A Quest Toward the
Perfect Optimizing Compiler

.l.I.AST.ech.Ch

ETH:-zurich

Source

=) Compiler

Target

1010

s

How far are we from the optimum? Pretty far...

I
3
a G
:= README.md
BOLT: A Practical Binary Optimizer 1d: A Modern Link
moia: odern Linker
for Data Centers and Beyond
Maksim Panchenko. Rafael Auler. Bill Nell. Guilherme Ottoni mold is a faster drop-in replacement for existing Unix linkers. It is several times faster than the LLVM Ild linker, the
Facebook, Inc. second-fastest open-source linker which | originally created a few years ago. mold is designed to increase developer

Menlo Park, CA, USA
{maks,rafaelauler.bnell,ottoni } @ fb.com

:x‘ Amir y

" @disruptnhandlr - Follow

productivity by reducing build time, especially in rapid debug-edit-rebuild cycles.

Here is a performance comparison of GNU gold, LLVM lid, and mold for linking final debuginfo-enabled executables
of major large programs on a simulated 8-core 16-threads machine.

Time to perform linking (shorter is better)
B GNUgold [LLVMId mold

I've been working on CMake magic to fully
automatically apply BOLT to Clang, similar to how
PGO two-stage build is automated with CMake
cache file. It appears that fully automatically BOLT-
optimized Clang is ~30% faster than the Release (-
03) Clang: reviews.llvm\grg/D132975

3:08 AM - Sep 2, 2022

®

Time to link (seconds)

@5 Read the full conversation on Twitter

Q 166 O Reply T Share

Chrome 96 (1.89 GiB) Clang 13 (3.18 GiB)

1.3X Speedup .' 5 : Programs and their bin

Read 7 rg

(PGO), particularly code layout. At the same time, due to is partict®
their large sizes, applying FDO to these applications poses code layout.
scalability challenges. Instrumentation-based profilers incur We demonstrate the finding apove BMCAL O] a static
significant memory and computational performance costs, binary optimizer we built, called BOLT. BOLT is a modern, re-
often making it impractical to gather accurate profiles from targetable binary optimizer built on top of the LLVM compiler
a production system. To simplify deployment and increase infrastructure [8]. Our experimental evaluation on large real-
adoption, it is desirable to have a system that can obtain profile world applications shows that BOLT can improve performance
data for FDO from unmodified binaries running in their normal by up to 20.4% on top of FDO and LTO. Furthermore, our
production environments. This is possible through the use of analysis demonstrates that this improvement is mostly due to
sample-based profiling, which enables high-quality profiles to the improved code layout that is enabled by the more accurate
be gathered with minimal operational complexity. This is the usage of sample-based profile data at the binary level.

approach taken by tools such as Ispike [1], AutoFDO [2], and Overall, this paper makes the following contributions:

Program (linker output size) = GNUgold LLVMIld mold

Chrome 96 (1.89 GiB) 53.86s 11.74s 2.21s

Clang 13 (3.18 GiB) 64.12s 5.82s 2.90s

Firefox 89 libxul (1.64 GiB) 32.95s 6.80s 1.42s

mold is so fast that it is only 2x slowerthan cp on the same machine. Feel free to file a bug if you find mold is not
faster than other linkers.

Our Approach

1. We obtain the
optimum.

2. We compare with
the compiler and find
the gap.

“What if we had
optimal ...?”

“What if we had
optimal inlining?

Understanding and Exploiting Optimal Function Inlining

Theodoros Theodoridis Tobias Grosser Zhendong Su
theodoros.theodoridis@inf.ethz.ch tobias.grosser@ed.ac.uk zhendong.su@inf.ethz.ch
ETH Zurich University of Edinburgh ETH Zurich
Switzerland United Kingdom Switzerland

ABSTRACT

Inlining is a core transformation in optimizing compilers. It replaces
a function call (call site) with the body of the called function (callee).
It helps reduce function call overhead and binary size, and more im-
portantly, enables other optimizations. The problem of inlining has
been extensively studied, but it is far from being solved; predicting
which inlining decisions are beneficial is nontrivial due to inter-
actions with the rest of the compiler pipeline. Previous work has
mainly focused on designing heuristics for better inlining decisions
and has not investigated optimal inlining, i.e., exhaustively finding
the optimal inlining decisions. Optimal inlining is necessary for
identifying and exploiting missed opportunities and evaluating the
state of the art. This paper fills this gap through an extensive em-

1 1

pirical analysis of optimal inlining using the SPEC2017 b k

1 INTRODUCTION

Function inlining (aka inlining exp is one of the fi
compiler transformations. Not only does it eliminate function call
overhead and potentially shrinks binary size, but it also expands the
scope of intra-procedural analyses and optimizations. All of these
are enabled by replacing function calls with the callees’ bodies. The
resulting optimization scope expansion makes inlining a critical
transformation. Figure 1 illustrates the importance of inlining.

d 1

Size change due to inlining (%) ,,
63 60 54 5o s 62 61 6 64 g
50% 44

suite. Our novel formulation drastically reduces the inlining search
By 25 N

The Benefits of Inlining

int bar(int a, int b) {
if ((a * b) % 2)
return a + b;

else fter inlini : :
return a - b; arter inlning int 'FOO(lnt X) {

} return Xx;

}

int foo(int x) {
return bar(x,2) + 2;

¥

Too much Inlining is Bad

°o

Aggressive Inlining:
69% binary size increase

— Inlined call
_ J

Proper Inlining Reduces Program Size

Relative size: clang -Os vs clang -Os -fno-inline

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

429 44%
30%

ES

&

Up to 3x improvement

<
N
2
Q

52%

52%

53%

cco, 56% 56% 58% 59% 60%

. S
*@ Q Q,Qg\ N
¥ &

SPEC CPU 2017 benchmarks

60%

61%

A
e

&

@g

o

62%

63% 64%

64%

66%

(”b

o°

>

Q0

77%

<

Gap between LLVM and Optimal

Heuristic size overhead Common inlining choices

300% 7000
Max 281% =———> e

250% 6000

5000

oo LLVM’s heuristic
4000 : :
150% 8 5% of cases is too aggressive
10+% overhead 3000
100% o
¢ 2000
LLVM finds the optimal e
50%)
_— in 526 cases (not shown) 1000
- —— -
Call graphs extracted from SPEC 2017 (n=1,135) None inline Only LLVM Only optimal Both inline

inlines inlines
11

Transformations

“What if we had
optimal DCE?”

Finding Missed Optimizations
through the Lens of Dead Code Elimination

Theodoros Theodoridis Manuel Rigger Zhendong Su
theodoros.theodoridis@inf.ethz.ch manuel rigger@inf.ethz.ch zhendong su@inf.ethz.ch
ETH Zurich ETH Zurich ETH Zurich
Switzerland Switzerland Switzerland
ABSTRACT ACM Reference Format:

Compilers are foundational software development tools and in-
corporate increasingly sophisticated optimizations. Due to their
complexity, it is difficult to systematically identify opportunities
for improving them. Indeed, the automatic discovery of missed
optimizations has been an important and significant challenge. The
few existing approaches either cannot accurately pinpoint missed
optimizations or target only specific analyses. This paper tackles
this challenge by introducing a novel, effective approach that — in a
simple and general manner — automatically identifies a wide range
of missed optimizations. Our core insight is to leverage dead code
elimination (DCE) to both analyze how well compilers optimize
code and identify missed optimizations: (1) insert “optimization
markers” in the basic blocks of a given program, (2) compute the

Theodoros Theodoridis, Manuel Rigger, and Zhendong Su. 2022. Finding
Missed Optimizations through the Lens of Dead Code Elimination. In Pro-
ceedings of the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS °22), Febru-
ary 28 - March 4, 2022, Lausanne, Switzerland. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3503222.3507764

1 INTRODUCTION

Both industry and academia have invested decades of effort to
enhance compiler optimizations to improve the performance of
computer programs [2, 3, 10, 16]. Despite these efforts, optimiz-
ing compilers are plagued by performance bugs, also known as
missed optimization opportunities [24]. We define a missed opti-

12

static i1nt a = 0;

int main () {
it (a 1= 0) {
return 1;

}

a = 1;

ERIE
Xor
retq

%eax, %eax

13

€ E)((DI;VI‘.BII%EE PR v — sponsors S Backtrace INtel. ’ Share ¥ Policies ¥ Other ¥

Csource #1 X 0O X | clang 14.0.0 ¢ X O X
A~ B Save/load < Addnew..> WV Vim C - x86-64 clang 14.0.0 v & -03 D
= o _ A~ ®@output..> YFilter..v B Libraries = Addnew.. ¥ 4 Add tool...~
4 1 main: # @main B
5 2 mov 1 $1, %eax
& B cmpb $0, a(%rip)
! : _ . 4 jne . LBBO_2
7 static int a = 0; 5 — —$1’ A (%rip)
8 6 xor 1 %eax, %eax
9 int main () { 7 .LBBO_2
10 if (a '= 0) { 8 retq
1 1 Be t AL 1 ; C' E Output (0/0) x86-64 clang 14.0.0 1 - cached (7549B) ~158 lines filtered Ll
12 } gcc11.3 2 X EI
13 a=1 ; x86-64 gcc 11.3 v @ -03 D
14 re t urn @ ; A & Output:.. v YeFilter..> B Libraries = Addnew...¥ ¢ Add tool...~ |
1 main:
15 '} 2 mov 1 a(%rip), %eax
16 3 testl %eax, %eax
sl 4 jne P
18 5 mov 1 $1, a(%rip)
19 6 ret
7 L&
20 8 mov L $1, %eax
21 9 e 14
C' E Output (0/0) x86-64 gcc 11.3 1 - cached (3047B) ~182 lines filtered Lt

Dead Code Elimination: An Optimization Sink

IIER
Analysis

Simplify

How good are compilers at DCE?

Corpus of 10,000 test programs:
* Generated with Csmith

* 3,109,167 dead blocks

Optimization % of dead blocks that are missed

Level

GCC LLVM
0]0 85.2% 83.2%
O1 8.2% 5.2%
Os 6.0% 4.8%
02 5.7% 4.4%
O3 5.6% 4.3%

SETRILER s v wore~ [sponsors Sl packtrace intel | snare - potcies
Gurce #1 X O X | clang14.00 2 X
A~ Bsavelload +Addnew..v WVVim c g x86-64 clang 14.0.0 4 © -03 [

) _ A~ @ouput.~ YFiter.v BLibraies +Addnew..v o Addtool.~ =

1 main: # @main T
5 2 mov1 $1, %eax
6 3 cmpb $0, a(%rip)

i i . 4 jne .LBBO_2

7 static int a = 0; 5 R $1, a(%rip)
8 6 xorl %eax, %eax
9 int main () { 7 .LBBO_2 b b b b b b
10 if (2 1= 0) s Inding IVlisse ptimization
11 return 1; C' HOutput (0/0) x86-64 clang 14.00 § - cached (75498) ~158 nes fitered L
12} R = e, .
s : Opportunities Automatically
14 return 0, A~ °Ou(pul:,' Y rilter..~ B Libraries + Add new... > o* Add tool... ¥ i

1 main:
15 } 2 movl a(%rip), %eax
16 3 testl %eax, %eax
17 4 jne (L3
18 5 movl $1, a(%rip)
19 6 Fet

@ 188
20 8 movl $1, %eax
21 9 ret

G BOUtpUt (0/0) x86-640cc 113 § - cached (30478) 182 ines fitered 10

LLVM GCC
Reported 47 55
B DeadCodeProductions / dead ' Public Conflrmed 35 46

<> Code (® lIssues 10 1% Pull requests (® Actions (5 Projects
Fixed 15 15

O Product Team Enterprise Explore Marketplace Pricing

17

4

Qog

Understanding and Exploiting Optimal Function Inlining

‘Theodoros Theodoridis
ETH Zurich
Swizeland
ABSTRACT

Our Approach

Zhendong Su

ET Zurich
Switsednd

[\ 1. We obtain the ¥~ N\
/—\ optimum. Transformations Analyses il
Transformations Analyses DCE gy Ot g N
EEE | EEE 000
HEEE BEEn 2. We compare with : EEE EEE B e
mee the compiler and _ \ — A j :
)7 find the gap.

“What if we had
optimal ...?”

Ongoing Work

Source Transformations * Optimal Alias Analysis Information
D | (EED (AR
- NN = B * Optimal Pass Pipelines
- NN (= =]

* Learning Heuristics based on Optimal Inlining Choices

Backup Slides

This can be done recursively!

Total:(22 + 22 + 1) + 2% = 25 < 32 naive

Lens of Dead Code Elimination

Different Compilers Eliminate Different Parts

inta=0;
static int b[2] ={0,0}, c = 0;

int main() {

if (b[a]) {

return 1;

}
if (c) {

return 2;

}

c=1;

; &5
‘ ‘ |
return O; \l —

Missed Dead Code Elimination Detection

inta=0;
static int b[2] ={0,0}, c=0;

int main() {

if (b[a]) {
return 1;

}

if (c) {
return 2;

}

c=1;

return O;

}

main:
mov1l
cmpb
jne
movb
xorl

.LBBO

$2, %eax
$0, c(%rip)

.LBBO_2

$1, c(%rip)
%eax, %eax

retq_

main:
movslq a(%rip), %rdx
movl $1, %eax

movl b(,%rdx,4),%edx
testl %edx, %edx

jne L1

movl c(%rip), %eax
testl Z%eax, %eax

jne .L4

movl $1, c(%rip)

ret

.L4:

mov1 $2, %eax
L1:

ret

23

Missed Dead Code Elimination: Markers

inta=0;
static int b[2] = {0,0}, c=0;

int main() {

if (b[a]) {

return 1;

}
if (c) {

return 2;

main:
pushq
cmpb
jne
callqg
movl
POPCq
retq
.LBBO 2:
movb
xorl
POPCq
retqg

%»rax

$1, c(%rip)
.LBBO_2
DCEMarker2
$2, %eax
%»rcX

$1, c(%rip)
%eax, eax

main:
subq
movslq
movl
testl
jne

L7:
call
mov1l
jmp

.L8:
call
mov1l
jmp

$8, %rsp
a(%rip), %rax
b(,%rax,4),%eax
%eax, neax

L7

DCEMarkerl
$1, %eax
L1

DCEMarker2
$2, %eax
L1

The Lens of Dead Code Elimination

ASM 1

Alive Markers:
E—

{Marker1, Marker2}

Markerl
Markeril Marker2

Missed
Optimization

Marker2 ASM 2

Alive Markers:
E—

Markerl {Marker1}

25

DCE Examples

Pointer data

vectorized as

static int a[2], b, *c[2];
int main() {

for (b = 90; b < 2; b++) {

c[b] = &a[1];

Vectorized
} at —03
if (!c[0]){
DCEMarker(); c[0] points to
} a non-zero

return 0; address

27

static long a = 78240;
static int b, d;
static short e;
static short c(short f, short h) {
return h == 0 ||
(f&& h==1) 20 : f%h; }
int main() {
short g = a;
for (b = @; b < 1; b++) { Modulo on constant

3 _ i%(e —=a) A g, a); ranges: [X,X+1) % [X,X+1)
} not simplified
if (d) { o=
DCEMarker(); LLVM 13 -03
for (; a; a++);
}
}

static int b = -1, e = 1;

static short ¢ = 0, d = 0;

short a(unsigned short f, int g) {
return £ >> g;

}

Regression on shift

int main() {
C++;
d = a(4294967295 + (c > 0),1);
e ~= (short)(d * 3) /(unsigned)b;
if (le)
DCEMarker();

peephole optimization

LLVM dev
-03

29

[SimplifyCFG] don't sink common insts too soon (PR34603)

This should solve:

https://bugs.llvm.org/show _bug.cgi?id=34603
...by preventing SimplifyCFG from altering redundant
instructions before early-cse has a chance to run.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30

