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1. Replicate your data
2. Make each replica execute an identical operation log
3. Use consensus protocol to agree on logs
4. Make it Byzantine fault-tolerant
5. Make it so anyone can participate
6. Add arbitrary computations with costs

A recipe for a robust distributed service



What are the problems?
• Correctness:

arbitrary replicated computations 
(aka smart contracts) can be buggy
and allow for exploits

Examples:
- DAO reentrancy attack
- Parity Multi-Sig Wallet hack

100s of papers published since 2016 on
verification and vulnerability detection

• Scalability:
consensus protocols are slow
due to decentralization; no advantage 
from inherent distributed parallelism

Examples:
- Ethereum only handles 11 TPS
- A single popular decentralised 
application (e.g., CryptoKitties) can cause 
congestion of the system



Scaling bottlenecks: 
state and execution

user transactions

network nodes

adding more nodes does 
not increase throughput
OR allow more state to 

be stored

each node stores 
the entire state

each node 
executes every 

transaction
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• Ethereum’s head state size was ~130 GB as of Nov 2021[1]

• For best performance, this needs to be kept in RAM
• In practice, it is disk-based (NVME SSD) with caching in memory:

• AFAIK, most of the time spent processing an Ethereum transaction is spent on disk I/O

• Increasing node hardware requirements decreases decentralisation
• Solana validators already need >> 256 GB of RAM and 1 Gbps network

• In monolithic architectures, transaction execution throughput is 
limited by the capacity of the least performant node in the network

[1] https://twitter.com/peter_szilagyi/status/1460202014919569410
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Scaling bottlenecks: 
state and execution

https://twitter.com/peter_szilagyi/status/1460202014919569410


Scaling Blockchains: State of the Art

• Layer 1 solutions
Revise the rules of the consensus protocol to increase the throughput

• Changing Proof-of-Work to Proof-of-Stake
• Parallelism via sharding

• Layer 2 solutions
Adding auxiliary protocols to offload transaction processing

• Nested blockchains: the main chain stores results of side-chain transactions
• Off-chain executions via zkSNARKs and optimistic roll-ups
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shard 2 nodesshard 1 nodes shard 3 nodes

each shard 
executes a subset 

of transactions

Sharding
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Look at the contract’s code
to learn how to shard it!

Balances:
Alice: 10
Bob: 25
Charlie: 12

Transitions:
BuyTokens()
Transfer()

MyToken
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Smart Contract Sharding

with Static Program Analysis

technique we are applying

problem we are working on

Ownership

Commutativity
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• Verification and Validation
• Without running a program, soundly prove the absence of bugs… 

(e.g., Astrée Static Analyzer)
• …or soundly show their presence 

(e.g., Coverity, FindBugs, Infer/RacerD/Pulse(X))

• Uncovering opportunities for program optimization
• Constant propagation, function inlining, static method dispatch

(e.g., any optimizing compiler)
• Automated parallelization
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Goals of Static Program Analysis



Formal reasoning
for scalability,

not just verification

Smart Contract Sharding with Static Program Analysis

≈

1

2
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Balances:
Alice: 10
Bob: 25
Charlie: 12

Transitions:
BuyTokens(amount, buyer)  
Transfer(amount, from, to)

MyToken
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shard 2shard 1 shard 3

Alice: 11 Bob: 25 Charlie: 12

BuyTokens(5, Alice)  BuyTokens(3, Charlie)  

ownership analysis

BuyTokens(amount, buyer)  
Alice: 1

Bob: 25

Charlie: 12
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shard 2shard 1 shard 3

Alice: 11 Bob: 25 Charlie: 12

Transfer(5, Alice, Bob)  

Alice: 6

Bob: +5

Transfer(3, Charlie, Bob)  Bob: +3

Charlie: 9

Bob: +8

Bob: 33

commutativity analysis

Alice: 11 Charlie: 12Bob: 25

=
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CoSplit
Static Program Analysis

for 
Smart Contract Sharding
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+
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Two key features:

• Clearly separates computation from communication
• message-passing rather than method calls for contract interaction

• Strict distinction between pure and effectul computations
• Scilla has a small imperative fragment with conditionals but without loops
• Only pure (non-effectful) recursion is allowed

static analysis can 
be quite precise
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1 transition Transfer(to: Address, amount: Uint)
2 from_bal <- balances[_sender];
3 match from_bal with
4 | Some bal =>
5 match amount ≤ bal with
6 | True =>
7 new_from_bal = builtin sub bal amount;
8 balances[_sender] := new_from_bal;
9 to_bal <- balances[to];

10 new_to_bal = match to_bal with
11 | Some bal => builtin add bal amount
12 | None => amount
13 end;
14 balances[to] := new_to_bal

field balances: Map Address Uint
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Static analysis for transition effects

• Ownership: produce an effect summary for every transition
• Effects include: reads, writes, accepting funds, sending messages, 

conditioning on values derived from mutable fields
• The effect summary over-approximates the behaviour of the transition
• Loosely inspired by Concurrent Separation Logic

• Commutativity: linearity-aware flows-to analysis
• Effects of monotone operations, which use a field just once, commute
• Inspired by GHC’s cardinality analysis (POPL’14)
• Expressed as a type system for “contribution types”

• compositional, but sometimes gives uninformative types
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Write(balances[to],
{(balances[to], Linear, add),

(amount, Linear, add)})

Read(balances[to])

Write(balances[_sender],
{(balances[_sender], Linear, sub),

(amount, Linear, sub)})

{(balances[_sender], Linear, sub),
(amount, Linear, sub)}

Condition(balances[_sender], amount)
(balances[_sender], Linear, Ø) 
Condition(balances[_sender])

Read(balances[_sender])
1 transition Transfer(to: Address, amount: Uint)
2 from_bal <- balances[_sender];
3 match from_bal with
4 | Some bal =>
5 match amount ≤ bal with
6 | True =>
7 new_from_bal = builtin sub bal amount;
8 balances[_sender] := new_from_bal;
9 to_bal <- balances[to];

10 new_to_bal = match to_bal with
11 | Some bal => builtin add bal amount
12 | None => amount
13 end;
14 balances[to] := new_to_bal
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Write(balances[to],
{(balances[to], Linear, add),

(amount, Linear, add)})

Read(balances[to])

Write(balances[_sender],
{(balances[_sender], Linear, sub),

(amount, Linear, sub)})

Condition(balances[_sender], amount)

Condition(balances[_sender])

Read(balances[_sender])

Owns(balances[_sender])

NoAliases(<_sender, to>)

OwnOverwrite join for owned contributions
IntMerge join for un-owned contributions

Weak reads
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Integration
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A sharded blockchain design
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1. Run the static analysis when the contract is first deployed
2. Store the resulting sharding signature

= set of transition constraints + join instructions for each field in the contract

3. When processing a transaction, solve the constraints to determine 
which shard(s) the transaction can be processed by
• if the constraints have no solution, must process sequentially/cross-shard

4. After parallel processing, merge (join) state contributions from 
shards before sequential transactions are processed
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Integrating CoSplit
with Zilliqa



Evaluation
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Static Overheads
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Throughput: Transactions per Second



• Currently no support for sharding multi-contract transactions
• We would need to somehow combine the signatures from multiple contracts

• Some contracts require simple rewriting to be shardable
• An opportunity for program repair
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Limitations and Discussion



transition transfer(to: ByStr20, tokenId: Uint256)

getTokenOwner <- tokenOwners[tokenId];

match getTokenOwner with

| None => throw

| Some tokenOwner =>

isOwner = builtin eq _sender tokenOwner;

(* … *)

getOperatorStatus <-

operatorApprovals[tokenOwner][_sender];

(* … *)

tokenOwners[tokenId] := to;

transition transfer(tokenOwner: ByStr20,

to: ByStr20, tokenId: Uint256)

getTokenOwner <- tokenOwners[tokenId];

match getTokenOwner with

| None => throw

| Some actual =>

isCorrectOwner = builtin eq tokenOwner actual;

match isCorrectOwner with

| False => throw

| True =>

isOwner = builtin eq _sender tokenOwner;

(* … *)

getOperatorStatus <-

operatorApprovals[tokenOwner][_sender];

(* … *)

tokenOwners[tokenId] := to;
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Limitations and Discussion

• Currently no support for sharding multi-contract transactions
• We would need to somehow combine the signatures from multiple contracts

• Some contracts require simple rewriting to be shardable
• An opportunity for program repair

• Some programming languages (e.g., Move or Solana’s Rust dialect) 
might be even better targets for sharding analysis

• one can also ask the programmer for ownership/commutativity annotations



Conclusion: What this talk was about

41

a parallelising compiler
for blockchains



To Take Away
• Sharding is a solution to the blockchain 

scalability problem

• Some smart contract logic can be sharded 
(i.e., executed in parallel)

• We developed static analysis to soundly 
determine sharding conditions 
for smart contracts

• The technique has been integrated into 
real-world blockchain and gave
observable increase in the throughput 

Thanks!
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