
A Decade Verifying LLVM
HOW TO RETROFIT SOUNDNESS IN INDUSTRIAL SOFTWARE

N u n o P. L o p e s
U n i v e r s i t y o f L i s b o n

LLVM
• Compiler used by Apple, Arm, Azul Systems, Cray, Google, Huawei, Imagination
Technologies, Intel, Meta, Microsoft, PlayStation, Qualcomm, …

• Used for: C, C++, ObjC, Fortran, Rust, Swift, TensorFlow, PyTorch, DirectX,
OpenGL, WebAssembly, …

Typical compiler

C++ Swift JavaScript Rust

Optimization n

x86

IR

IR
IRIR

ARM PowerPC Nvidia PTX

Optimization 1

…

IR

LLVM’s SSA-based IR

int f(int a, int cond) {
int b;

if (cond)
b = a + 1;

else
b = a << 2;

return b;
}

define i32 @f(i32 %a, i32 %cond) {
%cmp = icmp ne i32 %cond, 0
br i1 %cmp, label %then, label %else

then:
%b1 = add i32 %a, 1
br label %end

else:
%b2 = shl i32 %a, 2
br label %end

end:
%b = phi i32 [%b1, %then], [%b2, %else]
ret i32 %b

}

IR: The most important data-structure
• Used as input from frontends

• Used as input/output by optimizations

IR must be:
• Expressible
• Support desired optimizations
• Block wrong transformations
• Efficient transformations
• Efficient analyses
• Efficient encoding of assumptions

from source language
• Efficiently cache derived facts
• Efficient lowering to ASM

??
UNSAT!

Why focus on compilers?
• Today’s software goes at least through one compiler (often more than one!)

• Correctness and safety depends on compilers

OS Compiler

Hardware

Applications

Do compilers have bugs?

Fuzzing tools found thousands of bugs in gcc and LLVM!

Compiler bugs can be nasty!
• Miscompilations can introduce security vulnerability in safe programs

• First documented case: CVE-2006-1902

• Academics have used a bug in LLVM to introduce a backdoor in “sudo” (2015)

Summary so far
• Compilers are crucial in software ecosystem

• But they have bugs, including security-sensitive ones

• Designing IRs is extremely complex

Optimizations are easy to get wrong

x * 2c / d x / (d / 2c) = x / d * 2c

= x * 2c / d

Optimizations are easy to get wrong

ERROR: Domain of definedness of Target is
smaller than Source's for i4 %b

Example:
%X i4 = 0x0 (0)
c i4 = 0x3 (3)
d i4 = 0x7 (7)
%a i4 = 0x0 (0)
(1 << c) i4 = 0x8 (8, -8)
%t i4 = 0x0 (0)
Source value: 0x0 (0)
Target value: UB

What’s a correct compiler?

C++ Swift JavaScript Rust

Optimization n

x86

IR

IR
IRIR

ARM PowerPC Nvidia PTX

Optimization 1

…

IR

IR with “similar” semantics to
source program (refinement)

IR before/after
each optimization
have “similar”
semantics
(refinement)

Assembly with “similar”
semantics to IR
(refinement)

Our focus

First attempt: Alive
• Fully automatic verification tool for peephole
optimizations (SMT-based)

• Found dozens of bugs in LLVM

• Avoided many more bugs due to use before commit

• Released as open-source in Fall 2014

• Used by developers across 8+ companies

A new optimization, or how Alive was adopted
• A developer wrote a new optimization that improved benchmarks:

◦ 3.8% perlbmk (SPEC CPU 2000)

◦ 1% perlbench (SPEC CPU 2006)

◦ 1.2% perlbench (SPEC CPU 2006) w/ LTO+PGO

40 lines of code

August 2014

A new optimization, or how Alive was adopted
• The first patch was wrong

Pre: isPowerOf2(C1 ^ C2)
%x = add %A, C1
%i = icmp ult %x, C3
%y = add %A, C2
%j = icmp ult %y, C3
%r = or %i, %j
=>

%and = and %A, ~(C1 ^ C2)
%lhs = add %and, umax(C1, C2)
%r = icmp ult %lhs, C3

ERROR: Mismatch in values of %r

Example:
%A i4 = 0x0 (0)
C1 i4 = 0xA (10, -6)
C3 i4 = 0x5 (5)
C2 i4 = 0x2 (2)
%x i4 = 0xA (10, -6)
%i i1 = 0x0 (0)
%y i4 = 0x2 (2)
%j i1 = 0x1 (1, -1)
%and i4 = 0x0 (0)
%lhs i4 = 0xA (10, -6)
Source value: 0x1 (1, -1)
Target value: 0x0 (0)

A new optimization, or how Alive was adopted
• The second patch was wrong

• The third patch was correct!

• Still fired on the benchmarks!

Pre: C1 u> C3 &&
C2 u> C3 &&
isPowerOf2(C1 ^ C2) &&
isPowerOf2(-C1 ^ -C2) &&
(-C1 ^ -C2) == ((C3-C1) ^ (C3-C2)) &&
abs(C1-C2) u> C3

%x = add %A, C1
%i = icmp ult %x, C3
%y = add %A, C2
%j = icmp ult %y, C3
%r = or %i, %j
=>

%and = and %A, ~(C1^C2)
%lhs = add %and, umax(C1,C2)
%r = icmp ult %lhs, C3

Alive couldn’t verify all LLVM optimizations
• They seemed wrong, but we weren’t sure

• Nobody we asked knew

• We started digging!

Study on UB semantics
• Published in 2017

• Showed that LLVM IR wasn’t expressive enough for all
optimizations that people cared about

• E.g. can’t have GVN & Loop unswitching

• Proposed a fix: a new freeze instruction

Undefined Behavior in LLVM
• “Immediate UB” – this is like undefined behavior in C or C++, destroys the meaning of the
program

◦ Division by zero

◦ Out of bounds memory accesses

• Undef – an arbitrary value
◦ Mainly used to model uninitialized memory

◦ Each read can return a different value!

• Poison – a contagious error value, similar to NaN
◦ Things like integer overflow turn into poison

GVN vs Loop Unswitching

while (c) {
if (c2) { foo }
else { bar }

}

if (c2) {
while (c) { foo }

} else {
while (c) { bar }

}

Loop unswitch

Branch on poison/undef cannot be UB
Otherwise, wrong if loop never executed

GVN vs Loop Unswitching

t = x + 1;
if (t == y) {

w = x + 1;
foo(w);

}

t = x + 1;
if (t == y) {
foo(y);

}

GVN

Branch on poison/undef must be UB
Otherwise, wrong if y poison but not x

Contradiction with loop unswitching!

But.. no one listened!
• A compiler developer reaction (early 2017): “Paper is a nice read, but
examples are academic. No one will ever write such code”.

• LLVM miscompiles itself (July 2017)

• Broken LLVM miscompiles internal code
◦ The company’s devs waste a couple of weeks debugging

• What happened?

What was wrong?

“Every transformation above seems of no
problem, but the composition result is
wrong. It is still not clear which
transformation to blame.”

LLVM developer

The transformations were…
GVN & loop unswitching!

Internal code miscompiling
• The compiler developer reaction: “Paper is a nice
read, but examples are academic. No one will ever
write such code.”

(Suspense..)

• He wrote the code

• Bug “fixed”: if (match_code(..)) dont_optimize();

NOTE: Not blaming anyone. We weren’t sure ourselves of the extent of the issue.
Just a funny story.

Freeze wasn’t used until 2 years later
• We needed more pain & suffering:

◦ Miscompilation in Android (2018)

◦ Azul Java compiler broken (2019)

• In Oct 2019, people asked us to commit freeze to fix bugs once and for all

• Initial patches regressed performance: committed & rolled back!
◦ Perf matters more sometimes

• Freeze + other fixes released in LLVM 10
◦ Incl performance improvements due to additional expressivity

It’s hard to sell correctness
• Things are working fine; why bother?

• It looks expensive (it’s an investment for the long run)

• Semantics of compiler IRs is tricky business
◦ Not enough research

◦ Not enough knowledge

Alive wasn’t enough
• Optimizations had to be written in Alive’s DSL

• Alive only supported peephole optimizations

• C++ code generation wasn’t productized

Refinement
Constraints

Alive

C++

Transformation

Typing
Constraints

Alive2
TRANSLATION VALIDATION FOR LLVM

Alive2
• Supports all intra-procedural optimizations

• Ensures LLVM adheres to a specification

• Actively used by LLVM developers

• Requires zero changes to LLVM

• Fully automatic

• Easy to use

• Identifies the optimization that miscompiled the code &
produces minimal test case

https://alive2.llvm.org

https://github.com/AliveToolkit/alive2

https://alive2.llvm.org/
https://github.com/AliveToolkit/alive2

Translation Validation

LLVM IR

• Was the optimization correct?

LLVM IR
optimization

Alive2

• Correct
• Not correct + example
• Timeout

Validating LLVM with its own unit tests
• We found 100+ miscompilation bugs in LLVM through its own unit tests

◦ Wait, what?

• The expected output of tests is generated automatically
◦ Good for detecting regressions

◦ Not so good to ensure developers read all of it!

• Anecdote: every time we implement a feature in Alive2, we find a bug in LLVM

• Very important: allows us to validate our semantics of LLVM (aka “verifying the verifier”)
◦ Plus experiment with different semantics

Validating LLVM by compiling C programs
• Found a lot of scalability issues in Alive2 & Z3

• Finds a lot of missing features in Alive2
◦ Top 10 is very different from that of the unit tests!

• Finds extra bugs
◦ The coverage of the test suite is very good for some optimizations, not great for others

Online tool is mandatory!

• Not everyone will
spend time compiling
the tool

• Easy share of inputs
through permalinks

• Users educate each
other

Alive2 in use

Side-effects: stress-test SMT solvers

+ scalability issues in memory allocation,
timeout mechanism, etc

SMT solvers improve all the time!

0

20

40

60

80

100

120

140

0

20000

40000

60000

80000

100000

120000

4.8.6 (09/19) 4.8.9 (09/20) 4.8.10 (01/21) 4.8.14 (12/21) 4.11.2 (08/22)

C tests

time (s) issues flagged

65

70

75

80

85

90

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5

LLVM unit tests

Series1 Series2

3% speedup in 1.5 years

(We) Fixed exponential behavior with lambdas

16% fewer bugs found 😢

Is LLVM correct already?

Is LLVM correct already?
• No!

• But it’s more correct than a decade ago*

• A few efforts ongoing:
◦ Remove undef

◦ Change semantics of load instructions (to remove undef)

◦ Semantics of integer -> pointer cast

• Some theoretical issues still standing
◦ Full semantics spec for LLVM doesn’t exist yet!

* I take no responsibility for this statement

Continuous verification

Fix SimplifyCFG bug

Fix long-standing
InstCombine bug re
select instruction

Fix regression in Alive2
when passing null
pointers as arguments to
function calls

LLVM adds new unit tests
for select issues

Alive2 adds support for more LLVM features
Finds new bugs in LLVM; fixed at same pace

Still > 0 🙁

Conclusion
• Retrofitting soundness is very challenging

◦ Requires patience, horror stories, education & marketing

◦ Changing culture takes time

• Correctness is a never-ending job
◦ Mandatory to have continuous validation

• Mandatory to have easy to use tools
◦ Little or no change in developers’ workflow

◦ Web interfaces are fundamental to lower learning curve & increase adoption!

• Verifying a system requires fixing it first!

• Alive/Alive2 have been improving the correctness of LLVM for the past decade! 🙂

Semantics of
corner cases?

What’s the result of:

and i8 %x, poison
and i1 false, poison
and i32 0, poison

Semantics for select?

UB if c poison +
conditional poison

UB if c poison +
poison if either

a/b poison

Conditional
poison + non-det
choice if c poison

Conditional poison
+ poison if c poison

Poison if any of
a/b/c poison

control-flow → select ✓ ✓ ✓

select → control-flow ✓ ✓

select → arithmetic ✓ ✓

select removal ✓ ✓ ✓ ✓

select hoisting ✓ ✓ ✓

easy movement ✓ ✓ ✓

select %c, %a, %b

Which one is the best and why?

Which one LLVM uses?

