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[1] Kirk Bresniker, World Economic Forum, 2018

Every 2 years, we create 2x 
more data than what we have 

created in all of human history1

Efficiency of computer systems 
needs to catch up

Total cost of poor software 
quality  > $2 Trillion in the US2

Trustworthiness 
(Reliability + Security)

needs to improve
[2] Consortium for Information & Software Quality, 2021 Report 3

Meltdown Spectre Foreshadow



Efficiency Trustworthiness

My Approach
Designing efficient and trustworthy systems 

based on a systematic understanding of program behavior 4
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Datacenter Efficiency

Offline Online

Hardware Security

Failure Reproduction and Analysis

Navigating the efficiency-trustworthiness tension: 

A careful balance between offline and online techniques
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Datacenter Efficiency

Offline Online

Hardware Security

Failure Reproduction and Analysis

Data-driven

optimizations

Lightweight 

profiling

Outline
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Datacenters consume massive energy
• 3% of the global energy, large carbon footprint1

• $35 million/year savings from 1% less work2

Responsiveness impacts revenue
• 400ms delay decreases Google Search users by 0.4%2

• Two second delay on search responses reduces Microsoft 
Bing’s revenue by 4.3%2

[2] Kathryn McKinley , Tail Latency: Beyond Queuing Theory, 2017

[1] Rano Danilak, Why Energy Is A Big And Rapidly Growing Problem For Data Centers?, 2017

9



Profile-Guided Optimizations, PGO
e.g., use a profile of branch traces for reordering code 
to make it cache-friendly 10



Limitations:
Significant hardware modifications
Impractical on-chip space overhead
Limited gains due to on-chip space limits

11
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Profile-Guided 
Software Optimizations

On-Chip Analysis and 
Optimizations



Profile-Guided Software and Hardware Optimizations

13

Online Lightweight Profiling



Profile-Guided Software and Hardware Optimizations

Offline Analysis of 
Profiling Data

Online Lightweight Profiling

Hardware 
Optimizations 

Little/No Hardware 
Modifications

Software 
Optimizations

Performance improvement of up to 90% of the theoretical limit

Little-to-No hardware modifications (Intel  & ARM technology transfer) 14
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Performance Impact of Instruction Cache Misses 
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20-70% performance lost due to large instruction footprint (14-45x I-cache) 16



Why Does Prior Work Fall Short?

D

…

…

…

F

if (cond1)

call  G

G
Instruction
cache miss

prefetch G

17[1] Grant Ayers et al., AsmDB: understanding and mitigating front-end stalls in warehouse-scale computers, ISCA 2019



Why Does Prior Work Fall Short?

D

…

…

…

F

if (cond1)

call  G

G
Instruction
cache miss

prefetch G

A

if (cond1 && cond2)

call  B

…

…

…

call D
B

I-SPY

E

if (!cond1)

call D

Overfitting prefetches based on limited execution information hurts speedup 18



Context-Driven* Conditional Prefetching

D

…

…

…

F

if (cond1)

call  G

G
Instruction
cache miss

prefetch G, [B]

Prefetch only if B was 
executed recently

A

if (cond1 && cond2)

call  B

…

…

…

call D
B

I-SPY

E

if (!cond1)

call D

*Context = Control flow tracked using 
efficient online hardware tracing

4 branches-long context information allows 90% of the speed of an ideal cache 19



I-SPY

20

Context-Driven Conditional Prefetching

• A data-driven optimization powered by offline analysis of profiling information
• Avoids unnecessary prefetches
• Can be implemented with minor hardware support

Achieves 90% of the ideal cache performance
• Outperforms prior work by Google by 22.5%

~ $700 million in savings1

[1] Rano Danilak, Why Energy Is A Big And Rapidly Growing Problem For Data Centers?, 2017
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ISCA’21

MICRO’21

OSDI’21

EuroSys’22

MICRO’21

ISCA’22

MICRO’22

MICRO’22



Awards
VMware Early Career Grant
Intel Rising Star Award
Intel Faculty Awards

• 2017, 2018
Rackham Ph.D. Fellowship

• Tanvir Ahmed Khan
MICRO’22 Best Paper Award

Grants
• NSF, Intel, SRC

Intel1 and ARM2 technology transfer
Collaborations
• ARM
• University of Pennsylvania
• UC Santa Cruz

22

[1] https://patents.google.com/patent/US20210342134A1/en

Datacenter Efficiency

I-SPY [MICRO’20]

Huron [PLDI’19] Cntr [ATC’18]Ripple [ISCA’21]

DMon [OSDI’21]

Twig [MICRO’21] PDede [MICRO’21]

Thermometer [ISCA’22]

[2] https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/arm-neoverse-n1-performance-analysis-methodology
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Outline

Datacenter Efficiency

Offline Online

Hardware Security

Failure Reproduction and Analysis

Data-driven

optimizations

Lightweight 

profiling
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Efficiency Trustworthiness
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Efficiency Trustworthiness
Reliability
Security
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Datacenter Efficiency

Offline Online

Hardware Security

Failure Reproduction and Analysis Selective 

information monitoring

Static & symbolic

program analysis

Data-driven

optimizations

Lightweight 

profiling

Outline



Reproducing failures is difficult, especially for production use cases
27

“Developers can fix a bug if they can reproduce the associated failure”



Memory dump

Last state 
of data in memory

Manual
Failure Reproduction 

Control flow trace

Branches 
monitored for profiling

(profile-guided optimizations)

28



Memory dump

Last state 
of data in memory

Manual
Failure Reproduction 

Navigating the efficiency/trustworthiness tension:
Use branch traces for both optimizations and reproducing failures

+ → REPT & 
Execution Reconstruction

Automatic Failure 
Reproduction

Control flow trace

Branches 
monitored for profiling

(profile-guided optimizations)

29



REPT: Reverse Debugging of Failures in Deployed Software
• Most-widely deployed failure reproduction and analysis system in the world
• Used in ~ 1 billion Microsoft Windows systems

Execution Reconstruction (ER)

• Offline symbolic program analysis
• Online selective hardware monitoring (control and data)
• Reproduces arbitrarily longer executions than what REPT can

REPT and Execution Reconstruction

30

OSDI 2018 
Best Paper Award
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Prior Work vs. Execution Reconstruction (ER) 

Record nothing 
(e.g., symbolic execution)

Record everything

ESD (Execution Synthesis)[2] Mozilla RR (Record Replay)[1]

• high runtime overhead ✖
• great reproducibility ✔• no runtime overhead ✔

• poor reproducibility ✖

[1] Robert O’Callahan et al., Engineering Record and Replay for Deployability, USENIX ATC ‘17
[2] Cristian Zamfir et al. Execution synthesis: a technique for automated software debugging, Eurosys’10
[3] Wei Jin et al., BugRedux: reproducing field failures for in-house debugging, ICSE’12
[4] Weidong Cui et al., REPT: Reverse Debugging of Failures in Deployed Software, OSDI’18

BugRedux[3]REPT[4]

ER (our work)

Existing trade-offs are insufficient to reproduce complex production failures
32



Challenges

Record everything

ER

33

Partial trace

Full failure trace

?
Record nothing 
(e.g., symbolic execution)

OnlineOffline



Background: Symbolic Execution

34

void foo(int x) {

int v[16] = {0};

if (v[x] > 0) {

{v[x] > 0} {v[x] ≤ 0}

Symbolic (unknown)  inputx

Path constraint - 2Path constraint - 1

Program state

Control flow (branches)



Background: Symbolic Execution

35

void foo(int x) {

int v[16] = {0};

if (v[x] > 0) {

{v[x] > 0} {v[x] ≤ 0}

Control flow (branches)

Symbolic (unknown)  inputx

...

if{

...

...

...

...

...

...

...

Program state



Background: Symbolic Execution

36

void foo(int x) {

int v[16] = {0};

if (v[x] > 0) {

{v[x] > 0} {v[x] ≤ 0}

Symbolic (unknown)  inputx

...

if{

...

...

...

...

...

...

// FAILURE

Control flow (branches)

Program state

{{v[x] > 0} ⋀ ... }

SMT
Solving



Background: Symbolic Execution

37

Symbolic (unknown)  inputx

Control flow (branches)

Program state

Challenge #1: 
Path explosion

FAILURE



Shepherded Symbolic Execution

38

Record nothing Record everything

ER

Shepherded
Symbolic Execution

OnlineOffline

Partial trace
(control-flow)

• Avoids path-explosion by following a control flow trace recorded in production
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Symbolic (unknown)  inputx

Control flow (branches)

Program state

Challenge #1: 
Path explosion

FAILURE

Shepherded Symbolic Execution
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Symbolic (unknown)  inputx

Control flow (branches)

Program state

FAILURE

Shepherded Symbolic Execution
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Symbolic (unknown)  inputx

Control flow (branches)

Program state

{{v[x] > 0} ⋀ ... }

SMT
Solving

Challenge #2: 
Constraint solving 

is difficult (NP complete)

FAILURE

SMT Solving is Difficult



Shepherded Symbolic Execution

42

Record nothing Record everything

ER

Shepherded
Symbolic Execution

OnlineOffline

Partial trace
(control-flow)

• Avoids path-explosion by following a control flow trace recorded in production
• Reduces (simplifies) constraints using key data values recorded in production

+
(key data values)

Key question: What data values best simplify constraint solving? 



Constraint Simplification: Intuition

• SMT solving is a hard problem (NP-Complete)

• Observation: reasoning about memory aliasing takes the most time

43

x y

Symbolic Memory

Memory Addresses: x may-alias y

?
?



Hypothesis: Recording addresses can simplify constraint solving

Constraint Simplification: Intuition

• SMT solving is a hard problem (NP-Complete)

• Observation: reasoning about memory aliasing takes the most time

44

x y

Symbolic Memory

Memory Addresses: x may-alias y

?
?
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Constraint Simplification: Example

x y

Write Read

1

int V[256] ;

depends on

Value Dependency

Constant

Address Dependency

Symbolic Input

Expr Operand

Symbolic inputs

1 void foo(int x, int y) {
2  int V[256] = {0};
3  V[x]= 1;
4 ...V[y]...
5 ...
6 }
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Constraint Simplification: Example

x y

Write Read

1

int V[256] ;

Write

Read
1 void foo(int x, int y) {
2  int V[256] = {0};
3  V[x]= 1;
4 ...V[y]...
5 ...
6 }

depends on

Value Dependency

Constant

Address Dependency

Symbolic Input

Expr Operand

Symbolic inputs

PHP-2012-2386 
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may-alias

x y

Write Read

1

Constraint Simplification: Example

int V[256] ;

Write

Read



Record the runtime value of       as

48

Constraint Simplification: Example

x y

Write Read

1

int V[256] ;

x x’

Write

Read



Record the runtime value of       as

49

Constraint Simplification: Example

x y

Write Read

1

int V[256] ;

x’

Write

Read

Write

Read

x x’



Record the runtime value of       as

50

Constraint Simplification: Example

x y

Write Read

1

int V[256] ;

x’ int V’[256] ;

y

Read

Write

Read

Write

Read

x x’



Constraint Simplification: Heuristics

Record “key” symbolic memory addresses, which are used in:
• The longest symbolic write chain
• The write chain that accesses the largest symbolic memory object

51

WriteV1[4] Write Write Write Write Read

V2[4] Write Read V3[512] Write Read

Record!



Constraint Simplification: Heuristics

Record “key” symbolic memory addresses, which are used in:
• The longest symbolic write chain
• The write chain that accesses the largest symbolic memory object

52

WriteV1[4] Write Write Write Write Read

V2[4] Write Read V3[512] Write Read

Record!

Record!Leave to 
solver



Execution Reconstruction Summary

53

Done!

In-production Tracing Engine (Online) Analysis Engine (Offline)

Application + 
Hardware Tracing

FAILURE

Shepherded
Symbolic Execution

Send control-flow trace1

Successfully reproduces 
the failure? Yes



Execution Reconstruction Summary

54

Done!

In-production Tracing Engine (Online) Analysis Engine (Offline)

Application + 
Hardware Tracing

FAILURE

Shepherded
Symbolic Execution

Send control-flow trace1

Constraint Simplification

Successfully reproduces 
the failure? Yes

No

Ask for more key data 
(addresses) to be recorded

2

(+“key” addresses)



REPT

55

vs

Control Flow 

ER

+ 

Key Data Values (Addresses)

Reproduces O(104)

instructions

Reproduces O(107)

instructions

Records



Execution Reconstruction – Results

Eliminates path explosion & simplifies constraint solving
• By recording control flow and key data values

Can reproduce failures in complex, long-running executions
• 1000x longer than REPT (deployed in Windows), without recording a longer trace
• Requires only 3.5 reoccurrences on average per failure

0.3% runtime performance overhead

56



Awards
NSF CAREER Award
Microsoft Research Faculty Fellowship
Google Faculty Award

• 2019, 2021
Microsoft Research PhD Fellowship

• Andrew Quinn
NSF Graduate Research Fellowship

• Andrew Loveless, Andrew Quinn
Towner Prize

• Ian Neal
OSDI Best Paper Award
IEEE MICRO Top Pick Honorable Mention

Grants
NSF, SRC, Google

Collaborations
UT Austin, KAIST, Intel

Real-world deployment in Windows
~1 billion systems

Adoption at Meta1, Intel
57[1] https://engineering.fb.com/2021/04/27/developer-tools/reverse-debugging/

Snorlax [SOSP’17]

Hippocrates [ASPLOS’21] Agamotto [OSDI’20]

REPT [OSDI’18]ER [PLDI’21]

Failure Reproduction and Analysis

Debugging in the Brave New World [ASPLOS’22]

OmniTable [OSDI’22]

https://engineering.fb.com/2021/04/27/developer-tools/reverse-debugging/
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Datacenter Efficiency

Offline Online

Hardware Security

Failure Reproduction and Analysis Selective 

information monitoring

Static & symbolic

program analysis

Data-driven

optimizations

Lightweight 

profiling

Outline
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Efficiency Trustworthiness
Reliability
Security
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Datacenter Efficiency

Offline Online

Hardware Security

Failure Reproduction and Analysis Selective 

information monitoring

Static & symbolic

program analysis

Data-driven

optimizations

Lightweight 

profiling

Outline

Threat model-

specific defenses

Classification 

of attacks



Foreshadow bypasses the virtual memory abstraction:
A VM in the Cloud can leak secrets from someone else’s VM 61

IEEE MICRO
Top Pick

USENIX
Security’18



Cache

Side Channels

Prior work: Eliminating access 
to a specific channel

secret

secret

…

…

…

BTB

We reported the first 
non-cache microarchitectural 

attack to Intel

Prior defenses were channel-specific 62



Principled and Comprehensive Defenses

Cache

BTB

…

…

…

Side Channels

secret

secret

Our approach: Eliminate attacks at their 
source by reasoning about information 
flow and stopping secret propagation

Navigating the efficiency/trustworthiness tension: defenses tailored to threats

Prior work: Eliminating access 
to a specific channel

63
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IEEE Micro Top-Pick
Honorable Mention

MICRO’19



NDA’s Key Insight

Speculative execution attacks require a chain of 

dependent instructions to access and transmit secrets. 

65

By controlling data propagation, NDA can break these dependency
chains, thwarting the code sequences required to mount attacks.



Analysis of Attacks: A Chain of Dependent Instructions 

66

I) Access Phase 

II) Transmit Phase 
e.g., via the cache

III) Recover Phase 
using timing 

measurements

During speculation

After speculation



Analysis of Attacks: A Chain of Dependent Instructions 

67

NDA can break the chain of

dependent instructions

Only “unsafe’’ instructions are not allowed to speculatively transmit secrets

I) Access Phase 

II) Transmit Phase 
e.g., via the cache

III) Recover Phase 
using timing 

measurements



Unsafe Instructions: A Threat-Model-Centric View

Branch
(e.g., jmp, call)

1

Access
Transmit

Speculation

Steer control2

Spectre-like attacks

3Recover

68



Unsafe Instructions: A Threat-Model-Centric View

Branch
(e.g., jmp, call)

1

Fault handler
3

Speculation

Transmit

1

Access
Transmit

Speculation

Steer control2

Spectre-like attacks Meltdown-like attacks

3Recover

In Spectre-like attacks, instructions after 

a branch are potentially unsafe

In Meltdown-like attacks, all loads are 

potentially unsafe 69

Recover

Access
(Speculative Load)



During speculation, NDA:
• Allows the execution of unsafe instructions (access) 
• Disallows broadcasting the effects of unsafe instructions (transmission) 

Much lower overhead than in-order execution (4.8x)
• 10.7% overhead against Spectre-like attacks 
• 36.1% overhead against Meltdown-like attacks

More comprehensive security than channel-specific defenses
• Protection against existing and future side-channels

NDA - Summary

70



Awards
Facebook Fellowship

• Marina Minkin
NSF Graduate Research Fellowship

• Kevin Loughlin
Google Fellowship

• Kevin Loughlin
IEEE MICRO Top Pick 
IEEE MICRO Top Pick Honorable Mention 

Grants
DARPA, ONR

Collaborations
Microsoft, KU Leuven, Technion,   University 
of Adelaide

Improved cloud security
Processor upgrades and patches

71

Morpheus [ASPLOS’19]

Dolma [SEC’21] NDA [MICRO’19]

Foreshadow [SEC’18]

Hardware Security
MOESI-prime [ISCA’22]



Future Work

Exploring emerging computer systems problems 

through the lens of computer architecture, programming languages, and security 72

GPUs

CPUs
TEE

Data trends will continue driving 
software complexity up

Increased heterogeneity, new interconnects, 
and more edge devices will bring entirely new 

efficiency and trustworthiness challenges



Data Center Efficiency

Increasing memory, compute, and interconnect heterogeneity

• Multi-tier memory, specialized hardware, diverse interconnects

73

#1: Rethinking profile-guided optimizations (via HW/SW co-design) 

for heterogeneous systems

Trends

Future Work



Data Center Efficiency

Increasing memory, compute, and interconnect heterogeneity

• Multi-tier memory, specialized hardware, diverse interconnects

74

#1: Rethinking profile-guided optimizations (via HW/SW co-design) 

for heterogeneous systems

Trends

Future Work

#2: Designing new systems abstractions for resource management 

in a disaggregated environment



Reliability

Increased heterogeneity and hardware specialization

Always-on profiling/monitoring on the edge and datacenter

• Primarily used for performance optimizations

75

Trends

Future Work
#1: Using production data to rethink our approach to trustworthiness



Reliability

76

Trends

Future Work
#1: Using production data to rethink our approach to trustworthiness

#2: Techniques for building more reliable heterogeneous systems1

[1] Debugging in the Brave New World of Reconfigurable Hardware. Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Andrew 
Quinn, Baris Kasikci. ASPLOS 2022

Increased heterogeneity and hardware specialization

Always-on profiling/monitoring on the edge and datacenter

• Primarily used for performance optimizations



Hardware Security

Microarchitectural isolation is a recurring problem

Increased intermittent and silent hardware errors1,2

77

Trends

Future Work
#1: Microarchitectural isolation as a foundational security primitive

[1] Cores That Don’t Count, Peter H. Hochschild Paul Jack Turner Jeffrey C. Mogul Rama Krishna Govindaraju Parthasarathy 
Ranganathan David E Culler Amin Vahdat Proc. HotOS 2021
[2] Silent Data Corruptions at Scale, Harish Dattatraya Dixit, Sneha Pendharkar, Matt Beadon, Chris Mason, Tejasvi
Chakravarthy, Bharath Muthiah, Sriram Sankar, Arxiv, 2021



Hardware Security

Microarchitectural isolation is a recurring problem

Increased intermittent and silent hardware errors1,2

78

Trends

Future Work
#1: Microarchitectural isolation as a foundational security primitive

#2: Techniques for eliminating/reducing hardware errors3

[1] Cores That Don’t Count, Peter H. Hochschild Paul Jack Turner Jeffrey C. Mogul Rama Krishna Govindaraju Parthasarathy 
Ranganathan David E Culler Amin Vahdat Proc. HotOS 2021
[2] Silent Data Corruptions at Scale, Harish Dattatraya Dixit, Sneha Pendharkar, Matt Beadon, Chris Mason, Tejasvi
Chakravarthy, Bharath Muthiah, Sriram Sankar, Arxiv, 2021
[3] Preventing Coherence-Induced Hammering in Commodity Workloads. Kevin Loughlin, Stefan Saroiu, Alec Wollman, Yatin
Manerkar, Baris Kasikci, ISCA’22
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