Toward Trustworthy Neural
Program Synthesis

The

Learning -
Kevin Ellis ! RecursLlca)B
Joint with Darren Key, Wen-Ding Li

Cornell University
Workshop on Dependable and Secure Software Systems
ETH 2022

Program synthesizer

|
specification A [- program

Specification = Dependent Types
(types + logical predicates)

Program synthesizer

\] J replicate = An. Ax.if n <0
n:Nat =& x:a — {List @ | len v =n} — s than Nil

Ty else Cons x (replicate (dec n) x)

Synquid. Polikarpova 2016

Specification = Input-Outputs

. . Program synthesizer
“Cornell University” -> 5 y

“C.U" @

\“éJ “.”.join(x.split())

“Eidgendssische Technische Hochschule” ->

“ET.H." 2 d

Eg, FlashFill. Gulwani 2012

Specification = Partially completed program

Program synthesizer?

0O
4/

y = slope*x + ...

intercept

Specification = Partially completed program

Program synthesizer?

open file and loop over lines

with open(file, “r”) as handle:

(0O
B =

for 1n in file:

Specification = Partially completed program

Program synthesizer?

0O

flatten a list called " xss

0 e

[x
for xs 1n Xxss

for x in xs]

Specification = Natural language comment

Program synthesizer?

0O

flatten a list called " xss

0 e

[x
for xs 1n Xxss

for x in xs]

Large language models for source code

OpenAI Codex GitHub COp”Ot # Write a python function called "abbreviate’

that takes a string containing white space
and returns the first letter of each word

12 billion learned parameters

separated by periods.

159 gigabytes of data from GitHub def abbreviate(s):

return '.'.join([c[@] for c in s.split()])

Large language models for source code:
AlphaCode

You are given two strings s and ¢, both consisting
of lowercase English letters. You are going to type
the string s character by character, from the first
character to the last one.

When typing a character, instead of pressing the
button corresponding to it, you can press the
"Backspace” button. It deletes the last character

you have typed among those that aren't deleted

yet (or does nothing if there are no characters in

the current string). For example, if s is "abch
and you press Backspace instead of typing the
first and the fourth characters, you will get the
string "bd" (the first press of Backspace deletes
no character, and the second press deletes the
character 'c'). Another example, if s is "abcaz"
and you press Backspace instead of the last two
letters, then the resulting text is "a".

Your task is to determine whether you can obtain
the string ¢, if you type the string s and press
"Backspace” instead of typing several (maybe
zero) characters of s.

Large language models for source code:
AlphaCode

t=int(input())

for i in range(t):

s=input()

_t=input()
First AlphaCode reads | a=(] |
the two phrases. ‘ b=(] |

for j in s:
a.append(j)
for j in t:

b.append(j)

a.reverse()
b.reverse() If the letters at the end
=[] of both phrases don't
match, the last letter
must be deleted. If
they do match we can

while len(b)!=0 and len(a)!=0:
if a[0)==b[0]:

c.append(b.pop(@}) move onto the second
a.pop(0) last letter and repeat.
elif a[0]!=b[@] and len(a)!=1:
Backspace deletes two — — J
letters. The letter you A RopLo)
press backspace instead “,Lp(o),
of, and the letter before it. elif a[@]!=b[0] and len(a)==1:
a.pop(0)
(if len(b)==0:
print("YES") If we've matched every

letter, it's possible and
we output that.

else:
print("NO")

" Evan Pu added a new photo.

- 20D e
/ /

3 '} November 16, 2021 - &b
copilot's buggy code suggestion (in gray) against the correct code (below)

it is very subtle, but caused my search algorithm to bug out and invalidated 2 days worth of works

please use responsibly | guess is my take-away.

L_rank[queue_ids[2]], r_ranklqueue_ids(3]]

rect_params = t_rank[queue_ids[8]], b_ranklqueue_ids[1]],

= np.Llogl

log_rect_prob = np.log(t[rect_params([8]]) + np.log(blrect_params[1]]) + np.log{l[rect_params[2]]) + np.log(r(rec

return rect_params, log_rect_prob

I Speak, You Verify:
Toward Trustworthy Neural Program Synthesis

Darren Key, Wen-Ding Li, Kevin Ellis. 2022

Trust in Traditional Program Synthesis

Synthesis: Dreams —> Programs

ZOHAR MANNA anp RICHARD WALDINGER

To specify a program maxlist to compute the largest element
of a given list /, we write

maxlist(l) <= compute some z : z € land z = allfl)
where [is a nonempty list of numbers.

Trust in Traditional Program Synthesis

From Program Verification to Program Synthesis

Saurabh Srivastava Sumit Gulwani Jeffrey S. Foster
University of Maryland, College Park Microsoft Research, Redmond University of Maryland, College Park
saurabhs@cs.umd.edu sumitg@microsoft.com jfoster@cs.umd.edu

(a) Bresenhams (int X,Y) { () Brenentiana (ing .19 4

v1:=2Y - X; y:=0; x:=0; [[true — 7“”1=2Y_X A y'=0 A z'=0

while (z < X) while (z < X)
out[x] :=y; [[1 <0 — out’=upd(out,r,y) A vi=v1+2Y A y'=y A z'=z+1
if (v1 <0) [lr1 2 0 — out’=upd(out,z,y) A vi=v1+2(Y-X) A y'=y+1 A z'=z+1

vy :=v1+2Y; return out;

else }
e RN S 0<Y <X Avy =2(+1)Y—(2y+1)X A
S y Invariant 7 : 2(Y-X)<v1 <2Y A

TR © Vk: 0 <k < z = 2lout[k]—(Y/X)k| <1

} Ranking functiony : X —x

Figure 1. (a) Bresenham’s line drawing algorithm (b) The invariant and ranking function that prove partial correctness and termination,
respectively. (¢) The algorithm written in transition system form, with statements as equality predicates, guarded appropriately.

Trust in Traditional Program Synthesis

Automating String Processing in
Spreadsheets Using Input-Output Examples

Sumit Gulwani

Microsoft Research, Redmond, WA, USA
sumitg@microsoft.com

THEOREM 3 (Soundness). The set P of string expressions re-
turned by Gene'r‘ateStmngProgram({(a,, s;)}i) are all consis-
tent with each input-output pair (o;, s;), Le.,

VP e P Yi: ([P]o:)=s:

Trust in Traditional Program Synthesis

program + specification

Trust in Neural Program Synthesis

program + specification (?)

Trust in Neural Program Synthesis

program + natural language (?7)

Trust in Neural Program Synthesis

program - natural language (X)

Trust in Neural Program Synthesis

Neural network defines:

Pr[program | natural language]

The Trust Conundrum

Trust ~ Verification

program + specification

My specification is informal...

...because train data is messy natural code

And I can't verify against an informal specification

How do people build trust?

ass grafanaTests(unittest.TestCase):
"""Tests for GeekTechStuff Grafana API Python"""

def test_admin_name_is_string(self):
admin_username = main.get_username()
self.assertIs(type(admin_username),str)

test_admin_password_is_string(self):
admin_password = main.get_password()
self.assertIs(type(admin_password),str)

ef test_grafana_url_is_string(self):
grafana_url = main.get_url()
self.assertIs(type(grafana_url),str)

>

PROGRAM #ﬁ SPECIFICATION

9

PROGRAM

How to escape the trust conundrum

Start with informal intention

Formalize intention into program and specification

Enforce program + specification

Human-in-the-loop: Code reviewer checks both program and specification

W=

How to escape the trust conundrum

Start with informal intention
Formalize intention into program and specification
Enforce program + specification

Human-in-the-loop: Code reviewer checks both program and specification
Know your own limitations:

kN =

don’t try to write a program if you can't get bug free code

" Evan Pu added a new photo.

- 20D e
/ /

3 '} November 16, 2021 - &b
copilot's buggy code suggestion (in gray) against the correct code (below)

it is very subtle, but caused my search algorithm to bug out and invalidated 2 days worth of works

please use responsibly | guess is my take-away.

L_rank[queue_ids[2]], r_ranklqueue_ids(3]]

rect_params = t_rank[queue_ids[8]], b_ranklqueue_ids[1]],

= np.Llogl

log_rect_prob = np.log(t[rect_params([8]]) + np.log(blrect_params[1]]) + np.log{l[rect_params[2]]) + np.log(r(rec

return rect_params, log_rect_prob

Speculyzer

“Write a python
function f that removes all the
odd numbers from a list.”

Speculyzer

“Write a python
function f that removes all the
odd numbers from a list.”

C:Ief f(lst): \

return [x for x in st if x%2 == 1]

def f(lst):
return Ise[1:] + I[5:]

Speculyzer

“Write a python
function f that removes all the
odd numbers from a list.”

(def fi =)
- (lst):
assert f([]) “. 0 return [x for x in Ist if x%2 == 1]
assert f([1,2,3]) == [2]
def spec(lst):
out = f(lst)
assert len(out) <= len(lst) def F(lst):
return Ise[1:] + I[5:]
N J

Speculyzer

“Write a python
function f that removes all the
odd numbers from a list.”

¢ N\ 4 R

(defr)
— (Ist):
sssert KD o ! ereturn [x for x in Ist if x%2 == 1] PROGRAMS
: %)
assert f([1,2,3]) == [2] 5 X| | X
2 (V[X|X|v
def spec(lst): E vIvIxlv
out = f(lst)]
assert len(out) <= len(lst) def f(lst): E | X[+ X
return lst[1:] + I[5:] L2

Speculyzer

Can we solve this

problem?
certify correctness?

“Write a python Which program is the
function f that removes all the best?
odd numbers from a list.” \
assert f([1) ==] (def HED: b @ R
return [x for x in Ist if x%2 == 1] PROGRAMS

: %)

ot
assert f([1,2,3]) == [2] - o XX
. 2 (V[X|X|v
def spec(lst): s L"i vV X |«

out = F(lst)]
assert len(out) <= len(lst) def F(lst): & |+ ||+

n

return Ise[1:] + I[5:]

&
y
&

Speculyzer

WITH

“Write a python
function f that removes all the
odd numbers from a list.”

SYNTHESIS
PROMPT

Can we solve this
problem?

Which specifications
certify correctness?

Which program is the
best?

assert F([1) ==[]

assert f([1,2,3]) == [2]

def spec(lst):
out = f(lst)
assert len(out) <= len(lst)

(def f(lst):
return [x for x in st if x%2 == 1]

def f(lst):
return Ise[1:] + I[5:]

l/

N &
PROGRAMS
2 [X[v]v[x
5 [V[X]x]v
& [v|v[x|v
£ [v]x]v[x
J _ J

Generating Programs

def sub list(numsil list, mums2 3 list) —=> list:
mmnn
Write a function to subtract two lists element -

wlise.
mnn

Generating Programs

def sub list(numsil 3 list, mums2 3 list) —=> list:

Write a function to subtract two lists element -

wise.
mnn

return list(map(lambda x, y: x-y, numsl, nums2))

Speculyzer

WITH
SPECIFICATION
PROMPT

WITH
SYNTHESIS
PROMPT

“Write a python
function f that removes all the
odd numbers from a list.”

Can we solve this
problem?

Which specifications
certify correctness?

Which program is the
best?

@)
- def F(lst):
assert f([]) = 0 return [x For x in Ist if x%2 == 1]
assert f([1,2,3]) == [2] '
def spec(lst): &
out = f(lst)
assert len(out) <= len(lst) def F(lst):
return Ise[1:] + I[5:]
Q& 4

|/

(
PROGRAMS
2 [X[v]v]x
5 [V[X]x]v
& [v|v[x|v
£ [v]x]v[x
-

J

&

Generating Specifications, input-outputs

def sub list(numsil 2z list, mums2 =z list) => list:
muan
Write a function to subtract two lists element -

wise.
nmun

Generating Specifications, input-outputs

def sub list(numsil 2z list, mums2 =z list) => list:

Write a function to subtract two lists element -

wise.
nmun

pass # To-do: implement

Check i1f sub_list works
assert sub_list(

Generating Specifications, input-outputs

def sub list(numsil 2z list, mums2 =z list) => list:
muan
Write a function to subtract two lists element -
wlise.

pass # To-do: implement

Check if sub_list works
sgsert snb 11st([2; 3, 1], [1, 1 1]) == [1, 2; O]

-

Generating Specifications, logical relations
Problem 3

Write a function to subtract two lists element-wise.
def sub list (numsl,nums?2):
pass # To-do: implement

Test 3

Generating Specifications, logical relations
Problem 3

Write a function to subtract two lists element-wise.

def sub_list (numsil,nums?2):
pass # To-do: implement

Test 3

def test_sub_list(numsl : 1list, nums2 : 1list):

nnn

Given two lists ‘numsl‘ and ‘nums2‘, test whether function ‘sub_list‘ is implemented correctly.

output_list = sub_list(numsl, nums2)
check if the length of the output list is the same as the lengths of the input lists
assert len(output_list) == len(numsl) == len(nums2)

check if the output list has the expected elements
for i in range(len(output_list)):
assert output_list[i] == numsi[i] - nums2[i]

run the testing function ‘test_sub_list‘ on a new testcase
testisub last([1; 2.3 41; [10; 9, 85 '7l)

Generating Specifications, logical relations

Problem 1

from typing import List # Problem 2

~ .~ ~ o~ ~ _~ ~ .~

Return a string where the vowels (Ca™;, “e™; “1is Te ; “u"; :and their
—» capital letters) are repeated twice in place
def repeat_vowel(input_str: str) -> str:

pass # To-do: Implement

Given a list of integers, return a list th

— 1integers.

def filtered_even_integers(input_list: List(
pass # To-do: Implement

Test 2
Test 1 e eai e,

def test_filtered_even_integers(input_list: List()): |# Problem 3

""" Given an input “input_list”, test whether the
s “filtered_even_integers® is implemented corre/# Write a function to subtract two lists element-wise.

i def sub_list (numsl,nums2):
output_list = filtered_even_integers(input_list) pass # To-do: implement
check if the output list only contains odd inte

for integer in output_list: i “IESE .8

assert integer 7 2 == 1 def test_sub list(numsil : 1list, nums2 : 1list):

o wnn

check if all the integers in the Output list cai Given two lists ‘numsl‘ and ‘nums2‘, test whether function ‘sub_list‘ is implemented correctly.
— input llSt output_list = sub_list(numsl, nums2)

. . . B # check if the length of the output list is the same as the lengths of the input lists
for 1nteger in Output_llst. assert len(output_list) == len(numsl) == len(nums2)

assert integer in input llst # check if the output list has the expected elements

= for i in range(len(output_list)):
assert output_list[i] == numsi[i] - nums2[i]

run the teSting funCtion \teSt_filtered_even_intege # run the testing function ‘test_sub_list‘ on a new testcase
test_filtered_even_integers([31, 24, 18, 99, 1000, 52|test-sub-list([i, 2, 3, 4], [10, 9, 8, 71)

Speculyzer

WITH
SPECIFICATION
PROMPT

WITH
SYNTHESIS
PROMPT

“Write a python
function f that removes all the
odd numbers from a list.”

Can we solve this
problem?

Which specifications
certify correctness?

Which program is the
best?

@)
- def F(lst):
assert f([]) = 0 return [x For x in Ist if x%2 == 1]
assert f([1,2,3]) == [2] '
def spec(lst): &
out = f(lst)
assert len(out) <= len(lst) def F(lst):
return Ise[1:] + I[5:]
Q& 4

|/

(
PROGRAMS
2 [X[v]v]x
5 [V[X]x]v
& [v|v[x|v
£ [v]x]v[x
-

J

&

Verification Matrix -> Objectives

(
PROGRAMS
2 [X[v]v]x
5 [v[%|%][v
L [VIv[X]v
2 [v]x]v[x

‘\

— Pr[program is correct]

Can we solve this
problem?

Which specifications
certify correctness?

Which program is the
best?

Verification Matrix -> Objectives

SPECIFICATIONS

VERIFICATION

PROGRAMS

X b

9
v x

*
'V 4 ¥ 4 x

| |«

— Pr[program is correct]

+ Satisfies many specs?
+ Many other progs satisfy same specs?
Lots of different prog behaviors?

Verification Matrix -> Objectives

SPECIFICATIONS

VERIFICATION

PROGRAMS

x 'V 4

'V 4

X

V 4
v | X

X

Y | od 9
Rvid

P &
ad ad
v x v

-

+ Satisfies many specs?

+ Many other progs satisfy same specs? |—p Ppr[prog correct |
Lots of different prog behaviors?

AN

~

Feature extraction

~

Binary classification
(logistic regression)

Objectives

4 2\ 4 Can we solve this -
PROGRAMS problem?
2 [X[v]v]x — Pr| program S correct] Which specifications -
o
g 7% [X [certify correctness?
% vV XV Which program is the -
:ﬁ'.,: | X || X best? J
_ >/

argmax Pr[prog is correct]
prog

Pass@k

Get k guesses as to the correct program

Probability one of your guesses is correct

Accuracy, not really trust

pass@k

Pass@k

HumanEval

k=10

L

MBPP

10

— oracle

Speculyzer

WITH
SPECIFICATION
PROMPT

WITH
SYNTHESIS
PROMPT

“Write a python
function f that removes all the
odd numbers from a list.”

Can we solve this
problem?

Which specifications
certify correctness?

Which program is the
best?

@)
- def F(lst):
assert f([]) = 0 return [x For x in Ist if x%2 == 1]
assert f([1,2,3]) == [2] '
def spec(lst): &
out = f(lst)
assert len(out) <= len(lst) def F(lst):
return Ise[1:] + I[5:]
Q& 4

|/

(
PROGRAMS
2 [X[v]v]x
5 [V[X]x]v
& [v|v[x|v
£ [v]x]v[x
-

J

&

Pass@k

HumanEval

10

MBPP

k=10

— oracle

Pass@k

HumanEval

x 0.7
)
7
1 0.6
o

0.5

0.4

0.3

k=1 k=10

MBPP

— oracle
B ours

Pass@k

HumanEval

10

MBPP

k

1.

k

10

oracle

ours

ours, i/o only
ours, rels only

Pass@k

HumanEval

10

MBPP

10

oracle

ours

ours, i/o only
ours, rels only
cluster

Pass@k

HumanEval

k=10

MBPP

oracle

ours

ours, i/o only
ours, rels only
cluster

CodeT replication
CodeT Chen 2022

Pass@k

HumanEval

k=1 k=10

MBPP

oracle

ours

ours, i/o only
ours, rels only
cluster

CodeT replication
CodeT Chen 2022
Inala 2022
random

Pass@k

Speculyzer: >= recent works

Pass@k: Not really the same thing as trust/safety

Objectives

max Pr[prog is correct] > threshold

prog
Can we solve this
PROGRAMS problem?

2 [X][v]v]x —— Pr[program is correct] Which specifications
®)

8 7 % [%]v certify correctness?
% vIiVIX IV Which program is the
:c‘x.n" | X || X best?

. 4

argmax Pr[prog is correct]
prog

This working requires our binary classifier is well “calibrated”

Recall (Coverage) vs Precision (Safety)

can_solve_problem = max Pr[prog is correct] > threshold
prog

predicted_program = argmax Pr[prog is correct]
prog

High Threshold:
Sacrifice coverage for precision
Solve fewer problems overall, but propose fewer buggy solutions

Low Threshold:
Broad coverage but inaccurate precision
Solve more problems overall, but also make more mistakes

Recall

Tradeoffs

HumanEval MBPP
1.0 1.0
0.8 0.8
o 30% mistakes
0.6 23% mistakes © 0.6 82% coverage
81% coverage K
0.4 0.4
0.2 0.2
0.0 0.0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Precision Precision

Precision: % of synthesized programs which do the right thing
Recall: problems we solve / problems we could have solved

— oracle
—— QUurs
— random

Recall

Tradeoffs

HumanEval

1.0

0.8
0.6
0.4

zero mistakes

0.2

0.0

33% coverage

1 0.00

0.25

0.50 0.75
Precision

1.00

Recall

MBPP

1.0

0.8
0.6

0.4
0.2

zero mistakes
2% coverage

0.0

0.00

0.25

0.50 0.75 1.00
Precision

Precision: % of synthesized programs which do the right thing
Recall: problems we solve / problems we could have solved

— oracle
—— QUurs
— random

Reality Check:

No neural net english->code system will achieve 0% errors

Objectives

max Pr[prog is correct] > threshold

_ [V
4 B\ Can we solve this -
PROGRAMS problem?

2 X| ||| X — Pr[program S Correct] Which specifications -

o

g 7Ix %]V certify correctness?

% vIiVIX |V Which program is the -

“a_n-’ | X |+ X best? o
- >

argmax Pr[prog is correct]
prog

Objectives

[
PROGRAMS
2 [X][v]v]x
5 [v[%|%][v
L [VIv[X]v
2 [v]x]v[x

(

—» Pr[program is correct] ———»

_

Can we solve this
problem?

Which specifications
certify correctness?

Which program is the
best?

fgéf derivative(xs: list):
""" xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x*2 +
Return derivative of this polynomial in the same form.
>>> derivative([3, 1, 2, 4, 5])
[1, 4, 12, 20]
>>> derivative([1, 2, 3])
[2, 6]

,’;ef is_bored(S):

“""You'll be given a string of words, and your task is to count the number

of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.

For example:

>>> is_bored("Hello world")

0

>>> 1s_bored("The sky is blue. The sun is shining. I love this weather")

1" nn

\

Certifying (in)correctness

Think program is correct
How to communicate what program does so that the user can accept/reject it?

program + specification

Certifying w/ random specifications

(,;ef is_bored(S): Ee

\\¥ return boredoms _,/

"""You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or "!'.

For example:

>>> 1s_bored("Hello world")

0

>>> is_bored("The sky is blue. The sun is shining. I love this weather")
1" "n

boredoms = 0

replace . or ! or ? with . to simplify this problem

S = S.replace('.','. ")
S = S.replace('!','! ")
S = S.replace('?','? ')

sentences = S.split(' ')
for sentence in sentences:
if sentence.startswith('I'): boredoms = boredoms + 1

Certifying w/ random specifications

/’géf is_bored(S): <‘\
"""You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or "!'.
For example:
>>> 1s_bored("Hello world")
0
>>> is_bored("The sky is blue. The sun is shining. I love this weather")
1ll "n
boredoms = 0
replace . or ! or ? with . to simplify this problem
S = S.replace('.','. ")
S = S.replace('!','! ")
S = S.replace('?','? ")
sentences = S.split(' ')
for sentence in sentences:
if sentence.startswith('I'): boredoms = boredoms + 1
return boredoms
_ S

(: assert is_bored("I love this weather.") == 1

)

Certifying w/ random specifications

(E;f derivative(xs: list): “\
""" xs represent coefficients of a polynomial
xs[0] + xs[1] * x + xs[2] * x*2 + ...
Return derivative of this polynomlal in the same form.
>>> derivative([3, 1, 2, 4, 5])
[1, 4, 12, 20]
>>> derivative([1, 2, 3])
[2, 6]

nnn

_ return [x * 1 for i, x in enumerate(xs) if i1 != 0] 4}

Certifying w/ random specifications

(;éf derivative(xs: list): 4‘\
""" xs represent coefficients of a polynomial.

xs[0] + xs[1] * x + xs[2] * x*2 +

Return derivative of this polynomial in the same form.
>>> derivative([3, 1, 2, 4, 5])

[1, 4, 12, 20]

>>> derivative([1, 2, 3])

[2, 6]

\‘> return [x * 1 for 1, x in enumerate(xs) if i1 != 0] 4}

(;ef test_derivative(xs):
""" Test function derivative().

TODO
pass

run "test_derivative' on a new testcase
test_derivative([2, 3, 4, 10, -12])

. 7

Certifying (in)correctness

Think program is correct

How to communicate what program does so that the user can accepted/reject it?

argmax Pr[prog | spec]

prog Fspec

Joint distribution over programs and specifications
Uniform, except that program has to entail spec

Certifying (in)correctness

Think program is correct

How to communicate what program does so that the user can accepted/reject it?

argmin |{prog’: prog’' -spec }|
prog -spec

Pick the thing which is true about the program
But which is not true about most other programs

n u

“distinguishing”, “selective”

Certifying w/ selective/distinguishing specifications

(;éf derivative(xs: list): 4‘\
""" xs represent coefficients of a polynomial

xs[0] + xs[1] * x + xs[2] * x*2 + ...

Return derivative of this polynon1al in the same form.
>>> derivative([3, 1, 2, 4, 5])

{1, 4, 12, 28]

>>> derivative([1, 2, 3])

[2, 6]

\;, return [x * 1 for 1, x in enumerate(xs) if i1 != 0] 4)

(;Ef test_derivative(xs):
""" Test function derivative().

TODO
pass

run "test_derivative' on a new testcase
test_derivative([2, 3, 4, 10, -12])

- J

Certifying w/ selective/distinguishing specifications

KZQf derivative(xs: list):

[1, 4, 12, 20]

xs represent coefficients of a polynomial.

xs[0] + xs[1] * x + xs[2] * x"2 +

Return derivative of this polynomial in the same form.
>>> derivative([3, 1, 2, 4, 5])

~

DISTINGUISHING o afteietlias. 2D RANDOM
LOGICAL W LOGICAL
RELATION & return [x * 1 for i, x in enumerate(xs) if i != 0]) RELATION

def test_derivative(xs: list):
""" Given an input ‘xs', test whether the function
‘derivative” is implemented correctly.
ys = derivative(xs)
assert len(ys) == len(xs) - 1
for 1 in range(len(ys)):
assert ys[i] == xs[i+1] * (1 + 1)

run “test_derivative' on a new testcase
test_derivative([3, 1, 2, 4, 5])

def test_derivative(xs):
""" Test function derivative().

nuan

TODO
pass

run “test_derivative' on a new testcase
test_derivative([2, 3, 4, 10, -12])

Certifying w/ selective/distinguishing specifications

/’;ef is_bored(S): ﬁ‘\
"""You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or "!'.
For example:
>>> 1s_bored("Hello world")
0
>>> is_bored("The sky is blue. The sun is shining. I love this weather")
1ll "n
boredoms = 0
replace . or ! or ? with . to simplify this problem
= S.replace('.','. ")
S = S.replace('!','! ")
S = S.replace('?','? ")
sentences = S.split(' ')
for sentence in sentences:
if sentence.startswith('I'): boredoms = boredoms + 1
L return boredoms o

(: assert is_bored("I love this weather.") == 1 j)

Certifying w/ selective/distinguishing specifications

,’;ef is_bored(S): A

"""You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or "!'.
For example:
>>> i1s_bored("Hello world")
0
>>> is_bored("The sky is blue. The sun is shining. I love this weather")
1|I|l n
boredoms = 0
replace . or ! or ? with . to simplify this problem
Si= Screplace(tisnt)
S.replace('!','! ")
S.replace('?','?2 ")
sentences = S.split(' ')
for sentence in sentences:
if Eentgnce.startswith('I'): boredoms = boredoms + 1
return boredoms
_ = J

wnwn
nn

<: assert is_bored("I have no idea what I'm doing") == 2 :) (: assert is_bored("I love this weather.") == 1 :)

Speculyzer

Synthesizer that creates specifications

Precision by backing off when it can't solve a problem

Trust by constructing certificates of (in)correctness

What could trust unlock?

[ellisk42/ec] Bump protobuf from 3.8.0 to 3.15.0 (PR #90) » inbox x

dependabot[bot] <notifications@github.com> Unsubscribe
to ellisk42/ec, Subscribed «

This automated pull request fixes a security vulnerability (high severity).

Learn more about Dependabot security updates.

Bumps protobuf from 3.8.0 to 3.15.0.
Release notes

Sourced from protobuf’s releases.

<sclience fiction>

) o

dsbaars / Project-XChain

This repository ~

Browse Issues Milestones

Assigned 10 you 0 =
Created by you 26
Mentioning you 0 |
No milestone selected ﬂ-
Labels
I oug 7
0 criscal 8
| enhancement 10
§ high prionty 26
nvalig s
1 low priority 2
medum profity b4

0Open = 62 Closed So

D Explore Gist Blog Help

@ Watch ~ ¢

1 Newost ~

Roopen

@ Force currency-numbers in negotiation table [Bl veritied |

osbaars 6 ¥® 1 comment

Label » Assigneo~ Milestone «

ponisd by 1ays 8O0

@ After clicking "I have read it", disable button [EERERESSRE medium promy ET)

Opened by dsboars € days sgo 3% 1 comment

@& Create Game, make duration field required [ZI7] medium prority [0

¢sboars § days sgo ¥ 1 comment

(67 proﬂﬂormcdwwonbuo [ug | high prioetty JEITTH verities

by Faptwohanded 6 duys 00 ¥ 3 comments

Dponad by

@& Layout issues 2 and 2 point decimal r)] bog | usebimy |

Oponed by Faptwohanded 6 days ago ¥ 1 comment

(@& Chat does not scroll down when watching game as chairman
m -a-m

y Osbaars 8 duys sgo ¥ 8 comments

B MWiimbhar af namas' aditahla ln Phanna sattinne' P Ll e

</science_ fiction>

* Unstar 1

Y PR

! md m

»
L

0 dsbaars +- ¥ P

Y Fork o

<sclience fiction>

Add toString implementation #1/ =
Z'IOpen maxjacobson wants to merge 1 commit into master from fix-git-tag-descriptions
i Conversation 0 -O- Commits 1 Fi|es changed 3
Changes from all commits ¥ Jumpto..~ +20 -4 mEmEm Unified | Split Review changes v
20 mmmm src/main/java/com/github/koraktor/mavanagaiata/git/GitTagDescription.java 88.24% cov 8 ~AN View 0 S v
issues
xR @@ -67,9 +67,23 @@ public boolean isTagged() {
%
* @return The string representation of this description
*/
0 - @Override
- public String toString() {
- return "TODO: implement this method";
A Method “toString® has a Cognitive Complexity of 7 (exceeds 5 allowed). Consider refactoring.
+ @Override
+ public String toString() {
T if (this.nextTag == null) {
I + return this.abbreviatedCommitId;
+ } else if (this.distance == 0) {
+ return this.nextTag.getName();
+ } else {
A '&&' should be on a new line. |« v

</science_ fiction>

<sclence_ fiction

© [[remesen -

dsbaars / Project-XChain

Browse Issues

Miestones

Explore Gist Blog Help 0 dsbears +- X B

@ Watch + 6 Unstar

Y Fork

o I e o

Assigned 10 you
Created by you

Ment

No miestone selected

Labels

1w

0

2

@ Force currency-numbers in negotiation table [X2 CXTXE £
oy oxoaars cys g ¥ 1 comment

@ After clicking "I have read it", disable button [ENERERRRN [meskm ety)

oo by dsboars ¥ 1 comment

@ Create Game, make duration field required (I imediimprotyl (0]

S p— = commet
@ profit forecast calculation bug [CX [TTTIN) v (23]
o by Faphwohanced w0 W93 comments
@ Layout issues 2 and 2 point decimal rounding [E (20
o oy Pagawonanded 6 days a0 V81 comment
@ Chat does not scroll when watchi hair
[os R T verves |
e y aadaars 20 49 8 commerts

e hlvirbnr A mamaan! adibahia in Vhanme sattinnet T SR MY

B ==

</science_ fiction>

Add toString implementation #17/

Iy TN maxjacobson wants to merge 1 commit into master from fix-git-tag-descriptions

(& Conversation 0 < Commits 1

Changes from all commits ~ Jumpto...~ +20 -4 m;

20
issues

Ed

@ Files changed 3

src/main/java/con/github/koraktor/mavanagaiata/g

@@ 67,9 +67,23 @@ public boolean isTagged()
*
* @return The string representation of
*/

- eoverride

- public String toString() {

- return "TODO: implement this method";

A Method “tostring" has a Cognitive Complexity of 7 (exces

+ @Override
+ public String toString() {

+ if (this.nextTag == null) {

|+ return this.abbreviatedConmitId;
+ } else if (this.distance == 0) {
+ return this.nextTag. getNane();

+ } else {

A '&& should be onanew line.

it/GitTagDescription.java 88.24% cov

{

this description

eds 5 allowed). Consider refactoring. '

Unified

8

split

~

Edit

View

(=

Challenges

Neural language models aren’t _that_good at programming (remember “oracle™?)
Execution can be hard
Verification can be hard

Rich space of specification languages with different tradeoffs:

which compose best with neural models?

