The Quest for
Efficient and Trustworthy Systems

Baris Kasikci

et oot e FOOGIe jﬁ“ Hfﬁ

IIIIIIIIIIIIIIIIIIII A R A

Facebook, Instagram, and WhatsApp are still jor
what you
235 Million Instagram, TikTok And o cut

M Uber Pays $148 Million Over Yearlong
Cover Up Of Data Breach

September 27, 2018 - 10:13 AM ET

. COMPUTE
«7ZB |
8 4 bL7s . ‘
00328 00813 1-228 10 ZB .
VA | £ . . ° = 0
COMPUTE

‘06 ‘08 ‘10 ‘12 ‘14 ‘16 ‘18 20 I\/IeI own Spectre Foreshadow

Every 2 years, we create 2x Total cost of poor software
more data than what we have | quality > S2 Trillion in the US?
created in all of human history?
Trustworthiness
Efficiency of computer systems (Reliability + Security)
needs to catch up needs to improve

My Approach
Desighing efficient and trustworthy systems
based on a systematic understanding of program behavior

Efficiency

; Datacenter Efficiency

Whisper [MICRO'22]®

' Twig [MICRO’21] PDede [MICRO’21]
DMon [0SDI21] I-SPY [MICRO’20]

Ripple [ISCA’21] Huron [PLDI’19] Cntr [ATC’ 18]

Heterogeneous Systems Support

Persistent Memory Indexing [FAST 21]
Optimus [ASPLOS’20]

Systems

Security

My work appears
in major venues
in all these areas

Architecture PL

Thermometer [ISCA’22] :
_Debugging in the Brave New World [ASPLOS’22]§
:ER [PLDI’21] REPT [OSDI'18]®

Trustworthiness

Failure Reproduction and Analysis
OmniTable [OSDI'22]

Snorlax [SOSP’17]§
Hlppocrates [ASPLOS’21] Agamotto [OSDI’ 20] '

Verified Distributed Systems ;
Sift [ATC'22] IGOR [RTAS'21] 14 [SOSP’19]§

Hardware Security
MOESI-prime [ISCA’22]

Dolma [SEC'21] NDA [MICRO'19] §
: Foreshadow [SEC’18] ® Morpheus [ASPLOS’19]

@ : Award papers

Offline Online

Datacenter Efficiency

Failure Reproduction and Analysis

Hardware Security

Navigating the efficiency-trustworthiness tension:

A careful balance between offline and online techniques *

Outline

Offline Online
Datacenter Efficiency Data-driven Lightweight
optimizations profiling

T T
Ll

f

2 NN
N\

AN

 ARRRRRRRR N
AL ARLHARNRE R
S5 \\NAANRRRKNON

LA LEENEEY
LLLLRANAS

\

LANVAAANNN\R

LLLLANNY

UATEATARARIAL A

\

il
il
i
(11}
LI
{11
111
“

7//4//’7/ s ‘ e

7P s

\
NN ”
W N
VNN
TN
AAAAAAA MNEE N
AN B
NN
./// NN /
NN NN
NSNS
NN IN
N N
W
\ 7,

’

T

? /)//

7.

7770000 S

..........

FIEES SERAREAEA ACEALRA

Datacenters consume massive energy
* 3% of the global energy, large carbon footprint?
S35 million/year savings from 1% less work?

3 | Responsiveness impacts revenue
* 400ms delay decreases Google Search users by 0.4%?

* Two second delay on search responses reduces Microsoft
Bing’s revenue by 4.3%?2

‘" Amazon
a\ma; on CodeGuru

AutoFDO: Automatic Feedback-Directed

< o I e Optimization for Warehouse-Scale Applications
g Dehao Chen

David Xinliang Li Tipp Moseley

Google Inc. Google Inc. Google Inc.
dehao®@google.com davidxl@google.com tipp@google.com

BOLT: A Practical Binary Optimizer

l for Data Centers and Beyond
m M e q Maksim Panchenko, Rafael Auler, Bill Nell, Guilherme Ottoni
Facebook, Inc.
Menlo Park, CA, USA

{maks,rafaelauler,bnell,ottoni } @fb.com

Vulcan

e
=. M I C r‘o s Oft Binary transformation in a distributed environment

Amitabh Srivastava
Andrew Edwards

Profile-Guided Optimizations, PGO @/\

e.g., use a profile of branch traces for reordering code @ ,\/

to make it cache-friendly

Limitations:
Significant hardware modifications

Impractical on-chip space overhead
Limited gains due to on-chip space limits

Profile-Guided On-Chip Analysis and
Software Optimizations Optimizations

TN

{§\/"

Profile-Guided Software and Hardware Optimizations

77N

£}
B

Online Lightweight Profiling

[z

Profile-Guided Software and Hardware Optimizations

Offline Analysis of @
Profiling Data @

Hardware
Optimizations
Little/No Hardware
Modifications

\
.

Software

’\ / - Optimizations

Online Lightweight Profiling

Performance improvement of up to 90% of the theoretical limit

Little-to-No hardware modifications (Intel & ARM technology transfer)

I-SPY: Context-Driven Conditional Instruction
Prefetching with Coalescing

Tanvir Ahmed Khan* Akshitha Sriraman* Joseph Devietti’ Gilles Pokam* Heiner Litz? Baris Kasikci*

*University of Michigan University of Pennsylvania *Intel Corporation $University of California, Santa Cruz
*{takh, akshitha, barisk} @umich.edu Tdevietti@cis.upenn.edu igilles.a. okam @intel.com Shlitz@ucsc.edu
p

e @wPenn kel U0 SANTA CRUL

& ENGINEERING

UNIVERSITY OF MICHIGAN

MICRO’20 .,

Performance Impact of Instruction Cache Misses

better
§ 80

20-70% performance lost due to large instruction footprint (14-45x I-cache)

Why Does Prior Work Fall Short?

D

i).fefetch G

F
if (cond1) /

¢

Instruction
cache miss

17

Why Does Prior Work Fall Short?

A
iff(cond1 && cond?)

call(Dy”

D

Efefetch G » \

E
if (!cond1)
call D

¢

Instruction
cache miss

if|{(cond1)

Overfitting prefetches based on limited execution information hurts speedup

Context-Driven” Conditional Prefetching

A
iff(cond1 && cond?2) D E
call (B) (lcond 1
) prefetch G \ if (fcond1)
—call D
Instruction
call G cache miss

"
Prefetch only if B was
executed recently *Context = Control flow tracked using

efficient online hardware tracing

4 branches-long context information allows 90% of the speed of an ideal cache

I-SPY

Context-Driven Conditional Prefetching
* A data-driven optimization powered by offline analysis of profiling information
* Avoids unnecessary prefetches
e Can be implemented with minor hardware support

Achieves 90% of the ideal cache performance —— ~ $700 m,”,on in Savmgsl
* Outperforms prior work by Google by 22.5% 4

ISCA’22

Thermometer: Profile-Guided BTB Replacement for
Data Center Applications.

Shixin Song Tanvir Ahmed Khan Sara Mahdizadeh Shahri
shixins@umich.edu takh@umich.edu smahdiz@umich.edu
University of Michigan, USA University of Michigan, USA University of Michigan, USA

Akshitha Sriraman Niranjan Soundararajan Sreenivas Subramoney
akshitha@cmu.edu niranjan.k.soundararajan@intel.com sreenivas.subramoney@intel.com
Carnegie Mellon University, USA Intel Labs, India Intel Labs, India
Heiner Litz Baris Kasikci
hlitz@ucsc.edu barisk@umich.edu
University of California, Santa Cruz, University of Michigan, USA
USA

MICRO’22
Whisper: Profile-Guided Branch Misprediction
Elimination for Data Center Applications

Tanvir Ahmed Khan* Muhammed Ugur* Krishnendra Nathella’ Dam Sunwoo’ Heiner Litz*
Daniel A. Jiménez® Baris Kasikci*
*University of Michigan TARM *University of California, Santa Cruz ~ $Texas A&M University
*{takh, meugur, barisk} @umich.edu T {Krishnendra.Nathella, Dam.Sunwoo}@arm.com *hlitz@ucsc.edu
$djimenez@acm.org

MICRO’22

OCOLOS: Online COde Layout OptimizationS

Yuxuan Zhang* Tanvir Ahmed Khan' Gilles Pokam* Baris Kasikci’ Heiner Litz® Joseph Devietti*
*University of Pennsylvania T University of Michigan *Intel Corporation $University of California, Santa Cruz

*{zyuxuan, devietti} @seas.upenn.edu T {takh, barisk} @umich.edu
tgilles.a.pokam @intel.com Shlitz@ucsc.edu

EuroSys’22
APT-GET: Profile-Guided Timely Software
Prefetching

Saba Jamilan* Tanvir Ahmed Khan* Grant Ayers’ Baris Kasikci* Heiner Litz*
*University of California, Santa Cruz "Google ~ *University of Michigan

OosDI’21

DMon: Efficient Detection and Correction of Data Locality Problems Using

Selective Profiling
Tanvir Ahmed Khan Tan Neal Gilles Pokam Barzan Mozafari
University of Michigan University of Michigan Intel Corporation University of Michigan

Baris Kasikci
University of Michigan

ISCA’21
Ripple: Profile-Guided Instruction Cache

Replacement for Data Center Applications

Tanvir Ahmed Khan* Dexin Zhang" Akshitha Sriraman* Joseph Devietti*
Gilles Pokam® Heiner Litz! Baris Kasikci*
*University of Michigan University of Science and Technology of China qL'University of Pennsylvania
SIntel Corporation IUniversity of California, Santa Cruz
*{takh, akshitha, barisk} @umich.edu fzhangdexin@mail.ustc.edu.cn
*devietti@cis.upenn.edu Ygilles.a.pokam@intel.com Thlitz@ucsc.edu

MICRO’21

Twig: Profile-Guided BTB Prefetching for Data Center

Applications
Tanvir Ahmed Khan Nathan Brown Akshitha Sriraman
takh@umich.edu nlbrow@umich.edu akshitha@umich.edu
University of Michigan, USA University of Michigan, USA University of Michigan, USA
Niranjan Soundararajan Rakesh Kumar Joseph Devietti
niranjan.k.soundararajan@intel.com rakesh.kumar@ntnu.no devietti@cis.upenn.edu
Intel Labs, India Norwegian University of Science and University of Pennsylvania, USA

Technology, Norway

Sreenivas Subramoney Gilles Pokam Heiner Litz
sreenivas.subramoney@intel.com gilles.a.pokam@intel.com hlitz@ucsc.edu
Intel Labs, India Intel Labs, USA University of California, Santa Cruz,
USA

Baris Kasikci
barisk@umich.edu
University of Michigan, USA

MICRO’21

PDede: Partitioned, Deduplicated, Delta Branch Target Buffer

Niranjan Soundararajan Peter Braun Tanvir Ahmed Khan
niranjan.k.soundararajan@intel.com pvbraun@ucsc.edu takh@umich.edu
Processor Architecture Research Lab, University of California, Santa Cruz University of Michigan

Intel Labs, India USA USA
Baris Kasikci Heiner Litz Sreenivas Subramoney
barisk@umich.edu hlitz@ucsc.edu sreenivas.subramoney@intel.com
University of Michigan University of California, Santa Cruz ~ Processor Architecture Research Lab,

USA USA Intel Labs, India

21

Datacenter Efficiency Awards

Thermometer [ISCA’22] VMware Early Career Grant

. , , Intel Rising Star Award
Twig [MICRO’21] PDede [MICRO'21] Intel Faculty Awards

DMon [OSDI'21] I-SPY [MICRO’20] * 2017, 2018

Rackham Ph.D. Fell hi
Rlpple [ISCA’21] Huron [PLDI’19] Cntr [ATC’ 18] ac. Tz\rr:/irAhmedeKrg\:s P

MICRQO’22 Best Paper Award

Grants
* NSF, Intel, SRC

Intel! and ARM? technology transfer

® Collaborations

Semiconductor ¢ ARM
Research
Corporation

* University of Pennsylvania
* UC Santa Cruz

22

Outline

Offline Online
Datacenter Efficiency Data-driven Lightweight
optimizations profiling

23

S

Trustworthiness
Reliability

25

Outline

Offline

Online

Failure Reproduction and Analysis

Static & symbolic
program analysis

Selective
information monitoring

26

Characterizing and Predicting Which Bugs Get Fixed:
An Empirical Study of Microsoft Windows

Philip J. Guo* Thomas Zimmermann+ Nachiappan Nagappan+ Brendan Murphy+

= Stanford University
+ Microsoft Research

“Developers can fix a bug if they can reproduce the associated failure”

Reproducing failures is difficult, especially for production use cases

Microsoft Windows

A log of this error has been created.

Please tell Microsoft about this problem.

anonymous.

The system has recovered from a serious error.

We have created an error report that you can send to help us improve
Microsoft Windows. We will treat this report as confidential and

To see what data this error report contains, click here

Send Enor Report | |{ Don't Send |

Branches
monitored for profiling

Memory dump

Last state
of data in memory

(profile-guided optimizations)

Control flow trace

Manual
Failure Reproduction

28

The system has recovered from a serious error

A log of this error has been created.

Please tell Microsoft about this problem.

We have created an error report that you can send to help us improve
Microsoft Windows. We will treat this report as confidential and
anonymous.

To see what data this error report contains, click here.

Send Enor Report | | Dont Send

Manual
@ X Failure Reproduction m

—— Memory dump

Last state

of data in memory REPT &

Execution Reconstruction

Automatic Failure
Reproduction

Branches
monitored for profiling
(profile-guided optimizations)

Control flow trace

Navigating the efficiency/trustworthiness tension: ~—~= "

Use branch traces for both optimizations and reproducing fa|Iures

REPT and Execution Reconstruction

OSDI 2018

REPT: Reverse Debugging of Failures in Deployed Software A \\Best Paper Award

* Most-widely deployed failure reproduction and analysis system in the world
* Used in ~ 1 billion Microsoft Windows systems

Execution Reconstruction (ER)
* Offline symbolic program analysis
* Online selective hardware monitoring (control and data)
* Reproduces arbitrarily longer executions than what REPT can

30

Execution Reconstruction: Harnessing Failure
Reoccurrences for Failure Reproduction

Gefei Zuo Jiacheng Ma Andrew Quinn
gefeizuo@umich.edu jcma@umich.edu arquinn@umich.edu
University of Michigan, USA University of Michigan, USA University of Michigan, USA

Pramod Bhatotia Pedro Fonseca Baris Kasikci
pramod.bhatotia@in.tum.de pfonseca@purdue.edu barisk@umich.edu
TU Munich, Germany Purdue University, USA University of Michigan, USA

.z
COMPUTER SCIENCE PURDUE

& ENGINEERING

UNIVERSITY OF MICHIGAN UNIVER S ITY. P L D I’ 2 1

31

Prior Work vs. Execution Reconstruction (ER)

ER (our work)

ESD (Execution Synthesis)!?! ' Mozilla RR (Record Replay)!!

REPTM l BugRedux!
—

G——
Record nothing

. _ Record everything
(e.g., symbolic execution)

* high runtime overhead ¥

* no runtime overhead v * great reproducibility v

e poor reproducibility %

Existing trade-offs are insufficient to reproduce complex production failures

Challenges
ER

Offline ' Online

Partial trace
Record nothing Record everything
(e.g., symbolic execution) > ?

NS

Full failure trace

Background: Symbolic Execution

void foo(int x) 'Y ® Program state
int v[16] = {0}; D Control flow (branches)
if (v[x] > 0) { e

vix] > 0) @& @ (vix] < 0}

Path constraint - 1 Path constraint - 2

Background: Symbolic Execution

. . X
void foo(int x) { O\ ® Program state
int v[16] = {0}; 0 e Control flow (branches)
if (v[x] > 0) { e
1 {vix] > 0} @ @ {vix] < 0}
[3 e
® 2 ®
¢ & | e
o @ @ ® ®

35

Background: Symbolic Execution

. . X
void foo(int x) { SO\ ® Program state

int v([16] = {0}; Lo e Control flow (branches)
if (v[x] > 0) { e

if (vix] > 0} @ ® (vix] < 0]

e e
Solving ' ’ ‘
¢ . e @
// FAILURE ¢ L [[2 ®

{{vIx] > 0} A ...}

36

Background: Symbolic Execution

14

> Symbolic (unknown) input

Program state

Control flow (branches)

Challenge #1: . .

Path explosion o o -

FAILURE

37

Shepherded Symbolic Execution

* Avoids path-explosion by following a control flow trace recorded in production

ER
Offline i Online
< \4 >
: Shepherded :
Record nothing > Symbolic Execution < Record everything

Partial trace
(control-flow)

38

Shepherded Symbolic Execution

14

> Symbolic (unknown) input

Program state

Control flow (branches)

Challenge #1: .8

Path explosion e o x:‘ p

FAILURE

39

Shepherded Symbolic Execution

FAILURE

Program state

Control flow (branches)

40

SMT Solving is Difficult

Challenge #2:

Constraint solving
is difficult (NP complete)

SMT
Solving

FAILURE

{{v[x] > 0} A ...

Program state

Control flow (branches)

41

Shepherded Symbolic Execution

* Avoids path-explosion by following a control flow trace recorded in production
* Reduces (simplifies) constraints using key data values recorded in production

ER
Offline i Online
-—_— >
. Shepherded :
Record nothing > Symbolic Execution < Record everything

Partial trace
(control-flow)
+

(key data values)

Key question: What data values best simplify constraint solving?

Constraint Simplification: Intuition

 SMT solving is a hard problem (NP-Complete)

* Observation: reasoning about memory aliasing takes the most time

Memory Addresses: x may-alias y

Symbolic Memory

43

Constraint Simplification: Intuition

 SMT solving is a hard problem (NP-Complete)

* Observation: reasoning about memory aliasing takes the most time

Memory Addresses: x may-alias y

Symbolic Memory

Hypothesis: Recording addresses can simplify constraint solving

O U, WN K

Constraint Simplification: Example

/ depends on \
@ »(Operand

B Constant
1 Symbolic Input

— Value Dependency

\> Address Dependency /

|
|
|
|
Symbolic 1inputs :
l
|

N

void foo(int x, int y) {
int V[256] = {0}; - =-=-=-=---~- 4
VIX]= 1) s mme e e e e e e e e e e - = - !
LV 1 /20 S

O U, WN K

Constraint Simplification: Example

B Constant

/ depends on \
@ »(Operand

\> Address Dependency /

Symbolic 1inputs

void foo(int x, int y) {
int V[256] = {0};

Vix]= 1;

...V[y].

1 Symbolic Input @4 wﬁ -
—* Value Dependency

O

PHP-2012-2386

46

Constraint Simplification: Example

47

Constraint Simplification: Example

Record the runtime value of@ as @

o Y

,
,
,
,
,
,
,
/
,
,
’
./

48

Constraint Simplification: Example

Record the runtime value of@ as @

49

Constraint Simplification: Example

Record the runtime value of@ as @

® | @i

50

Constraint Simplification: Heuristics

Record “key” symbolic memory addresses, which are used in:

* The longest symbolic write chain
* The write chain that accesses the largest symbolic memory object

V2[4]

Write Read V3[512]

Record!

51

Constraint Simplification: Heuristics

Record “key” symbolic memory addresses, which are used in:

* The longest symbolic write chain
* The write chain that accesses the largest symbolic memory object

Leave to

Write Read
solver

V2[4] V3([512]

Record!

Record!

52

Execution Reconstruction Summary

In-production Tracing Engine (Online)

Application +
Hardware Tracing

O send control-flow trace

FAILURE

Analysis Engine (Offline)

Shepherded
Symbolic Execution

Successfully reproduces

the failure? %j

Donel!

53

Execution Reconstruction Summary

In-production Tracing Engine (Online)

Application +
Hardware Tracing

O send control-flow trace
(+“key” addresses)

Analysis Engine (Offline)

4 FAILURE

>

Shepherded
Symbolic Execution

Successfully reproduces

the failure? %j

l No Done!

(2 Ask for more key data

(addresses) to be recorded

Constraint Simplification

54

REPT

Reproduces O(10%)
instructions

-
f’

VS ER

Records
,,,,, Control Flow
+

Key Data Values (Addresses)

—
—
—
-—y
—
—
—
—y
-y
-y
—
—
—
—
—

Reproduces O(107)
instructions

~—y
—y
—_—
—
~—
—y
—
~—

55

Execution Reconstruction — Results

Eliminates path explosion & simplifies constraint solving
* By recording control flow and key data values

Can reproduce failures in complex, long-running executions
e 1000x longer than REPT (deployed in Windows), without recording a longer trace

* Requires only 3.5 reoccurrences on average per failure

0.3% runtime performance overhead

56

Failure Reproduction and Analysis
OmniTable [OSDI'22]

éDebugging in the Brave New World [ASPLOS’22]§
EER [PLDI'21] REPT [OSDI'18] Snorlax [SOSP’17];
Hlppocrates [ASPLOS’21] Agamotto [OSDI'20] :

®

Semiconductor
Research
Corporation

Awards
NSF CAREER Award
Microsoft Research Faculty Fellowship

Google Faculty Award
2019, 2021

Microsoft Research PhD Fellowship
* Andrew Quinn

NSF Graduate Research Fellowship
* Andrew Loveless, Andrew Quinn

Towner Prize

* |lan Neal
OSDI Best Paper Award

IEEE MICRO Top Pick Honorable Mention

Grants
NSF, SRC, Google

Collaborations
UT Austin, KAIST, Intel

Real-world deployment in Windows
~1 billion systems

Adoption at Meta?, Intel

57

https://engineering.fb.com/2021/04/27/developer-tools/reverse-debugging/

Outline

Offline

Online

Failure Reproduction and Analysis

Static & symbolic
program analysis

Selective
information monitoring

58

Q Trustworthiness

Security

59

Outline

Offline

Online

Hardware Security

Classification
of attacks

Threat model-
specific defenses

60

FORESHADOW

Breaking the Virtual Memory Abstraction with Transient Out-of-Order Execution

? ’ USENIX
. Security’18

WUITRNAIR S The & Register®
(NDERMINES INTEL, s ettt
PROCESSORS' MOST SEGUR Foreyshadow and Intel SGX software

attestation: 'The whole trust model

collapses’ R
SUCH PROBLEM

s SGX blown wide open by, you
Foreshadow bypasses the virtual memory abstraction:

Read the paper & Cite99 Watch a demo @M

IEEE MICRO
Top Pick

ed it, a speculative execution attack

A VM in the Cloud can leak secrets from someone else’s VM

Side Channels

‘e
-
3
*
*
»
., .
. .
--
.0
‘e
»

. =
“ -

-%; Prior work: Eliminating access
secre T % I
to a specific channel :

We reported the first :
non-cache microarchitectural :
attack to Intel '

Prior defenses were channel-specific

Principled and Comprehensive Defenses
Side Channels

.
.
*
*
(3
(3
LS
.
*
*
(3
/ £
*

Our approach: Eliminate attacks at their
source by reasoning about information
flow and stopping secret propagation

Navigating the efﬂuency/trustworthmess tension: defenses tailored to threats

i e

~ \r—‘~4 s. el

NDA: Preventing Speculative Execution Attacks at Their Source

Ofir Weisse Ian Neal Kevin Loughlin
University of Michigan University of Michigan University of Michigan
Thomas F. Wenisch Baris Kasikci
University of Michigan University of Michigan
4
MICRO'19

COMPUTER SCIENCE
& ENGINEERING

UNIVERSITY OF MICHIGAN

IEEE Micro Top-Pick
Honorable Mention

64

NDA’s Key Insight

Speculative execution attacks require a chain of
dependent instructions to access and transmit secrets.

By controlling data propagation, NDA can break these dependency
chains, thwarting the code sequences required to mount attacks.

65

Analysis of Attacks: A Chain of Dependent Instructions

1) Access Phase

L 2

Il) Transmit Phase
e.g., via the cache

Ill) Recover Phase

using timing — After speculation
measurements

— During speculation

66

Analysis of Attacks: A Chain of Dependent Instructions

1) Access Phase
1 ’

Il) Transmit Phase
e.g., via the cache

. NDA can break the chain of

dependent instructions
llIl) Recover Phase
using timing
measurements

Only “unsafe’” instructions are not allowed to speculatively transmit secrets

Unsafe Instructions: A Threat-Model-Centric View

Spectre-like attacks
Oﬁj

£~
f N @Steer control

SPECTRE 2> | 1

/ Access
Branch 17 Transmit
(e.g., jmp, call) | = < \

S]
~
S_7
Recover
Speculation

Unsafe Instructions: A Threat-Model-Centric View

Spectre-like attacks

Meltdown-like attacks
/ Recover
@ ©)
@ Fault handler
RN @Steer control 1
@ ! \ J i
SPECTRE Ly ' |
Access |
/ Access (Speculative Load) |
Branch 17 Transmit \ |
(e.g., jmp, call) | & _ \ ‘ |
S) Transmit I
~S_7 N /
Recover @ N_~
Speculation Speculation

In Spectre-like attacks, instructions after

In Meltdown-like attacks, all loads are
a branch are potentially unsafe

potentially unsafe

NDA - Summary

During speculation, NDA:
* Allows the execution of unsafe instructions (access)
» Disallows broadcasting the effects of unsafe instructions (transmission)

Much lower overhead than in-order execution (4.8x)
* 10.7% overhead against Spectre-like attacks
* 36.1% overhead against Meltdown-like attacks

More comprehensive security than channel-specific defenses
* Protection against existing and future side-channels

70

NN NN NN NN NN NN EEN NN EENEENEEEEEEEENEEEEEEEEEEEEEEEES .
- .

Hardware Security

_ MOESI-prime [ISCA’22] . Awards

Facebook Fellowship

: Dolma [SEC"21] NDA [MICRO’19] « Marina Minkin

Foreshadow [SEC’18] Morpheus [ASPLOS’19]§ NSF Graduate Research Fellowship

e St e Kevin Loughlin

. Google Fellowship
s~ Microsoft

e Kevin Loughlin
IEEE MICRO Top Pick
THE UNIVERSITY IEEE MICRO Top Pick Honorable Mention

ADELAIDE

DARPA, ONR

Collaborations

Microsoft, KU Leuven, Technion, University
of Adelaide

Improved cloud security
Processor upgrades and patches

71

Future Work

COMPUTE
7928

4.4z
0.3z 0.8z 1.2z 1.8z &
3 .) .

COMPUTE
‘06

Data trends will continue driving Increased heterogeneity, new interconnects,
software complexity up and more edge devices will bring entirely new
efficiency and trustworthiness challenges

Exploring emerging computer systems problems

through the lens of computer architecture, programming languages, and security

Data Center Efficiency

Trends

Increasing memory, compute, and interconnect heterogeneity
* Multi-tier memory, specialized hardware, diverse interconnects

Future Work

#1: Rethinking profile-guided optimizations (via HW/SW co-design)
for heterogeneous systems

73

Data Center Efficiency

Trends

Increasing memory, compute, and interconnect heterogeneity
* Multi-tier memory, specialized hardware, diverse interconnects

Future Work

#1: Rethinking profile-guided optimizations (via HW/SW co-design)
for heterogeneous systems

#2: Designing new systems abstractions for resource management
in a disaggregated environment

74

Reliability

Trends
Increased heterogeneity and hardware specialization

Always-on profiling/monitoring on the edge and datacenter
* Primarily used for performance optimizations

Future Work

#1: Using production data to rethink our approach to trustworthiness

75

Reliability

Trends
Increased heterogeneity and hardware specialization

Always-on profiling/monitoring on the edge and datacenter
* Primarily used for performance optimizations

Future Work

#1: Using production data to rethink our approach to trustworthiness

#2: Techniques for building more reliable heterogeneous systems!

76

Hardware Security

Trends

Microarchitectural isolation is a recurring problem
Increased intermittent and silent hardware errors'

Future Work

#1: Microarchitectural isolation as a foundational security primitive

77

Hardware Security

Trends
Microarchitectural isolation is a recurring problem
Increased intermittent and silent hardware errors'

Future Work

#1: Microarchitectural isolation as a foundational security primitive

#2: Techniques for eliminating/reducing hardware errors3

78

N o

el B

B

~inlra

= L v,

Efficiency

: Datacenter Efficiency

Whisper [MICRO22] ®

 Twig [MICRO’21] PDede [MICRO’21]
DMon [0SDI21] I-SPY [MICRO’20]

: Ripple [ISCA’21] Huron [PLDI’19] Cntr [ATC’ 18]

Heterogeneous Systems Support

Persistent Memory Indexing [FAST 21]
Optimus [ASPLOS’20]

Systems Security

Architecture PL

Thermometer [ISCA’22] :
_Debugging in the Brave New World [ASPLOS’22]§
:ER [PLDI’21] REPT [OSDI'18]®

Trustworthiness

Failure Reproduction and Analysis
OmniTable [OSDI'22]

Snorlax [SOSP’17]5
Hlppocrates [ASPLOS’21] Agamotto [OSDI’ 20]

Verified Distributed Systems
Sift [ATC’22] IGOR [RTAS'21] 14 [SOSP’ 19]

Hardware Security
MOESI-prime [ISCA’22]

Dolma [SEC'21] NDA [MICRO'19] §
: Foreshadow [SEC’18] ® Morpheus [ASPLOS’19]

