
Equality Saturation & egg

Zachary Tatlock, University of Washington
2022-10-08 @ ETH Workshop on Dependable and Secure Software Systems

Max Willsey Chandra Nandi Oliver Flatt Remy Wang Yihong Zhang

Brett Saiki Sam Coward Amy Zhu Adam Anderson Anjali Pal

Philip Zucker Pavel Panchekha Adriana Schulz Dan Grossman Zachary Tatlock

(a * 2) / 2 ⇒ a

(a * 2) / 2 ⇒ a

REWRITE!

(a * 2) / 2 ⇒ a

REWRITE!

Useful
(x * y) / z = x * (y / z)

 x / x = 1

 x * 1 = x

(a * 2) / 2 ⇒ a

REWRITE!

Useful Less Useful
(x * y) / z = x * (y / z)

 x / x = 1

 x * 1 = x

 x * 2 = x << 1

 x * y = y * x

 x = x * 1

(a * 2) / 2

“happy path”
(x * y) / z = x * (y / z)

 x / x = 1

 x * 1 = x

(a * 2) / 2 ⇒ a * (2 / 2)

“happy path”
(x * y) / z = x * (y / z)

 x / x = 1

 x * 1 = x

(a * 2) / 2 ⇒ a * (2 / 2) ⇒ a * 1

“happy path”
(x * y) / z = x * (y / z)

 x / x = 1

 x * 1 = x

(a * 2) / 2 ⇒ a * (2 / 2) ⇒ a * 1 ⇒ a

“happy path”
(x * y) / z = x * (y / z)

 x / x = 1

 x * 1 = x

(a * 2) / 2 ⇒ a * (2 / 2) ⇒ a * 1 ⇒ a

“happy path”
(x * y) / z = x * (y / z)

 x / x = 1

 x * 1 = x

✅

(a * 2) / 2

Pitfalls
 x * 2 = x << 1
 x * y = y * x
 x = x * 1

(a * 2) / 2 ⇒ (a << 1) / 2

Pitfalls
 x * 2 = x << 1
 x * y = y * x
 x = x * 1

(a * 2) / 2 ⇒ (a << 1) / 2 ❌ order

Pitfalls
 x * 2 = x << 1
 x * y = y * x
 x = x * 1

(a * 2) / 2 ⇒ (a << 1) / 2 ❌ order

Pitfalls
 x * 2 = x << 1
 x * y = y * x
 x = x * 1

(a * 2) / 2

(a * 2) / 2 ⇒ (a << 1) / 2 ❌ order

Pitfalls
 x * 2 = x << 1
 x * y = y * x
 x = x * 1

(a * 2) / 2 ⇒ (2 * a) / 2

(a * 2) / 2 ⇒ (a << 1) / 2 ❌ order

Pitfalls
 x * 2 = x << 1
 x * y = y * x
 x = x * 1

(a * 2) / 2 ⇒ (2 * a) / 2 ⇒ (a * 2) / 2

(a * 2) / 2 ⇒ (a << 1) / 2 ❌ order

Pitfalls
 x * 2 = x << 1
 x * y = y * x
 x = x * 1

(a * 2) / 2 ⇒ (2 * a) / 2 ⇒ (a * 2) / 2 ❌

diverge

(a * 2) / 2 ⇒ (a << 1) / 2 ❌ order

Pitfalls
 x * 2 = x << 1
 x * y = y * x
 x = x * 1

(a * 2) / 2 ⇒ (2 * a) / 2 ⇒ (a * 2) / 2 ❌

diverge

a

(a * 2) / 2 ⇒ (a << 1) / 2 ❌ order

Pitfalls
 x * 2 = x << 1
 x * y = y * x
 x = x * 1

(a * 2) / 2 ⇒ (2 * a) / 2 ⇒ (a * 2) / 2 ❌

diverge

a ⇒ a * 1

(a * 2) / 2 ⇒ (a << 1) / 2 ❌ order

Pitfalls
 x * 2 = x << 1
 x * y = y * x
 x = x * 1

(a * 2) / 2 ⇒ (2 * a) / 2 ⇒ (a * 2) / 2 ❌

diverge

a ⇒ a * 1 ⇒ a * 1 * 1

(a * 2) / 2 ⇒ (a << 1) / 2 ❌ order

Pitfalls
 x * 2 = x << 1
 x * y = y * x
 x = x * 1

(a * 2) / 2 ⇒ (2 * a) / 2 ⇒ (a * 2) / 2 ❌

diverge

a ⇒ a * 1 ⇒ a * 1 * 1 ⇒ … ❌ infinite size

(a * 2) / 2 ⇒ (a << 1) / 2 ❌ order

Pitfalls
 x * 2 = x << 1
 x * y = y * x
 x = x * 1

(a * 2) / 2 ⇒ (2 * a) / 2 ⇒ (a * 2) / 2 ❌

diverge

a ⇒ a * 1 ⇒ a * 1 * 1 ⇒ … ❌ infinite size

Critical for other inputs!

(a * 2) / 2 ⇒ a

Which rewrite? When?

Useful Less Useful
(x * y) / z = x * (y / z)

 x / x = 1

 x * 1 = x

 x * 2 = x << 1

 x * y = y * x

 x = x * 1

(a * 2) / 2 ⇒ a

Which rewrite? When?

Useful Less Useful
(x * y) / z = x * (y / z)

 x / x = 1

 x * 1 = x

 x * 2 = x << 1

 x * y = y * x

 x = x * 1

Equality Saturation

Try applying all the rules in every order!

(a * 2) / 2 ⇒ a

Which rewrite? When?

Useful Less Useful
(x * y) / z = x * (y / z)

 x / x = 1

 x * 1 = x

 x * 2 = x << 1

 x * y = y * x

 x = x * 1

Equality Saturation

Try applying all the rules in every order?!

��

E-graphs

● Data structure from Greg Nelson’s PhD thesis (1980)

● Used for congruence closure (Downey, Sethi, Tarjan 1980)

○ Intuition: union-find (Tarjan 1975) but function-aware

● Key for equality and uninterpreted funcs (EUF) theory in SMT

○ Intuition: the “glue” that connects other theories to SAT

● Historically: “baked in” to SMT solvers, no general libraries 😐

E-graphs

/

*

2a

E-graphs

/

*

2a

e-classes contain e-nodes (ops)

E-graphs

/

*

2a

e-classes contain e-nodes (ops)

e-nodes’ arguments are e-classes!

E-graphs

/

*

2a

e-classes contain e-nodes (ops)

e-nodes’ arguments are e-classes!

e-graphs maximize sharing
(no copies of same e-node)

E-graphs

/

*

2a

This e-classes represents

(a * 2) / 2

E-graphs: applying rewrite rules

/

* <<

2 1a

/

*

2a

x * 2 → x << 1

E-graphs: applying rewrite rules

/

* <<

2 1a

/

*

2a

x * 2 → x << 1

This e-classes represents
a*2 and a<<1

E-graphs: applying rewrite rules

/

* <<

2 1a

/

*

2a

x * 2 → x << 1

This e-classes represents
a*2 and a<<1

This e-classes represents
(a*2)/2 and (a<<1)/2

E-graphs: applying rewrite rules

/

* <<

2 1a

/

*

2a

x * 2 → x << 1

This e-classes represents
a*2 and a<<1

This e-classes represents
(a*2)/2 and (a<<1)/2

E-graphs never forget.
Rewrites don’t lose info!

/ *

* <<

2 1

/

a

/

* <<

2 1a

/

*

2a

x * 2 → x << 1 (x*y)/z → x*(y/z)

E-graphs: applying rewrite rules

/ *

* <<

2 1

/

a

/ *

* <<

2 1

/

a

/

* <<

2 1a

/

*

2a

x * 2 → x << 1 (x*y)/z → x*(y/z) x / x → 1

x * 1 → x

E-graphs: applying rewrite rules

/ *

* <<

2 1

/

a

/ *

* <<

2 1

/

a

x / x → 1

x * 1 → x

E-graphs: compact representation
Rewrites can shrink e-graphs!

● 6 → 5 eclasses

E-graphs can represent ∞ terms

● a, a * 1, a * 1 * 1, …

E-graphs can “saturate”

● learn all derivable eqs ✅

Equality Saturation

● Technique first used in Denali (Joshi, Nelson, Randall 2002)

○ Optimizing straight-line assembly kernels for Alpha

● Extended to loops in Peggy [POPL 2009]

○ Coined term “Equality Saturation”

○ Coinductive stream operators for algebraic loop rewrites

○ Used Rete algo from expert sys for incremental e-matching

Equality Saturation

initial term

Equality Saturation

initial term e-graph

Equality Saturation

initial term e-graph

rewrite

Equality Saturation

initial term e-graph

rewrite
till saturation

or timeout

Equality Saturation

initial term e-graph optimized term

rewrite

extra
ct

till saturation
or timeout

Equality Saturation

initial term e-graph optimized term

rewrite

extra
ct

till saturation
or timeout

greedy (size), ILP (CSE), GA, …

Equality Saturation

initial term e-graph optimized term

rewrite

Equality Saturation

initial term e-graph optimized term

find pattern
(“e-match”)

Equality Saturation

initial term e-graph optimized term

find pattern
(“e-match”)

apply match

Equality Saturation

initial term e-graph optimized term

find pattern
(“e-match”)

apply match

restore
invariants

Equality Saturation

initial term e-graph optimized term

find pattern
(“e-match”)

apply match

restore
invariants

congruence
a = b ⇒ f(a) = f(b)

Equality Saturation

initial term e-graph optimized term

find pattern
(“e-match”)

apply match

restore
invariants

congruence
a = b ⇒ f(a) = f(b)

Equality Saturation

initial term e-graph optimized term

find pattern
(“e-match”)

apply match

restore
invariants

congruence
a = b ⇒ f(a) = f(b)

🔥🔥
🔥

hot loop
🔥🔥
🔥

Goal: make it fast!

egg EqSat Toolkit [POPL 2021, Distinguished Paper]

❏ Deferred invariant maintenance & batching

❏ Relational e-matching [POPL 2022]

❏ E-class analyses

❏ Rewrite rule synthesis with Ruler [OOPSLA 2021, Distinguished Paper]

❏ Applications

❏ 3D CAD in Szalinski, FP Accuracy in Herbie, Lib Learning in Babble, …

❏ EVM simplify @ Certora, wasm JIT @ Fastly, datapath optimize @ Intel, …

Equality Saturation

def equality_saturation(expr, rewrites):
 egraph = initial_egraph(expr)

 while not egraph.is_saturated_or_timeout():
 for rw in rewrites:
 for (subst, ec) in egraph.ematch(rw.lhs):
 ec2 = egraph.add(rw.rhs.subst(subst))
 egraph.merge(ec, ec2)

 return egraph.extract_best()

Equality Saturation

read

def equality_saturation(expr, rewrites):
 egraph = initial_egraph(expr)

 while not egraph.is_saturated_or_timeout():
 for rw in rewrites:
 for (subst, ec) in egraph.ematch(rw.lhs):
 ec2 = egraph.add(rw.rhs.subst(subst))
 egraph.merge(ec, ec2)

 return egraph.extract_best()

Equality Saturation

read

write

def equality_saturation(expr, rewrites):
 egraph = initial_egraph(expr)

 while not egraph.is_saturated_or_timeout():
 for rw in rewrites:
 for (subst, ec) in egraph.ematch(rw.lhs):
 ec2 = egraph.add(rw.rhs.subst(subst))
 egraph.merge(ec, ec2)

 return egraph.extract_best()

Equality Saturation

read

write

restore invariant

def equality_saturation(expr, rewrites):
 egraph = initial_egraph(expr)

 while not egraph.is_saturated_or_timeout():
 for rw in rewrites:
 for (subst, ec) in egraph.ematch(rw.lhs):
 ec2 = egraph.add(rw.rhs.subst(subst))
 egraph.merge(ec, ec2)

 return egraph.extract_best()

Equality Saturation

def equality_saturation(expr, rewrites):
 egraph = initial_egraph(expr)

 while not egraph.is_saturated_or_timeout():
 for rw in rewrites:
 for (subst, ec) in egraph.ematch(rw.lhs):
 ec2 = egraph.add(rw.rhs.subst(subst))
 egraph.merge(ec, ec2)

 return egraph.extract_best()

● rewrites are ordered
● read/write interleaved

○ more invariant maint
● invariants baked-in

Deferred Invariant Maintenance in egg

def equality_saturation(expr, rewrites):
 egraph = initial_egraph(expr)

 while not egraph.is_saturated_or_timeout():
 matches = []
 for rw in rewrites:
 for (subst, ec) in egraph.ematch(rw.lhs):
 matches.append((rw, subst, ec))
 for (rw, subst, ec) in matches:
 ec2 = egraph.add(rw.rhs.subst(subst))
 egraph.merge(ec, ec2)
 egraph.rebuild()

 return egraph.extract_best()

def equality_saturation(expr, rewrites):
 egraph = initial_egraph(expr)

 while not egraph.is_saturated_or_timeout():
 for rw in rewrites:
 for (subst, ec) in egraph.ematch(rw.lhs):
 ec2 = egraph.add(rw.rhs.subst(subst))
 egraph.merge(ec, ec2)

 return egraph.extract_best()

def equality_saturation(expr, rewrites):
 egraph = initial_egraph(expr)

 while not egraph.is_saturated_or_timeout():
 matches = []
 for rw in rewrites:
 for (subst, ec) in egraph.ematch(rw.lhs):
 matches.append((rw, subst, ec))
 for (rw, subst, ec) in matches:
 ec2 = egraph.add(rw.rhs.subst(subst))
 egraph.merge(ec, ec2)
 egraph.rebuild()

 return egraph.extract_best()

def equality_saturation(expr, rewrites):
 egraph = initial_egraph(expr)

 while not egraph.is_saturated_or_timeout():
 for rw in rewrites:
 for (subst, ec) in egraph.ematch(rw.lhs):
 ec2 = egraph.add(rw.rhs.subst(subst))
 egraph.merge(ec, ec2)

 return egraph.extract_best()

Deferred Invariant Maintenance in egg

def equality_saturation(expr, rewrites):
 egraph = initial_egraph(expr)

 while not egraph.is_saturated_or_timeout():
 matches = []
 for rw in rewrites:
 for (subst, ec) in egraph.ematch(rw.lhs):
 matches.append((rw, subst, ec))
 for (rw, subst, ec) in matches:
 ec2 = egraph.add(rw.rhs.subst(subst))
 egraph.merge(ec, ec2)
 egraph.rebuild()

 return egraph.extract_best()

def equality_saturation(expr, rewrites):
 egraph = initial_egraph(expr)

 while not egraph.is_saturated_or_timeout():
 for rw in rewrites:
 for (subst, ec) in egraph.ematch(rw.lhs):
 ec2 = egraph.add(rw.rhs.subst(subst))
 egraph.merge(ec, ec2)

 return egraph.extract_best()

Deferred Invariant Maintenance in egg

def equality_saturation(expr, rewrites):
 egraph = initial_egraph(expr)

 while not egraph.is_saturated_or_timeout():
 matches = []
 for rw in rewrites:
 for (subst, ec) in egraph.ematch(rw.lhs):
 matches.append((rw, subst, ec))
 for (rw, subst, ec) in matches:
 ec2 = egraph.add(rw.rhs.subst(subst))
 egraph.merge(ec, ec2)
 egraph.rebuild()

 return egraph.extract_best()

def equality_saturation(expr, rewrites):
 egraph = initial_egraph(expr)

 while not egraph.is_saturated_or_timeout():
 for rw in rewrites:
 for (subst, ec) in egraph.ematch(rw.lhs):
 ec2 = egraph.add(rw.rhs.subst(subst))
 egraph.merge(ec, ec2)

 return egraph.extract_best()

Deferred Invariant Maintenance in egg

def equality_saturation(expr, rewrites):
 egraph = initial_egraph(expr)

 while not egraph.is_saturated_or_timeout():
 matches = []
 for rw in rewrites:
 for (subst, ec) in egraph.ematch(rw.lhs):
 matches.append((rw, subst, ec))
 for (rw, subst, ec) in matches:
 ec2 = egraph.add(rw.rhs.subst(subst))
 egraph.merge(ec, ec2)
 egraph.rebuild()

 return egraph.extract_best()

def equality_saturation(expr, rewrites):
 egraph = initial_egraph(expr)

 while not egraph.is_saturated_or_timeout():
 for rw in rewrites:
 for (subst, ec) in egraph.ematch(rw.lhs):
 ec2 = egraph.add(rw.rhs.subst(subst))
 egraph.merge(ec, ec2)

 return egraph.extract_best()

batch reads

invariants restored
once per iteration

batch writes
(invariants broken)

Deferred Invariant Maintenance in egg

versus

Rebuilding is faster

1 egg test,
deferring is much faster

Rebuilding is faster

test is 30x
faster

Why is rebuilding is faster?

● Consider f1(x) … fn(x) and y1 … yn

● Workload: merge(x, y1) … merge(x, yn)

● Traditional: O(n2) hashcons updates

● Deferred only does O(n) updates

Downey, Sethi, Tarjan 1980

Why is rebuilding is faster?

f1 fN

x y1 yN…

…

Why is rebuilding is faster?

f1 fN

x y1 yN…

…

Why is rebuilding is faster?

f1 fN

x y1 yN…

…

Why is rebuilding is faster?

f1 fN

x y1 yN…

…

More amortization via batching in egg

initial term e-graph optimized term

find all
 patterns

apply all matches

restore all
 invariants

More amortization via batching in egg

initial terms e-graph optimized term

find all
 patterns

apply all matches

restore all
 invariants

Chunk entire
set of inputs
into a single

e-graph!

More amortization via batching in egg

initial terms e-graph optimized term

find all
 patterns

apply all matches

restore all
 invariants

Chunk entire
set of inputs
into a single

e-graph!

Extract
optimized
term from
each root.

More amortization via batching in egg

initial terms e-graph optimized term

find all
 patterns

apply all matches

restore all
 invariants

Chunk entire
set of inputs
into a single

e-graph!

Extract
optimized
term from
each root.

Shared optimization

+ “e-graph seeding”

E-graphs in Herbie

E-graphs in Herbie

E-graphs in Herbie

E-graphs in Herbie

egg Herbie

egg EqSat Toolkit [POPL 2021, Distinguished Paper]

✓ Deferred invariant maintenance & batching

❏ Relational e-matching [POPL 2022]

❏ E-class analyses

❏ Rewrite rule synthesis with Ruler [OOPSLA 2021, Distinguished Paper]

❏ Applications

❏ 3D CAD in Szalinski, FP Accuracy in Herbie, Lib Learning in Babble, …

❏ EVM simplify @ Certora, wasm JIT @ Fastly, datapath optimize @ Intel, …

egg’s Equality Saturation

initial term e-graph optimized term

find all
 patterns

apply all matches

restore all
 invariants

egg’s Equality Saturation

initial term e-graph optimized term

find all
 patterns

apply all matches

restore all
 invariants

Now that this is fast…

initial term e-graph optimized term

find all
 patterns

apply all matches

restore all
 invariants

Now that this is fast… we bottleneck on matching 😓

egg’s Equality Saturation

E-matching: pattern matching over e-graphs

● E-matching : find substs from pattern variables to e-classes

● Substs guaranteed to be represented by the matched e-graph

E-matching: pattern matching over e-graphs

● E-matching : find substs from pattern variables to e-classes

● Substs guaranteed to be represented by the matched e-graph

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

E-matching: pattern matching over e-graphs

● E-matching : find substs from pattern variables to e-classes

● Substs guaranteed to be represented by the matched e-graph

f(α, g(α)) will match

f(1, g(1))
f(2, g(2))

…
f(N, g(N))

, witnessed by .

{α ↦ 1}
{α ↦ 2}

…
{α ↦ N}

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

E-matching: pattern matching over e-graphs

● E-matching : find substs from pattern variables to e-classes

● Substs guaranteed to be represented by the matched e-graph

f(α, g(α)) will match

f(1, g(1))
f(2, g(2))

…
f(N, g(N))

, witnessed by .

{α ↦ 1}
{α ↦ 2}

…
{α ↦ N}

f(1, α) will match
f(1, g(1))
f(1, g(2))

…
f(1, g(N))

, witnessed by {α ↦ cg}.

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

E-matching: pattern matching over e-graphs

● E-matching : find substs from pattern variables to e-classes

● Substs guaranteed to be represented by the matched e-graph

● NP-complete wrt to pattern size (Kozen 1977) 😱

f(α, g(α)) will match

f(1, g(1))
f(2, g(2))

…
f(N, g(N))

, witnessed by .

{α ↦ 1}
{α ↦ 2}

…
{α ↦ N}

f(1, α) will match
f(1, g(1))
f(1, g(2))

…
f(1, g(N))

, witnessed by {α ↦ cg}.

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

E-matching: pattern matching over e-graphs

● E-matching : find substs from pattern variables to e-classes

● Substs guaranteed to be represented by the matched e-graph

● NP-complete wrt to pattern size (Kozen 1977) 😱

f(α, g(α)) will match

f(1, g(1))
f(2, g(2))

…
f(N, g(N))

, witnessed by .

{α ↦ 1}
{α ↦ 2}

…
{α ↦ N}

f(1, α) will match
f(1, g(1))
f(1, g(2))

…
f(1, g(N))

, witnessed by {α ↦ cg}.

But patterns are often small…

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

E-matching: pattern matching over e-graphs

● E-matching : find substs from pattern variables to e-classes

● Substs guaranteed to be represented by the matched e-graph

● NP-complete wrt to pattern size (Kozen 1977) 😱

f(α, g(α)) will match

f(1, g(1))
f(2, g(2))

…
f(N, g(N))

, witnessed by .

{α ↦ 1}
{α ↦ 2}

…
{α ↦ N}

f(1, α) will match
f(1, g(1))
f(1, g(2))

…
f(1, g(N))

, witnessed by {α ↦ cg}.

But patterns are often small…

💡 # of matches is much better metric!

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

Traditional e-matching via backtracking

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

for e-class c in e-graph E:

f(α, g(α))

Ba
ck

tr
ac

ki
ng

 s
ea

rc
h

f(α
, g

(α
))

Traditional e-matching via backtracking

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

for e-class c in e-graph E:
 for f-node n1 in c:

f(α, g(α)) f(1,cg)

f(2,cg)

…
f(N,cg)Ba

ck
tr

ac
ki

ng
 s

ea
rc

h
f(α

, g
(α

))

Traditional e-matching via backtracking

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

for e-class c in e-graph E:
 for f-node n1 in c:
 subst = {root ↦ c, α ↦ n1.child1}

f(α, g(α)) f(1,cg)

f(2,cg)

…
f(N,cg)Ba

ck
tr

ac
ki

ng
 s

ea
rc

h
f(α

, g
(α

))

Traditional e-matching via backtracking

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

for e-class c in e-graph E:
 for f-node n1 in c:
 subst = {root ↦ c, α ↦ n1.child1}
 for g-node n2 in n1.child2:

f(α, g(α)) f(1,cg)

f(2,cg)

…
f(N,cg)

g(1)
g(2)
…

g(N)
g(1)
g(2)
…

g(N)
…

g(1)
g(2)
…

g(N)

Ba
ck

tr
ac

ki
ng

 s
ea

rc
h

f(α
, g

(α
))

Traditional e-matching via backtracking

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

for e-class c in e-graph E:
 for f-node n1 in c:
 subst = {root ↦ c, α ↦ n1.child1}
 for g-node n2 in n1.child2:
 if subst[α] = n2.child1:

f(α, g(α)) f(1,cg)

f(2,cg)

…
f(N,cg)

g(1)
g(2)
…

g(N)
g(1)
g(2)
…

g(N)
…

g(1)
g(2)
…

g(N)

✓

🗙

🗙
🗙
✓

🗙

🗙
🗙

✓

Ba
ck

tr
ac

ki
ng

 s
ea

rc
h

f(α
, g

(α
))

Traditional e-matching via backtracking

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

for e-class c in e-graph E:
 for f-node n1 in c:
 subst = {root ↦ c, α ↦ n1.child1}
 for g-node n2 in n1.child2:
 if subst[α] = n2.child1:
 yield subst

f(α, g(α)) f(1,cg)

f(2,cg)

…
f(N,cg)

g(1)
g(2)
…

g(N)
g(1)
g(2)
…

g(N)
…

g(1)
g(2)
…

g(N)

✓

🗙

🗙
🗙
✓

🗙

🗙
🗙

✓

Ba
ck

tr
ac

ki
ng

 s
ea

rc
h

f(α
, g

(α
))

Traditional e-matching via backtracking

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

f(α, g(α)) f(1,cg)

f(2,cg)

…
f(N,cg)

g(1)
g(2)
…

g(N)
g(1)
g(2)
…

g(N)
…

g(1)
g(2)
…

g(N)

✓

🗙

🗙
🗙
✓

🗙

🗙
🗙

✓

Ba
ck

tr
ac

ki
ng

 s
ea

rc
h

f(α
, g

(α
))

for e-class c in e-graph E:
 for f-node n1 in c:
 subst = {root ↦ c, α ↦ n1.child1}
 for g-node n2 in n1.child2:
 if subst[α] = n2.child1:
 yield subst

Traditional e-matching via backtracking

O(N^2), yet at most O(N) matches
😫

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

● Many optimizations in literature
○ custom VMs for “CSE”
○ specific patterns
○ mod-time analysis

● No data complexity bounds!

f(1,cg)

f(2,cg)

…
f(N,cg)

g(1)
g(2)
…

g(N)
g(1)
g(2)
…

g(N)
…

g(1)
g(2)
…

g(N)

✓

🗙

🗙
🗙
✓

🗙

🗙
🗙

✓

Ba
ck

tr
ac

ki
ng

 s
ea

rc
h

f(α
, g

(α
))

Traditional e-matching via backtracking

E-matching in e-graphs

Finding substitutions such
that substituted terms are
represented in an e-graph.

Conjunctive queries in DBs

Finding substitutions such
that substituted atoms are
present in a relational DB.
��

💡 Key insight: e-matching is a DB
problem!

egg’s relational e-matching

f(α, g(α))
g(f(α, α))

…

egg’s relational e-matching

● Given e-graph + patterns

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

f(α, g(α))
g(f(α, α))

…

egg’s relational e-matching

● Given e-graph + patterns

● Transform e-graph to tables

id arg1 arg2

cf
1 cg

cf 2 cg

… … …

cf N cg

id arg1

cg 1

cg 2

… …

cg N

Rf Rg

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

f(α, g(α))
g(f(α, α))

…

egg’s relational e-matching

● Given e-graph + patterns

● Transform e-graph to tables

● Compile patterns to queries Q(root, α) ←
Rf(root, α, x), Rg(x, α)

Q(root, α) ←
Rg(root, x), Rf(x, α, α)

…

id arg1 arg2

cf
1 cg

cf 2 cg

… … …

cf N cg

id arg1

cg 1

cg 2

… …

cg N

Rf Rg

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

f(α, g(α))
g(f(α, α))

…

egg’s relational e-matching

● Given e-graph + patterns

● Transform e-graph to tables

● Compile patterns to queries

● Use DB query engine to e-match!

Q(root, α) ←
Rf(root, α, x), Rg(x, α)

Q(root, α) ←
Rg(root, x), Rf(x, α, α)

…

id arg1 arg2

cf
1 cg

cf 2 cg

… … …

cf N cg

id arg1

cg 1

cg 2

… …

cg N

Rf Rg

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

f(α, g(α))
g(f(α, α))

…

egg’s relational e-matching

● Given e-graph + patterns

● Transform e-graph to tables

● Compile patterns to queries

● Use DB query engine to e-match!

● Derive bounds from DB theory!

Q(root, α) ←
Rf(root, α, x), Rg(x, α)

Q(root, α) ←
Rg(root, x), Rf(x, α, α)

…

id arg1 arg2

cf
1 cg

cf 2 cg

… … …

cf N cg

id arg1

cg 1

cg 2

… …

cg N

Rf Rg

✅

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

id arg1 arg2

cf 1 cg

cf 2 cg

… … …

cf N cg

id arg1

cg 1
cg 2
… …
cg N

Rf

Rg

Ri=1…N
id

i

E-graphs as tables (relational DBs)

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q

id arg1 arg2

cf 1 cg

cf 2 cg

… … …

cf N cg

id arg1

cg 1
cg 2
… …
cg N

Rf

Rg

Ri=1…N
id

i

E-graphs as tables (relational DBs)

every e-node becomes a row

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1hwwFkpb52rq4czo4QrpQd9y3aslb0H-A

f(α, g(α))

E-match patterns as conjunctive queries

f(α, g(α))

Q(root, α) ←
Rf (root, α, x), Rg(x, α)

E-match patterns as conjunctive queries

f(α, g(α))

Q(root, α) ←
Rf (root, α, x), Rg(x, α)

ind = {}
for (x, α) in Rg: # build index
 ind.insert((x, α))

Rg(cg , 1)
Rg(cg , 2)

…
Rg(cg , N)

bu
ild

 h
as

h

E-match patterns as conjunctive queries

f(α, g(α))

Q(root, α) ←
Rf (root, α, x), Rg(x, α)

ind = {}
for (x, α) in Rg: # build index
 ind.insert((x, α))
for (root, α, x) in Rf: # probe
 if (α, x) in ind:
 yield {root ↦ root, α ↦ α}

Rg(cg , 1)
Rg(cg , 2)

…
Rg(cg , N)

Rf(cf , 1, cf)
Rf(cf , 2, cf)

…
Rf(cf , N, cf)

bu
ild

 h
as

h

pr
ob

e

✓

✓

✓

E-match patterns as conjunctive queries

f(α, g(α))

Enum all terms of shape f(α, g(β))

Check if α = β only before yielding

Q(root, α) ←
 Rf (root, α, x), Rg(x, α)

Build indices on both α and x.

Only enum terms where constraints
on both x and α are satisfied.

equality

constraints
structural

constraints

Why is relational e-matching faster?

Data complexity results (see paper)

6 orders of
magnitude speedup

Index building takes
time

Similar performance
on linear patterns.

Speedup for specific
linear patterns
((+ a (* -1 b))

Relational e-matching : asymptotic speedup

x = matmul(a, b),

y = matmul(a, c)

x = split1(matmul(a,concat(b, c))),

y = split2(matmul(a,concat(b, c)))

New Capabilities: Multi-patterns

x = matmul(a, b),

y = matmul(a, c)

x = split1(matmul(a,concat(b, c))),

y = split2(matmul(a,concat(b, c)))

New Capabilities: Multi-patterns
search for two patterns

anywhere in the e-graph

x = matmul(a, b),

y = matmul(a, c)

x = split1(matmul(a,concat(b, c))),

y = split2(matmul(a,concat(b, c)))

New Capabilities: Multi-patterns
search for two patterns

anywhere in the e-graph

perform two merges, each on a
separate e-class!

egg EqSat Toolkit [POPL 2021, Distinguished Paper]

✓ Deferred invariant maintenance & batching

✓ Relational e-matching [POPL 2022]

❏ E-class analyses

❏ Rewrite rule synthesis with Ruler [OOPSLA 2021, Distinguished Paper]

❏ Applications

❏ 3D CAD in Szalinski, FP Accuracy in Herbie, Lib Learning in Babble, …

❏ EVM simplify @ Certora, wasm JIT @ Fastly, datapath optimize @ Intel, …

Syntactic rewriting is not enough…

● How many rules do we need for constant folding?

○ 2 + 2 → 4, 3 + 4 → 6, 4 + 6 → 10, … a lot!

● What about satisfying guards for conditional rules?

○ x / x → 1 only ok if x <> 0

● In general, many optimizations depend on analyses!

○ nullability, tensor shape, intervals, free variables, …

● Option<Number> per eclass

● try to eval new e-nodes

● Option “or” on merge

Constant folding

/

*

2a
2

merge(a, 2)

124

● Option<Number> per eclass

● try to eval new e-nodes

● Option “or” on merge

● it propagates up!

Constant folding

/

*

2a
2

2

4

2

● One fact per e-class from a join-semilattice D

● make(n) → dc
○ make a new analysis value for a new e-node

● join(dc1, dc2) → dc
○ combine two analysis values

● modify(c) → c’
○ change the e-class (optionally)

125

E-class analyses

2

for each e-class

Analysis data is LUB
(lattice properties)

fixed point

126

E-class analysis invariant

● Tightest summary
over all equivalent
represented terms!

127

Program analysis modulo equivalence

Sam Coward et al. (2022)

● Tightest summary
over all equivalent
represented terms!

● Virtuous cycle:
facts enable rewrites,
rewrites improve facts!

128

Program analysis modulo equivalence

Sam Coward et al. (2022)

egg EqSat Toolkit [POPL 2021, Distinguished Paper]

✓ Deferred invariant maintenance & batching

✓ Relational e-matching [POPL 2022]

✓ E-class analyses

❏ Rewrite rule synthesis with Ruler [OOPSLA 2021, Distinguished Paper]

❏ Applications

❏ 3D CAD in Szalinski, FP Accuracy in Herbie, Lib Learning in Babble, …

❏ EVM simplify @ Certora, wasm JIT @ Fastly, datapath optimize @ Intel, …

🐓 & .

🐓 & .

● EqSat and egg can only be as good as user’s rules…

🐓 & .

● EqSat and egg can only be as good as user’s rules…

Where do rules come from?

● Typically hand written by experts

● Time consuming, often takes years

● Too few / too many / unsound rules

A 3-step approach for inferring rewrite rules

Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

a, b, 0, +, …

a b 0

+ + …

+ …+ + +

Enumerate terms
from a grammar

Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

++ +

A 3-step approach for inferring rewrite rules

Find candidates: interpret
over concrete inputs

“Fingerprints”

Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

Enumerate terms
from a grammar

a b 0

+ + …

+ …+ +

++ +

a, b, 0, +, …

a b 0

+ + …

+ …+ + +

++ +

+

A 3-step approach for inferring rewrite rules

Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

�n�!�o� �o�!�n��

Find candidates: interpret
over concrete inputs

“Fingerprints”

Enumerate terms
from a grammar

a b 0

+ + …

+ …+ + +

++ +

a, b, 0, +, …

a b 0

+ + …

+ …+ + +

++ +

A 3-step approach for inferring rewrite rules

Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

�n�!�&� n�

Find candidates: interpret
over concrete inputs

“Fingerprints”

Enumerate terms
from a grammar

a b 0

+ + …

+ …+ + +

++ +

a, b, 0, +, …

a b 0

+ + …

+ …+ + +

++ +

A 3-step approach for inferring rewrite rules

Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

�n�!�n��!��n�!�o�

�n�!�n��!��o�!�n�

Find candidates: interpret
over concrete inputs

“Fingerprints”

Enumerate terms
from a grammar

a b 0

+ + …

+ …+ + +

++ +

a, b, 0, +, …

a b 0

+ + …

+ …+ + +

++ +

A 3-step approach for inferring rewrite rules

Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

Filter candidates to
get final ruleset

n�!�& &�!�n

o�!�& &�!�o

n�!�o o�!�n

Remove redundant rules

Find candidates: interpret
over concrete inputs

“Fingerprints”

Enumerate terms
from a grammar

a b 0

+ + …

+ …+ + +

++ +

a, b, 0, +, …

a b 0

+ + …

+ …+ + +

++ +

A 3-step approach for inferring rewrite rules

Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

Filter candidates to
get final ruleset

n�!�& &�!�n

o�!�& &�!�o

n�!�o o�!�n

Remove redundant rules

Find candidates: interpret
over concrete inputs

“Fingerprints”

Enumerate terms
from a grammar

a b 0

+ + …

+ …+ + +

++ +

a, b, 0, +, …

a b 0

+ + …

+ …+ + +

++ +

Exponentially
many terms!

Too many
candidates, some

potentially
unsound!

Hard to find a
small, useful

ruleset

A 3-step approach for inferring rewrite rules

Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

x, y, 0, +, …

x y 0

+ + + + + …

+ …+ + +

Enumerate terms
from a grammar

Find candidates: interpret
over concrete inputs

Filter candidates to
get final ruleset

x y 0

+ + + + + …

…

“Fingerprints”

+ + + +

Remove redundant rules

Exponentially
many terms!

Too many
candidates, some

potentially
unsound!

n�!�& &�!�n

o�!�& &�!�o

n�!�o o�!�n

Hard to find a
small, useful

ruleset

Inferring Small, Useful Rulesets Faster
using Equality Saturation!

Equality Saturation for not just applying
rewrites, but also inferring them!

A 3-step approach for inferring rewrite rules

Enumeration

Candidate Generation

Rule Selection

Ruler

Enumeration

Candidate Generation

Rule Selection

Ruler

Enumeration modulo equality saturation

Exponentially
many terms!

a, b, 0, +, …

a b 0

+ + …

+ …+ +

++ +

+

Exponentially
many terms!

Enumerate over an
E-graph

E-classes

a b 0

+ + …

+ …+ + +

++ +

a, b, 0, +, …

a b 0

+ + …

+ …+ + +

++ +

Enumeration modulo equality saturation

Exponentially
many terms!

�n�!�n��!��n�!�o�

�n�!�n��!��o�!�n�

3

 Apply current ruleset
�����n�!�o�� �o�!�n��

Enumerate over an
E-graph

E-classes

a b 0

+ + …

+ …+ + +

++ +

a, b, 0, +, …

a b 0

+ + …

+ …+ + +

++ +

Enumeration modulo equality saturation

Exponentially
many terms!

Enumerate over an
E-graph

 Apply current ruleset
�����n�!�o�� �o�!�n��

Merge equivalent termsE-classes

a b 0

+ + …

+ …+ + +

++ +

a, b, 0, +, …

a b 0

+ + …

+ …+ + +

++ +

a b 0

+ + …

+ …+ + +

++ +

Enumeration modulo equality saturation

Exponentially
many terms!

Enumerate over an
E-graph

 Apply current ruleset
�����n�!�o�� �o�!�n��

Merge equivalent termsE-classes

a b 0

+ + …

+ …+ + +

++ +

a, b, 0, +, …

a b 0

+ + …

+ …+ + +

++ +

a b 0

+ + …

+ …+ + +

++ +
Shrinks the term space by applying

rewrites as they are learned!

Enumeration modulo equality saturation

Enumeration

Candidate Generation

Rule Selection

Ruler

Candidate generation by characteristic
vector matching

1
-2

7

4

3
5

-7

-5

0
0

0

0

Seed initial E-classes with concrete
values (cvecs) from the domain

a b 0

1
-2

7

4

3
5

-7

-5

0
0

0

0

2
-4

14

8

4
-3

0

-1

4
-3

0

-1

6
10

-14

-10

1
-2

7

4

Seed initial E-classes with concrete
values (cvecs) from the domain

Compute the cvecs for newly
enumerated E-classes

a b 0

+ + …++ +

Candidate generation by characteristic
vector matching

1
-2

7

4

3
5

-7

-5

0
0

0

0

2
-4

14

8

4
-3

0

-1

4
-3

0

-1

6
10

-14

-10

1
-2

7

4

Seed initial E-classes with concrete
values (cvecs) from the domain

Compute the cvecs for newly
enumerated E-classes

a b 0

+ + …++ +

�n�!�o�� �o�!�n��

Candidate generation by characteristic
vector matching

1
-2

7

4

3
5

-7

-5

0
0

0

0

2
-4

14

8

4
-3

0

-1

4
-3

0

-1

6
10

-14

-10

1
-2

7

4

Seed initial E-classes with concrete
values (cvecs) from the domain

Compute the cvecs for newly
enumerated E-classes

a b 0

+ + …++ +

�n�!�o�� �o�!�n��

�n�!�&�� n

Candidate generation by characteristic
vector matching

1
-2

7

4

3
5

-7

-5

0
0

0

0

2
-4

14

8

4
-3

0

-1

4
-3

0

-1

6
10

-14

-10

1
-2

7

4

Seed initial E-classes with concrete
values (cvecs) from the domain

Compute the cvecs for newly
enumerated E-classes

a b 0

+ + …++ +

�n�!�o�� �o�!�n��

�n�!�&�� n

Validate candidates
using SMT, fuzzing,

model checking

Candidate generation by characteristic
vector matching

Enumeration

Candidate Generation

Rule Selection

Ruler

Rule selection with equality saturation

�n� �o�� �o� �n��

�n� �'�� �'� �n��

�o� �'�� �'� �o��

�n�!�o�� �o�!�n��

�n�!�&�� �&�!�n��

�o�!�&�� �&�!�o��
C =

�n� �'�� �'� �n��

�o� �'�� �'� �o��

�n�!�o�� �o�!�n��

�n�!�&�� �&�!�n��

�o�!�&�� �&�!�o��

�n� �o�� �o� �n��

C =

R

Rank sound candidates based on
generality and pick top-k (2)

Rule selection with equality saturation

�n� �'�� �'� �n��

�o� �'�� �'� �o��

�n�!�o�� �o�!�n��

�n�!�&�� �&�!�n��

�o�!�&�� �&�!�o��

�n� �o�� �o� �n��

Instantiate
and add to

rule E-graph

R

Rank sound candidates based on
generality and pick top-k (2)

Rule selection with equality saturation

�n�!�o�� �o�!�n��

�n� �o�� �o� �n��
R

Rank sound candidates based on
generality and pick top-k (2)

Instantiate
and add to

rule E-graph

�n� �'�� �'� �n��

�o� �'�� �'� �o��

�n�!�&�� �&�!�n��

�o�!�&�� �&�!�o��

Rule selection with equality saturation

�n�!�o�� �o�!�n��

�n� �o�� �o� �n��

R

Instantiate
and add to

rule E-graph

Run equality
saturation

�n� �'�� �'� �n��

�o� �'�� �'� �o��

�n�!�&�� �&�!�n��

�o�!�&�� �&�!�o��

Rule selection with equality saturation

�n�!�o�� �o�!�n��

�n� �o�� �o� �n��

R

Instantiate
and add to

rule E-graph

Run equality
saturation

All four rules are
redundant and

therefore discarded!

�n� �'�� �'� �n��

�o� �'�� �'� �o��

�n�!�&�� �&�!�n��

�o�!�&�� �&�!�o��

Rule selection with equality saturation

�n�!�o�� �o�!�n��

�n� �o�� �o� �n��

R

Instantiate
and add to

rule E-graph

Run equality
saturation

All four rules are
redundant and

therefore discarded!

�n� �'�� �'� �n��

�o� �'�� �'� �o��

�n�!�&�� �&�!�n��

�o�!�&�� �&�!�o��

Continue processing until
candidate set is empty or

has only unsound ones
left!

Rule selection with equality saturation

�n�!�o�� �o�!�n��

�n� �o�� �o� �n��

R

Instantiate
and add to

rule E-graph

Run equality
saturation

Larger top-k makes Ruler faster

Smaller top-k gives smaller rulesets

See paper for detailed comparison!

�n� �'�� �'� �n��

�o� �'�� �'� �o��

�n�!�&�� �&�!�n��

�o�!�&�� �&�!�o��

Rule selection with equality saturation

�n�!�o�� �o�!�n��

�n� �o�� �o� �n��

R

Instantiate
and add to

rule E-graph

Run equality
saturation

Larger top-k makes Ruler faster

Smaller top-k gives smaller rulesets

See paper for detailed comparison!

�n� �'�� �'� �n��

�o� �'�� �'� �o��

�n�!�&�� �&�!�n��

�o�!�&�� �&�!�o��

Shrinks the candidate space by applying

rewrites as they are learned!

Rule selection with equality saturation

Ruler

Equality saturation “soundiness”

Equality Saturation amplifies unsoundness!

Equality saturation “soundiness”

Equality Saturation amplifies unsoundness!

Equality saturation “soundiness”

Equality Saturation amplifies unsoundness!

�o� �&�� '�

�o� �&�� &�

current ruleset

Equality saturation “soundiness”

Equality Saturation amplifies unsoundness!

�o� �&�� '�

�o� �&�� &�

Run equality
saturation on
term E-graph

current ruleset

Equality saturation “soundiness”

Equality Saturation amplifies unsoundness!

�o� �&�� '�

�o� �&�� &�

Run equality
saturation on
term E-graph

current ruleset

Equality saturation “soundiness”

Equality Saturation amplifies unsoundness!

�o� �&�� '�

�o� �&�� &�

Run equality
saturation on
term E-graph

current ruleset

Unsound merge,

0 != 1

Implementation

https://github.com/uwplse/ruler

Implemented in Rust

Uses egg for equality saturation

https://github.com/uwplse/ruler

Ruler vs Other tools (CVC4)
 How do the rulesets compare?

Ruler vs Humans (Herbie)
Can Ruler compete with experts?

Evaluation

Comparison with CVC4

Comparison with CVC4

Comparison with CVC4

Comparison with CVC4

Comparison with CVC4

Fraction of the 1782 rules from CVC4
that the 188 rules from Ruler can
derive via equality saturation

Comparison with CVC4

Ruler infers a smaller, useful
ruleset faster

Ruler vs Other tools (CVC4)
 How do the rulesets compare?

Ruler vs Humans (Herbie)
Can Ruler compete with experts?

Evaluation

Comparison with human-written rules

Comparison with human-written rules

52 rational rules, designed by the
developers over 6 years

55 / 155 benchmarks are purely
over rational arithmetic

Comparison with human-written rules

52 rational rules, designed by the
developers over 6 years

55 / 155 benchmarks are purely
over rational arithmetic

r�n� �o�r r�n�r� �r�o�r

r�n� �n�r �n� �n
Discovered by Ruler, resolved the GitHub issue!

Comparison with human-written rules

52 rational rules, designed by the
developers over 6 years

55 / 155 benchmarks are purely
over rational arithmetic

End-to-end: rational Herbie

None: Remove all rules

Herbie: Herbie without any changes

Ruler: Herbie with Ruler’s rules

Both: Herbie with both original and Ruler’s rules

Rational Herbie: comparing accuracy

None: Remove all rules

Herbie: Herbie without any changes

Ruler: Herbie with Ruler’s rules

Both: Herbie with both original and Ruler’s rules

Ruler’s rules are at least as good as
the original Herbie rules

Rational Herbie: comparing AST size

None: Remove all rules

Herbie: Herbie without any changes

Ruler: Herbie with Ruler’s rules

Both: Herbie with both original and Ruler’s rules

Ruler’s rules are at least as good as
the original Herbie rules

Rational Herbie: comparing AST size

None: Remove all rules

Herbie: Herbie without any changes

Ruler: Herbie with Ruler’s rules

Both: Herbie with both original and Ruler’s rules

See paper for more
results!

Ruler’s rules are at least as good as
the original Herbie rules

Rewrite Rule Inference Using Equality Saturation

Ruler : https://github.com/uwplse/ruler

Equality Saturation
improves

all three steps!

egg EqSat Toolkit [POPL 2021, Distinguished Paper]

✓ Deferred invariant maintenance & batching

✓ Relational e-matching [POPL 2022]

✓ E-class analyses

✓ Rewrite rule synthesis with Ruler [OOPSLA 2021, Distinguished Paper]

❏ Applications

❏ 3D CAD in Szalinski, FP Accuracy in Herbie, Lib Learning in Babble, …

❏ EVM simplify @ Certora, wasm JIT @ Fastly, datapath optimize @ Intel, …

63

Manufacturing is compilation!

64

Manufacturing is compilation!

65

Design is programming!

66

portable, BUT
difficult to edit

Design is programming!

67

portable, BUT
difficult to editdecompile?

Design is programming!

68

Szalinski

69

Szalinski

70

Szalinski

71

Szalinski

72

Szalinski [PLDI 2020]

73

● thousands of models decompiled w/ egg, all < 1 second

Szalinski [PLDI 2020]

74

Library learning with Babble [POPL 2023]

75

Library learning with Babble [POPL 2023]

76

Short Proofs for TV + debugging [FMCAD 2022]

77

Short Proofs for TV + debugging [FMCAD 2022]

egg case studies
● Herbie: floating point 3000x faster

● SPORES: linear algebra kernels 1.2-5x better

● Tensat: ML compute graphs 23% better, 48x faster

● Szalinski: CAD synthesis 12,000 part eval
< 1s synthesis

● …, TVM, Java testing, vectorization,
hw/sw co-design, educational problems, ...

78

batching

shape analysis

generic library

dynamic rewrites

egg EqSat Toolkit [POPL 2021, Distinguished Paper]

✓ Deferred invariant maintenance & batching

✓ Relational e-matching [POPL 2022]

✓ E-class analyses

✓ Rewrite rule synthesis with Ruler [OOPSLA 2021, Distinguished Paper]

✓ Applications

✓ 3D CAD in Szalinski, FP Accuracy in Herbie, Lib Learning in Babble, …

✓ EVM simplify @ Certora, wasm JIT @ Fastly, datapath optimize @ Intel, …

