<

JA\ Deca C V

HOW TO RETROF

5Si slAL SOFTWARE

SUN

Nuno P. Lopes
University of Lisbon

LLVM

* Compiler used by Apple, Arm, Azul Systems, Cray, Google, Huawei, Imagination
Technologies, Intel, Meta, Microsoft, PlayStation, Qualcomm, ...

* Used for: C, C++, ObjC, Fortran, Rust, Swift, TensorFlow, PyTorch, DirectX,
OpenGL, WebAssembly, ...

Typical compiler

JavaScript
IR R IR

Optimization n

Nvidia PTX

LLVM’s SSA-based IR

int f(int a, int cond) {
int b;

if (cond)
b=a+1;
else
b =a << 2;

return b;

}

define i32 @f(i32 %a, 132 %cond) {
%cmp = icmp ne i32 %cond, ©
br i1 %cmp, label %then, label %else

then:
%bl = add 132 %a, 1
br label %end

else:
%b2 = shl 132 %a, 2
br label %end

end:

% = phi i32 [%bl, %then], [%b2, %else]

ret 132 %b
}

IR: The most important data-structure

* Used as input from frontends IR must be:

* Expressible

* Support desired optimizations

* Block wrong transformations

» Efficient transformations

* Efficient analyses

* Efficient encoding of assumptions
from source language

 Efficiently cache derived facts

e Efficient lowering to ASM

* Used as input/output by optimizations

?7?
UNSAT!

Why focus on compilers?

* Today’s software goes at least through one compiler (often more than one!)

* Correctness and safety depends on compilers

Applications

Hardware

Do compilers have bugs?

Volatiles Are Miscompiled, and What to Do about It

Skeletal Program Enumeration for Rigorous Compiler Testing

Qirun Zhang Chengnian Sun ~ Zhendong Su Eric Eide John Regehr
University of California, Davis, United States University of Utah, School of Computing University of Utah, School of Computing
Salt Lake City, UT USA Salt Lake City, UT USA
eeide@cs.utah.edu regehr@cs.utah.edu

{qrzhang, cnsun, su}@ucdavis.edu

Finding Compiler Bugs via Live Code Mutation
Finding and Understanding Bugs in C Compilers

Chengnian Sun Vu Le Zhendong Su
Department of Computer Science, University of California, Davis, USA Xuejun Yang Yang Chen Eric Eide John Regehr
{cnsun, vmle, su}@ucdavis.edu University of Utah, School of Computing
{ixyang, chenyang, eeide, regehr }@cs.utah.edu
Random Testing for C and C++ Compilers with YARPGen . . .
Random Testing of C Calling Conventions
VSEVOLOD LIVINSKII, University of Utah and Intel Corporation, USA Hiicibanr i
DMITRY BABOKIN, Intel Corporation, USA Depamilez?%umvegitgéden
omputer ce

JOHN REGEHR, University of Utah, USA Saarbricken, Germany

lindig@cs.uni-sb.de

Fuzzing tools found thousands of bugs in gcc and LLVM!

Compiler bugs can be nasty!

* Miscompilations can introduce security vulnerability in safe programs

* First documented case: CVE-2006-1902

* Academics have used a bug in LLVM to introduce a backdoor in “sudo” (2015)

Summary so far

* Compilers are crucial in software ecosystem

* But they have bugs, including security-sensitive ones

* Designing IRs is extremely complex

Optimizations are easy to get wrong

int a = x << ¢; - int t =d / (1 << ¢);

int b = a / d; int b = x / t;

x*2¢/d x/(d/2° =x/d*?2¢
=x*2¢/d

(c and d are constants)

Optimizations are easy to get wrong

int a X << C; int t
int b = a / d; - int b =

!
X Q

ERROR: Domain of definedness of Target is
smaller than Source's for i4 %b

LLVM bug #21245

Example:

%X i4 = ox0 (0)

c 14 = ox3 (3)

d i4 = ox7 (7)

%a 14 = 0x0 (9)

(1 << c) i4 = ox8 (8, -8)
%t i4 = oxe (0)

Source value: 0x0 (0)
Target value: UB

What's a correct compiler?

IR with “similar” semantics to
source program (refinement)

Our focus

IR before/after
each optimization
have “similar”

semantics

(refinement) Optimization n
Assembly with “similar”

semantics to IR

(refinement)

‘Research

- . alive
First attempt: Alive o i o

1 Mame: PR2O186
#a = sdiv %X, C
#r = sub B, Xa

* Fully automatic verification tool for peephole ST
optimizations (SMT-based) °

* Found dozens of bugs in LLVM . oo oo

* Avoided many more bugs due to use before commit

Description Line|Column
@1 Domain of definedness of Target is smaller than Source's for i4 ¥r k] e

Optimization: PR28186

° Released as Open-SOurCG in Fa” 2014 ERROR: Domain of definedness of Target is smaller than Source's for id %r
. ;;a?zl::poison
* Used by developers across 8+ companies C 34 = ox1 (1)

%a i4 = poison
Source value: 8x9 (9, -7)
Target value: UB

samples about Alive - Optimization Verifier
PR2B1&6 Alive proves correctness of peephole optimizations.

A new optimization, or how Alive was adopted

* A developer wrote a new optimization that improved benchmarks:
> 3.8% perlbmk (SPEC CPU 2000)
> 1% perlbench (SPEC CPU 2006)
> 1.2% perlbench (SPEC CPU 2006) w/ LTO+PGO

40 lines of code
August 2014

A new optimization, or how Alive was adopted

* The first patch was wrong

ERROR: Mismatch in values of %r

Example:

Pre: isPowerOf2(C1 ~ C2) %A i4 = 0x0 (0)
%x = add %A, C1 Cl i4 = oxA (16, -6)
%i = icmp ult %x, C3 €3 i4 = ox5 (5)
% = add %A, C2 €2 14 = 6x2 (2)
o/ s . o %X 14 = OxA (10, -6)
%) = 1cmp.u1t ./oy, C3 % i1 = ox0 ()
°/ol" = Oor %1, %J %y i4 = ox2 (2)

=> %j i1 = ox1 (1, -1)
%and = and %A, ~(Cl1 ~ C2) %and i4 = ox0 (0)
%lhs = add %and, umax(Cl, C2) %lhs i4 = OxA (10, -6)
%r = icmp ult %lhs, C3 Source value: ox1 (1, -1)

Target value: 0x0 (9)

A new optimization, or how Alive was adopted

* The second patch was wrong

Pre: C1 u> C3 &&

° i | C2 u> C3 &&
The third patch was correct! LsPowerof2(C1 €2) 88
« Still fired on the benchmarks! isPowerof2(-C1 "~ -C2) &&

(-C1 ~ -C2) == ((C3-C1) ~ (C3-C2)) &&
abs(C1-C2) u> C3

add %A, C1

icmp ult %x, C3

add %A, C2

icmp ult %y, C3

or %i, %j

%X
%1
%y
%J
%r

(o)
o

R
Q
S
Q v

= and %A, ~(C1”C2)
%lhs = add %and, umax(C1,C2)
%r = icmp ult %lhs, C3

Alive couldn’t verify all LLVM optimizations

* They seemed wrong, but we weren’t sure

* Nobody we asked knew

* We started digging!

Study on UB semantics

* Published in 2017

* Showed that LLVM IR wasn’t expressive enough for all
optimizations that people cared about

* E.g. can’t have GVN & Loop unswitching

* Proposed a fix: a new freeze instruction

Taming Undefined Behavior in LLVM

Juneyoung Lee
Yoonseung Kim
Youngju Song
Chung-Kil Hur

Seoul National University, Korea
{juneyoung.lee, yoonseung.kim,
youngju.song, gil.hur}@sf.snu.ac.kr

Abstract

A central concern for an optimizing compiler is the design of
its intermediate representation (IR) for code. The IR should
make it easy to perform transformations, and should also
afford efficient and precise static analysis.

In this paper we study an aspect of IR design that has re-
ceived little attention: the role of undefined behavior. The IR
for every optimizing compiler we have looked at, including
GCC, LLVM, Intel’s, and Microsoft’s, supports one or more
forms of undefined behavior (UB), not only to reflect the

Sanjoy Das
Azul Systems, USA
sanjoy@azul.com

John Regehr

University of Utah, USA
regehr@cs.utah.edu

David Majnemer

Google, USA
majnemer@google.com

Nuno P. Lopes

Microsoft Research, UK
nlopes@microsoft.com

1. Introduction

Some programming languages, intermediate representations,
and hardware platforms define a set of erroneous operations
that are untrapped and that may cause the system to behave
badly. These operations, called undefined behaviors., are the
result of design choices that can simplify the implementation
of a platform, whether it is implemented in hardware or soft-
ware. The burden of avoiding these behaviors is then placed
upon the platform’s users. Because undefined behaviors are
untrapped, they are insidious: the unpredictable behavior that

Undefined Behavior in LLVM

* “Immediate UB” — this is like undefined behavior in C or C++, destroys the meaning of the
program
° Division by zero

o Out of bounds memory accesses

* Undef —an arbitrary value
° Mainly used to model uninitialized memory

o Each read can return a different value!

* Poison — a contagious error value, similar to NaN
> Things like integer overflow turn into poison

GVN vs Loop Unswitching

while (c) { 1f (c2) o
if (c2) { foo } W)) ”e“ﬁie{(c) t oo}
} else { bar } } while (c) { bar }

Loop unswitch

Branch on poison/undef cannot be UB
Otherwise, wrong if loop never executed

GVN vs Loop Unswitching

t =x+ 1; X + 1;
if (t ==vy) { = 1fﬁ()’;(=; y) {
W =X+ 1; } y7s
foo(w);
J Contradiction with loop unswitching!
GVN

Branch on poison/undef must be UB
Otherwise, wrong if y poison but not x

But.. no one listened!

* A compiler developer reaction (early 2017): “Paper is a nice read, but
examples are academic. No one will ever write such code”.

* LLVM miscompiles itself (July 2017)

* Broken LLVM miscompiles internal code
° The company’s devs waste a couple of weeks debugging

* What happened?

What was wrong?

“Every transformation above seems of no
problem, but the composition result is
wrong. It is still not clear which
transformation to blame.”

— LLVM developer

The transformations were...
GVN & loop unswitching!

Internal code miscompiling

* The compiler developer reaction: “Paper is a nice
read, but examples are academic. No one will ever
write such code.”

NOTE: Not blaming anyone. We weren’t sure ourselves of the extent of the issue.
(Suspense Just a funny story.

* He wrote the code osb

* Bug “fixed”: if (match_code(..)) dont_optimize();

Freeze wasn’t used until 2 years later

* We needed more pain & suffering:
o Miscompilation in Android (2018)

> Azul Java compiler broken (2019)

* In Oct 2019, people asked us to commit freeze to fix bugs once and for all

* Initial patches regressed performance: committed & rolled back!
o Perf matters more sometimes

* Freeze + other fixes released in LLVM 10
° Incl performance improvements due to additional expressivity

It’s hard to sell correctness

* Things are working fine; why bother?

* It looks expensive (it’s an investment for the long run)

* Semantics of compiler IRs is tricky business
> Not enough research

> Not enough knowledge

Alive wasn’t enough

* Optimizations had to be written in Alive’s DSL

* Alive only supported peephole optimizations

* C++ code generation wasn’t productized

Typing
Constraints

Refinement

Transformation .
Constraints

COMPILER INFRASTRUCTURE

Alive?

TRANSLATION VALIDATION FOR LLVM

Alive?

* Supports all intra-procedural optimizations

* Ensures LLVM adheres to a specification

* Actively used by LLVM developers

* Requires zero changes to LLVM

* Fully automatic

https://alive2.llvm.org

* Easy to use
https://github.com/AliveToolkit/alive2

* [dentifies the optimization that miscompiled the code &
produces minimal test case

https://alive2.llvm.org/
https://github.com/AliveToolkit/alive2

Translation Validation

* Was the optimization correct?

optimization
LLVM IR > | LLVM IR

Alive2

* Correct
* Not correct + example
* Timeout

Validating LLVM with its own unit tests

We found 100+ miscompilation bugs in LLVM through its own unit tests
o Wait, what?

The expected output of tests is generated automatically
o Good for detecting regressions

> Not so good to ensure developers read all of it!

Anecdote: every time we implement a feature in Alive2, we find a bug in LLVM

Very important: allows us to validate our semantics of LLVM (aka “verifying the verifier”)
o Plus experiment with different semantics

Validating LLVM by compiling C programs

* Found a lot of scalability issues in Alive2 & Z3

* Finds a lot of missing features in Alive2
° Top 10 is very different from that of the unit tests!

* Finds extra bugs
> The coverage of the test suite is very good for some optimizations, not great for others

& Cc O @ alive2.llvm.org/ce/z/Hp_T2e

—t COMPILER
=_. EXPLORER Add...~ || More~ SponsorsP
LLVM IR source #1 X O X alive-tv (Editor #1, Compiler #1) LLVM IR X
A~ B Save/lload <+ Addnew..~ WV Vim LLVWMIR ¥ alive-tv v ® | Compiler options... . . |
I define vold Esro(idze 30, 132+ 41 | - Online tool is mandator
] (! 1 A~ ©@output..~ YFilter.. B Librariesv = Addnew...~ V'
2 %3 = alloca i32%, align 8
3 %4 = alloca i32%, align 8 1
4 store i32* %0, i32%* %3, align 8 i
. . : 3 define void @src(* %0, * %1) { ‘II
5 store i32* %1, i32%* %4, align 8 ' ° N t
B2 v, el L ot everyone wi
6 %5 = load i32#%, i32%*#% %3, align 8 N
7 %6 = load i32, i32* %5, align 4 5 %3 = alloca 164 8, align 8 (j 't. .I.
8 %7 = load i32%, i32%* %3, align 8 6 84 = alloca i64 8, align 8 Spen Ime con lpl Ing
9 %8 = load i32, i32* %7, align 4 7 store * %0, * %3, align 8
10 %9 = mul nsw i32 %6, %8 8 store * %1, * %4, align 8 the tOOI
11 %10 = load i32+%, i32%* %4, align 8 3 %5 = load *, * %3, align 8
12 store i32 %9, i32* %10, align 4 10 %6 = load 132, * %5, align 4 ° E h f .
13 ret void 11 %7 = load *, * %3, align 8 asy snare o |nputs
14 } 12 %8 = load i32, * %7, align 4 .
15 13 %9 = mul nsw i32 %6, %8 through permahnks
16 define void @tgt(i32* %0, i32*% %1) { T 14 %10 = load *, * %4, align 8
17 %3 = load i32, i32* %0, align 4 15 store 132 %9, * %10, align 4 o U d t h
18 %4 = load i32, i32* %0, align 4 16 ret void Sers eaucate eac
17}

19 %5 = mul nsw 132 %3, %4

20 store i32 %5, i32* %1, align 4 18 = Other

19 define void @tgt(* %0, * %1) {

21 ret void

22 } 20 %2z
21 %3 = load i32, * %0, align 4
22 %4 = load i32, * %0, align 4
23 %5 = mul nsw i32 %3, %4
24 store i32 %5, * %1, align 4
25 ret void
26}

27 Transformation seems to be correct!

Alive2 in use

@ Phabricator A while (!(fp32_fraction & (1 << 23))) {
fp32_exponent -= 1;

£ Differential > D91038 fp32_fraction <<= 1;
}

1+ [Loopldiom] Introduce 'left-shift until bittest' idiom
« Accepted @ Public

unsigned x = fp32_ fraction;

= Authored by lebedev.ri on Nov 9 2020, 4:49 AM.

1 unsigned bit = 23;

unsigned bitmask = 1U << bit;

The motivation here is the following inner loop in fp16/fp24 -> fp32 expander, unsigned mask = bitmask | (bitmask - 1);
unsigned x _masked = x & mask;

that runs as part of the floating-point DNG decompression in RawSpeed library: e N
?CHAR_BIT*_sizeof (x:maskeg) -bit-1);

and we can prove that via alive2:

fp32_exponent -= num_steps;

https://alive2.llvm.org/ce/z/7vQniji (ha nice, isn't it?) £p32_fraction <<= num steps;

Side-effects: stress-test SMT solvers

0 ~N o v kA W N -

11

Bugs found in Z3

. Incorrect bitblast for fprem (Z3Prover/z3#2369)

. Bug in FPA w/ quantifiers (Z3Prover/z3#2596)

. Bug in FPA w/ quantifiers (Z3Prover/z3#2631)

. Crash in partial model mode (Z3Prover/z3#2652)

. Crash when printing multi-precision integer (Z3Prover/z3#2761)
. Bug with lambdas and quantified variables (Z3Prover/z3#2792)
. Bug in MBQI (Z3Prover/z3#2822)

. Bug with equality of arrays w/ lambdas

(https://github.com/Z3Prover/z3/commit/Ob14f1b6f6bb33b555bace93d644163987b0c5

. Crash in FPA model construction (Z3Prover/z3#2865)
10.

Crash in BV theory assertion (Z3Prover/z3#2878)

. Assertion violation in SMT equality propagation (Z3Prover/z3#2879)
12.
13.
14.
15.

Assertion violation in ge_lite (https://github.com/Z3Prover/z3/commit/bb5edb7c653f931
SMT internalize doesn't respect the timeout (Z3Prover/z3#4192)
Unsoundness with smt.bv.size_reduce=true (Z3Prover/z3#6314)

Incorrect sort after lambda rewrite (Z3Prover/z3#6340)

+ scalability issues in memory allocation,
timeout mechanism, etc

SMT solvers improve all the time! Myth!

(We) Fixed exponential behavior with lambdas

C tests LLVM unit tests
120000 140 12000 90
100000 120 10000
85
100
80000 8000
20 80
60000 6000
60 -
40000 4000
40
20000 2000 70
20
0 0 0 65
4.8.6(09/19) 4.8.9(09/20) 4.8.10 (0 4.8.14 (12/21) 8/22) 1 2 3 4 5
B time () —em—j fIagged N Series] emmSeries2

3% speedup in 1.5 years 16% fewer bugs found

s LLVM correct already?

s LLVM correct already?

* No!

* But it’s more correct than a decade ago*

* A few efforts ongoing:
° Remove undef

> Change semantics of load instructions (to remove undef)
° Semantics of integer -> pointer cast

* Some theoretical issues still standing
o Full semantics spec for LLVM doesn’t exist yet!

* | take no responsibility for this statement

Continuous verification

LLVM adds new unit tests

for select issues

Alive2 adds support for more LLVM features

Fix SimplifyCFG bug

Finds new bugs in LLVM; fixed at same pace

Fix long-standing
InstCombine bug re
select instruction

/

I Feilures | Failures if undef ignored

pointers as arguments to

Fix regression in Alive2
function calls

when passing null

\

= 2 = =] = = =] =] =
2 5 =]]] =] =+]

Sednie 1sal ganly

Date & LLVM commit

Conclusion

* Retrofitting soundness is very challenging
o Requires patience, horror stories, education & marketing

o Changing culture takes time

* Correctness is a never-ending job
° Mandatory to have continuous validation

* Mandatory to have easy to use tools
o Little or no change in developers’ workflow

o Web interfaces are fundamental to lower learning curve & increase adoption!

* Verifying a system requires fixing it first!

« Alive/Alive2 have been improving the correctness of LLVM for the past decade!)

‘and’ Instruction

Semantics of

<result> = and <ty> <opl», <op2» ; yields ty:result

corner cases?

The ‘and’ instruction returns the bitwise logical and of its two operands.

What’s the result of:

and i8 %x, poison
and il false, poison

Arguments:

The two arguments to the “and’ instruction must be integer or vector of integer values. Both arguments must have identical types.

and |32 O, pOison Semantics:

The truth table used for the ‘and’ instruction is:

Ind In1T Out

0 0 0

0 1 0

1 0 0

1 1 1

Example:
<result> = and i32 4, ¥var 53 ylelds i32:result = 4 & Rvar
<reszult> = and i32 15, 4@ 5 ylelds i32:result = 8
<result> = and i32 4, 8 53 ylelds i32:result = @

Semantics for select?

select %c, %a, %b

UB if ¢ poison + UB if ¢ poison + Conditional Conditional poison | Poison if any of
conditional poison | poison if either | poison + non-det | + poison if ¢ poison a/b/c poison
a/b poison choice if ¢ poison
control-flow - select V4 v v
select - control-flow V4 V4
select - arithmetic v v
select removal v v v v
select hoisting v v v
easy movement v v v

Which one is the best and why?
Which one LLVM uses?

