
An Interactive System for Data Structure Development
Jibin Ou

ETH Zürich
jou@student.ethz.ch

Martin Vechev
ETH Zürich

martin.vechev@inf.ethz.ch

Otmar Hilliges
ETH Zürich

otmar.hilliges@inf.ethz.ch

Figure 1: We contribute a novel way of debugging, allowing the user to directly interact with a program’s live heap. The heap
graph is abstracted using a method for online parametric heap abstraction which allows us to only visualize the algorithm’s
essential operation. The user can change and refine these automatic abstractions interactively. Our system can be used during
regular development (left) and in a classroom setting using a pen+touch user interface (right).

ABSTRACT
Data structure algorithms are of fundamental importance in
teaching and software development, yet are difficult to under-
stand. We propose a new approach for understanding, debug-
ging and developing heap manipulating data structures.

The key technical idea of our work is to combine deep para-
metric abstraction techniques emerging from the area of static
analysis with interactive abstraction manipulation. Our ap-
proach bridges program analysis with HCI and enables new
capabilities not possible before: i) online automatic visualiza-
tion of the data structure in a way which captures its essential
operation, thus enabling powerful local reasoning, and ii) fine
grained pen and touch gestures allowing for interactive con-
trol of the abstraction – at any point the developer can pause
the program, graphically interact with the data, and continue
program execution. These features address some of the most
pressing challenges in developing data structures.

We implemented our approach in a Java-based system called
FluidEdt and evaluated it with 27 developers. The results
indicate that FluidEdt is more effective in helping developers

c©2015 Association for Computing Machinery. ACM acknowledges that this
contribution was authored or co-authored by an employee, contractor or affiliate of a
national government. As such, the Government retains a nonexclusive, royalty-free
right to publish or reproduce this article, or to allow others to do so, for Government
purposes only.

CHI 2015, April 18 - 23 2015, Seoul, Republic of Korea
Copyright c©2015 ACM 978-1-4503-3145-6/15/04... $15.00
http://dx.doi.org/10.1145/2702123.270231

find data structure errors than existing state of the art IDEs (e.g.
Eclipse) or pure visualization based approaches.
Author Keywords
debugging; program analysis; software development
ACM Classification Keywords
D.2.6 Programming Environments; H.5.2 User Interfaces

INTRODUCTION
Data structures and algorithms are at the core of modern soft-
ware systems and are a staple of computer science curricula
worldwide. It is via data structures and algorithms that students
are first exposed to many of the core concepts in computer
science. However, despite decades of research and teaching,
understanding the underlying operation of even small data
structure algorithms remains as difficult and as cognitively de-
manding as ever. Even shorter programs can perform complex
and difficult to understand manipulations on the program’s
heap. Thus data structure manipulating algorithms are an in-
teresting case for HCI research as they are well understood
in principle yet are very hard to master in practice. To crys-
talize some of the issues associated with their development,
we conducted a series of interviews with colleagues involved
with the data structures class at our University as well as a
thorough analysis of hundreds of online posts related to this
topic (found on Stack Overflow∗). The results of our study
clearly illustrate a diverse set of errors and misunderstandings
involving linked lists, arrays, trees and other structures – the
complete catalog can be accessed via supplementary materials.
∗http://stackoverflow.com

1

http://dx.doi.org/10.1145/2702123.270231
http://stackoverflow.com

Figure 2: Interactive Debugger. Left: the temporal view keeping snapshots of the structures at each line. Snapshots can be
collapsed and expanded on demand and are aligned with lines of code. Middle: the code (in this case, an attempt at reversing a
linked list). Right: the abstracted heap view. Red dots indicate break points, yellow arrow indicates the current line.

Our study firmly reinforces that complex pointer manipula-
tions are a key source of confusion in understanding existing
algorithms, in discovering and repairing errors, and even in
explaining how algorithms work. Unfortunately, despite the
universal importance of these algorithms, there is still little
tool support for effectively understanding their operation.

In this paper we introduce a new approach and a complemen-
tary tool for interactive debugging and development of data
structure manipulating algorithms. Our approach bridges the
areas of HCI and program analysis. The key technical idea
of our work is based on a novel combination of parametric
predicate abstraction techniques emerging from the area of
static analysis with interactive abstraction manipulation. Our
tool has two benefits. First, it automatically visualizes the
data structure in a way which captures its essential operation
while abstracting the rest. This is an important feature which
enables local reasoning, meaning that even though the data
structure may contain a large number of nodes, at any given
time only the (small number of) nodes relevant to the current
program context are kept concrete. Second, our tool provides
the developer with fine grained controls over which data is
visualized – the developer can pause the program, interact with
the data structure (e.g. abstract, concretize, modify), and con-
tinue program execution with the new structure. This enables
one to try various hypotheses for the algorithm operation.

We envision our approach being useful in a wide range of
settings including the classroom but also in the increasingly
common search-and-modify code development setting. For
instance, in this setting, a developer will usually i) search
online for the particular functionality (e.g., an AVL tree), ii) try
to understand what the suggested program does [16], and iii)
modify the program according to their needs. Proliferation of
online source code repositories such as GitHub and sites such
as Stack Overflow, along with other web resources have made
step i) almost instant. Further, the HCI research community
has come up with a number of tools to better integrate the
usage of web resources and the development process [5, 9,
22, 28]. Step ii) is most time consuming and challenging as
the developer is not familiar with the code and even short
algorithms can admit many different implementations. Worse,
step iii) cannot be accomplished until step ii) is thoroughly

completed. We believe that our tool can be very effective in
reducing the cost of the search-and-modify loop by drastically
reducing the time for step ii).

In our experimental user study, we show that our system makes
it easier and faster to detect data structure errors than modern
debuggers found in IDEs such as Eclipse or Visual Studio.

Main contributions:
• A method for online and automatic parametric heap ab-

straction, enabling local reasoning by focusing developer
attention on the essential parts of the data structure.

• A fine grained interface for interactive heap abstraction
manipulation involving visual representation of (abstract)
objects and gestures for navigation and modification.

• An implementation of our approach in a system called Flu-
idEdt and an experimental results indicating increased effi-
ciency in finding errors over existing IDEs.

SYSTEM OVERVIEW
The user interface consists of i) a temporal view containing
(easily accessible) structures recorded at each program point
(left), ii) the code view in the middle (here showing a program
attempting a list reversal), and iii) the main drawing canvas
where the (abstract) heap is rendered on the right.

Temporal View
The temporal view captures a visual history of (abstract) shapes.
At every point this history keeps a snapshot of the current heap.
To prevent visual clutter, the snapshots are initially collapsed
(similar to [18]) and the user can expand a thumbnail for any
snapshot, or drag it onto the heap view to restore it. This feature
enables relational reasoning by comparing heap structures at
different execution points. We currently keep the most recent
snapshot at a program point, usually effective for common
programming scenarios (if needed, the system can record more
snapshots). We note that static analyzers have also successfully
used forms of recency abstractions [2].

Code View
The code view shows the part of the program currently being
inspected. As with traditional IDEs, red dots indicate break
points while a yellow arrow indicates the current line (in this

2

case line 9). Beyond giving the user a simultaneous view onto
code and data, this view also links together temporal and heap
views. Here, snapshots are aligned with the line of code they
belong to. The code shows a short but challenging example: (a
faulty) algorithm which attempts to perform linked list reversal.
A typical Java implementation of this algorithm only takes
about 10 lines of code, yet despite its simplicity, developers
struggle with this problem – there are hundreds of threads
on this topic on StackOverflow. Many of these are lengthy
discussions with many answers (which themselves often need
to be corrected). Almost all threads include some form of
graphical depiction illustrating the algorithm operation.

Abstracted Heap View
This view renders an abstraction of the data structure and al-
lows for interactive manipulation. It aims to distill the essential
parts of the structure while abstracting the rest, enabling local
reasoning. Here the view shows an abstraction of the concrete
structure arising at line 9 – abstract nodes are shown with thick
bold edges, while abstract edges are denoted by dashed lines.
An abstract node can contain a number of concrete nodes (in-
dicated by its label). Similarly, an abstract edge may contain
a number of concrete edges. In this example we have two
abstract nodes, one with 2 concrete nodes and another with
3. Note how the abstract shape already conveys much useful
information: we immediately see that the list is disconnected
into two parts and that head points to the last element of one
of the structures. Importantly, regardless of the size of the con-
crete list, it will still be collapsed into this shape automatically,
greatly reducing irrelevant details (e.g. the size of the list).

Suppose the programmer inspects the structure and finds that
the structure captures her intuition of how the algorithm should
work. Naturally, she may then set a breakpoint, say at line 12,
run the program, and inspect the new structure arising at that
line. To allow programmers to better understand the changes
between program lines (e.g. lines 9 to 12), we smoothly an-
imate these transitions in the displayed graph. In particular,
nodes that were concrete in one frame and will be abstracted
next, are moved smoothly into the new abstract node and vice
versa. This feature is crucial for users to understand the tempo-
ral effects on the heap during program execution. Further, as
the developer steps through the code (or reaches breakpoints),
our system will automatically update the abstraction. The
abstract structure at line 12 then is:

The animation indicates the movement of a node to the front of
the second structure while curr advanced towards the abstract
node, necessitating concretization. The rest of the structure
remains the same. The programmer now inspects the structure

and assuming it conforms to their intuition, sets a breakpoint
at line 14 resulting in the following structure:

We now clearly see the algorithmic error: head points to the
end rather than the beginning of the list and hence the algorithm
returns an incorrect result! Note how it is unnecessary to know
what is in the middle of the list (the abstracted part) to know
that an error has occurred.

Interactions and Usage Scenarios
We envision our tool being useful in at least two separate but
related scenarios. The first scenario is regular development of
new code. This scenario usually happens on a regular desktop
PC with a large monitor, mouse and keyboard. The main
form of interaction with FluidEdt in this scenario is likely to
be focused on stepping through code, comparing (abstract)
snapshots and specifying the visual abstraction levels.

The second scenario focuses on code understanding rather than
writing new code from scratch. In particular, it applies to the
classroom where code snippets are provided by the instructor
for students to experiment with the program on their own
devices. Today almost all students own personal touch screen
devices and bring them to class. Towards this, we designed a
set of touch and pen gestures that allow one to directly interact
with the data of a program. Similar approaches have been used
successfully to foster understanding of complex issues such
as mathematical equations [30] and multivariate datasets [23],
suggesting that direct, physical manipulation of complex and
abstract data aids understanding.

Figure 3: Pen+Touch gestures for heap manipulation

We provide a succinct set of gestures allowing users to interact
with the heap. Fig. 3 illustrates how different tasks are allo-
cated to pen and touch respectively. Touch is mainly used to
pan and zoom the canvas and to arrange the nodes spatially,
in case the automatic layout does not suit the user. The user
can also select abstract nodes in order to inspect the values
encapsulated by the node. The stylus is primarily used to select
multiple nodes simultaneously by circling them (Fig. 3, left).
Selected nodes can either be moved together, or be abstracted
by a pinch gesture performed directly on the selection (Fig. 3,
middle). Abstracted nodes can be concretized by double tap-
ping the node (Fig. 3, middle).

3

Concrete Heap Abstracted Heap Abstracted Heap after: y := y.n

u1
n u3

n n u2 u4 u5
n n u6

x t y

(a)

→ u1
n u4

n n ua ub

x t y

n n

(c)

→ u1
n u4

n n u5 u6
n

x y

ua

t

n

(e)

u1 u2 u3 u4 u5 u6
x(u) 1 0 0 0 0 0
y(u) 0 0 0 1 0 0
rn,x (u) 1 1 1 1 1 1
rn,y (u) 0 0 0 1 1 1
t (u) 0 1 0 0 0 0

(b)

u1 ua u4 ub
x(u) 1 0 0 0
y(u) 0 0 1 0
rn,x (u) 1 1 1 1
rn,y (u) 0 0 1 1
t (u) 0 1/2 0 0

(d)

u1 ua u4 u5 u6
x(u) 1 0 0 0 0
y(u) 0 0 0 1 0
rn,x (u) 1 1 1 1 1
rn,y (u) 0 0 0 1 1
t (u) 0 1/2 0 0 0

(f)

Table 4: The figure shows how the concrete linked list in (a) is abstracted into the shape in (c) via the abstraction predicates x, y,
rn,x, rn,y and how the abstraction in (c) is updated when performing the statement y := y.n resulting in (e).

ABSTRACTION BY EXAMPLE
We now present an intuitive understanding of the core tech-
niques underlying our approach (formal explanations are pro-
vided later). The three core features of our approach are: i) how
to perform abstraction of a concrete graph (used to perform
the abstraction of the heap upon starting the program), ii) how
the abstraction is updated when stepping through the program,
and iii) how we support interactive user driven abstraction ma-
nipulation. Our machinery is inspired by techniques developed
in the static analysis community [24], but departs from these
in a number of important ways.

A key ingredient of a parametric abstraction are predicates
– logical formulas which given a (concrete) heap evaluate to
1 (i.e. true) or 0 (i.e. false). These predicates capture in-
formation which we would like to preserve in the abstracted
graph. Predicates are the knobs for controlling what informa-
tion should be abstracted away. Roughly speaking, we abstract
the heap in a way that relevant predicates (abstraction predi-
cates) are kept concrete. We now illustrate how to abstract the
concrete list in Table 4(a) into the abstract list sin Table 4(c).

Step 1: select predicates
We first select the relevant predicates for our problem. By
default, we use local pointer variables as points-to predicates
– these have proven useful in enabling local reasoning [24], a
key to understanding intricate data structure behavior. We usu-
ally instantiate new points-to predicates corresponding to the
local pointer variables in the stack frame as well as few other
predicates we found generally applicable (based on our experi-
mental study). Of course, the user can switch-off predicates
at any point if they do not find them useful. For our example,
we used five unary predicates: x(u), y(u), t(u), rn,x(u) and
rn,y(u). That is, we use points-to predicates x, y, t and reach-
ability predicates (as we may be interested in keeping precise
information of what is reachable from pointers x and y). Out
of these five, all are abstraction predicates except t(u) meaning
that t’s value need not be kept concrete. We selected t(u) on
purpose to illustrate how one can obtain 1/2 values (edges

carrying 1/2 information are dashed in the pictures). For our
list reversal in Fig. 2, the automatically selected abstraction
predicates will be curr, prev, node and head.

Step 2: predicate evaluation
Next, we evaluate each of the selected predicates on each con-
crete node. The result of this evaluation is shown in Table 4(b).
In the general case where the predicates can be arbitrary logical
formulas, the evaluation process involves evaluating logical
formulas (as done in [24]). However, in our case, the predi-
cates have a pre-defined meaning (that is, they have a fixed
logical formula) and hence we can evaluate them with graph
algorithms specific to their particular meaning.

Step 3: direct abstraction
After predicate evaluation, the next step is to perform abstrac-
tion. Using our abstraction approach, we obtain the predicate
values shown in Table 4(d). The basic idea of abstraction is
conceptually simple: all nodes which share the same set of
predicate evaluations for the abstraction predicates are col-
lapsed into an abstract node. For example, nodes u2 and u3
are collapsed into the same abstract node ua because they both
share the exact same valuations for all four of the abstraction
predicates. Similarly, nodes u5 and u6 are collapsed into the
same abstract node ub. However, node u4 is not abstracted into
ua or ub because y(u3) 6= y(u4). It is important to note that all
of the abstraction predicates remain with concrete values, that
is, they still evaluate to 0 or 1 for the abstracted node ua and
ub. However, the values of the non-abstraction predicates such
as t(u) need not be kept concrete, and as we can see, indeed, it
now evaluates to 1/2 for ua (because there were two concrete
nodes u2 and u3 for which t evaluates to 1 and 0 respectively).

Step 4: visualize
Once the new matrix is obtained, we can now visualize that
matrix – the result is shown in Table 4(c). Here, if for a given
abstract node, the predicate evaluates to 1, we show the node,
otherwise (if its 1/2 or 0) it is omitted from the picture. To
reduce clutter, in our figure we do not show rn,x or rn,y .

4

On-demand abstraction updates
Now suppose that starting from the shape shown in Table 4(c),
the programmer performs one step by executing y := y.n. If
we proceed naively, y would end up pointing to the abstract
node ub and it may be confusing to the programmer what ex-
actly is inside ub. To avoid this, we automatically concretize
node ub on-demand – the system will observe that the abstrac-
tion predicate y now evaluates to 1/2 and will concretize the
node, splitting it into two abstract nodes where y will evaluate
to 0 on one of the abstract nodes and to 1 on the other node
(in our example, there are only two concrete nodes hence we
fully concretize ub but this need not be the case with all other
unary predicates and shapes). Note that node ua still stays
abstracted as it is not relevant to the current “local view”. The
result of this step is shown in Table 4(f) and the visualization in
Table 4(e). We argue that this gradual update of the abstraction
on demand helps developers in understanding the algorithm
as it focuses on the local changes to the data while abstracting
the uninformative complexity of the heap.

Stepping into functions
When we step into a function, the previous predicates are still
used to maintain the abstract shape, but we identify the new
stack pointers and add the corresponding points-to predicates
corresponding to these pointers as abstraction predicates.

Manual abstraction interactions
We allow the user to control the abstraction by selecting nodes
which are to be abstracted and to concretize existing nodes.
This enables users to customize the heap view to the particular
intuition they have about the algorithm at a given point. The
machinery for these manual interactions is similar to what is
discussed above and is elaborated in the next section.

A note on predicates
In general, predicates can be arbitrary logical formulas. How-
ever, in our work, we decided against supporting arbitrarily
defined predicates for two reasons: i) we do not expect de-
velopers to write complex logical formulas, and ii) perhaps
more importantly, automatically abstracting arbitrary logical
formulas is computationally expensive [24] and not suitable for
an interactive environment. Therefore, in our approach we still
use the abstraction semantics as described above (same as in
[24]), but we work with a set of predefined predicates that can
be instantiated. We provide the full set of built-in predicates in
the Appendix. Our set of built-in predicates was derived from
our detailed experimental evaluation and inspecting various
programming forums, in which we found it to naturally cap-
tures programmer’s intentions. We do note however that there
is nothing inherent in our parametric approach that precludes
us from adding more predicates. We note that the user can
extend this list with other predicates without requiring any
change to our (parametric) system.

ABSTRACTION FORMALLY
In this section, we present a more formal discussion of how our
abstractions work: the abstraction representation, the initial
abstraction of the program, the update of the abstraction when
a piece of code is executed and how we combine predicate
abstraction with user level manipulations of the shape.

Abstraction representation
To capture the abstraction and the concrete nodes that are con-
nected with it, our system maintains the four maps described
below. These four maps are continually updated during pro-
gram navigation:
• αN (v) : CN −→ AN : the map maintains a mapping from a

concrete to an abstract node.

• αE(e) : CE −→ AE: the map maintains a mapping from a
concrete to an abstract edge.

• γN (v) : AN −→ P(CN): reverse map from an abstract
node to a set of concrete nodes.

• γE(e) : AE −→ P(CE): reverse map from an abstract edge
to a set of concrete edges.

Here, we use CN to denote the set of concrete heap nodes,
AN to denote the set of abstract nodes, CE to denote the
set of concrete edges and AE to denote the set of abstract
edges. We note that such maps are not naturally maintained by
static tools such as TVLA (Three-Valued Logic Analyzer, a
tool implementing the approach in [24]) because the concrete
nodes are not available (the entire purpose of static analysis
is to soundly approximate these concrete nodes with abstract
nodes). Maintaining such maps is unique to our setting.

In a static analysis setting (e.g. TVLA), abstraction is done
entirely based on predicates without the option of interactively
modifying the abstract shapes. In our case however, modifica-
tion of the abstract shape is a first class operation and therefore
we need to address the challenge of combining such modifi-
cations with the standard predicate abstraction – a challenge
which simply does not arise in the pure static analysis setting.

Computing the initial abstraction
Initially, when the program starts, we have a concrete heap G
and a current set of pointer variables. A natural problem then
is how to abstract this initial shape (as the shape may be too
large due to the input test case, etc). Algorithm 1 shows how to
perform the initial abstraction. Here, we use Preds to denote
the set of predicates that we use for abstraction. First, at step 1,
the algorithm starts by evaluating each predicate on each node
(object) in the concrete graph (we already illustrated this step
on an example). Because the graph is concrete, the resulting
value of the evaluation can only be 0 (false) or 1 (true). Then,
in step 2, it groups all nodes which have the same value for all
of the predicates. Finally, at step 3, we update the node and the
edge abstraction and concretization maps accordingly – this
is done via the auxiliary functions described in Algorithm 2.
For readability purposes, we slightly abuse notation and write
f(a) = b for f ′ = f [a→ b] followed by f = f ′.

Updated abstract shapes
Once an abstract shape is computed, it is important to define
what happens to it as the user steps through the program. In
particular, we need to define how such shapes are transformed
during program execution. For instance, if the user steps over a
large function (which results in some concrete heap), we need
to define how the new abstract shape is computed. Note that in
practice, the function over which the user has stepped over may
not even be subject to instrumentation (e.g a native method
in Java). Therefore, we cannot adopt the approach of TVLA

5

// create temporary maps
NodePredV als = new (CN → Preds→ {0, 1})
PredV alNodes = new (Preds→ {0, 1} → P(CN))

// step 1: compute predicate values for each node
foreach node ∈ G.nodes do

foreach pred ∈ Preds do
NodePredV als(node)(pred) = pred(node)

end
end
// step 2: build equivalence classes
foreach node ∈ G.nodes do

PredV als = NodePredV als(node)
PredV alNodes(PredV als) ∪ = {node}

end
// step 3: create the abstract maps: nodes and edges
foreach (, nodes) ∈ PredV alNodes do

abstractNodes(nodes)
end
abstractEdges(G.edges)

Algorithm 1: Creating an abstraction.

abstractNodes(nodes) {
absNode = createUniqueAbstractNode()
foreach n ∈ nodes do

αV (n) = absNode
γV (absNode) ∪ = {n}

end
}
abstractEdges(edges) {
foreach e ∈ edges do

absEdge = 〈αV (e.source), αV (e.target)〉
αE(e) = absEdge
γE(absEdge) ∪ = {e}

end
}

Algorithm 2: Auxiliary functions.

foreach an ∈ range(αV) do
foreach pred ∈ Preds do

if pred(an) = 1/2 then
N1 = {cn | cn ∈ γV (an) ∧ pred(cn) = 1}
N0 = {cn | cn ∈ γV (an) ∧ pred(cn) = 0}
abstractNodes(N0)
abstractNodes(N1)
abstractEdges(dom(αE))

end
end

end
Algorithm 3: Focusing / Refining the abstraction.

Statement Updated Map

new edge〈e〉 α′E = αE ∪ (e, e), γ′E = γE ∪ (e, {e})
del edge〈e〉 dom(α′E) = dom(αE) \ {e}

γ′E = γE [(αE(e))→ γE(αE(e)) \ {e}]
new node〈v〉 α′V = αV ∪ (v, v), γ′V = γV ∪ (v, {v})
del node〈v〉 dom(α′V) = dom(αV) \ {v}

γ′V = γV [(αV (v))→ γV (αV (v)) \ {v}]
Table 5: Updating the abstraction and concretization maps.

which defines the effects of a statement on the abstract shape
(as we may not have the statement available). We next describe
a 3-step process for computing this new abstract shape.

Step 1: compute shape differences
Given the initial graph C and the new graph C ′ re-
sulting from stepping over statements, we compute their
heap difference. That is, we compute the quadru-
ple 〈newEdges, delEdges, newNodes, delNodes〉 denot-
ing the set of new edges in C ′ not in C, the set of deleted
edges from C not in C ′ (and similarly for nodes).

Step 2: update maps
We next update the abstraction and concretization maps defined
earlier: we iterate over the sets and update the map accord-
ingly. The rules for updating the maps for each of the four
cases (added edge, deleted edge, new node, deleted node) are
described in Table 5. For instance, if a new edge is created, we
add that edge to the abstraction and concretization maps.

Step 3: focus maps
Simply updating the maps in step 2 is not enough. The reason
is that a useful unary predicate may suddenly evaluate to 1/2
in the new abstract graph and we would like these predicates
to be concrete (an example of that was shown in the overview
section). A predicate evaluates to 1/2 if the abstract node
contains two concrete nodes where the predicate evaluates to
0 for one node and to 1 for the other. In Algorithm 3, we
show how to focus the values of these predicates. Here, if a
node is evaluated to 1/2, we concretize the node into two sets
of nodes and then re-abstract these sets of concrete nodes as
before using the auxiliary functions (and update the maps). As
a result, we end up with a more intuitive abstract graph.

Interactive Abstraction Manipulation
Manual abstraction manipulations (e.g. via pen+touch) involve
selection of nodes to be abstracted or concretized. Both of
these operations update the maps as discussed so far – for
instance, the interactive abstraction works via the two functions
shown in Algorithm 2. Note that these operations may change
the values of the selected abstraction predicates as they will
now be evaluated on the new (possibly abstract) structure.

IMPLEMENTATION
We implemented our approach described so far in a prototype
system called FluidEdt targeting Java (we built an Eclipse
plug-in to query the heap information). The plug-in sends the
heap information to the front-end which processes and renders
the graph. The front-end is built as a stand alone Windows app.

6

For the graph rendering component, we used a customized
version of the GraphX framework†. AvalonEdit‡ is used to
format the code view. We implemented a communication
protocol to initially transfer the graph data from back-end to
front-end and to incrementally transfer heap modifications (i.e.
the delta between two shapes) at each program step.

In general, when we step in or out of a function, we simply
copy the abstract maps – nothing else needs to be changed. By
default, all predicates in the new function are disabled, but the
user is free to enable them as she wishes. Because stepping in
or out of a function does not change the maps, this entails that
the only time we compute differences between heap graphs is
when the graphs belong to the same function.

In addition to the abstraction and concretization, we support
data allocation and modification. For data modification, one
can change a node’s primitive value or connect two nodes
together. For data allocation, we allow the user to create
new nodes on-demand without changing the code. This is
useful in a debugging scenario where the programmer wishes
to check if certain data configurations behave well (i.e. do
not exhibit bugs) when starting from particular program points.
Our implementation automatically updates the current program
state in order to reflect these graphical changes allowing the
program to continue running with the new heap state. Currently
we do not persist these changes but leave this for future work.

EXPERIMENTAL EVALUATION
Our literature review and analysis of online forums has re-
vealed that the two main sources of confusion – and hence
errors – are complexity of data structures and complex pointer
manipulations. In this section we report findings from a
controlled experiment assessing the benefits of our design in
respect to these difficulties. Our hypotheses are:

H1: Visualizing the heap of a running program improves code
understanding and makes it faster for developers to find er-
rors in the program code, compared to a standard debugger.

H2: Automatic and user driven abstraction of the heap graph
will further improve code understanding. Hence, developers
will be faster to find errors with these features than when
using either a standard debugger or a pure visualization.

Experiment
To evaluate the hypothesis, we conducted a controlled experi-
ment comparing our interface (FluidEdt) with i) the standard
debugger of Eclipse IDE§ (Eclipse), and ii) a reduced version
of FluidEdt that does visualize the heap but has no abstraction
& concretization functionality (Viz). This variant also forbids
the user to interact with the heap graph.

To test our hypothesis we asked experienced developers to try
and find errors in programs. To avoid learning effects we chose
an across-groups design i.e., each participant worked with each
of the three interfaces but performed a different task in each
condition. The experiment was conducted on a desktop PC
†https://github.com/panthernet/GraphX
‡http://avalonedit.net/
§https://www.eclipse.org/

(Core i7 CPU 3.4GHz) running Windows 8.1, equipped with
a 19” monitor and an additional Wacom Cyntiq HD 24 tablet
providing touch and pen input to drive the touch enabled UI.
The resolution was set to 1920× 1200.

Participants
We recruited 27 participants (3 female, 24 male) from our insti-
tution, mostly students (2 undergrad, 20 grad) and 5 postdocs
from the computer science (CS) department. By selecting CS
students only we aim to control the variance in programming
skills (inline with prior experiments [3, 14]). Participants’
ages ranged from 22 to 35 years (M = 24) and their self re-
ported programming experience ranged from 2 to 7+ years
(M = 4.3) with weekly programming activities ranging from
3 to 40 hours (M = 17.3). All participants reported 2 or more
years of experience using some IDE.

Tasks
Each participant had to complete three tasks in total. Each
of the tasks was performed with a different interface and to
avoid learning effects each participant worked with different
programs for each task. Participants were given a description of
the expected program behavior and were told that the program
contained at least one error. We designed the tasks such that
they fall into three levels of difficulty from easy to hard.

T1: 10 lines of Java code reversing a singly-linked list. The
code contained two bugs. First, it returns the tail of the
reversed list (not the head). Second, after reversal the last
node is missing from the list due to early-loop termination.

T2: 30 lines of Java code which reverse a linked-list from
index m to n (not the whole list). The sole program error
introduces a cycle into the list.

T3: 200 lines of Java code implementing an AVL-tree includ-
ing insertion of new values and tree re-balancing. This
code contained four errors but all of them were very sim-
ilar so that once one is found all can be fixed. The errors
cause entire subtrees to be detached from the tree during
re-balancing. However, the error is not in the re-balance
method but caused by wrong assignment of the method’s
return value (the sub-tree).

A description of the data-structures was read to the participants
and we provided them with a set of sensible inputs to test the
code. All participants managed to complete the tasks within
the allotted 20 minutes.

Procedure
We used a 3×3×1 between-subjects design with tct the depen-
dent variable and with interface and task as the independent
variables. Presentation order of conditions was counterbal-
anced using a Latin Squares design. Participants were split
into three groups so that each task was only performed once
per participant (and per interface). Resulting in a total of nine
participants per interface × task combination and a total of
81 debug sessions (lasting 20 minutes each). Before each trial
the participants were given written instructions on how to use
the interface, were allowed to ask questions and to practice.
During this warm-up phase they used different code, unrelated

7

https://github.com/panthernet/GraphX
http://avalonedit.net/
https://www.eclipse.org/

to the programs used in the actual experiments. As metric
for tct we measured the time before the participants localized
the error in the code and provided an appropriate fix for the
error. We also encouraged participants to think out loud and
performed an exit interview to gather qualitative feedback.

Results

Figure 7: Task completion time in seconds as function of the
task difficulty. The two interfaces with heap visualization
perform significantly better than the standard debugger. Our
system FluidEdt (referred to as Ours in the figure) is signifi-
cantly faster than the other two in the hardest task.

We performed a two-way ANOVA which yielded stat. signif-
icant main effects for interface (F2 = 9.2, p = .0002) task
(F2 = 51.79, p = .0001) and for the interaction interface ×
task (F4 = 5.8, p = .0004). This suggests that the task diffi-
culties are indeed different, that the interface has a significant
effect on tct and that the difference between the means de-
pends on the interaction between interface and task difficulty.
Fig. 7 summarizes the mean tct across all tasks and interfaces.
Indicating that both interfaces with heap graph visualization
are faster than the standard debugger and that our tool performs
better with increasing task difficulty. Note that the definition
of ’difficulty’ used here is not rigorous and the three tasks can
not be placed equidistant along this dimension. Informally,
the 3rd task (tree) seems more challenging than the others for
several reasons: i) the program contains more code (>200
LOC), ii) the data structure is richer and inherently recursive,
and iii) the program makes frequent use of nested operations.

Interestingly, there is evidence from the static analysis liter-
ature that trees are more difficult to reason about than lists,
for two reasons: i) the invariants for trees (i.e. the predicates
needed for verification) are more complicated to state and up-
date, and ii) the number of states of a tree is much larger than
a list. We believe our approach is particularly helpful for these
more complex tasks due to its ability to abstract away the com-
plexity of the data structure to allow for temporal comparison.

To further analyze these effects we performed post-hoc pair-
wise comparisons. These reveal that FluidEdt and Viz are
statistically significantly faster than Eclipse (p = .0036 and
p = .0001 respectively), allowing us to accept H1. While
FluidEdt (M = 452 sec) was faster than Viz (M = 487 sec),
these differences are not stat. significant (p = .15), and does

not allow us to accept H2. However, the graph in Fig. 7 sug-
gests a clear benefit in using our tool with increasing difficulty.
This is also supported by the main effect on the interface ×
task interaction. To crystalize where these differences came
from we performed two 2× 2 ANOVAs, comparing T1vs.T2
and T2 vs.T3 respectively. This time only the second ANOVA
(T2×T3) revealed a main effect for interface (F2 = 6.583),
showing that FluidEdt (M = 529 sec) is stat. significantly
faster than Viz (M = 705 sec p = .003) for the hard task.

In summary the experimental data suggests that visualizing the
heap graph of a running program does benefit debugging effi-
ciency (H1) and that our mechanisms for automatic abstraction
and concretization alongside the possibility to directly interact
with the heap graph are indeed useful. In particular, our tool
outperforms the baseline interfaces in the hard task suggesting
that the utility of our mechanism increases with task difficulty.

Qualitative Results
Here we briefly summarize insights that we gathered from
think aloud commentary during the debugging sessions and
from the exit-interviews. Overall users reacted positively to our
interface. All participants uniformly found that the visualiza-
tion is helpful in understanding the data structure saying e.g.,

“It helps me to form an [mental] image of the data structure” or
simply “It helped me to find the problem in the data structure,
without even looking at the code”. Furthermore, participants
commented (without a direct experimenter question) that they
think this would be helpful to learn/teach basic algorithms in
introductory CS classes. A total of 16 participants also com-
mented that the tool is particularly “useful for complex data
structures”. One participant commented that he has to deal
a lot with data structures when working on OS kernel code
and often finds himself drawing depictions of data structure
state on paper during this work, further validating our approach
beyond introductory CS education.

In terms of automatic and user driven abstraction all partic-
ipants but one preferred the interface with these capabilities
over the “pure” visualization. The single outlier commented
that he simply wants to see all the data and found it too work
intensive to concretize abstract nodes by hand. 28 out of 30
participants ended up refining the initial abstraction using the
pen & touch interface with the remaining two using the mouse
and keyboard only. Participants found the possibility to in-
teract “directly” with the data compelling and thought that it
allows them to more quickly reconcile their mental model of
the structure with the rendering on-screen. In particular, par-
ticipants often simple changed the visual layout of the graph
in order to better understand the program state. While partic-
ipants found the automatic abstraction useful, almost all of
them would manually concretize at least one of the abstract
nodes fully at the beginning of each session. When asked why
they had done this they said they simply wanted to verify that
the initial data structure was populated correctly with the input
data. This visual check is currently laborious and points to the
need for a fast way to preview the content of an abstract node
without having to concretize the whole structure one-by-one.

Finally, the participants would have liked to see a tighter inte-
gration between visualization and code views. For example,

8

most users found that selecting an edge in the graph view
should also highlight the variable in the code view. A further
area for improvement that got commented on frequently was
the limited code editing and navigation capabilities of our tool.
In fact many participants preferred our tool to find the bug but
would switch back to Eclipse to fix the bug. This suggests
that there are opportunities in either integrating our approach
into a regular IDE or to combine it with recent more visual
approaches for code navigation (e.g., [3, 7, 14]).

Implications for information vizualisation
To the best of our knowledge, there is currently no graph layout
algorithm that meets the many requirements that arise from
visualizing the dynamics of an evolving data structure. Most
layout algorithms have no means to enforce temporal consis-
tency as the graph changes over time. In our case these changes
can be dramatic, e.g., if a large part of the heap gets abstracted
or concretized from one timestep to another. Occasionally this
is not reconcilable with the automated layout algorithm and
temporal consistency is broken with the algorithm rendering
an entirely new graph view. This is clearly not ideal and users
commented on this frequently. It is paramount to keep the
parts of the structure that the user was (or is) inspecting in
the same location and to preserve the relative spatial arrange-
ment over time. This requirement necessitates entirely new
graph layout algorithms that incorporate temporal consistency
into their formulation. User modifications are another difficult
topic. Currently we cannot guarantee that manually positioned
nodes will stay in the same place when stepping through the
program – an interesting item for future work.

RELATED WORK
Our work spans the two areas of HCI (developer support tools)
and programming languages (e.g. program analysis). Here we
briefly survey some of the most related work.

Development Tools
Both the software development process [8, 21] as well as
development tools have been of long standing interest to HCI.
In particular, debugging and bug isolation strategies have seen
significant attention [15, 27]. In particular, Gilmore highlights
the importance of understanding debugging as an essential part
of program development [10].

There is now a lot of evidence in the literature that code devel-
opment does not happen in isolation and programmers often
encounter problems that they can only overcome with external
resources [17]. Hence, recent work has focused on support-
ing developers in code understanding related activities where
several challenges arise: i) developers need to find appropriate
code examples (e.g., [13, 19]), and ii) then they need to recon-
cile program output and their understanding of its operation
[16], and finally iii) adapt the examples to their own needs [29].
Tools have been developed that allow users to work backwards
from program output in order to understand code behavior and
to isolate bugs in the code [16].

Furthermore, many approaches attempt to more tightly inte-
grate resources found on the web with programming related
activities [13, 19, 28]. In particular, example driven devel-
opment [4, 12] has received much attention recently. Others

have tried to auto-generate useful code-snippets [9]. While
in spirit these works are similar to ours, they tend to focus
solely on the program code while we treat both code and data
as first class citizens. This is especially critical in the context
of data structure development, a fundamental area which has
not received much research attention in the HCI community.

Heap Analysis and Visualization
Over the years, there has been substantial amount of work on
static and dynamic program analysis with the goal of better
program understanding, bug finding or verification. Represen-
tative works here are deep static analysis abstractions popular-
ized by the TVLA approach [24] and runtime techniques for
visualizing and/or abstracting the heap [1, 20].

In general, static verification is a very challenging problem
often requiring significant manual annotations. And while our
setting is quite different (i.e. we allow user manipulation of
the abstract shape not possible in TVLA), we draw inspiration
from the predicate based parameterized approach used in their
work. However, existing works are typically not interactive,
that is, the user cannot control the abstraction or interact with
it in meaningful ways. Further, these approaches do not pro-
vide practical evidence that the particular visualization and/or
hardcoded abstraction is actually useful.

We note that there are many variants on the above works found
in the research literature, however from our perspective, all of
these variants share the same limitations described above.

Program visualization for educational purpose
There exist a number of approaches to generate or compose
fixed, mostly pre-computed animations of algorithms. These
are aimed at teaching (e.g., [6, 11, 26]) and supporting code
understanding purposes. Sorva et al. [25] provide an excellent
overview which we refer the interested reader to.

Many of these tools have been evaluated quantitatively and
qualitatively and results indicate that visualizing program be-
havior is beneficial for code understanding and learning. Fur-
thermore, there seems to be evidence that interactivity and
being able to use and edit own code is beneficial [25]. In our
work we build on these findings.

However, our system differs from prior work in that we allow
not only interact with the code but also enable complex interac-
tions with the data (e.g. mechanisms for automatic abstraction
of large data structures). This makes our approach scale to
complex real-world settings.

DISCUSSION AND FUTURE WORK
Our approach bridges program analysis techniques with HCI
and leverages online automatic abstraction and visualization
of the data structure in a way which captures its essential oper-
ation, thus enabling powerful local reasoning. Local reasoning
is key to understanding the core data structure algorithm op-
eration as it strips away irrelevant details. In addition, we
provide a fine grained mechanism for manually modifying the
abstracted view using pen and touch gestures – this enables
the developer to pause the program, carefully interact with its
data, and then resume program execution, thus allowing them
to try out various hypotheses.

9

Our experimental evaluation has shown this to be a very effec-
tive mechanism particularly for more complex structures and
in combination with our user interface that gives developers
interactive control over the abstraction.

Based on the quantitative and qualitative feedback we elicited
we believe this is an exciting first step in the right direction.
However, there are also many limitations and plentiful ar-
eas left for future research. Perhaps the most interesting and
promising idea would be to extend our approach to generic
and more complex programs. We believe this would require
a combination of our user interface with an approach that is
better suited for the debugging of control flow and program
logic. Furthermore, we discovered that current graph layout
algorithms are not well suited for our purposes as they do not
allow for incremental and user edit preserving layouts. We
believe this to be another interesting area for future research.

CONCLUSION
In this work we proposed a new approach for understanding,
debugging and developing heap manipulating data structures.
We implemented our approach in a tool called FluidEdt and
evaluated it against modern debuggers. Our tool begins to
address some of the most pressing challenges in developing
data structures – we obtained a categorization of these after
performing a thorough experimental study spanning online
forums and interviews with students and staff involved with
teaching data structures at our university.

Our work bridges the areas of program analysis and HCI by
combining deep parametric abstraction techniques arising from
the area of static analysis with interactive fine grained abstrac-
tion manipulation via pen and touch gestures. Based on our
experimental user study, we believe this to be a fruitful direc-
tion towards reducing the difficulties that developers – begin-
ners and experts alike – encounter when dealing with heap
manipulating algorithms.

REFERENCES
1. Aftandilian, E. E. et al. Heapviz: interactive heap

visualization for program understanding and debugging.
In Proc. SOFTVIS ’10, 2010, p.53–62.

2. Balakrishnan, G., and T. Reps. Recency-abstraction for
heap-allocated storage. In Proc. SAS’06.

3. Bragdon, A. et al. Code bubbles: A working set-based
interface for code understanding and maintenance. In
Proc. CHI ’10.

4. Brandt, J. et al. Example-centric programming:
integrating web search into the development environment.
In Proc. CHI ’10.

5. Brandt, J. et al. Two studies of opportunistic
programming: Interleaving web foraging, learning, and
writing code. In Proc. CHI ’09.

6. Brown, M. H., and M. A. Najork. Algorithm animation
using 3d interactive graphics. In Proc. UIST ’93.

7. DeLine, R., and K. Rowan. Code canvas: Zooming
towards better development environments. In Proc. ICSE

’10.
8. Détienne, F. Software Design–Cognitive Aspect. Springer,

2002.
9. Galenson, J. et al. Codehint: Dynamic and interactive

synthesis of code snippets. In Proc. ICSE ’14.

10. Gilmore, D. J. Models of debugging. Acta Psychologica
78, 13 (1991), 151 – 172.

11. Guo, P. J. Online python tutor: Embeddable web-based
program visualization for cs education. In Proc. SIGCSE

’13.
12. Hartmann, B., M. Dhillon, and M. K. Chan. Hypersource:

Bridging the gap between source and code-related web
sites. In Proc. CHI ’11.

13. Hoffmann, R., J. Fogarty, and D. S. Weld. Assieme:
finding and leveraging implicit references in a web search
interface for programmers. In Proc. UIST’ 07.

14. Karrer, T. et al. Stacksplorer: Call graph navigation helps
increasing code maintenance efficiency. In Proc. UIST

’11.
15. Katz, I. R., and J. R. Anderson. Debugging: An analysis of

bug-location strategies. SIGCHI Bull. 21, 1 (Aug. 1989).
16. Ko, A. J., and B. A. Myers. Extracting and answering why

and why not questions about java program output. ACM
Trans. Softw. Eng. Methodol. 20, 2 (Sept. 2010), 4:1–4:36.

17. Ko, A. J., B. A. Myers, and H. H. Aung. Six learning
barriers in end-user programming systems. In Proc.
VL/HCC ’04.

18. Lieber, T., J. R. Brandt, and R. C. Miller. Addressing
misconceptions about code with always-on programming
visualizations. In Proc. CHI’ 14.

19. Mamykina, L. et al. Design Lessons from the Fastest
Q&A site in the west. In Proc. CHI ’11.

20. Marron, M. et al. Abstracting runtime heaps for program
understanding. Trans. Softw. Eng..

21. Mayer, R. E. The psychology of how novices learn
computer programming. ACM Computing Surveys
(CSUR) 13, 1 (1981), 121–141.

22. Oney, S., and J. Brandt. Codelets: Linking interactive
documentation and example code in the editor. In Proc.
CHI ’12.

23. Rzeszotarski, J. M., and A. Kittur. Kinetica: Naturalistic
multi-touch data visualization. In Proc. CHI’ 14.

24. Sagiv, M., T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. ACM Trans. Program. Lang.
Syst..

25. Sorva, J., V. Karavirta, and L. Malmi. A review of generic
program visualization systems for introductory
programming education. Trans. Comput. Educ..

26. Stasko, J. Tango: a framework and system for algorithm
animation. Computer 23, 9 (Sept 1990), 27–39.

27. Weiser, M. Programmers use slices when debugging.
Commun. ACM 25, 7 (July 1982), 446–452.

28. Wightman, D. et al. Snipmatch: Using source code
context to enhance snippet retrieval and parameterization.
In Proc. UIST ’12.

29. Yeh, R. B., A. Paepcke, and S. R. Klemmer. Iterative
design and evaluation of an event architecture for
pen-and-paper interfaces. In Proc. UIST ’08.

30. Zeleznik, R. et al. Hands-on Math: A Page-based
Multi-touch and Pen Desktop for Technical Work and
Problem Solving. In Proc. UIST ’10.

10

Predicate Meaning

p (u) is u pointed to by pointer p?

rx(u) is u reachable from variable x?

rn,x(u) is u reachable from x via field n?

onCycle(u) does u belong on a cycle?

isAncestorx(u) is x an ancestor of u?

isTreeRoot(u) is u the root of a tree?

isNull(u) is u null?

isListn(u) does u belong on a linked list with field n?

Table 6: Pre-defined structural predicates

APPENDIX

BUILT-IN STRUCTURAL PREDICATES
In Table 6 we list the set of unary predicates used by our
system. These predicate templates can be instantiated with the
appropriate names used in the program. For instance, predicate
p can be instantiated to predicates x and y if the program uses
pointer variables x and y. Similarly for the other predicates.

11

	INTRODUCTION
	SYSTEM OVERVIEW
	Interactions and Usage Scenarios

	ABSTRACTION BY EXAMPLE
	ABSTRACTION FORMALLY
	IMPLEMENTATION
	EXPERIMENTAL EVALUATION
	Experiment
	Participants
	Tasks
	Procedure
	Results
	Qualitative Results
	Implications for information vizualisation

	RELATED WORK
	Development Tools
	Heap Analysis and Visualization
	Program visualization for educational purpose

	DISCUSSION AND FUTURE WORK
	CONCLUSION
	REFERENCES
	Appendix
	Built-in structural predicates

