Practical Smart Contract Sharding
with
Static Program Analysis

llya Sergey

TNYS

' National U nive rsity

of singaper ZILLIQA

Workshop on Dependable and Secure Software Systems 2022

7 October 2022

A recipe for a robust distributed service
A

=

A recipe for a robust distributed service

SEE

(S)pc:rating \ |
ystems \ ‘
Time, Clocks, and the

Ordering of Events in
a Distributed System

Leslie Lamport
Massachusetts Computer Associates, Inc.

™
1. Replicate your data

A recipe for a robust distributed service

Operating

Systems |

Time, Clocks, a

nd the

Ordering of Events in
a Distributed System

Leslie Lamport

Massachusetts Computer Associates, Inc.

1. Replicate your data
2. Make each replica execute an identical operation log

A B C
X<-7 X<-7 X<-7
X++ X++ X++
X<-X+Y X<-X+Y X<-X+Y
Y++ Y++ Y++

A recipe for a robust distributed service

How to Build a Highly Available System
Using Consensus

Butler W. Lampson!

srosoft
Cambridge, MA 02138

%,
A
4,

Operating
Systems

Time, Clocks, and the
Ordering of Events in
a Distributed System

Leslie Lamport [/
Massachusetts Computer Associates, Inc. 1 Q. |

i

1. Replicate your data

X <-

14

X++

X<-X+Y

Y++

11

C

N

X <-

7

X++

X<-X+Y

Y++

2. Make each replica execute an identical operation log

3. Use consensus protocol to agree on logs

A recipe for a robust distributed service

58

How to Build a Highly Available System
Using Consensus
Butler W. Lampson!
gﬁrating : i, :g)asr(l)ltgridge, MA 02138 B
— — ;
Time, Clocks, and the - ‘}; B < cul Bvzantine Fault Tol
. .) ractical Byzantine Fault Tolerance -
Ordering of Events in .” ' X< 7
a DlStrlbuted SyStem Miguel Castro and Barbara Liskov X++
) Laboratory for Computer Science, X<-X+Y
]l\d/f:;ls‘:lg-lllaﬁnsleﬁ?:t Computer Associates, Inc. ! Massachusetts Institute of Technology,
545 Technology Square, Cambridge, MA 02139 Y++
- {castro, liskov}@les.mit.edu X<-7 Q
. " X++
Replicate your data X <X+ Y
Make each replica execute an identical operation log L=

Use consensus protocol to agree on logs
Make it Byzantine fault-tolerant

B wN e

A recipe for a robust distributed service

How to Build a Highly Available System
Using Consensus

Butler W. Lampson!

srosoft
Cambridge, MA 02138

9
LAl
it

Operating
Systems

Time, Clocks, - and the
Ordermg of Events in
a Distributed System

Miguel Castro and Barbara Liskov
Laboratory for Computer Science,

Leslie L rt - ;
l\fzfsls‘:lch%nsle%?s Computer Associates, Inc. | h ™ Massachusetts Institute of Technology,
545 Technology Square, Cambridge, MA 02139
™ {castro, liskov}@lcs.mit.edu

Replicate your data
Make each replica execute an identical operation log

Use consensus protocol to agree on logs
Make it Byzantine fault-tolerant
Make it so anyone can participate

e eE

Practical Byzantine Fault Tolerance

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
satoshin@gmx.com
www.bitcoin.org

7%
o 8

{ tx2, 1x3} { tx2, tx3}

A recipe for a robust distributed service

How to Build a Highly Available System

. Bitcoin: A Peer-to-Peer Electronic Cash System
Using Consensus

Satoshi Nakamoto
satoshin@gmx.com
www.bitcoin.org

Butler W. Lampson!

srosoft
Cambridge, MA 02138

Practical Byzantine Fault Tolerance

Operating
Systems |

Time, Clocks, and the
Ordering of Events in
a Distributed System

Miguel Castro and Barbara Liskov
Laboratory for Computer Science,

Leslie L rt . ;
l\fasslszch%nsle%?s Computer Associates, Inc. | K -~ Massachusetts Institute of Technology,
545 Technology Square, Cambridge, MA 02139
e {castro, liskov}@lcs.mit.edu

T —-
Replicate your data

Make each replica execute an identical operation log
Use consensus protocol to agree on logs

Make it Byzantine fault-tolerant

IVIa (e it SO a nyOne Ca n pa rticipate ETHEREUM: A SECURE ;)E}i}}CL}i}I?'I\;IZiZ‘IIsi[)sfi];lstEjleoI;;?i]?zzTRANSACTION LEDGER

DR. GAVIN WOOD

. Add arbitrary computations with costs

DU R wWN e

What are the problems?

® Correctness:
arbitrary replicated computations

(aka smart contracts) can be buggy »
and allow for exploits

® Scalability:
consensus protocols are slow
due to decentralization; no advantage »
from inherent distributed parallelism

Examples:
- DAO reentrancy attack
- Parity Multi-Sig Wallet hack

100s of papers published since 2016 on
verification and vulnerability detection

Examples:

- Ethereum only handles 11 TPS

- A single popular decentralised
application (e.g., CryptoKitties) can cause
congestion of the system

Scaling bottlenecks: eachnode .

executes every

state and execution transaction ™

—

user transactions _ addl.ng more nodes does
, not increase throughput
_ OR allow more state to
be stored
L

network nodes

I I each node stores
®© the entire state

[1] https://twitter.com/peter szilagyi/status/1460202014919569410

Scaling bottlenecks:
state and execution

* Ethereum’s head state size was ~130 GB as of Nov 20211

* For best performance, this needs to be kept in RAM

* In practice, it is disk-based (NVME SSD) with caching in memory:
* AFAIK, most of the time spent processing an Ethereum transaction is spent on disk 1/0

* Increasing node hardware requirements decreases decentralisation
» Solana validators already need >> 256 GB of RAM and 1 Gbps network

* In monolithic architectures, transaction execution throughput is
limited by the capacity of the least performant node in the network

https://twitter.com/peter_szilagyi/status/1460202014919569410

Scaling Blockchains: State of the Art

e Layer 1 solutions
Revise the rules of the consensus protocol to increase the throughput

* Changing Proof-of-Work to Proof-of-Stake
 Parallelism via|sharding

* Layer 2 solutions
Adding auxiliary protocols to offload transaction processing
* Nested blockchains: the main chain stores results of side-chain transactions
* Off-chain executions via zZkSNARKs and optimistic roll-ups

Sharding

shard 1 nodes

each shard
executes a subset
of transactions

shard 2 nodes

-
X
XS
XX

shard 3 nodes

shard 1 nodes shard 2 nodes shard 3 nodes

shard 1 nodes shard 2 nodes shard 3 nodes

15

Look at the contract’s code
to learn how to shard it!

MMMMMMM

B Balances:
F Alice: 10

e Transitions:
...............................
..............................

/ problem we are working on

Smart Contract Sharding

with Static Program Analysis ~

\ \ Commutativity

technique we are applying

17

Goals of Static Program Analysis

of Program
- Analysis

e Verification and Validation

* Without running a program, soundly prove the absence of bugs...
(e.g., Astrée Static Analyzer)

e ...or soundly show their presence
(e.g., Coverity, FindBugs, Infer/RacerD/Pulse(X))

* Uncovering opportunities for program optimization

* Constant propagation, function inlining, static method dispatch
(e.g., any optimizing compiler)
* Automated parallelization

18

Smart Contracvvith Static Program Analysis

Formal reasoning
Y for scalapility,

(
(a4

| MyToken

Balances:
2 Alice: 10
A Bob: 25

/o
2 Charlie: 12

Transitions:
BuyTokens (amount, buyer)
Transfer(amount, from, to)

20

@ BuyTokens (amount, buyer)
Alice: 1 .
BuyTokens(5, Alice) BuyTokens (3, Charlie)

/e

@ Bob: 25 y/
®
\A Bob: 25 @

(\f@ Alice: 11 m Charlie: 12
m Charlie: 12

ownership analysis

shard 1 shard 2 shard 3

Bob: +5

Transfer(5, Alice, Bob) Bob: +3 Transfer(3, Charlie, Bob)
= Bob: +8
% &
(AJ\W ~Alice: 11 ‘T;\‘ Bob:—25 rﬂrh] Charlie: 12
Alice: 6 Bob: 33 Charlie: 9

commutativity analysis

shard 1 shard 2 shard 3

CoSplit

Static Program Analysis
for
Smart Contract Sharding

<

ZILLIQA

OOPSLA’19

Safer Smart Contract Programming with SciLLA

5 C I L L A ILYA SERGEY, Yale-NUS College, Singapore and National University of Singapore, Singapore
VAIVASWATHA NAGARAJ, Zilliqa Research, India
JACOB JOHANNSEN, Zilliqa Research, Denmark
AMRIT KUMAR, Zilliqa Research, United Kingdom

ANTON TRUNOV, zilliga Research, Russia
KEN CHAN GUAN HAO, Zzilliqa Research, Malaysia

Two key features:

* Clearly separates computation from communication
* message-passing rather than method calls for contract interaction

e Strict distinction between pure and effectul computations

 Scilla has a small imperative fragment with conditionals but without loops static analysis can
* Only pure (non-effectful) recursion is allowed be quite precise

25

field balances: Map

transition Transfer(to: , amount:
from_bal <- balances[sender];
match from bal with
| Some bal =>
match amount < bal with

| True =>
new from bal = builtin sub bal amount;
balances[_sender] := new_from_bal;

to bal <- balances[to];

new to bal = match to bal with

| Some bal => builtin add bal amount
| None => amount

end;

balances[to] := new_to bal

26

Static analysis for transition effects

* Ownership: produce an effect summary for every transition

 Effects include: reads, writes, accepting funds, sending messages,
conditioning on values derived from mutable fields

* The effect summary over-approximates the behaviour of the transition
* Loosely inspired by Concurrent Separation Logic

 Commutativity: linearity-aware flows-to analysis
 Effects of monotone operations, which use a field just once, commute
* Inspired by GHC's cardinality analysis (POPL'14)

* Expressed as a type system for “contribution types”
e compositional, but sometimes gives uninformative types

Constant X,y constant contract field or transition parameter
Mutable f mutable field or map-field access via parameter

Contrib. src. c¢s=x|f
Cardinality card ::= None | Linear | NonLinear

Operation op =4+ |—|x%x]|...

Abstr. expr. e::=T | (cs,card,op)

Effect € ::= Read(f) | Write(f,e) | AcceptFunds |
Condition(e) | Event(e) | SendMsg(e) | T

transition Transfer(to: , amount:)
from_bal <- balances[_ sender]; Read(balances[_sender])

match from_bal with Condition(balances[_sender])

| Some bal => (balances[_sender], Linear, @)

match amount < bal with Condition(balances[_sender], amount)

| True => {(balances[sender], Linear, sub),
new from bal = builtin sub bal amount; (amount, Linear, sub)}
balances[_sender] := new_from bal; Write(balances[_sender],
to bal <- balances[to]; {(balances[_sender], Linear, sub),
new_to bal = match to_bal with (amount, Linear, sub)})
| Some bal => builtin add bal amount Read(balances[to])
| None => amount
end;
balances[to] := new to bal Write(balances[to],

{(balances[to], Linear, add),
(amount, Linear, add)})

29

Constraint oc ::= Owns(f) | UserAddr(x) | NoAliases((x,y)) |
SenderShard | ContractShard | L

Constraint oc ::= Owns(f) | UserAddr(x) | NoAliases({x,y)) |
SenderShard | ContractShard | L
Join Wf ::= OwnOverwrite | IntMerge

Weak reads

Owns(balances[_sender])

NoAliases(<_sender, to>)

OwnOverwrite join for owned contributions
IntMerge join for un-owned contributions

Read(balances[_sender])
Condition(balances[_sender])
Condition(balances[_sender], amount)

Write(balances[sender],
{(balances[_sender], Linear, sub),
(amount, Linear, sub)})

Read(balances[to])

Write(balances[to],
{(balances][to], Linear, add),
(amount, Linear, add)})

31

Integration

A sharded blockchain design

DS Committee

MB4

MB+, MB>, MB3 clle
SDs| zilliga
MB3 FSD
SD3 \
N —
Shards
L J \ J . J . v,

' ™ s ™ 'S ~ s ~
_ / _ y \[] . / _ J)

MB:2
SD2

MB 1
SD1

MBs3
SDs3

Vi

X1, txo, tX3 txs, txs, tXe [> X7, txs, tXo

33

Integrating CoSplit |

...

|

| Contract Sharding | [Shd_git
Wlth ZIHlC d : | Analyser summary Query Solver | : (‘oc, W)

4.

..

Contract C Transitions to be sharded}

. {’7’1,7’2,...}

-

Run the static analysis when the contract is first deployed

Store the resulting sharding signature
= set of transition constraints + join instructions for each field in the contract

When processing a transaction, solve the constraints to determine
which shard(s) the transaction can be processed by

e if the constraints have no solution, must process sequentially/cross-shard

After parallel processing, merge (join) state contributions from
shards before sequential transactions are processed

Fvaluation

S ic O head Copoman i :
tat |C verneaas GoFundMi/J 4! Parsing
FlrstCOntractf 404

KN Typechecking

BunkeringLog /] . .

Lo | Sharding analysis

Voting /]

BoltAnalytics
LikeMaster/
UD_escrow
UD_primitive_version
UD_resolver/
UD_operator_contract
Bookstore
PayRespect m
HydraXSettlement /]
10U/}
RoadDamage
FungibleToken
LUY_Cambodia/]
SocialPay
ZKToken
ProofIPFS
SimpleBondingCurve:
OceanRumble_crate /]
MyRewardsToken/)
ProxyContract
MRToken,/])
DinoMightyLand
SwapContract A
AuctionRegistrar’/
OceanRumble_minion_token.)
Multisig”))
HTLC/ f
Zeecash
Hybrideuro/ > ¢
0TS200,/})
Hub)
DPSToken/)
Superplayer_token’/ |
UD_registry/)
Oracle)
Map_cornercases /] (-)
DBond
CelebrityNFT;
XSGD/]

Blackjack./))
4 /7YYy

ol

o [Tpou T4

Throughput: Transactions per Second

- EI coSprLIT 3 shards %COSPLIT 4 shardsh CoSpLIT 5 shards

400 |-
300 |

AN

AN

NN N NN NN
|

‘)
7, —

4’4

-
—
=
—

P

FT fund FT

.
CF NFT NFT ProofIPFS UD UD

transfer donate mint transfer register bestow config

Limitations and Discussion

* Currently no support for sharding multi-contract transactions
* We would need to somehow combine the signatures from multiple contracts

* Some contracts require simple rewriting to be shardable
* An opportunity for program repair

transition transfer(to: ByStr20, tokenId: Uint256)
getTokenOwner <- tokenOwners[tokenId];
match getTokenOwner with
| None => throw
| Some tokenOwner =>
isOwner = builtin eq _sender tokenOwner;
(* .. %)
getOperatorStatus <-
operatorApprovals[tokenOwner][_sender];
(* .. %)

tokenOwners[tokenId] := to;

transition transfer(tokenOwner: ByStr20,
to: ByStr20, tokenId: Uint256)
getTokenOwner <- tokenOwners[tokenId];
match getTokenOwner with
| None => throw
| Some actual =>
isCorrectOwner = builtin eq tokenOwner actual;
match isCorrectOwner with
| False => throw
| True =>
isOwner = builtin eq _sender tokenOwner;
(% o v
getOperatorStatus <-
operatorApprovals[tokenOwner][_sender];
(% o)

tokenOwners|[tokenId] := to;

39

Limitations and Discussion

* Some programming languages (e.g., Move or Solana’s Rust dialect)
might be even better targets for sharding analysis

* one can also ask the programmer for ownership/commutativity annotations

Conclusion: What this talk was about

a parallelising compiler
for blockchains

To Take Away

Practical Smart Contract Sharding
with Ownership and Commutativity Analysis

George Pirlea” Amrit Kumar Ilya Sergey
National University of Singapore Zilliga Research Yale-NUS College
Singapore United Kingdom National University of Singapore
gpirlea@comp.nus.edu.sg amrit@zilliqa.com Singapore

Abstract

Sharding is a popular way to achieve scalability in blockchain
protocols, increasing their throughput by partitioning the set
of transaction validators into a number of smaller commit-
tees, splitting the workload. Existing approaches for block-
chain sharding, however, do not scale well when concurrent
transactions alter the same replicated state component—a
common scenario in Ethereum-style smart contracts.

‘We propose a novel approach for efficiently sharding such
transactions. It is based on a folklore idea: state-manipulating
atomic operations that commute can be processed in parallel,
with their cumulative result defined deterministically, while
executing non-commuting operations requires one to own
the state they alter. We present CoSpLIT—a static program
analysis tool that soundly infers ownership and commutativ-
ity summaries for smart contracts and translates those sum-
maries to sharding signatures that are used by the blockchain
protocol to maximise parallelism. Our evaluation shows that
using CoSerrT introduces negligible overhead to the trans-
action validation cost, while the inferred signatures allow
the system to achieve a significant increase in transaction
processing throughput for real-world smart contracts.

CCS Concepts: « Computing methodologies — Distri-
buted programming languages.

Keywords: Smart Contracts, Static Analysis, Parallelism
ACM Reference Format:

George Pirlea, Amrit Kumar, and Ilya Sergey. 2021. Practical Smart
Contract Sharding with Ownership and Commutativity Analysis. In
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI '21), June
20-25, 2021, Virtual, Canada. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3453483.3454112

“Work partially conducted while employed at Zilliqa Research.

This work is licensed under a Creative Commaons Attribution International 4.0 License.

PLDI '21, June 20-25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8391-2/21/06.
https://doi.org/10.1145/3453483.3454112

ilyasergey@yale-nus.edu.sg

1 Introduction

The idea of Nakamoto consensus (aka blockchain) has been
instrumental for enabling decentralised digital currencies,
such as Bitcoin [48]. The applications of blockchains have fur-
ther expanded with the wide-spread adoption of smart con-
tracts [62]—self-enforcing, self-executing protocols govern-
ing an interaction between several mutually distrusting par-
ties. The Ethereum blockchain has provided a versatile frame-
work for defining smart contracts as blockchain-replicated
stateful objects identified by their account numbers [65].

The open and decentralised nature of Nakamoto consen-
sus comes at the price of throughput scalability. At a high
level, in order for a sequence of transactions (so-called block)
to be agreed upon system-wide, the system’s participants
(so-called miners) have to validate those transactions, with
each miner executing them individually [4]. As a result,
the throughput of blockchain systems such as Bitcoin and
Ethereum does not improve, and even slightly deteriorates,
as more participants join the system: Biteoin currently pro-
cesses up to 7 transactions per second, while Ethereum’s
throughput is around 18 transactions per second. Even worse,
popular smart contracts may cause high congestion, forcing
protocol participants to exclusively process transactions spe-
cific to those contracts. This phenomenon has been frequent
in Ethereum: in the past, multiple ICOs (Initial Coin Offer-
ing, a form of a crowdfunding contract) and games, such
as CryptoKitties, have rendered the system useless for any
other purposes for noticeable periods of time [14].

Sharding in Blockchains. One of the most promising
approaches to increase blockchain throughput is to split the
set of miners into a number of smaller committees, so they
can process incoming transactions in parallel, subsequently
achieving a global agreement via an additional consensus
mechanism—an idea known as sharding. Sharding transac-
tion executions, as well as sharding the replicated state,
has been an active research topic recently, both in indus-
try [23, 30,39, 51, 60, 64, 67] and academia [1, 17, 36, 45, 66].

Many of those works focus exclusively on sharding the
simplest kind of transactions—user-to-user transfers of digital
funds,—which are paramount in blockchain-based cryptocur-
rencies, while ignoring sharding of smart contracts [36, 45,
66, 67]. Existing proposals tackling smart contracts impose

1327

* Sharding is a solution to the blockchain
scalability problem

 Some smart contract logic can be sharded
i.e., executed in parallel)

* We developed static analysis to soundly
determine sharding conditions
for smart contracts

* The technique has been integrated into
real-world blockchain and gave
observable increase in the throughput

Thanks!

	Practical Smart Contract Sharding �with �Static Program Analysis
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	What are the problems?
	Scaling bottlenecks: state and execution
	Slide Number 11
	Scaling Blockchains: State of the Art
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Look at the contract’s code�to learn how to shard it!
	Slide Number 17
	Goals of Static Program Analysis
	Formal reasoning �for scalability,� not just verification
	Slide Number 20
	Slide Number 21
	Slide Number 22
	CoSplit�Static Program Analysis�for �Smart Contract Sharding
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Static analysis for transition effects
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Integration
	A sharded blockchain design
	Slide Number 34
	Evaluation
	Static Overheads
	Slide Number 37
	Limitations and Discussion
	Slide Number 39
	Limitations and Discussion
	Conclusion: What this talk was about
	To Take Away

