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(a * 2) / 2 ⇒ (a << 1) / 2   ❌  order

Pitfalls
      x * 2 = x << 1
      x * y = y * x
          x = x * 1

(a * 2) / 2 ⇒ (2 * a) / 2 ⇒ (a * 2) / 2  ❌  

diverge

a ⇒ a * 1 ⇒ a * 1 * 1 ⇒ … ❌  infinite size

Critical for other inputs!
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(a * 2) / 2 ⇒ a

Which rewrite?  When?

Useful Less Useful
(x * y) / z = x * (y / z)

      x / x = 1

      x * 1 = x

      x * 2 = x << 1

      x * y = y * x

          x = x * 1

Equality Saturation

Try applying all the rules in every order?!

��



E-graphs

● Data structure from Greg Nelson’s PhD thesis (1980)

● Used for congruence closure (Downey, Sethi, Tarjan 1980)

○ Intuition: union-find (Tarjan 1975) but function-aware

● Key for equality and uninterpreted funcs (EUF) theory in SMT

○ Intuition: the “glue” that connects other theories to SAT

● Historically: “baked in” to SMT solvers, no general libraries 😐
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2a

e-classes contain e-nodes (ops)

e-nodes’ arguments are e-classes!

e-graphs maximize sharing 
(no copies of same e-node)
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E-graphs: applying rewrite rules

/
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2a

x * 2 → x << 1

This e-classes represents
a*2 and a<<1

This e-classes represents
(a*2)/2 and (a<<1)/2

E-graphs never forget.
Rewrites don’t lose info!
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x / x → 1

x * 1 → x

E-graphs: compact representation
Rewrites can shrink e-graphs!

● 6 → 5 eclasses

E-graphs can represent ∞ terms

● a, a * 1, a * 1 * 1, …

E-graphs can “saturate”

● learn all derivable eqs ✅



Equality Saturation

● Technique first used in Denali (Joshi, Nelson, Randall 2002)

○ Optimizing straight-line assembly kernels for Alpha

● Extended to loops in Peggy [POPL 2009]

○ Coined term “Equality Saturation” 

○ Coinductive stream operators for algebraic loop rewrites

○ Used Rete algo from expert sys for incremental e-matching
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Equality Saturation

initial term e-graph optimized term

rewrite

extra
ct

till saturation
or timeout

greedy (size), ILP (CSE), GA, …
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Equality Saturation

initial term e-graph optimized term

find pattern
(“e-match”)

apply match

restore
invariants

congruence
a = b  ⇒  f(a) = f(b)

🔥🔥
🔥

hot loop
🔥🔥
🔥

Goal: make it fast!



egg EqSat Toolkit        [POPL 2021, Distinguished Paper]

❏ Deferred invariant maintenance & batching

❏ Relational e-matching  [POPL 2022]

❏ E-class analyses

❏ Rewrite rule synthesis with Ruler      [OOPSLA 2021, Distinguished Paper]

❏ Applications

❏ 3D CAD in Szalinski, FP Accuracy in Herbie, Lib Learning in Babble, …

❏ EVM simplify @ Certora, wasm JIT @ Fastly, datapath optimize @ Intel, …
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  return egraph.extract_best()
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Equality Saturation

def equality_saturation(expr, rewrites):
  egraph = initial_egraph(expr)

  while not egraph.is_saturated_or_timeout():
    for rw in rewrites:
  for (subst, ec) in egraph.ematch(rw.lhs):
       ec2 = egraph.add(rw.rhs.subst(subst))
      egraph.merge(ec, ec2)
  

  return egraph.extract_best()

● rewrites are ordered
● read/write interleaved

○ more invariant maint
● invariants baked-in
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def equality_saturation(expr, rewrites):
  egraph = initial_egraph(expr)

  while not egraph.is_saturated_or_timeout():
    matches = []
    for rw in rewrites:
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def equality_saturation(expr, rewrites):
  egraph = initial_egraph(expr)

  while not egraph.is_saturated_or_timeout():
    for rw in rewrites:
  for (subst, ec) in egraph.ematch(rw.lhs):
       ec2 = egraph.add(rw.rhs.subst(subst))
      egraph.merge(ec, ec2)
  

  return egraph.extract_best()

batch reads

invariants restored
once per iteration

batch writes
(invariants broken)

Deferred Invariant Maintenance in egg
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Rebuilding is faster

test is 30x 
faster



Why is rebuilding is faster?

● Consider f1(x) … fn(x) and y1 … yn

● Workload: merge(x, y1) … merge(x, yn) 

● Traditional: O(n2) hashcons updates

● Deferred only does O(n) updates

Downey, Sethi, Tarjan 1980



Why is rebuilding is faster?

f1 fN

x y1 yN…

…



Why is rebuilding is faster?

f1 fN

x y1 yN…

…



Why is rebuilding is faster?

f1 fN

x y1 yN…

…



Why is rebuilding is faster?

f1 fN

x y1 yN…

…



More amortization via batching in egg

initial term e-graph optimized term

find all
 patterns

apply all matches

restore all
 invariants



More amortization via batching in egg

initial terms e-graph optimized term

find all
 patterns

apply all matches

restore all
 invariants

Chunk entire 
set of inputs 
into a single 

e-graph!



More amortization via batching in egg

initial terms e-graph optimized term

find all
 patterns

apply all matches

restore all
 invariants

Chunk entire 
set of inputs 
into a single 

e-graph!

Extract 
optimized 
term from 
each root.



More amortization via batching in egg

initial terms e-graph optimized term

find all
 patterns

apply all matches

restore all
 invariants

Chunk entire 
set of inputs 
into a single 

e-graph!

Extract 
optimized 
term from 
each root.

Shared optimization

+ “e-graph seeding”
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egg EqSat Toolkit        [POPL 2021, Distinguished Paper]

✓ Deferred invariant maintenance & batching

❏ Relational e-matching  [POPL 2022]

❏ E-class analyses

❏ Rewrite rule synthesis with Ruler      [OOPSLA 2021, Distinguished Paper]

❏ Applications
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initial term e-graph optimized term

find all
 patterns

apply all matches

restore all
 invariants

Now that this is fast… we bottleneck on matching  😓

egg’s Equality Saturation
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● E-matching : find substs from pattern variables to e-classes

● Substs guaranteed to be represented by the matched e-graph

● NP-complete wrt to pattern size (Kozen 1977) 😱

f(α, g(α)) will match 

f(1, g(1))
f(2, g(2))

…
f(N, g(N))

, witnessed by              .

{α ↦ 1}
{α ↦ 2}

…
{α ↦ N}

f(1, α)   will match 
f(1, g(1))
f(1, g(2))

…
f(1, g(N))

, witnessed by  {α ↦ cg}.

But patterns are often small…

💡 # of matches is much better metric!
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for e-class c in e-graph E:
  for f-node n1 in c:
    subst = {root ↦ c, α ↦ n1.child1}
    for g-node n2 in n1.child2:
        if subst[α] = n2.child1:
            yield subst
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for e-class c in e-graph E:
  for f-node n1 in c:
    subst = {root ↦ c, α ↦ n1.child1}
    for g-node n2 in n1.child2:
        if subst[α] = n2.child1:
            yield subst

Traditional e-matching via backtracking

O(N^2), yet at most O(N) matches 
😫
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● Many optimizations in literature
○ custom VMs for “CSE”
○ specific patterns
○ mod-time analysis

● No data complexity bounds!
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Traditional e-matching via backtracking



E-matching in e-graphs

Finding substitutions such 
that substituted terms are 
represented in an e-graph.

Conjunctive queries in DBs

Finding substitutions such 
that substituted atoms are 
present in a relational DB.
��

💡 Key insight:  e-matching is a DB 
problem!



egg’s relational e-matching



f(α, g(α))
g(f(α, α))

…

egg’s relational e-matching

● Given e-graph + patterns

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q


f(α, g(α))
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…

egg’s relational e-matching

● Given e-graph + patterns

● Transform e-graph to tables

id arg1 arg2

cf
1 cg

cf 2 cg

… … …

cf N cg

id arg1

cg 1

cg 2

… …

cg N

Rf Rg
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f(α, g(α))
g(f(α, α))

…

egg’s relational e-matching

● Given e-graph + patterns

● Transform e-graph to tables

● Compile patterns to queries Q(root, α) ← 
Rf(root, α, x), Rg(x, α)

Q(root, α) ← 
Rg(root, x), Rf(x, α, α)

…

id arg1 arg2

cf
1 cg

cf 2 cg

… … …

cf N cg

id arg1

cg 1

cg 2

… …

cg N

Rf Rg
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…

egg’s relational e-matching

● Given e-graph + patterns

● Transform e-graph to tables

● Compile patterns to queries

● Use DB query engine to e-match!

Q(root, α) ← 
Rf(root, α, x), Rg(x, α)

Q(root, α) ← 
Rg(root, x), Rf(x, α, α)

…

id arg1 arg2

cf
1 cg

cf 2 cg

… … …

cf N cg

id arg1

cg 1

cg 2

… …

cg N

Rf Rg
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…

egg’s relational e-matching

● Given e-graph + patterns

● Transform e-graph to tables

● Compile patterns to queries

● Use DB query engine to e-match!

● Derive bounds from DB theory!

Q(root, α) ← 
Rf(root, α, x), Rg(x, α)

Q(root, α) ← 
Rg(root, x), Rf(x, α, α)

…

id arg1 arg2

cf
1 cg

cf 2 cg

… … …

cf N cg

id arg1

cg 1

cg 2

… …

cg N

Rf Rg

✅
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id arg1 arg2
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… … …

cf N cg

id arg1
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E-graphs as tables (relational DBs)

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1fZtByQkqOzEH-4C6jaiZB1n1h51VUf2Q


id arg1 arg2

cf 1 cg
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… … …

cf N cg

id arg1

cg 1
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… …
cg N
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Rg

Ri=1…N 
id

i

E-graphs as tables (relational DBs)

every e-node becomes a row
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f(α, g(α))

E-match patterns as conjunctive queries



f(α, g(α))

Q(root, α) ← 
Rf (root, α, x), Rg(x, α)

E-match patterns as conjunctive queries



f(α, g(α))

Q(root, α) ← 
Rf (root, α, x), Rg(x, α)

ind = {}
for (x, α) in Rg: # build index
  ind.insert((x, α))

Rg(cg , 1)
Rg(cg , 2)

…
Rg(cg , N)

bu
ild

 h
as

h

E-match patterns as conjunctive queries



f(α, g(α))

Q(root, α) ← 
Rf (root, α, x), Rg(x, α)

ind = {}
for (x, α) in Rg: # build index
  ind.insert((x, α))
for (root, α, x) in Rf: # probe
  if (α, x) in ind:
    yield {root ↦ root, α ↦ α}

Rg(cg , 1)
Rg(cg , 2)

…
Rg(cg , N)

Rf(cf , 1, cf )
Rf(cf , 2, cf )

…
Rf(cf , N, cf )

bu
ild

 h
as

h

pr
ob

e

✓

✓

✓

E-match patterns as conjunctive queries



f(α, g(α))

Enum all terms of shape f(α, g(β)) 

Check if  α = β  only before yielding

Q(root, α) ←
 Rf (root, α, x), Rg(x, α)

Build indices on both α and x.

Only enum terms where constraints 
on both x and α are satisfied.

equality 

constraints
structural 

constraints

Why is relational e-matching faster?



Data complexity results (see paper)



6 orders of 
magnitude speedup

Index building takes 
time

Similar performance 
on linear patterns.

Speedup for specific 
linear patterns
((+ a (* -1 b))

Relational e-matching : asymptotic speedup



x = matmul(a, b),

y = matmul(a, c)

x = split1(matmul(a,concat(b, c))),

y = split2(matmul(a,concat(b, c)))

New Capabilities: Multi-patterns



x = matmul(a, b),

y = matmul(a, c)

x = split1(matmul(a,concat(b, c))),

y = split2(matmul(a,concat(b, c)))

New Capabilities: Multi-patterns
search for two patterns 

anywhere in the e-graph



x = matmul(a, b),

y = matmul(a, c)

x = split1(matmul(a,concat(b, c))),

y = split2(matmul(a,concat(b, c)))

New Capabilities: Multi-patterns
search for two patterns 

anywhere in the e-graph

perform two merges, each on a 
separate e-class!



egg EqSat Toolkit        [POPL 2021, Distinguished Paper]

✓ Deferred invariant maintenance & batching

✓ Relational e-matching  [POPL 2022]

❏ E-class analyses

❏ Rewrite rule synthesis with Ruler      [OOPSLA 2021, Distinguished Paper]

❏ Applications

❏ 3D CAD in Szalinski, FP Accuracy in Herbie, Lib Learning in Babble, …

❏ EVM simplify @ Certora, wasm JIT @ Fastly, datapath optimize @ Intel, …



Syntactic rewriting is not enough…

● How many rules do we need for constant folding?

○ 2 + 2 → 4,  3 + 4 → 6,  4 + 6 → 10, … a lot!

● What about satisfying guards for conditional rules?

○ x / x → 1  only ok if  x <> 0

● In general, many optimizations depend on analyses!

○ nullability, tensor shape, intervals, free variables, …



● Option<Number> per eclass

● try to eval new e-nodes

● Option “or” on merge

Constant folding

/

*

2a
2



merge(a, 2)

124

● Option<Number> per eclass

● try to eval new e-nodes

● Option “or” on merge

● it propagates up!

Constant folding

/

*

2a
2

2

4

2



● One fact per e-class from a join-semilattice D

● make(n) → dc
○ make a new analysis value for a new e-node 

● join(dc1, dc2) → dc
○ combine two analysis values

● modify(c) → c’
○ change the e-class (optionally)

125

E-class analyses



2

for each e-class

Analysis data is LUB
(lattice properties) 

fixed point

126

E-class analysis invariant



● Tightest summary
over all equivalent 
represented terms!

127

Program analysis modulo equivalence

Sam Coward et al. (2022)



● Tightest summary
over all equivalent 
represented terms!

● Virtuous cycle:
facts enable rewrites, 
rewrites improve facts!

128

Program analysis modulo equivalence

Sam Coward et al. (2022)



egg EqSat Toolkit        [POPL 2021, Distinguished Paper]

✓ Deferred invariant maintenance & batching

✓ Relational e-matching  [POPL 2022]

✓ E-class analyses

❏ Rewrite rule synthesis with Ruler      [OOPSLA 2021, Distinguished Paper]

❏ Applications

❏ 3D CAD in Szalinski, FP Accuracy in Herbie, Lib Learning in Babble, …

❏ EVM simplify @ Certora, wasm JIT @ Fastly, datapath optimize @ Intel, …
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● EqSat and egg can only be as good as user’s rules…



🐓  &  .

● EqSat and egg can only be as good as user’s rules…

Where do rules come from?

● Typically hand written by experts

● Time consuming, often takes years

● Too few / too many / unsound rules



A 3-step approach for inferring rewrite rules

Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …



a, b, 0, +, …

a b 0

+ + …

+ …+ + +

Enumerate terms 
from a grammar

Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

++ +

A 3-step approach for inferring rewrite rules



Find candidates: interpret 
over concrete inputs

“Fingerprints”

Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

Enumerate terms 
from a grammar

a b 0

+ + …

+ …+ +

++ +

a, b, 0, +, …

a b 0

+ + …

+ …+ + +

++ +

+

A 3-step approach for inferring rewrite rules
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A 3-step approach for inferring rewrite rules



Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

Filter candidates to 
get final ruleset
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Remove redundant rules

Find candidates: interpret 
over concrete inputs
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Filter candidates to 
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Remove redundant rules

Find candidates: interpret 
over concrete inputs

“Fingerprints”

Enumerate terms 
from a grammar

a b 0

+ + …

+ …+ + +

++ +

a, b, 0, +, …

a b 0

+ + …
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Exponentially 
many terms!

Too many 
candidates, some 

potentially 
unsound!

Hard to find a 
small, useful 

ruleset

A 3-step approach for inferring rewrite rules



Joshi et al. 2002, Bansal et al. 2006, Singh et al. 2016, Menendez et al. 2017, …

x, y, 0, +, …

x y 0

+ + + + + …

+ …+ + +

Enumerate terms 
from a grammar

Find candidates: interpret 
over concrete inputs

Filter candidates to 
get final ruleset

x y 0

+ + + + + …

…

“Fingerprints”

+ + + +

Remove redundant rules

Exponentially 
many terms!

Too many 
candidates, some 

potentially 
unsound!

n�!�& &�!�n
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Hard to find a 
small, useful 

ruleset

Inferring Small, Useful Rulesets Faster 
using Equality Saturation!

Equality Saturation for not just applying 
rewrites, but also inferring them!

A 3-step approach for inferring rewrite rules
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Rule Selection

Ruler
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Enumeration modulo equality saturation

Exponentially 
many terms!
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Exponentially 
many terms!

Enumerate over an 
E-graph

E-classes
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Enumeration modulo equality saturation
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Exponentially 
many terms!

Enumerate over an 
E-graph
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Exponentially 
many terms!

Enumerate over an 
E-graph

      Apply current ruleset
�����n�!�o�� �o�!�n��

Merge equivalent termsE-classes

a b 0

+ + …

+ …+ + +

++ +

a, b, 0, +, … 

a b 0

+ + …

+ …+ + +

++ +

a b 0

+ + …

+ …+ + +

++ +
Shrinks the term space by applying 

rewrites as they are learned!

Enumeration modulo equality saturation
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Candidate generation by characteristic 
vector matching

1
-2

7

4

3
5

-7

-5

0
0

0

0

Seed initial E-classes with concrete 
values (cvecs) from the domain

a b 0



1
-2

7

4

3
5

-7

-5

0
0

0

0

2
-4

14

8

4
-3

0

-1

4
-3

0

-1

6
10

-14

-10

1
-2

7

4

Seed initial E-classes with concrete 
values (cvecs) from the domain

Compute the cvecs for newly 
enumerated E-classes

a b 0

+ + …++ +

Candidate generation by characteristic 
vector matching



1
-2

7

4

3
5

-7

-5

0
0

0

0

2
-4

14

8

4
-3

0

-1

4
-3

0

-1

6
10

-14

-10

1
-2

7

4

Seed initial E-classes with concrete 
values (cvecs) from the domain

Compute the cvecs for newly 
enumerated E-classes

a b 0

+ + …++ +

�n�!�o�� �o�!�n��

Candidate generation by characteristic 
vector matching



1
-2

7

4

3
5

-7

-5

0
0

0

0

2
-4

14

8

4
-3

0

-1

4
-3

0

-1

6
10

-14

-10

1
-2

7

4

Seed initial E-classes with concrete 
values (cvecs) from the domain

Compute the cvecs for newly 
enumerated E-classes

a b 0

+ + …++ +

�n�!�o�� �o�!�n��

�n�!�&�� n

Candidate generation by characteristic 
vector matching



1
-2

7

4

3
5

-7

-5

0
0

0

0

2
-4

14

8

4
-3

0

-1

4
-3

0

-1

6
10

-14

-10

1
-2

7

4

Seed initial E-classes with concrete 
values (cvecs) from the domain

Compute the cvecs for newly 
enumerated E-classes

a b 0

+ + …++ +

�n�!�o�� �o�!�n��

�n�!�&�� n

Validate candidates 
using SMT, fuzzing, 

model checking

Candidate generation by characteristic 
vector matching
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Rule selection with equality saturation
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R

Rank sound candidates based on 
generality and pick top-k (2)

Rule selection with equality saturation
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Shrinks the candidate space by applying 

rewrites as they are learned!
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Equality saturation “soundiness”

Equality Saturation amplifies unsoundness!

�o� �&�� '�

�o� �&�� &�

Run equality 
saturation on 
term E-graph 

current ruleset

Unsound merge,

0 != 1



Implementation

https://github.com/uwplse/ruler

Implemented in Rust

Uses egg for equality saturation

https://github.com/uwplse/ruler


Ruler vs Other tools (CVC4)
    How do the rulesets compare?

Ruler vs Humans (Herbie)
Can Ruler compete with experts?

Evaluation
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Comparison with CVC4

Fraction of the 1782 rules from CVC4 
that the 188 rules from Ruler can 
derive via equality saturation



Comparison with CVC4

Ruler infers a smaller, useful 
ruleset faster
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r�n� �o�r r�n�r� �r�o�r

r�n� �n�r �n� �n
Discovered by Ruler, resolved the GitHub issue!

Comparison with human-written rules

52 rational rules, designed by the 
developers over 6 years

55 / 155 benchmarks are purely 
over rational arithmetic



End-to-end: rational Herbie

None:    Remove all rules

Herbie:   Herbie without any changes

Ruler:    Herbie with Ruler’s rules

Both:     Herbie with both original and Ruler’s rules



Rational Herbie: comparing accuracy

None:    Remove all rules

Herbie:   Herbie without any changes

Ruler:    Herbie with Ruler’s rules

Both:     Herbie with both original and Ruler’s rules

Ruler’s rules are at least as good as 
the original Herbie rules



Rational Herbie: comparing AST size

None:    Remove all rules

Herbie:   Herbie without any changes
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Both:     Herbie with both original and Ruler’s rules

Ruler’s rules are at least as good as 
the original Herbie rules



Rational Herbie: comparing AST size

None:    Remove all rules

Herbie:   Herbie without any changes

Ruler:    Herbie with Ruler’s rules

Both:     Herbie with both original and Ruler’s rules

See paper for more 
results!

Ruler’s rules are at least as good as 
the original Herbie rules



Rewrite Rule Inference Using Equality Saturation

Ruler : https://github.com/uwplse/ruler

Equality Saturation 
improves

all three steps!



egg EqSat Toolkit        [POPL 2021, Distinguished Paper]

✓ Deferred invariant maintenance & batching

✓ Relational e-matching  [POPL 2022]

✓ E-class analyses

✓ Rewrite rule synthesis with Ruler      [OOPSLA 2021, Distinguished Paper]

❏ Applications

❏ 3D CAD in Szalinski, FP Accuracy in Herbie, Lib Learning in Babble, …

❏ EVM simplify @ Certora, wasm JIT @ Fastly, datapath optimize @ Intel, …
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portable, BUT
difficult to editdecompile?

Design is programming!
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Szalinski [PLDI 2020]



73

● thousands of models decompiled w/ egg, all < 1 second

Szalinski [PLDI 2020]
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Library learning with Babble [POPL 2023]
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Library learning with Babble [POPL 2023]
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Short Proofs for TV + debugging [FMCAD 2022] 
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Short Proofs for TV + debugging [FMCAD 2022] 



egg case studies
● Herbie: floating point 3000x faster

● SPORES: linear algebra kernels 1.2-5x better

● Tensat: ML compute graphs 23% better, 48x faster

● Szalinski: CAD synthesis 12,000 part eval
< 1s synthesis

● …, TVM, Java testing, vectorization,
hw/sw co-design, educational problems, ...

78

batching

shape analysis

generic library

dynamic rewrites



egg EqSat Toolkit        [POPL 2021, Distinguished Paper]

✓ Deferred invariant maintenance & batching

✓ Relational e-matching  [POPL 2022]

✓ E-class analyses

✓ Rewrite rule synthesis with Ruler      [OOPSLA 2021, Distinguished Paper]

✓ Applications

✓ 3D CAD in Szalinski, FP Accuracy in Herbie, Lib Learning in Babble, …

✓ EVM simplify @ Certora, wasm JIT @ Fastly, datapath optimize @ Intel, …


