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Replicate your data
Make each replica execute an identical operation log

Use consensus protocol to agree on logs
Make it Byzantine fault-tolerant
Make it so anyone can participate
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Make each replica execute an identical operation log
Use consensus protocol to agree on logs

Make it Byzantine fault-tolerant
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What are the problems?

® Correctness:
arbitrary replicated computations

(aka smart contracts) can be buggy »
and allow for exploits

® Scalability:
consensus protocols are slow
due to decentralization; no advantage »
from inherent distributed parallelism

Examples:
- DAO reentrancy attack
- Parity Multi-Sig Wallet hack

100s of papers published since 2016 on
verification and vulnerability detection

Examples:

- Ethereum only handles 11 TPS

- A single popular decentralised
application (e.g., CryptoKitties) can cause
congestion of the system



Scaling bottlenecks: eachnode .
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[1] https://twitter.com/peter szilagyi/status/1460202014919569410

Scaling bottlenecks:
state and execution

* Ethereum’s head state size was ~130 GB as of Nov 20211

* For best performance, this needs to be kept in RAM

* In practice, it is disk-based (NVME SSD) with caching in memory:
* AFAIK, most of the time spent processing an Ethereum transaction is spent on disk 1/0

* Increasing node hardware requirements decreases decentralisation
» Solana validators already need >> 256 GB of RAM and 1 Gbps network

* In monolithic architectures, transaction execution throughput is
limited by the capacity of the least performant node in the network


https://twitter.com/peter_szilagyi/status/1460202014919569410

Scaling Blockchains: State of the Art

e Layer 1 solutions
Revise the rules of the consensus protocol to increase the throughput

* Changing Proof-of-Work to Proof-of-Stake
 Parallelism via|sharding

* Layer 2 solutions
Adding auxiliary protocols to offload transaction processing
* Nested blockchains: the main chain stores results of side-chain transactions
* Off-chain executions via zZkSNARKs and optimistic roll-ups



Sharding

shard 1 nodes

each shard
executes a subset
of transactions

shard 2 nodes
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Look at the contract’s code
to learn how to shard it!

MMMMMMM

B Balances:
F Alice: 10

e Transitions:
...............................
..............................



/ problem we are working on

Smart Contract Sharding

with Static Program Analysis ~

\ \ Commutativity

technique we are applying
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Goals of Static Program Analysis

of Program
- Analysis

e Verification and Validation

* Without running a program, soundly prove the absence of bugs...
(e.g., Astrée Static Analyzer)

e ...or soundly show their presence
(e.g., Coverity, FindBugs, Infer/RacerD/Pulse(X))

* Uncovering opportunities for program optimization

* Constant propagation, function inlining, static method dispatch
(e.g., any optimizing compiler)
* Automated parallelization
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| MyToken

Balances:
2 Alice: 10
A Bob: 25

/o
2 Charlie: 12

Transitions:
BuyTokens (amount, buyer)
Transfer(amount, from, to)

20



@ BuyTokens (amount, buyer)
Alice: 1 .
BuyTokens(5, Alice) BuyTokens (3, Charlie)

/e

@ Bob: 25 y/
®
\A Bob: 25 @

(\f@ Alice: 11 m Charlie: 12
m Charlie: 12

ownership analysis

shard 1 shard 2 shard 3



Bob: +5

Transfer(5, Alice, Bob) Bob: +3 Transfer(3, Charlie, Bob)
= Bob: +8
% &
(AJ\W ~Alice: 11 ‘T;\‘ Bob:—25 rﬂrh] Charlie: 12
Alice: 6 Bob: 33 Charlie: 9

commutativity analysis

shard 1 shard 2 shard 3



CoSplit

Static Program Analysis
for
Smart Contract Sharding
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Safer Smart Contract Programming with SciLLA
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Two key features:

* Clearly separates computation from communication
* message-passing rather than method calls for contract interaction

e Strict distinction between pure and effectul computations

 Scilla has a small imperative fragment with conditionals but without loops static analysis can
* Only pure (non-effectful) recursion is allowed be quite precise
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field balances: Map

transition Transfer(to: , amount:
from_bal <- balances[ sender];
match from bal with
| Some bal =>
match amount < bal with

| True =>
new from bal = builtin sub bal amount;
balances[ _sender] := new_from_bal;

to bal <- balances[to];

new to bal = match to bal with

| Some bal => builtin add bal amount
| None => amount

end;

balances[to] := new_to bal

26



Static analysis for transition effects

* Ownership: produce an effect summary for every transition

 Effects include: reads, writes, accepting funds, sending messages,
conditioning on values derived from mutable fields

* The effect summary over-approximates the behaviour of the transition
* Loosely inspired by Concurrent Separation Logic

 Commutativity: linearity-aware flows-to analysis
 Effects of monotone operations, which use a field just once, commute
* Inspired by GHC's cardinality analysis (POPL'14)

* Expressed as a type system for “contribution types”
e compositional, but sometimes gives uninformative types



Constant X,y constant contract field or transition parameter
Mutable f  mutable field or map-field access via parameter

Contrib. src.  c¢s=x|f
Cardinality card ::= None | Linear | NonLinear

Operation op =4+ |—|x%x]|...

Abstr. expr. e::=T | (cs,card,op)

Effect € ::= Read(f) | Write(f,e) | AcceptFunds |
Condition(e) | Event(e) | SendMsg(e) | T



transition Transfer(to: , amount: )
from_bal <- balances[_ sender]; Read(balances[_sender])

match from_bal with Condition(balances[_sender])

| Some bal => (balances[_sender], Linear, @)

match amount < bal with Condition(balances[ _sender], amount)

| True => {(balances[ sender], Linear, sub),
new from bal = builtin sub bal amount; (amount, Linear, sub)}
balances[ _sender] := new_from bal; Write(balances[_sender],
to bal <- balances[to]; {(balances[_sender], Linear, sub),
new_to bal = match to_bal with (amount, Linear, sub)})
| Some bal => builtin add bal amount Read(balances[to])
| None => amount
end;
balances[to] := new to bal Write(balances[to],

{(balances[to], Linear, add),
(amount, Linear, add)})

29



Constraint oc ::= Owns(f) | UserAddr(x) | NoAliases((x,y)) |
SenderShard | ContractShard | L



Constraint oc ::= Owns(f) | UserAddr(x) | NoAliases({x,y)) |
SenderShard | ContractShard | L
Join Wf ::= OwnOverwrite | IntMerge

Weak reads

Owns(balances[_sender])

NoAliases(<_sender, to>)

OwnOverwrite join for owned contributions
IntMerge join for un-owned contributions

Read(balances[_sender])
Condition(balances[_sender])
Condition(balances[_sender], amount)

Write(balances[ sender],
{(balances[_sender], Linear, sub),
(amount, Linear, sub)})

Read(balances[to])

Write(balances[to],
{(balances][to], Linear, add),
(amount, Linear, add)})

31
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A sharded blockchain design

DS Committee

MB4

MB+, MB>, MB3 clle
SDs| zilliga
MB3 FSD
SD3 \
N —
Shards
L J \ J . J . v,

' ™ s ™ 'S ~ s ~
\_ / \_ y \[ ] . / \_ J)

MB:2
SD2

MB 1
SD1

MBs3
SDs3

Vi

X1, txo, tX3 txs, txs, tXe [ > X7, txs, tXo

33



Integrating CoSplit |

...................................................................

|

| Contract Sharding | [Shd_git
Wlth ZIHlC d : | Analyser summary Query Solver | : (‘oc, W)

4.

............................................................

Contract C Transitions to be sharded}

. {’7’1,7’2,...}

-

Run the static analysis when the contract is first deployed

Store the resulting sharding signature
= set of transition constraints + join instructions for each field in the contract

When processing a transaction, solve the constraints to determine
which shard(s) the transaction can be processed by

e if the constraints have no solution, must process sequentially/cross-shard

After parallel processing, merge (join) state contributions from
shards before sequential transactions are processed
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Throughput: Transactions per Second
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Limitations and Discussion

* Currently no support for sharding multi-contract transactions
* We would need to somehow combine the signatures from multiple contracts

* Some contracts require simple rewriting to be shardable
* An opportunity for program repair



transition transfer(to: ByStr20, tokenId: Uint256)
getTokenOwner <- tokenOwners[tokenId];
match getTokenOwner with
| None => throw
| Some tokenOwner =>
isOwner = builtin eq _sender tokenOwner;
(* .. %)
getOperatorStatus <-
operatorApprovals[tokenOwner][_sender];
(* .. %)

tokenOwners[tokenId] := to;

transition transfer(tokenOwner: ByStr20,
to: ByStr20, tokenId: Uint256)
getTokenOwner <- tokenOwners[tokenId];
match getTokenOwner with
| None => throw
| Some actual =>
isCorrectOwner = builtin eq tokenOwner actual;
match isCorrectOwner with
| False => throw
| True =>
isOwner = builtin eq _sender tokenOwner;
(% o v
getOperatorStatus <-
operatorApprovals[tokenOwner][ _sender];
(% o )

tokenOwners|[tokenId] := to;

39



Limitations and Discussion

* Some programming languages (e.g., Move or Solana’s Rust dialect)
might be even better targets for sharding analysis

* one can also ask the programmer for ownership/commutativity annotations



Conclusion: What this talk was about

a parallelising compiler
for blockchains
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Abstract

Sharding is a popular way to achieve scalability in blockchain
protocols, increasing their throughput by partitioning the set
of transaction validators into a number of smaller commit-
tees, splitting the workload. Existing approaches for block-
chain sharding, however, do not scale well when concurrent
transactions alter the same replicated state component—a
common scenario in Ethereum-style smart contracts.

‘We propose a novel approach for efficiently sharding such
transactions. It is based on a folklore idea: state-manipulating
atomic operations that commute can be processed in parallel,
with their cumulative result defined deterministically, while
executing non-commuting operations requires one to own
the state they alter. We present CoSpLIT—a static program
analysis tool that soundly infers ownership and commutativ-
ity summaries for smart contracts and translates those sum-
maries to sharding signatures that are used by the blockchain
protocol to maximise parallelism. Our evaluation shows that
using CoSerrT introduces negligible overhead to the trans-
action validation cost, while the inferred signatures allow
the system to achieve a significant increase in transaction
processing throughput for real-world smart contracts.

CCS Concepts: « Computing methodologies — Distri-
buted programming languages.
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1 Introduction

The idea of Nakamoto consensus (aka blockchain) has been
instrumental for enabling decentralised digital currencies,
such as Bitcoin [48]. The applications of blockchains have fur-
ther expanded with the wide-spread adoption of smart con-
tracts [62]—self-enforcing, self-executing protocols govern-
ing an interaction between several mutually distrusting par-
ties. The Ethereum blockchain has provided a versatile frame-
work for defining smart contracts as blockchain-replicated
stateful objects identified by their account numbers [65].

The open and decentralised nature of Nakamoto consen-
sus comes at the price of throughput scalability. At a high
level, in order for a sequence of transactions (so-called block)
to be agreed upon system-wide, the system’s participants
(so-called miners) have to validate those transactions, with
each miner executing them individually [4]. As a result,
the throughput of blockchain systems such as Bitcoin and
Ethereum does not improve, and even slightly deteriorates,
as more participants join the system: Biteoin currently pro-
cesses up to 7 transactions per second, while Ethereum’s
throughput is around 18 transactions per second. Even worse,
popular smart contracts may cause high congestion, forcing
protocol participants to exclusively process transactions spe-
cific to those contracts. This phenomenon has been frequent
in Ethereum: in the past, multiple ICOs (Initial Coin Offer-
ing, a form of a crowdfunding contract) and games, such
as CryptoKitties, have rendered the system useless for any
other purposes for noticeable periods of time [14].

Sharding in Blockchains. One of the most promising
approaches to increase blockchain throughput is to split the
set of miners into a number of smaller committees, so they
can process incoming transactions in parallel, subsequently
achieving a global agreement via an additional consensus
mechanism—an idea known as sharding. Sharding transac-
tion executions, as well as sharding the replicated state,
has been an active research topic recently, both in indus-
try [23, 30,39, 51, 60, 64, 67] and academia [1, 17, 36, 45, 66].

Many of those works focus exclusively on sharding the
simplest kind of transactions—user-to-user transfers of digital
funds,—which are paramount in blockchain-based cryptocur-
rencies, while ignoring sharding of smart contracts [36, 45,
66, 67]. Existing proposals tackling smart contracts impose

1327

* Sharding is a solution to the blockchain
scalability problem

 Some smart contract logic can be sharded
i.e., executed in parallel)

* We developed static analysis to soundly
determine sharding conditions
for smart contracts

* The technique has been integrated into
real-world blockchain and gave
observable increase in the throughput

Thanks!
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