance lost due to large instruction footprint (14-45x l-cache)

16

Why Does Prior Work Fall Short?

Why Does Prior Work Fall Short?

Overfitting prefetches based on limited execution information hurts speedup

Context-Driven* Conditional Prefetching

4 branches-long context information allows 90% of the speed of an ideal cache

I-SPY

Context-Driven Conditional Prefetching

- A data-driven optimization powered by offline analysis of profiling information
- Avoids unnecessary prefetches
- Can be implemented with minor hardware support
- Achieves 90% of the ideal cache performance
 - Outperforms prior work by Google by 22.5%

 \rightarrow ~ \$700 million in savings¹

ISCA'22

Thermometer: Profile-Guided BTB Replacement for Data Center Applications.

Shixin Song shixins@umich.edu University of Michigan, USA

Tanvir Ahmed Khan takh@umich.edu University of Michigan, USA

Sara Mahdizadeh Shahri smahdiz@umich.edu University of Michigan, USA

Sreenivas Subramoney

Intel Labs, India

Akshitha Sriraman akshitha@cmu.edu Carnegie Mellon University, USA

Niranjan Soundararajan niranjan.k.soundararajan@intel.com sreenivas.subramoney@intel.com Intel Labs, India

Heiner Litz hlitz@ucsc.edu University of California, Santa Cruz, USA

Baris Kasikci barisk@umich.edu University of Michigan, USA

MICRO'22

Whisper: Profile-Guided Branch Misprediction Elimination for Data Center Applications

Tanvir Ahmed Khan* Muhammed Ugur* Krishnendra Nathella[†] Dam Sunwoo[†] Heiner Litz[‡] Daniel A. Jiménez[§] Baris Kasikci^{*} *University of Michigan [†]ARM [‡]University of California, Santa Cruz [§]Texas A&M University *{takh, meugur, barisk}@umich.edu [†]{Krishnendra.Nathella, Dam.Sunwoo}@arm.com [‡]hlitz@ucsc.edu [§]diimenez@acm.org

MICRO'22

OCOLOS: Online COde Layout OptimizationS

Yuxuan Zhang* Tanvir Ahmed Khan[†] Gilles Pokam[‡] Baris Kasikci[†] Heiner Litz[§] Joseph Devietti^{*} *University of Pennsylvania [†]University of Michigan [‡]Intel Corporation [§]University of California, Santa Cruz [†]{takh, barisk}@umich.edu *{zyuxuan, devietti}@seas.upenn.edu [‡]gilles.a.pokam@intel.com [§]hlitz@ucsc.edu

EuroSys'22 **APT-GET:** Profile-Guided Timely Software Prefetching

Saba Jamilan^{*} Tanvir Ahmed Khan[‡] Grant Ayers[†] Baris Kasikci[‡] Heiner Litz^{*} *University of California, Santa Cruz [†]Google [‡]University of Michigan

OSDI'21

DMon: Efficient Detection and Correction of Data Locality Problems Using **Selective Profiling**

Tanvir Ahmed Khan University of Michigan

Ian Neal Gilles Pokam University of Michigan Intel Corporation

Barzan Mozafari University of Michigan

Baris Kasikci

University of Michigan

ISCA'21

Ripple: Profile-Guided Instruction Cache **Replacement for Data Center Applications**

Tanvir Ahmed Khan* Dexin Zhang[†] Akshitha Sriraman* Joseph Devietti[‡] Gilles Pokam[§] Heiner Litz[¶] Baris Kasikci^{*} [†]University of Science and Technology of China [‡]University of Pennsylvania *University of Michigan [§]Intel Corporation [¶]University of California, Santa Cruz *{takh, akshitha, barisk}@umich.edu [†]zhangdexin@mail.ustc.edu.cn [‡]devietti@cis.upenn.edu [§]gilles.a.pokam@intel.com [¶]hlitz@ucsc.edu

MICRO'21

Twig: Profile-Guided BTB Prefetching for Data Center Applications

Tanvir Ahmed Khan takh@umich.edu University of Michigan, USA

Nathan Brown nlbrow@umich.edu University of Michigan, USA

Akshitha Sriraman akshitha@umich.edu University of Michigan, USA

Joseph Devietti

devietti@cis.upenn.edu

University of Pennsylvania, USA

Niranjan Soundararajan niranjan.k.soundararajan@intel.com Intel Labs, India

Rakesh Kumar rakesh.kumar@ntnu.no Norwegian University of Science and Technology, Norway

Sreenivas Subramoney sreenivas.subramonev@intel.com Intel Labs, India

Gilles Pokam gilles.a.pokam@intel.com Intel Labs, USA

Heiner Litz hlitz@ucsc.edu University of California, Santa Cruz, USA

Baris Kasikci barisk@umich.edu University of Michigan, USA

MICRO'21 PDede: Partitioned, Deduplicated, Delta Branch Target Buffer

Niranjan Soundararajan niranjan.k.soundararajan@intel.com Processor Architecture Research Lab. Intel Labs, India

Peter Braun pvbraun@ucsc.edu University of California, Santa Cruz USA

takh@umich.edu University of Michigan USA

Tanvir Ahmed Khan

Baris Kasikci barisk@umich.edu University of Michigan USA

Heiner Litz hlitz@ucsc.edu University of California, Santa Cruz USA

Sreenivas Subramonev sreenivas.subramoney@intel.com Processor Architecture Research Lab Intel Labs, India

Datacenter Efficiency Thermometer [ISCA'22] Twig [MICRO'21] PDede [MICRO'21] DMon [OSDI'21] I-SPY [MICRO'20] Ripple [ISCA'21] Huron [PLDI'19] Cntr [ATC'18]

Awards

VMware Early Career Grant Intel Rising Star Award Intel Faculty Awards

• 2017, 2018

Rackham Ph.D. Fellowship

Tanvir Ahmed Khan
 MICRO'22 Best Paper Award

Grants

• NSF, Intel, SRC

Intel¹ and ARM² technology transfer

Collaborations

- ARM
- University of Pennsylvania
- UC Santa Cruz

[1] https://patents.google.com/patent/US20210342134A1/en

[2] https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/arm-neoverse-n1-performance-analysis-methodology 22

Outline

	Offline	Online
Datacenter Efficiency	Data-driven optimizations	Lightweight profiling
Failure Reproduction and Analysis		
Hardware Security		

Outline

	Offline	Online
Datacenter Efficiency	Data-driven optimizations	Lightweight profiling
	Static & symbolic	Coloctivo
Failure Reproduction and Analysis	Static & symbolic program analysis	Selective information monitoring

Characterizing and Predicting Which Bugs Get Fixed: An Empirical Study of Microsoft Windows

Philip J. Guo* Thomas Zimmermann⁺ Nachiappan Nagappan⁺ Brendan Murphy⁺ * Stanford University + Microsoft Research

"Developers can fix a bug if they can reproduce the associated failure"

Reproducing failures is difficult, especially for production use cases

Navigating the efficiency/trustworthiness tension:

29

REPT and Execution Reconstruction

REPT: Reverse Debugging of Failures in Deployed Software

- Most-widely deployed failure reproduction and analysis system in the world
- Used in ~ 1 billion Microsoft Windows systems

Execution Reconstruction (ER)

- Offline symbolic program analysis
- Online selective hardware monitoring (control and data)
- Reproduces arbitrarily longer executions than what REPT can

OSDI 2018

Best Paper Award

Execution Reconstruction: Harnessing Failure Reoccurrences for Failure Reproduction

Gefei Zuo gefeizuo@umich.edu University of Michigan, USA

Pramod Bhatotia pramod.bhatotia@in.tum.de TU Munich, Germany Jiacheng Ma jcma@umich.edu University of Michigan, USA

Pedro Fonseca pfonseca@purdue.edu Purdue University, USA Andrew Quinn arquinn@umich.edu University of Michigan, USA

Baris Kasikci barisk@umich.edu University of Michigan, USA

PLDI'2

Prior Work vs. Execution Reconstruction (ER)

ER (our work)

Existing trade-offs are insufficient to reproduce complex production failures

Background: Symbolic Execution

Background: Symbolic Execution

• Avoids path-explosion by following a control flow trace recorded in production

SMT Solving is Difficult

- Avoids path-explosion by following a control flow trace recorded in production
- Reduces (simplifies) constraints using key data values recorded in production

Key question: What data values best simplify constraint solving?

Constraint Simplification: Intuition

- SMT solving is a hard problem (NP-Complete)
- **Observation**: reasoning about memory aliasing takes the most time

Memory Addresses: **x** may-alias **y**

Symbolic Memory

Constraint Simplification: Intuition

- SMT solving is a hard problem (NP-Complete)
- **Observation**: reasoning about memory aliasing takes the most time

Memory Addresses: x may-alias y

Symbolic Memory

Hypothesis: Recording addresses can simplify constraint solving

Record the runtime value of \bigotimes as \bigotimes

Record the runtime value of \mathbf{x} as \mathbf{x}

Constraint Simplification: Heuristics

Record "key" symbolic memory addresses, which are used in:

- The longest symbolic write chain
- The write chain that accesses the largest symbolic memory object

Constraint Simplification: Heuristics

Record "key" symbolic memory addresses, which are used in:

- The longest symbolic write chain
- The write chain that accesses the largest symbolic memory object

Execution Reconstruction Summary

Execution Reconstruction Summary

Reproduces O(10⁴) instructions Reproduces O(10⁷) instructions

Execution Reconstruction – Results

Eliminates path explosion & simplifies constraint solving

• By recording control flow and key data values

Can reproduce failures in complex, long-running executions

- 1000x longer than REPT (deployed in Windows), without recording a longer trace
- Requires only 3.5 reoccurrences on average per failure

0.3% runtime performance overhead

Failure Reproduction and Analysis OmniTable [OSDI'22]

Debugging in the Brave New World [ASPLOS'22] ER [PLDI'21] REPT [OSDI'18] Snorlax [SOSP'17]

Hippocrates [ASPLOS'21] Agamotto [OSDI'20]

Microsoft vmware[®]

Awards

NSF CAREER Award

Microsoft Research Faculty Fellowship Google Faculty Award

- 2019, 2021 Microsoft Research PhD Fellowship
 - Andrew Quinn

NSF Graduate Research Fellowship

• Andrew Loveless, Andrew Quinn

Towner Prize

Ian Neal

OSDI Best Paper Award

IEEE MICRO Top Pick Honorable Mention

Grants

NSF, SRC, Google

Collaborations

UT Austin, KAIST, Intel

Real-world deployment in Windows

~1 billion systems

Adoption at Meta¹, Intel

[1] https://engineering.fb.com/2021/04/27/developer-tools/reverse-debugging/ 57

Outline

	Offline	Online
Datacenter Efficiency	Data-driven optimizations	Lightweight profiling
	Static & symbolic	Coloctivo
Failure Reproduction and Analysis	Static & symbolic program analysis	Selective information monitoring

Outline

	Offline	Online
Datacenter Efficiency	Data-driven optimizations	Lightweight profiling
Failure Reproduction and Analysis	Static & symbolic program analysis	Selective information monitoring
Hardware Security	Classification of attacks	Threat model- specific defenses

Foreshadow bypasses the virtual memory abstraction: A VM in the Cloud can leak secrets from someone else's VM

s SGX blown wide open by, you

sed it, a speculative execution attack

Top Pick

Prior defenses were channel-specific

Principled and Comprehensive Defenses

Navigating the efficiency/trustworthiness tension: defenses tailored to threats

NDA: Preventing Speculative Execution Attacks at Their Source

Ofir Weisse University of Michigan Ian Neal University of Michigan Kevin Loughlin University of Michigan

Thomas F. Wenisch University of Michigan Baris Kasikci University of Michigan

IEEE Micro Top-Pick Honorable Mention

MICRO'19

NDA's Key Insight

Speculative execution attacks require a chain of **dependent instructions** to access and transmit secrets.

By controlling data propagation, NDA can **break these dependency chains**, thwarting the code sequences required to mount attacks.

Analysis of Attacks: A Chain of Dependent Instructions

I) Access Phase **During speculation II)** Transmit Phase e.g., via the cache **III) Recover Phase** using timing After speculation measurements

Analysis of Attacks: A Chain of Dependent Instructions

I) Access Phase

II) Transmit Phase e.g., via the cache

NDA can **break** the chain of dependent instructions

Only "unsafe" instructions are not allowed to speculatively transmit secrets

Unsafe Instructions: A Threat-Model-Centric View

Unsafe Instructions: A Threat-Model-Centric View

NDA - Summary

During speculation, NDA:

- Allows the execution of unsafe instructions (access)
- Disallows broadcasting the effects of unsafe instructions (transmission)

Much lower overhead than in-order execution (4.8x)

- 10.7% overhead against Spectre-like attacks
- 36.1% overhead against Meltdown-like attacks

More comprehensive security than channel-specific defenses

• Protection against existing and future side-channels

Hardware Security MOESI-prime [ISCA'22] Dolma [SEC'21] NDA [MICRO'19] Foreshadow [SEC'18] Morpheus [ASPLOS'19]

ence & Technology

Awards

Facebook Fellowship

Marina Minkin

NSF Graduate Research Fellowship

• Kevin Loughlin

Google Fellowship

• Kevin Loughlin

IEEE MICRO Top Pick

IEEE MICRO Top Pick Honorable Mention

Grants

DARPA, ONR

Collaborations

Microsoft, KU Leuven, Technion, University of Adelaide

Improved cloud security

Processor upgrades and patches

Future Work

Data trends will continue driving software complexity up

Increased heterogeneity, new interconnects, and more edge devices will bring entirely new efficiency and trustworthiness challenges

Exploring emerging computer systems problems through the lens of computer architecture, programming languages, and security 72

Data Center Efficiency

Trends

Increasing memory, compute, and interconnect heterogeneity

• Multi-tier memory, specialized hardware, diverse interconnects

Future Work

#1: Rethinking profile-guided optimizations (via HW/SW co-design) for heterogeneous systems

Data Center Efficiency

Trends

Increasing memory, compute, and interconnect heterogeneity

• Multi-tier memory, specialized hardware, diverse interconnects

Future Work

#1: Rethinking profile-guided optimizations (via HW/SW co-design) for heterogeneous systems

#2: Designing new systems abstractions for resource management in a disaggregated environment

Reliability

Trends

Increased heterogeneity and hardware specialization

Always-on profiling/monitoring on the edge and datacenter

• Primarily used for performance optimizations

Future Work

#1: Using production data to rethink our approach to trustworthiness

Reliability

Trends

Increased heterogeneity and hardware specialization

Always-on profiling/monitoring on the edge and datacenter

• Primarily used for performance optimizations

Future Work

#1: Using production data to rethink our approach to trustworthiness

#2: Techniques for building more reliable heterogeneous systems¹

[1] Debugging in the Brave New World of Reconfigurable Hardware. Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Andrew Quinn, <u>Baris Kasikci</u>. ASPLOS 2022

Hardware Security

Trends

Microarchitectural isolation is a recurring problem Increased intermittent and silent hardware errors^{1,2}

Future Work

#1: Microarchitectural isolation as a foundational security primitive

[1] Cores That Don't Count, Peter H. Hochschild Paul Jack Turner Jeffrey C. Mogul Rama Krishna Govindaraju Parthasarathy Ranganathan David E Culler Amin Vahdat Proc. HotOS 2021

[2] Silent Data Corruptions at Scale, Harish Dattatraya Dixit, Sneha Pendharkar, Matt Beadon, Chris Mason, Tejasvi Chakravarthy, Bharath Muthiah, Sriram Sankar, Arxiv, 2021

Hardware Security

Trends

Microarchitectural isolation is a recurring problem Increased intermittent and silent hardware errors^{1,2}

Future Work

#1: Microarchitectural isolation as a foundational security primitive

#2: Techniques for eliminating/reducing hardware errors³

[1] Cores That Don't Count, Peter H. Hochschild Paul Jack Turner Jeffrey C. Mogul Rama Krishna Govindaraju Parthasarathy Ranganathan David E Culler Amin Vahdat Proc. HotOS 2021

[2] Silent Data Corruptions at Scale, Harish Dattatraya Dixit, Sneha Pendharkar, Matt Beadon, Chris Mason, Tejasvi Chakravarthy, Bharath Muthiah, Sriram Sankar, Arxiv, 2021

[3] Preventing Coherence-Induced Hammering in Commodity Workloads. Kevin Loughlin, Stefan Saroiu, Alec Wollman, Yatin Manerkar, **Baris Kasikci**, ISCA'22

Efficiency

Trustworthiness

	Datacenter Efficiency				
V	Whisper [MICRO'22] 📯 Thermometer [ISCA'22]				
	Twi	g [MICRO	21] PDede [MICRO'21]		
	DN	lon [OSD	^{21]} I-SPY [MICRO'20]		
F	Ripple [ISCA'21] Huron [PLDI'19] Cntr [ATC'18]				
·····	Heterogeneous Systems Support				
	Persistent Memory Indexing [FAST'21]				
Optimus [ASPLOS'20]					
	Systems	Security			
	Architecture	PL			

Failure Reproduction and Analysis OmniTable [OSDI'22]

Debugging in the Brave New World [ASPLOS'22]

ER [PLDI'21] REPT [OSDI'18] Snorlax [SOSP'17]

Hippocrates [ASPLOS'21] Agamotto [OSDI'20] 📿

Verified Distributed Systems

Sift [ATC'22] IGOR [RTAS'21]

14 [SOSP'19]

Hardware Security

MOESI-prime [ISCA'22]

Dolma [SEC'21]

