
Practical Smart Contract Sharding
with

Static Program Analysis

Ilya Sergey

7 October 2022

Workshop on Dependable and Secure Software Systems 2022

A recipe for a robust distributed service

A recipe for a robust distributed service

1. Replicate your data

1. Replicate your data
2. Make each replica execute an identical operation log

A recipe for a robust distributed service

1. Replicate your data
2. Make each replica execute an identical operation log
3. Use consensus protocol to agree on logs

A recipe for a robust distributed service

1. Replicate your data
2. Make each replica execute an identical operation log
3. Use consensus protocol to agree on logs
4. Make it Byzantine fault-tolerant

A recipe for a robust distributed service

1. Replicate your data
2. Make each replica execute an identical operation log
3. Use consensus protocol to agree on logs
4. Make it Byzantine fault-tolerant
5. Make it so anyone can participate

A recipe for a robust distributed service

1. Replicate your data
2. Make each replica execute an identical operation log
3. Use consensus protocol to agree on logs
4. Make it Byzantine fault-tolerant
5. Make it so anyone can participate
6. Add arbitrary computations with costs

A recipe for a robust distributed service

What are the problems?
• Correctness:

arbitrary replicated computations
(aka smart contracts) can be buggy
and allow for exploits

Examples:
- DAO reentrancy attack
- Parity Multi-Sig Wallet hack

100s of papers published since 2016 on
verification and vulnerability detection

• Scalability:
consensus protocols are slow
due to decentralization; no advantage
from inherent distributed parallelism

Examples:
- Ethereum only handles 11 TPS
- A single popular decentralised
application (e.g., CryptoKitties) can cause
congestion of the system

Scaling bottlenecks:
state and execution

user transactions

network nodes

adding more nodes does
not increase throughput
OR allow more state to

be stored

each node stores
the entire state

each node
executes every

transaction

10

• Ethereum’s head state size was ~130 GB as of Nov 2021[1]

• For best performance, this needs to be kept in RAM
• In practice, it is disk-based (NVME SSD) with caching in memory:

• AFAIK, most of the time spent processing an Ethereum transaction is spent on disk I/O

• Increasing node hardware requirements decreases decentralisation
• Solana validators already need >> 256 GB of RAM and 1 Gbps network

• In monolithic architectures, transaction execution throughput is
limited by the capacity of the least performant node in the network

[1] https://twitter.com/peter_szilagyi/status/1460202014919569410

11

Scaling bottlenecks:
state and execution

https://twitter.com/peter_szilagyi/status/1460202014919569410

Scaling Blockchains: State of the Art

• Layer 1 solutions
Revise the rules of the consensus protocol to increase the throughput

• Changing Proof-of-Work to Proof-of-Stake
• Parallelism via sharding

• Layer 2 solutions
Adding auxiliary protocols to offload transaction processing

• Nested blockchains: the main chain stores results of side-chain transactions
• Off-chain executions via zkSNARKs and optimistic roll-ups

12

shard 2 nodesshard 1 nodes shard 3 nodes

each shard
executes a subset

of transactions

Sharding

13

shard 2 nodesshard 1 nodes shard 3 nodes

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

MyToken

14

shard 2 nodesshard 1 nodes shard 3 nodes

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

MyToken

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

MyToken

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

MyToken

15

Look at the contract’s code
to learn how to shard it!

Balances:
Alice: 10
Bob: 25
Charlie: 12

Transitions:
BuyTokens()
Transfer()

MyToken

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

....................

MyToken

16

Smart Contract Sharding

with Static Program Analysis

technique we are applying

problem we are working on

Ownership

Commutativity

17

• Verification and Validation
• Without running a program, soundly prove the absence of bugs…

(e.g., Astrée Static Analyzer)
• …or soundly show their presence

(e.g., Coverity, FindBugs, Infer/RacerD/Pulse(X))

• Uncovering opportunities for program optimization
• Constant propagation, function inlining, static method dispatch

(e.g., any optimizing compiler)
• Automated parallelization

18

Goals of Static Program Analysis

Formal reasoning
for scalability,

not just verification

Smart Contract Sharding with Static Program Analysis

≈

1

2

19

Balances:
Alice: 10
Bob: 25
Charlie: 12

Transitions:
BuyTokens(amount, buyer)
Transfer(amount, from, to)

MyToken

20

shard 2shard 1 shard 3

Alice: 11 Bob: 25 Charlie: 12

BuyTokens(5, Alice) BuyTokens(3, Charlie)

ownership analysis

BuyTokens(amount, buyer)
Alice: 1

Bob: 25

Charlie: 12

21

shard 2shard 1 shard 3

Alice: 11 Bob: 25 Charlie: 12

Transfer(5, Alice, Bob)

Alice: 6

Bob: +5

Transfer(3, Charlie, Bob) Bob: +3

Charlie: 9

Bob: +8

Bob: 33

commutativity analysis

Alice: 11 Charlie: 12Bob: 25

=

22

CoSplit
Static Program Analysis

for
Smart Contract Sharding

23

+

24

Two key features:

• Clearly separates computation from communication
• message-passing rather than method calls for contract interaction

• Strict distinction between pure and effectul computations
• Scilla has a small imperative fragment with conditionals but without loops
• Only pure (non-effectful) recursion is allowed

static analysis can
be quite precise

25

OOPSLA’19

1 transition Transfer(to: Address, amount: Uint)
2 from_bal <- balances[_sender];
3 match from_bal with
4 | Some bal =>
5 match amount ≤ bal with
6 | True =>
7 new_from_bal = builtin sub bal amount;
8 balances[_sender] := new_from_bal;
9 to_bal <- balances[to];

10 new_to_bal = match to_bal with
11 | Some bal => builtin add bal amount
12 | None => amount
13 end;
14 balances[to] := new_to_bal

field balances: Map Address Uint

26

Static analysis for transition effects

• Ownership: produce an effect summary for every transition
• Effects include: reads, writes, accepting funds, sending messages,

conditioning on values derived from mutable fields
• The effect summary over-approximates the behaviour of the transition
• Loosely inspired by Concurrent Separation Logic

• Commutativity: linearity-aware flows-to analysis
• Effects of monotone operations, which use a field just once, commute
• Inspired by GHC’s cardinality analysis (POPL’14)
• Expressed as a type system for “contribution types”

• compositional, but sometimes gives uninformative types

27

28

Write(balances[to],
{(balances[to], Linear, add),

(amount, Linear, add)})

Read(balances[to])

Write(balances[_sender],
{(balances[_sender], Linear, sub),

(amount, Linear, sub)})

{(balances[_sender], Linear, sub),
(amount, Linear, sub)}

Condition(balances[_sender], amount)
(balances[_sender], Linear, Ø)
Condition(balances[_sender])

Read(balances[_sender])
1 transition Transfer(to: Address, amount: Uint)
2 from_bal <- balances[_sender];
3 match from_bal with
4 | Some bal =>
5 match amount ≤ bal with
6 | True =>
7 new_from_bal = builtin sub bal amount;
8 balances[_sender] := new_from_bal;
9 to_bal <- balances[to];

10 new_to_bal = match to_bal with
11 | Some bal => builtin add bal amount
12 | None => amount
13 end;
14 balances[to] := new_to_bal

29

30

Write(balances[to],
{(balances[to], Linear, add),

(amount, Linear, add)})

Read(balances[to])

Write(balances[_sender],
{(balances[_sender], Linear, sub),

(amount, Linear, sub)})

Condition(balances[_sender], amount)

Condition(balances[_sender])

Read(balances[_sender])

Owns(balances[_sender])

NoAliases(<_sender, to>)

OwnOverwrite join for owned contributions
IntMerge join for un-owned contributions

Weak reads

31

Integration

32

A sharded blockchain design

33

1. Run the static analysis when the contract is first deployed
2. Store the resulting sharding signature

= set of transition constraints + join instructions for each field in the contract

3. When processing a transaction, solve the constraints to determine
which shard(s) the transaction can be processed by
• if the constraints have no solution, must process sequentially/cross-shard

4. After parallel processing, merge (join) state contributions from
shards before sequential transactions are processed

34

Integrating CoSplit
with Zilliqa

Evaluation

35

36

Static Overheads

37

Throughput: Transactions per Second

• Currently no support for sharding multi-contract transactions
• We would need to somehow combine the signatures from multiple contracts

• Some contracts require simple rewriting to be shardable
• An opportunity for program repair

38

Limitations and Discussion

transition transfer(to: ByStr20, tokenId: Uint256)

getTokenOwner <- tokenOwners[tokenId];

match getTokenOwner with

| None => throw

| Some tokenOwner =>

isOwner = builtin eq _sender tokenOwner;

(* … *)

getOperatorStatus <-

operatorApprovals[tokenOwner][_sender];

(* … *)

tokenOwners[tokenId] := to;

transition transfer(tokenOwner: ByStr20,

to: ByStr20, tokenId: Uint256)

getTokenOwner <- tokenOwners[tokenId];

match getTokenOwner with

| None => throw

| Some actual =>

isCorrectOwner = builtin eq tokenOwner actual;

match isCorrectOwner with

| False => throw

| True =>

isOwner = builtin eq _sender tokenOwner;

(* … *)

getOperatorStatus <-

operatorApprovals[tokenOwner][_sender];

(* … *)

tokenOwners[tokenId] := to;

39

40

Limitations and Discussion

• Currently no support for sharding multi-contract transactions
• We would need to somehow combine the signatures from multiple contracts

• Some contracts require simple rewriting to be shardable
• An opportunity for program repair

• Some programming languages (e.g., Move or Solana’s Rust dialect)
might be even better targets for sharding analysis

• one can also ask the programmer for ownership/commutativity annotations

Conclusion: What this talk was about

41

a parallelising compiler
for blockchains

To Take Away
• Sharding is a solution to the blockchain

scalability problem

• Some smart contract logic can be sharded
(i.e., executed in parallel)

• We developed static analysis to soundly
determine sharding conditions
for smart contracts

• The technique has been integrated into
real-world blockchain and gave
observable increase in the throughput

Thanks!

	Practical Smart Contract Sharding �with �Static Program Analysis
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	What are the problems?
	Scaling bottlenecks: state and execution
	Slide Number 11
	Scaling Blockchains: State of the Art
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Look at the contract’s code�to learn how to shard it!
	Slide Number 17
	Goals of Static Program Analysis
	Formal reasoning �for scalability,� not just verification
	Slide Number 20
	Slide Number 21
	Slide Number 22
	CoSplit�Static Program Analysis�for �Smart Contract Sharding
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Static analysis for transition effects
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Integration
	A sharded blockchain design
	Slide Number 34
	Evaluation
	Static Overheads
	Slide Number 37
	Limitations and Discussion
	Slide Number 39
	Limitations and Discussion
	Conclusion: What this talk was about
	To Take Away

