
Toward Trustworthy Neural
Program Synthesis

Kevin Ellis
Joint with Darren Key, Wen-Ding Li
Cornell University
Workshop on Dependable and Secure Software Systems
ETH 2022

specification program

Program synthesizer

Program synthesizer

Synquid. Polikarpova 2016

Specification = Dependent Types
(types + logical predicates)

“Cornell University” ->

“C.U.”

“Eidgenössische Technische Hochschule” ->

“E.T.H.”

“.”.join(x.split())

Program synthesizer

Eg, FlashFill. Gulwani 2012

Specification = Input-Outputs

y = slope*x + … intercept

Program synthesizer?

Specification = Partially completed program

open file and loop over lines

with open(file, “r”) as handle:
for ln in file:

Program synthesizer?

Specification = Partially completed program

flatten a list called `xss`

[x

 for xs in xss

 for x in xs]

Program synthesizer?

Specification = Partially completed program

flatten a list called `xss`

[x

 for xs in xss

 for x in xs]

Program synthesizer?

Specification = Natural language comment

Large language models for source code

OpenAI Codex, GitHub Copilot

12 billion learned parameters

159 gigabytes of data from GitHub

Large language models for source code:
AlphaCode

Large language models for source code:
AlphaCode

I Speak, You Verify:
Toward Trustworthy Neural Program Synthesis

Darren Key, Wen-Ding Li, Kevin Ellis. 2022

Trust in Traditional Program Synthesis

Trust in Traditional Program Synthesis

Trust in Traditional Program Synthesis

Trust in Traditional Program Synthesis

program ⊢ specification

Trust in Neural Program Synthesis

program ⊢ specification (?)

Trust in Neural Program Synthesis

program ⊢ natural language (?)

Trust in Neural Program Synthesis

program ⊢ natural language (X)

Trust in Neural Program Synthesis

Neural network defines:

Pr[program | natural language]

The Trust Conundrum

Trust ~ Verification

program ⊢ specification

My specification is informal…

…because train data is messy natural code

And I can’t verify against an informal specification

How do people build trust?

PROGRAM SPECIFICATION

Verify/Check

PROGRAM SPECIFICATION

Verify/Check

CODER

REVIEWER

How to escape the trust conundrum

1. Start with informal intention
2. Formalize intention into program and specification
3. Enforce program ⊢ specification
4. Human-in-the-loop: Code reviewer checks both program and specification

How to escape the trust conundrum

1. Start with informal intention
2. Formalize intention into program and specification
3. Enforce program ⊢ specification
4. Human-in-the-loop: Code reviewer checks both program and specification
5. Know your own limitations:

don’t try to write a program if you can’t get bug free code

Speculyzer

Speculyzer

Speculyzer

Speculyzer

Speculyzer

Speculyzer

Generating Programs

Generating Programs

Speculyzer

Generating Specifications, input-outputs

Generating Specifications, input-outputs

Generating Specifications, input-outputs

Generating Specifications, logical relations

Generating Specifications, logical relations

Generating Specifications, logical relations

………………

Speculyzer

Verification Matrix -> Objectives

Pr[program is correct]

Verification Matrix -> Objectives

Pr[program is correct]

+ Satisfies many specs?
+ Many other progs satisfy same specs?
 - Lots of different prog behaviors?

Verification Matrix -> Objectives

Pr[prog correct]
+ Satisfies many specs?
+ Many other progs satisfy same specs?
 - Lots of different prog behaviors?

Feature extraction Binary classification
(logistic regression)

Objectives

Pr[program is correct]

argmax Pr[prog is correct]
prog

Pass@k

Get k guesses as to the correct program

Probability one of your guesses is correct

Accuracy, not really trust

Pass@k

Speculyzer

Pass@k

Pass@k

Pass@k

Pass@k

Pass@k

Pass@k

Pass@k

Speculyzer: >= recent works

Pass@k: Not really the same thing as trust/safety

Objectives

Pr[program is correct]

argmax Pr[prog is correct]
prog

max Pr[prog is correct] > threshold
prog

This working requires our binary classifier is well “calibrated”

Recall (Coverage) vs Precision (Safety)

can_solve_problem = max Pr[prog is correct] > threshold
prog

predicted_program = argmax Pr[prog is correct]
prog

High Threshold:
Sacrifice coverage for precision
Solve fewer problems overall, but propose fewer buggy solutions

Low Threshold:
Broad coverage but inaccurate precision
Solve more problems overall, but also make more mistakes

Tradeoffs

Precision: % of synthesized programs which do the right thing
Recall: problems we solve / problems we could have solved

23% mistakes
81% coverage

30% mistakes
82% coverage

Tradeoffs

Precision: % of synthesized programs which do the right thing
Recall: problems we solve / problems we could have solved

zero mistakes
33% coverage zero mistakes

2% coverage

Reality Check:

No neural net english->code system will achieve 0% errors

Objectives

Pr[program is correct]

argmax Pr[prog is correct]
prog

max Pr[prog is correct] > threshold
prog

Objectives

Pr[program is correct]

Certifying (in)correctness

Think program is correct

How to communicate what program does so that the user can accept/reject it?

program ⊢ specification

Certifying w/ random specifications

Certifying w/ random specifications

Certifying w/ random specifications

Certifying w/ random specifications

Certifying (in)correctness

Think program is correct

How to communicate what program does so that the user can accepted/reject it?

argmax Pr[prog | spec]
prog ⊢spec

Joint distribution over programs and specifications
Uniform, except that program has to entail spec

Certifying (in)correctness

Think program is correct

How to communicate what program does so that the user can accepted/reject it?

argmin |{prog’ : prog’ ⊢spec }|
prog ⊢spec

Pick the thing which is true about the program
But which is not true about most other programs
“distinguishing”, “selective”

Certifying w/ selective/distinguishing specifications

Certifying w/ selective/distinguishing specifications

Certifying w/ selective/distinguishing specifications

Certifying w/ selective/distinguishing specifications

Speculyzer

Synthesizer that creates specifications

Precision by backing off when it can’t solve a problem

Trust by constructing certificates of (in)correctness

What could trust unlock?

<science_fiction>

</science_fiction>

<science_fiction>

</science_fiction>

<science_fiction>

</science_fiction>

Challenges

Neural language models aren’t _that_ good at programming (remember “oracle”?)

Execution can be hard

Verification can be hard

Rich space of specification languages with different tradeoffs:

which compose best with neural models?

