An Abstract Domain for Certifying Neural Networks

GAGANDEEP SINGH, ETH Zurich, Switzerland
TIMON GEHR, ETH Zurich, Switzerland
MARKUS PUSCHEL, ETH Zurich, Switzerland
MARTIN VECHEV, ETH Zurich, Switzerland

We present a novel method for scalable and precise certification of deep neural networks. The key technical
insight behind our approach is a new abstract domain which combines floating point polyhedra with intervals
and is equipped with abstract transformers specifically tailored to the setting of neural networks. Concretely,
we introduce new transformers for affine transforms, the rectified linear unit (ReLU), sigmoid, tanh, and
maxpool functions.

We implemented our method in a system called DeepPoly and evaluated it extensively on a range of datasets,
neural architectures (including defended networks), and specifications. Our experimental results indicate that
DeepPoly is more precise than prior work while scaling to large networks.

We also show how to combine DeepPoly with a form of abstraction refinement based on trace partitioning.
This enables us to prove, for the first time, the robustness of the network when the input image is subjected to
complex perturbations such as rotations that employ linear interpolation.

CCS Concepts: « Theory of computation — Program verification; Abstraction; - Computing method-
ologies — Neural networks;

Additional Key Words and Phrases: Abstract Interpretation, Deep Learning, Adversarial attacks

ACM Reference Format:

Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev. 2019. An Abstract Domain for Certifying
Neural Networks. Proc. ACM Program. Lang. 3, POPL, Article 41 (January 2019), 30 pages. https://doi.org/10.
1145/3290354

1 INTRODUCTION

Over the last few years, deep neural networks have become increasingly popular and have now
started penetrating safety critical domains such as autonomous driving [Bojarski et al. 2016] and
medical diagnosis [Amato et al. 2013] where they are often relied upon for making important
decisions. As a result of this widespread adoption, it has become even more important to ensure
that neural networks behave reliably and as expected. Unfortunately, reasoning about these systems
is challenging due to their “black box” nature: it is difficult to understand what the network does
since it is typically parameterized with thousands or millions of real-valued weights that are hard
to interpret. Further, it has been discovered that neural nets can sometimes be surprisingly brittle
and exhibit non-robust behaviors, for instance, by classifying two very similar inputs (e.g., images
that differ only in brightness or in one pixel) to different labels [Goodfellow et al. 2015].

Authors’ addresses: Gagandeep Singh, Department of Computer Science, ETH Zurich, Ziirich, Switzerland, gsingh@
inf.ethz.ch; Timon Gehr, Department of Computer Science, ETH Zurich, Ziirich, Switzerland, timon.gehr@inf.ethz.ch;
Markus Piischel, Department of Computer Science, ETH Zurich, Ziirich, Switzerland, pueschel@inf.ethz.ch; Martin Vechev,
Department of Computer Science, ETH Zurich, Ziirich, Switzerland, martin.vechev@inf.ethz.ch.

D 0o

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART41

https://doi.org/10.1145/3290354

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354

41:2 Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev

Attack Original = Lower Upper

Fig. 1. Two different attacks applied to MNIST images.

Le

Rotation

NN

To address the challenge of reasoning about neural networks, recent research has started explor-
ing new methods and systems which can automatically prove that a given network satisfies a specific
property of interest (e.g., robustness to certain perturbations, pre/post conditions). State-of-the-art
works include methods based on SMT solving [Katz et al. 2017], linear approximations [Weng et al.
2018], and abstract interpretation [Gehr et al. 2018; Mirman et al. 2018; Singh et al. 2018a].

Despite the progress made by these works, more research is needed to reach the point where we
are able to solve the overall neural network reasoning challenge successfully. In particular, we still
lack an analyzer that can scale to large networks, is able to handle popular neural architectures (e.g.,
feedforward, convolutional), and yet is sufficiently precise to prove relevant properties required by
applications. For example, the work by Katz et al. [2017] is precise yet can only handle very small
networks. At the same time, Gehr et al. [2018] can analyze larger networks than Katz et al. [2017],
but relies on existing generic abstract domains which either do not scale to larger neural networks
(such as Convex Polyhedra [Cousot and Halbwachs 1978]) or are too imprecise (e.g., Zonotope
[Ghorbal et al. 2009]). Recent work by Weng et al. [2018] scales better than Gehr et al. [2018] but
only handles feedforward networks and cannot handle the widely used convolutional networks.
Both Katz et al. [2017] and Weng et al. [2018] are in fact unsound for floating point arithmetic,
which is heavily used in neural nets, and thus they can suffer from false negatives. Recent work
by Singh et al. [2018a] handles feedforward and convolutional networks and is sound for floating
point arithmetic, however, as we demonstrate experimentally, it can lose significant precision when
dealing with larger perturbations.

This work. In this work, we propose a new method and system, called DeepPoly, that makes a step
forward in addressing the challenge of verifying neural networks with respect to both scalability and
precision. The key technical idea behind DeepPoly is a novel abstract interpreter specifically tailored
to the setting of neural networks. Concretely, our abstract domain is a combination of floating-point
polyhedra with intervals, coupled with abstract transformers for common neural network functions
such as affine transforms, the rectified linear unit (ReLU), sigmoid and tanh activations, and the
maxpool operator. These abstract transformers are carefully designed to exploit key properties
of these functions and balance analysis scalability and precision. As a result, DeepPoly is more
precise than Weng et al. [2018], Gehr et al. [2018] and Singh et al. [2018a], yet can handle large
convolutional networks and is sound for floating point arithmetic.

Proving robustness: illustrative examples. To provide an intuition for the kind of problems that
DeepPoly can solve, consider the images shown in Fig. 1. Here, we will illustrate two kinds of
robustness properties: L,-norm based perturbations (first row) and image rotations (second row).

In the first row, we are given an image of the digit 7 (under “Original”). Then, we consider an
attack where we allow a small perturbation to every pixel in the original image (visually this may
correspond to darkening or lightening the image). That is, instead of a number, each pixel now
contains an interval. If each of these intervals has the same size, we say that we have formed an

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

An Abstract Domain for Certifying Neural Networks 41:3

Lo ball around the image (typically with a given epsilon €). This ball is captured visually by the
Lower image (in which each pixel contains the smallest value allowed by its interval) and the
Upper image (in which each pixel contains the largest value allowed by its interval). We call the
modification of the original image to a perturbed version inside this ball an attack, reflecting an
adversary who aims to trick the network. There have been various works which aim to find such
an attack, otherwise called an adversarial example (e.g., Carlini and Wagner [2017]), typically using
gradient-based methods. For our setting however, the question is: are all possible images “sitting
between” the Lower and the Upper image classified to the same label as the original? Or, in other
words, is the neural net robust to this kind of attack?

The set of possible images induced by the attack is also called an adversarial region. Note
that enumerating all possible images in this region and simply running the network on each to
check if it is classified correctly, is practically infeasible. For example, an image from the standard
MNIST [Lecun et al. 1998] dataset contains 784 pixels and a perturbation that allows for even two
values for every pixel will lead to 273% images that one would need to consider. In contrast, our
system DeepPoly can automatically prove that all images in the adversarial region classify correctly
(that is, no attack is possible) by soundly propagating the entire input adversarial region through
the abstract transformers of the network.

We also consider a more complex type of perturbation in the second row. Here, we rotate the
image by an angle and our goal is to show that any rotation up to this angle classifies to the same
label. In fact, we consider an even more challenging problem where we not only rotate an image but
first form an adversarial region around the image and then reason about all possible rotations of any
image in that region. This is challenging, as again, enumeration of images is infeasible when using
geometric transformations that perform linear interpolation (which is needed to improve output
image quality). Further, because rotation is a transform, the entire set of possible images represented
by a rotation up to a given angle needs to somehow be captured. Directly approximating this set is
too imprecise and the analysis fails to prove the wanted property. Thus, we introduce a method
where we refine the initial approximation into smaller regions that correspond to smaller angles (a
form of trace partitioning [Rival and Mauborgne 2007]), use DeepPoly to prove the property on
each smaller region, and then deduce the property holds for the initial, larger approximation. To
our best knowledge this is the first work which shows how to prove robustness of a neural network
under complex input perturbations such as rotations.

Main contributions. Our main contributions are:

e A new abstract domain for the certification of neural nets. The domain combines float-
ing point polyhedra and intervals with custom abstract transformers for affine transforms,
ReLU, sigmoid, tanh, and maxpool functions. These abstract transformers carefully balance
scalability and precision of the analysis (Section 4).

e An approach for proving more complex perturbation specifications than considered so far,
including rotations using linear interpolation, based on refinement of the abstract input. To
our best knowledge, this is the first time such perturbations have been verified (Section 5).

e A complete, parallelized implementation of our approach in a system called DeepPoly, which
can handle both feedforward and convolutional neural networks (Section 6). Our entire
system is fully available at http://safeai.ethz.ch.

e An extensive evaluation on a range of datasets and networks including defended ones,
showing DeepPoly is more precise than prior work yet scales to large networks (Section 6).

We believe DeepPoly is a promising step towards addressing the challenge of reasoning about
neural networks and a useful building block for proving complex specifications (e.g., rotations) and
other applications of analysis. As an example, a promising direction for a future application is using

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

http://safeai.ethz.ch

41:4 Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev

Input Layer Hidden Layers Output Layer
0 0 1
I 1 1 1
1 1 0
1 1
)
-1 -1 1
] 0 0 0

Fig. 2. Example feedforward neural network with ReLU activations.

i1 €[-1,1

iz € [-1,1

our analysis during training. Specifically, because our abstract transformers for the output of a
neuron are “point-wise” (i.e., can be computed in parallel), we can directly plug in these transformers
into the latest systems which train neural networks using abstract interpretation on GPUs [Mirman
et al. 2018]. As our transformers are substantially more precise than those of Mirman et al. [2018],
we expect they can help improve the overall robustness of the trained network.

2 OVERVIEW

In this section, we provide an overview of our abstract domain on a small illustrative example. Full
formal details are provided in later sections.

Running example on a feedforward network with ReLU activation. We consider the simple fully
connected feedforward neural network with ReLU activations shown in Fig. 2. This network has
already been trained and we have the learned weights shown in the figure. The network consists
of four layers: an input layer, two hidden layers, and an output layer with two neurons each.
The weights on the edges represent the learned coefficients of the weight matrix used by the
affine transformations done at each layer. Note that these values are usually detailed floating point
numbers (e.g., 0.031), however, here we use whole numbers to simplify the presentation. The
learned bias for each neuron is shown above or below it. All of the biases in one layer constitute
the translation vector of the affine transformation.

To compute its output, each neuron in the hidden layer applies an affine transformation based on
the weight matrix and bias to its inputs (these inputs are the outputs of the neurons in the previous
layer), producing a value v. Then, the neuron applies an activation function to v, in our example
ReLU, which outputs v, if v > 0, and 0 otherwise. Thus, the input to every neuron goes through
two stages: first, an affine transformation, followed by an activation function application. In the
last layer, a final affine transform is applied to yield the output of the entire network, typically a
class label that describes how the input is classified.

Specification. Suppose we work with a hypothetical image that contains only two pixels and the
perturbation is such that it places both pixels in the range [—-1, 1] (pixels are usually in the range
[0, 1], however, we use [—1, 1] to better illustrate our analysis). Our goal will be to prove that the
output of the network at one of the output neurons is always greater than the output at the other
one, for any possible input of two pixels in the range [—1, 1]. If the proof is successful, it implies
that the network produces the same classification label for all of these images.

Abstract domain. To perform the analysis, we introduce an abstract domain with the appropriate
abstract transformers that propagate the (abstract) input of the network through the layers, comput-
ing an over-approximation of the possible values at each neuron. Concretely, for our example, we
need to propagate both intervals [-1, 1] (one for each pixel) simultaneously. We now briefly discuss
our abstract domain, which aims to balance analysis scalability and precision. Then we illustrate

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

An Abstract Domain for Certifying Neural Networks 41:5

(x1 > -1, (x3 = x1 + x93, (x5 >0, (x7 = x5 + x¢, (x9 > x7, (x11 2 x9 +x10 + 1,
x1 <1, x3 < X1 + X2, x5 <0.5-x3+1, x7 < x5 + X6, X9 < X7, x11 < X9 +x10 + 1,
I =-1, I3 = -2, Is =0, I; =0, Iy =0, =1,
up =1) us =2) us =2) u7 =3) ug =3) uip =5.5)
0 0 1
[11] 1 T\ max(0,x3) 1 T\ max(0,x7)
m () (s) () ()
1 _/ o 1 ,/ \,
1 1
N . N 3
x2 X4 X6 Xs\ /xl()
[-1.1] U -1 N/ max(0,xg) __/ -1 _/ max(0,xg) __/
0 0 0
(x2 2 -1, (xq 2 x1 = x2, (x6 20, (xg 2 x5 —x6, (x10 20, (x12 2 x10,
xy <1, x4 < X1 — X2, X6 <0.5-x4+1, xg < X5 — Xg, x10 £ 0.5-xg+1, x11 < X105
I =-1, Iy =-2, lg =0, Iy = -2, lip =0, Ly =0,
upy =1) uy = 2) ug = 2) ug = 2) uyp =2) upp =2)

Fig. 3. The neural network from Fig. 2 transformed for analysis with the abstract domain.

its effect on our example network and discuss why we made certain choices in the approximation
over others.

To perform the analysis, we first rewrite the network by expanding each neuron into two nodes:
one for the associated affine transform and one for the ReLU activation. Transforming the network
of Fig. 2 in this manner produces the network shown in Fig. 3. Because we assign a variable to each
node, the network of Fig. 3 consists of n = 12 variables. Our abstract domain, formally described in
Section 4, associates two constraints with each variable x;: an upper polyhedral constraint and a
lower polyhedral constraint. Additionally, the domain tracks auxiliary (concrete) bounds, one upper
bound and one lower bound for each variable, describing a bounding box of the concretization
of the abstract element. Our domain is less expressive than the Polyhedra domain [Cousot and
Halbwachs 1978] because it bounds the number of conjuncts that can appear in the overall formula
to 2n where n is the number of variables of the network. Such careful restrictions are necessary
because supporting the full expressive power of convex polyhedra leads to an exponential number
of constraints that make the analysis for thousands of neurons practically infeasible. We now
discuss the two types of constraints and the two types of bounds, and show how they are computed
on our example.

First, the lower (a7) and upper (a;) relational polyhedral constraints associated with x; have
the form v + Zj wj - xj where v € RU {—0c0, +o0},w € R",Vj > i. w; = 0. That is, a polyhedral
constraint for x; can consider and refer to variables “before” x; in the network, but cannot refer to
variables “after” x; (because their coefficient is set to 0). Second, for the concrete lower and upper
bounds of x;, we use [;,u; € RU {—co, +00}, respectively. All abstract elements a in our domain
satisfy the additional invariant that the interval [I;, u;] overapproximates the set of values that the
variable x; can take (we formalize this requirement in Section 4).

Abstract interpretation of the network. We now illustrate the operation of our abstract interpreter
(using the abstract domain above) on our example network, abstract input ([—1, 1] for both pixels),
and specification (which is to prove that any image in the concretization of [-1, 1] X [—1, 1] classifies
to the same label).

The analysis starts at the input layer, i.e., in our example from x; and x;, and simply propagates
the inputs, resulting in af = azS = -1, alZ = azZ =1,1; =1, = -1, and u; = uy, = 1. Next, the affine
transform at the first layer updates the constraints for x3 and x4. The abstract transformer first

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

41:6 Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev

(b)

Fig. 4. Convex approximations for the ReLU function: (a) shows the convex approximation with the minimum
area in the input-output plane, (b) and (c) show the two convex approximations proposed in this paper. In the
figure, A = u;/(u; — ;) and p = —Liu; [(ui — 1;).

adds the constraints
X1 +x2 < x3 < X1+ X2

(1)

The transformer uses these constraints and the constraints for x7, x, to compute I3 = [y = —2 and
Uz = Uyg = 2.

Next, the transformer for the ReLU activation is applied. In general, the output x; of the ReLU
activation on variable x; is equivalent to the assignment x; := max(0, x;). If u; < 0, then our abstract
transformer sets the state of the variable x; to 0 < x; < 0,/; = u; = 0. In this case, our abstract
transformer is exact. If ; > 0, then our abstract transformer adds x; < x; < x;,[; = lj,u; = u;.
Again, our abstract transformer is exact in this case.

However, when [; < 0 and u; > 0, the result cannot be captured exactly by our abstraction and
we need to decide how to lose information. Fig. 4 shows several candidate convex approximations
of the ReLU assignment in this case. The approximation of Fig. 4 (a) minimizes the area in the x;, x;
plane, and would add the following relational constraints and concrete bounds for x;:

X1 — X2 S X4 S X1 — X2

x; < xj,0 < x5,
xj < ui(xi = 1)/ (ui = 1). (2)
lj = 0, uj = Uj.

However, the approximation in (2) contains two lower polyhedra constraints for x;, which we
disallow in our abstract domain. The reason for this is the potential blowup in the number of
constraints as the analysis proceeds. We will explain this effect in more detail later in this section.
To avoid this explosion we further approximate (2) by allowing only one lower bound. There are
two ways of accomplish this, shown in Fig. 4 (b) and (c), both of which can be expressed in our
domain. During analysis we always consider both and choose the one with the least area.
The approximation from Fig. 4 (b) adds the following constraints and bounds for x;:

0 <xj < ulx; = 1)/ (u; = 1),

lj = 0, u]- = Uj. (3)
The approximation from Fig. 4 (c) adds the following constraints and bounds:
x; < x5 < uo — 1)/ (wi = 1),
4)

lj = li, uj = Uj.

Note that it would be incorrect to set [; = 0 in (4) above (instead of [; = ;). The reason is that this
would break a key domain invariant which we aim to maintain, namely that the concretization of
the two symbolic bounds for x; is contained inside the concretization of the concrete bounds /; and

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

An Abstract Domain for Certifying Neural Networks 41:7

u;j (we discuss this domain invariant later in Section 4). In particular, if we only consider the two
symbolic bounds for x;, then x; would be allowed to take on negative values and these negative
values would not be included in the region [0, u;]. This domain invariant is important to ensure
efficiency of our transformers and as we prove later, all of our abstract transformers maintain it.

Returning to our example, the area of the approximation in Fig. 4 (b) is 0.5 - u; - (u; — [;) whereas
the area in Fig. 4 () is 0.5 - —I; - (u; — [;). We choose the tighter approximation, i.e., when u; < —I;,
we add the constraints and the bounds from (3), otherwise we add the constraints and the bounds
from (4). We note that the approximations in Fig. 4 (b) and (c) cannot be captured by the Zonotope
abstraction as used in [Gehr et al. 2018; Singh et al. 2018a].

In our example, for both x5 and x4, we have I3 = Iy = —2 and u3s = uy = 2. The areas are equal in
this case; thus we choose (3) and get the following constraints and bounds for x5 and x;:

0<x5<0.5"x3+1, I5=0, us = 2,

- _)
0<xs<05"x4+1, l6—0,u6—2.
Next, we apply the abstract affine transformer, which first adds the following constraints for x;
and x3:
X5 + X < X7 < X5 + X,

X5 — Xg < Xg < X5 — X¢. ©)
It is possible to compute bounds for x; and xs from the above equations by substituting the concrete
bounds for x5 and xs. However, the resulting bounds are in general too imprecise. Instead, we can
obtain better bounds by recursively substituting the polyhedral constraints until the bounds only
depend on the input variables for which we then use their concrete bounds. In our example we
substitute the relational constraints for xs, x¢ from equation (5) to obtain:

0<x7<05-x3+0.5-x4+2,

—05-x—-1<x3<0.5-x3+1. @)
Replacing x3 and x, with the constraints in (1), we get:
0<x7;<x1+2,
—0.5 % +0.5-x—1<x3 <05 x;+0.5 x5+ 1. ®)
Now we use the concrete bounds of 1 for x;, x, to obtain I; = 0,u7 = 3and Iy = —2, ug = 2. Indeed,

this is more precise than if we had directly substituted the concrete bounds for x5 and x in (6)
because that would have produced concrete bounds I; = 0,u; = 4 (which are not as tight as the
ones above).

Avoiding exponential blowup of the analysis. As seen above, to avoid the state space explosion,
our analysis introduces exactly one polyhedral constraint for the lower bound of a variable. It
is instructive to understand the effect of introducing more than one constraint via the ReLU
approximation of Fig. 4 (a). This ReLU approximation introduces two lower relational constraints
for both x5 and x. Substituting them in (6) would have created four lower relational constraints
for x;. More generally, if the affine expression for a variable x; contains p variables with positive
coefficients and n variables with negative coefficients, then the number of possible lower and upper
relational constraints is 27 and 2", respectively, leading to an exponential blowup. This is the reason
why we keep only one lower relational constraint for each variable in the network, and use either
the ReLU transformer illustrated in Fig. 4 (b) or the one in Fig. 4 (c).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

41:8 Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev

Asymptotic runtime. The computation of concrete bounds by the abstract affine transformer in
the hidden layers is the most expensive step of our analysis. If there are L network layers and the
maximum number of variables in a layer is ny,y, then this step for one variable is in O(n%,, - L).
Storing the concrete bounds ensures that the subsequent ReLU transformer has constant cost.

All our transformers work point-wise, i.e., they are independent for different variables since they
only read constraints and bounds from the previous layers. This makes it possible to parallelize our
analysis on both CPUs and GPUs. The work of [Mirman et al. 2018] defines pointwise Zonotope
transformers for training neural networks on GPUs to be more robust against adversarial attacks.
Our pointwise transformers are more precise than those used in [Mirman et al. 2018] and can be
used to train more robust neural networks.

Precision vs. performance trade-off. We also note that our approach allows one to easily vary
the precision-performance knob of the affine transformer in the hidden layers: (i) we can select a
subset of variables for which to perform complete substitution all the way back to the first layer
(the example above showed this for all variables), and (ii) we can decide at which layer we would
like to stop the substitution and select the concrete bounds at that layer.

Returning to our example, next, the ReLU transformers are applied again. Since I; = 0, the ReLU
transformer is exact for the assignment to xy and adds the relational constraints x; < x¢ < x7 and
the bounds Iy = 0,uy = 3 for x9. However, the transformer is not exact for the assignment to xy
and the following constraints and bounds for x;, are added:

0<x10=<05x5+1,

©)

llO = 0, Ui = 2.

Finally, the analysis reaches the output layer and the abstract affine transformer adds the following

constraints for x1; and xy2:
Xog+x10+1<x11 <x9+x10+1

(10)
x10 < X132 < X190

Again, backsubstitution up to the input layer yields l;; = 1,u;; = 5.5 and [;3 = 0,uy2 = 2. This
completes our analysis of the neural network.

Checking the specification. Next, we check our specification, namely whether all concrete output
values of one neuron are always greater than all concrete output values of the other neuron, i.e., if

Viy, iy € [-1,1] X [-1,1], x11 > x12 or
Vih i2 € [_1’ 1] X [_1, 1], X12 > X115

where x11, x12 = Nyg(iy, i2) are the concrete values for variables x;; and x;, produced by our small
feedforward (ff) neural network Nyr for inputs iy, i;.

In our simple example, this amounts to proving whether x;; —x1, > 0 or x12 —x1; > 0 holds given
the abstract results computed by our analysis. Note that using the concrete bounds for x;; and x5,
that is, li1, l12, u11, and uq, leads to the bound [-1, 5.5] for x1; — x12 and [-5.5, 1] for x12 — x;; and
hence we cannot prove that either constraint holds. To address this imprecision, we first create a
new temporary variable x5 and apply our abstract transformer for the assignment x5 := x11 — x12.
Our transformer adds the following constraint:

X11 — X12 £ X13 < X11 — X12 (11)

The transformer then computes bounds for x;3 by backsubstitution (to the first layer), as described
so far, which produces I3 = 1 and uy3 = 4. As the (concrete) lower bound of x15 is greater than 0, our
analysis concludes that x;; — x12 > 0 holds. Hence, we have proved our (robustness) specification.
Of course, if we had failed to prove the property, we would have tried the same analysis using the

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

An Abstract Domain for Certifying Neural Networks 41:9

second constraint (i.e., x;2 > x11). And if that would fail, then we would declare that we are unable
to prove the property. For our example, this was not needed since we were able to prove the first
constraint.

3 BACKGROUND: NEURAL NETWORKS AND ADVERSARIAL REGIONS

In this section, we provide the minimal necessary background on neural networks and adversarial
regions. Further, we show how we represent neural networks for our analysis.

Neural networks. Neural networks are functions N: R™ — R” that can be implemented using
straight-line programs (i.e., without loops) of a certain form. In this work, we focus on neural
networks that follow a layered architecture, but all our methods can be used unchanged for more
general neural network shapes. A layered neural network is given by a composition of [layers
fi: R = R™, ..., fi: R"1t — R" Eachlayer f; is one of the following: (i) an affine transformation
fi(x) = Ax + b for some A € R"*"i-1 and b € R™ (in particular, convolution with one or more
filters is an affine transformation), (ii) the ReLU activation function f(x) = max(0, x), where the
maximum is applied componentwise, (iii) the sigmoid (o (x) = eiil) or the tanh (tanh(x) = ii;ij
activation function (again applied componentwise), or (iv) a max pool activation function, which
subdivides the input x into multiple parts, and returns the maximal value in each part.

Neurons and activations. Each component of one of the vectors passed along through the layers
is called a neuron, and its value is called an activation. There are three types of neurons: m input
neurons whose activations form the input to the network, n output neurons whose activations form
the output of the network, and all other neurons, called hidden, as they are not directly observed.

Classification. For a neural network that classifies its inputs to multiple possible labels, n is the
number of distinct classes, and the neural network classifies a given input x to a given class k if
N(x)r > N(x); forall jwith1 < j<nandj# k.

Adversarial region. In our evaluation, we consider the following (standard, e.g., see Carlini and
Wagner [2017]) threat model: an input is drawn from the input distribution, perturbed by an
adversary and then classified by the neural network. The perturbations that the adversary can
perform are restricted and the set X C R" of possible perturbations for a given input is called
an adversarial region. The maximal possible error (i.e., the fraction of misclassified inputs) that
the adversary can obtain by picking a worst-case input from each adversarial region is called the
adversarial error. A neural network is robust for a given adversarial region if it classifies all inputs
in that region the same way. This means that it is impossible for an adversary to influence the
classification by picking an input from the adversarial region.

In our evaluation, we focus on verifying robustness for adversarial regions that can be represented
using a set of interval constraints, i.e., X = X2, [l;, u;] for l;,u; € RU {—o0, +00}. We also show
how to use our analyzer to verify robustness against rotations which employ linear interpolation.

Network representation. For our analysis, we represent neural networks as a sequence of as-
signments, one per hidden and per output neuron. We need four kinds of assignments: ReLU
assignments x; < max(0, x;), sigmoid/tanh assignments x; < g(x;) for g = ¢ or g = tanh, max
pool assignments x; < max;c; x; and affine assignments x; < v + 3} WX Convolutional layers
can be described with affine assignments [Gehr et al. 2018]).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

41:10 Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev

For example, we represent the neural network from Fig. 2 as the following program:

X3 ¢ X1 + X, X4 < X| — X2, X5 < max(0, x3), xs < max(0, xy),
X7 ¢— X5 + Xg, Xg <— X5 — X6, X9 <— max(0, x7), x10 < max(0, x3),

X11 ¢ X9 + X10 + 1, X12 ¢ X10.

In Fig. 2, the adversarial region is given by X = [-1,1] X [-1, 1]. The variables x; and x; are the
input to the neural network, and the variables x;; and x;, are the outputs of the network. Therefore,
the final class of an input (xi, x2) is 1 if x1; > x5, and 2 if x1; < x72. To prove robustness we either
need to prove that V(xy, x;) € X. x11 > x5 or that V(x1, x;3) € X. x15 > x11.

We note that even though our experimental evaluation focuses on different kinds of robustness,
our method and abstract domain are general and can be used to prove other properties as well.

4 ABSTRACT DOMAIN AND TRANSFORMERS

In this section, we introduce our abstract domain as well as the abstract transformers needed to
analyze the four kinds of assignment statements mentioned previously.

Elements in our abstract domain A, consist of a set of polyhedral constraints of a specific form,
over n variables. Each constraint relates one variable to a linear combination of the variables of a
smaller index. Each variable has two associated polyhedral constraints: one lower bound and one
upper bound. In addition, the abstract element records derived interval bounds for each variable.
Formally, an abstract element a € A, over n variables can be written as a tuple a = (a<, a>,[,u)
where

at,ai e {x— v+ Yieli-yWj - Xj | v € RU {00, +o0}, w € Ri71} for i € [n]

and l,u € (R U {—co, +c0})". Here, we use the notation [n] := {1,2,...,n}. The concretization
function y, : A, — P(R") is then given by

yn(@) = {x e R" | Vi € [n]. a7 (x) < x; A aZ(x) > x;}.

Domain Invariant. All abstract elements in our domain additionally satisfy the following invariant:
¥n(a@) € Xien)lli> ui]. In other words, every abstract element in our domain maintains concrete
lower and upper bounds which over-approximate the two symbolic bounds. This property is
essential for creating efficient abstract transformers.

To simplify our exposition of abstract transformers, we will only consider the case where all
variables are bounded, which is always the case when our analysis is applied to neural networks.
Further, we require that variables are assigned exactly once, in increasing order of their indices.
Our abstract transformers ij for a deterministic function f: A™ — A" satisty the following

soundness property: Tr(ym(a)) © yn(T;(a)) for all a € A™, where Ty is the corresponding concrete
transformer of f, given by Tr(X) = {f(x) | x € X}.

4.1 ReLU Abstract Transformer

Let f: R”™! — R be a function that executes the assignment x; « max(0, x;) for some j < i.
The corresponding abstract ReLU transformer is Tf#((as,az, Lu)) = (a’<,a’Z,l',u’)y where

a;f :a]f, a;f = alf, I =l and u; = uy for k < i. For the new component i, there are three cases.

Ifu; <0, then a/=(x) = a/*(x) = 0and I = u/ = 0.If 0 < I;, then a/=(x) = a/*(x) = x;, I/ = [; and

u; = uj.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

An Abstract Domain for Certifying Neural Networks 41:11

Otherwise, the abstract ReLU transformer approximates the assignment by a set of linear con-
straints forming its convex hull when it is restricted to the interval [[;, u;]:

0<x;, xj < x5,
x; < Uj(Xj - l])/(u] - l])
As there is only one upper bound for x;, we obtain the following rule:
a;Z(x) = Llj(x]' — lj)/(u] — lJ)

On the other hand, we have two lower bounds for x;: x; and 0. Any convex combination of those
two constraints is still a valid lower bound. Therefore, we can set

a;=(x) = - x;j,

for any A € [0, 1]. We select the A € {0, 1} that minimizes the area of the resulting shape in the
(xx;, xj)-plane. Finally, we set I[= A - [; and u] = u;.

4.2 Sigmoid and Tanh Abstract Transformers

Let g: R — R be a continuous, twice-differentiable function with ¢’(x) > 0 and 0 < g”’(x) ©® x < 0
for all x € R where g’ and g”’ are the first and second derivatives of g. The sigmoid function
o(x) = e,fjl and the tanh function tanh(x) = Zi;::i both satisfy these conditions. For such a
function g, let f: R'"! — R’ be the function that executes the assignment x; « g(x;) for j < i.

The corresponding abstract transformer is TJf((aS, az,lu)) = (a’S,a’, ", u’) where a;f=a,f,
a;f = af, I} = Iy and u; = yy for k < i. For the new component i, we set] = g(I;) and u] = g(u;).
If I; = uj, then a;=(x) = a,*(x) = g(I;). Otherwise, we consider a/=(x) and a/*(x) separately. Let
A = (g(uj) — g9(1;))/(uj — ;) and A" = min(g’(l;), ¢’ (u;)). If 0 < I;, then ags(x) =g(l;)+ A (x5 = 1)),
otherwise a/=(x) = g(I;) + " - (x; — I;). Similarly, if u; < 0, then a;>(x) = g(u;) + A - (x; — u;) and
a;*(x) = g(uj) + " - (x; — u;) otherwise.

4.3 Max Pool Abstract Transformer

Let f: RI™! — R’ be a function that executes x; «— max;e; x; for some J C [i — 1]. The correspond-
ing abstract max pool transformer is Tjﬁ((as, az,lu)) = (a’s,a’*,l',u’) where a;=a;, a;> = a,
I = lx and u,’c = uy for k < i. For the new component i, there are two cases. If there is some k € J
with u; < I for all j € J \ {k}, then a}=(x) = a/*(x) = x, I/ = Iy and u] = u. Otherwise, we

choose k € J such that I} is maximized and set a}=(x) = xi, I/ = [y and a/*(x) = u] = max;e; u;.

4.4 Affine Abstract Transformer

Let f: R™! — R’ be a function that executes x; « v + X jc[;_] Wj - Xj for some w € R'"!. The

< > qr ’<

corresponding abstract affine transformer is Tjﬁ({aS, az,l,u)) = {(a’s,a’>,l',u’) where a; =a:

k 3
a;” = ag, I} = Iy and u; = uy for k < i. Further, a;=(x) = a;>(x) = v + X je[i_1] Wj - X

To compute /; and u;, we repeatedly substitute bounds for x; into the constraint, until no further
substitution is possible. Formally, if we want to obtain [/, we start with b;(x) = ag =(x). If we have

bs(x) = v + Xjer wj’. -xjforsomek € [i—1],v" e R,w’ € R¥, then

bsi1(x) =" + Z (maX(O, W) a}g(x) + min(w;, 0) - a}z(x)))
Jelk]

We iterate until we reach by with by (x) = v” (i.e., s’ is the smallest number with this property).
We then set I] = v".

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

41:12 Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev

We compute u/ in an analogous fashion: to obtain u], we start with ¢;(x) = a}*(x). If we have
ct(x) ="+ Xjepr wj’. -xjforsome k € [i—1],v" e R,w’ € R¥, then

croi(x) =0 + Z (maX(O, wi) - a}z(x) + min(w;, 0) - a}g(x)) .
Jjelk]

We iterate until we reach ¢y with ¢,(x) = v”’. We then set u; = v"’.

4.5 Neural Network Robustness Analysis

We now show how to use our analysis to prove robustness of a neural network with p inputs, q
hidden activations and r output classes, resulting in a total of p + q + r activations. More explicitly,
our goal is to prove that the neural network classifies all inputs satisfying the given interval
constraints (the adversarial region) to a particular class k.

We first create an abstract element a = (a=,a>,l,r) over p variables, where af(x) = [; and
aiz(x) = u; for all i. The bounds [; and u; are initialized such that they describe the adversarial
region. For example, for the adversarial region in Fig. 2, we get

a={(x L, x> bL),(x > u,x > uy),(-1,-1),(1, 1)).

Then, the analysis proceeds by processing assignments for all ¢ hidden activations and the r output
activations of the neural network, layer by layer, processing nodes in ascending order of variable
indices, using their respective abstract transformers. Finally, the analysis executes the following
r — 1 (affine) assignments in the abstract:

Xp+q+r+1 <~ Xptq+k = Xp+q+1s - -+ s Xprgtr+(k-1) < Xp+g+k — Xp+q+(k-1)>

Xp+q+r+k < Xp+g+k — Xp+q+(k+1)s - - - s Xprq+r+(r—1) < Xp+q+k — Xp+q+r-

As output class k has the highest activation if and only if those differences are all positive, the
neural network is proved robust if forallie {p+q+r+1,...,p+q+r+(r—1)} wehave 0 < ;.
Otherwise, our robustness analysis fails to verify.

For the neural network in Fig. 2, if we want to prove that class 1 is most likely, this means we
execute one additional assignment x;3 < x7; — Xx15. Abstract interpretation derives the bounds
i3 = 1, u33 = 4. The neural network is proved robust, because [;3 is positive.

The above discussion showed how to use our abstract transformers to prove robustness. However,
a similar procedure could be used to prove standard pre/post conditions (by performing the analysis
starting with the pre-condition).

4.6 Correctness of Abstract Transformers

In this section, we prove that our abstract transformers are sound, and that they preserve the
invariant. Formally, for T;(a) = a’ we have Ty(yi-1(a)) C yi(a’) and yi(a’) C Xpepilly up]

Soundness. We first prove a lemma that is needed to prove soundness of our ReLU transformer.
LEMMA 4.1. Forl < 0,0 <u,l <x <u,andA € [0,1] we have A - x < max(0,x) < u - z—j

ProoOF. If x < 0,then A - x < 0 = max(0,x). If x > 0, then A - x < x = max(0,x). If x < 0,

then max(0,x) = 0 < u-z—j.lfx > 0 then max(0,x) = x < u";—jbecausex(—l) <u-(-))o
xu—x-l<xu-u-leox-w-0)<u (x-1I). O

THEOREM 4.2. The ReLU abstract transformer is sound.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

An Abstract Domain for Certifying Neural Networks 41:13

ProoF. Let f: R"™! — R execute the assignment x; < max(0,x;) for some j < i, and let
a € A;-; be arbitrary. We have y;_1(a) € Xpe[i—1)llk- ux] and
Tr(yi-1(a) = {f(x) | x € yi~1(a)}
= {(x1, ..., xi—1, max(0,x;)) | (x1,...,%i-1) € yi—1(a)}
={xeR" | (x1,...,xi1) € yir1(@) A x; = max(0, x;)}

={xeR'| (Vke[i-1]. a,f(x) < xp A a]f(x) > xi) A x; = max(0, x;)}.
If u; < 0, we have that (Vk € [i - 1]. a5 (x) < xx A a;(x) = xx) implies x; < 0, and
Tr(yi-1(a) = {x € R | (Vk e [i-1]. alf(x) <xp A a,f(x) > x) A x; = max(0, x;) A x; < 0}
={xeR|(Vkeli- 1].af(x) < xp A a]f(x) > xk) Ax; =0}
={xeR!|Vke [i].a,’f(x) < xp A a;f(x) > xi}
- 1i(THa).

Otherwise, if 0 < [;, we have that (Vk € [i — 1]. alf(x) < xp A a]f(x) > x) implies 0 < x;, and

Tr(yi-1(a) = {x € R | (Vk € [i—1]. a,f(x) < xp A a,f(x) > xx) A x; = max(0,x;) A0 < x;}
={xeR'|(Vkeli- 1].a,f(x) <xp A a]f(x) > xk) A X = X5}
={xeR!|Vke [i].a;f(x) < xp A a;cz(x) > xi}

- yu(Ti(@).

Otherwise, we have [; < 0 and 0 < u; and that (Vk € [i — 1]. a,f(x) < xp A a]f(x) > xi) implies
I; < x; < u;j and therefore

Tr(yi-1(a)) = {x € R | (Vk € [i—1]. a,f(x) <xp A a,f(x) > xx) A x; = max(0, x;)}

i . < > xj_lj
Cl{xeR [(Vke[i—1].a;(x) < xx Aag(x) > xx) Ax; < uj - ; Ax; > A-xj}
uj =1

= {x e R' | Vk € [i]. a;f(x) < xp A a;f(x) > xi}
~ $(TH@).

Therefore, in all cases, T¢(y;-1(a)) C yi(Tff(a)). Note that we lose precision only in the last case. O

THEOREM 4.3. The sigmoid and tanh abstract transformers are sound.

Proor. A functiong: R — Rwith g’(x) > 0and 0 < g”(x) & 0 < x is monotonically increasing,
and furthermore, g|(_c,0] (the restriction to (-0, 0]) is convex and g|(o,«) is concave.

Let f: R"™! — R/ execute the assignment x; < g(x;) for some j < i, and let a € A;_; be
arbitrary. We have

T (yi-1(a)) = {f(x) | x € yi-1(a)}
={Ce1s .5 xim1,9(x7) | (21, -+, xim1) € yici(a)}
={x eR!| (Vk € [i—1]. a]f(x) < xp A a,f(x) > xp) A xi = g(x;j)}.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

41:14 Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev

If ; = uj, then (Vk € [i — 1]. ag(x) < xg A ag(x) > xi) implies x; = I; and therefore

Tr(yiea(@) = {x € R | (Vk € [i— 1].a5(x) < x¢ A aZ(x) >) Ax; = gl

={x eR'| (Vk € [i-1]. a]f(x) < xp A a,f(x) > xi) Axi = g(l;)}
={x e R | (Vk € [i - 1]. a,f(x) < xp A a,f(x) > xx) Ag(ly) < xi Axj < g(lj)}
= {x e R" | Vk € [i]. 4= (x) < xp A @y (x) 2 xi}
= yi(T}(@)

Therefore, the transformer is exact in this case.

Otherwise, we need to show that (Vk € [i — 1]. a7 (x) < x¢ A aZ(x) = xx) A x; = g(x;) implies
a;=(x) < x; and a}*(x) > x;. We let x € R’ be arbitrary with (Vk € [i = 1]. ag (x) < xx A a7 (x) >

xk) A x; = g(x;) and consider a;S(x) and agz(x) separately. Recall that A = (g(u;) — g(1;))/(u; = 1;)
and A’ = min(g’(l;), ¢’ (u;)). If 0 < [}, then, because g is concave on positive inputs,

1 S
= (x) = gly) + A~ (xj — ;) = (1 - ’) 9(t) + =] - gtu)
u u]

j =1 Lj
< 1 Xj—lj l+xj_lj _ ()_
=9 w1 7T w1 uj| = 9\xj) = xi.

Otherwise, because g’ is non-decreasing on (—oo, 0] and decreasing on (0, o), we have that A’ =
min(g’(l;), g'(u;)) < g’(¢) for all & € [I}, u;]. Therefore,

Q=) = gl + A - (x — 1) = g1 + /I " rde < o) + /, " () = g(x).

The proof of a;*(x) > x; is analogous.
We conclude

Tr(yi-1(a)) = {x € R | (Vk € [i—1]. af(x) < xp A a]f(x) > x) A xi = g(x;j)}.
C{xeR'|(Vkeli- 1].a,f(x) < xp A alf(x) > xp) A a;f(x) <x; AaF(x) > x;}
= {x e R"| (Vk € [i]. a=(x) < x A a7 (x) 2 xi)}
- yi(T3(@),

where the inclusion is strict because we have dropped the constraint x; = g(x;). Therefore, the
abstract transformer is sound. O

THEOREM 4.4. The max pool abstract transformer is sound.

PRroOF. Let f: R”™! — R’ execute the assignment x; < max;¢;(0, x;) for some J C [i — 1], and
let a € A;_; be arbitrary. We have

Te(yi-1(a) = {f(x) | x € yi-1(a)}

= {(x17 cees Xi-1, r§1€ajxxj) | (x17 e 9xi*1) € Yifl(a)}

={x eR'| (Vk € [i-1]. a]f(x) < xp A a,f(x) > xp) Ax; = ma]xxj}.
je

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

An Abstract Domain for Certifying Neural Networks 41:15

There are two cases. If there is some k € J withu; < [forall j € J\ {k}, then (Vk € [i—1]. alf(x) <
Xk A a]f(x) > xi) implies that max;ey x; = x; and therefore

Tr(yi-1(a)) = {x € R | (Vk € [i —1]. a]f(x) <xp A a,f(x) > xp) Ax; = ma]xxj}
je

={xeR'|(Vke[i-1]. a,f(x) < xp A a,f(x) > xp) AX; = Xp}

= {x e R" | Vk € [i]. 4= (x) < xp A @y (x) 2 xi}

= (T}).
Otherwise, the transformer chooses a k with maximal [;.. We also know that (Vk € [i — 1]. af(x) <
Xk A a]f(x) > xp) implies x; < u; for all j € J, and therefore

Tr(yi-1(a)) = {x € R | (Vk € [i—1]. a]f(x) < xp A af(x) > xp) Ax; = r?ga]xxj)}
C{xeR'|(Vkeli- 1].a,f(x) < xp A a]f(x) > xp) A X < x5 A majxuj > x;)}
je

={xeR!|Vke [i].a,’f(x) < xp A a;f(x) > xr }
- yi(T}(@).
In summary, in both cases, T¢(yi-1(a)) C yi(T}’(a)). O
THEOREM 4.5. The affine abstract transformer is sound and exact.

ProOF. Let f: RI™! — RI execute the assignment x; « U+ je[i—1) Wj-X; forsomev € R,w € R,
and let a € A;_; be arbitrary. We have

Ty (yim1(@) = {f(0) | x € yi-1(@)}
= {1 X, U+ Do) Wi X)) | (X1, -+, xi-1) € Yima(a)}
={x eR' | (x1,...,xi-1) € yic1(@) Axi =0+ Zjepion W) - X))}
={xeR'| (Vk e [i-1]. a,f(x) < xp A a]f(x) > Xk) AXi =0+ Yiefion Wi X))
={xeR!|Vke [i].a;f(x) <xi A a;f(x) > X}
= vi(TH(a).
Thus, Tf()’i—l(a)) = Yi(T;(a))- o
Invariant. We now prove that our abstract transformers preserve the invariant. For each of

our abstract transformers T]’ﬁ, we have to show that for T;f(a) = a’, we have yi(a’) C Xjep [l]f, uj’.].

Note that the constraints (Vk € [i]. a;f (x) < xp A a;f (x) > xx) include all constraints of a. We first
assume that the invariant holds for a, thus (Vk € [i — 1]. a]f(x) < xp A a]f(x) > xi) implies the
bounds (Vk € [i — 1]. [y < xx < ug), which are equivalent to (Yk € [i —1].]| < xx < u;), because
our abstract transformers preserve the bounds of existing variables. It therefore suffices to show
that (Vk € [i]. a;%(x) < x¢ A a7 (x) > xx) implies I/ < x; < u].

THEOREM 4.6. The ReLU abstract transformer preserves the invariant.

Proor. Ifu; < 0,we have a;=(x) = a;>(x) = 0 and therefore (Vk € [i]. a;%(x) < xxAa;>(x) = x)
implies 0 = I/ = a/5(x) < x; < a}*(x) = u/ = 0.If 0 < [;, we have a/*(x) = a}*(x) = x;
and therefore (Vk € [i].a;(x) < xx A a*(x) 2 xi) implies [[= [; < x; = x; < uj = u].

. el
Otherwise, we have [; < 0 and 0 < uj;, as well as a’=(x); = A- Xj, a’>(x); = uj - ﬁ, and so
J Y

(Vk € [i]. a;=(x) < xx A a7 (x) 2 xg) implies I = A+ [; < x; < uj = u].]

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

41:16 Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev

THEOREM 4.7. The sigmoid and tanh abstract transformers preserve the invariant.

Proor. The constraints (Vk € [i].a;~(x) < xx A a;>(x) > xi) imply [; < x; < u; and by
monotonicity of g, we obtain I] = g(I;) < x; < g(u;) = u} using x; = g(x;). O

THEOREM 4.8. The max pool abstract transformer preserves the invariant.

Proor. The max pool transformer either sets a/=(x) = a/*(x) = x; and I/ = [y and u/ = uy, in
which case (Vk € [i]. a;f(x) < xp A a;f(x) > xi) implies I = [; < xp = x; < up = ug, or it sets
a;=(x) = xx, I} = I and u] = a}*(x), such that (Vk € [i]. a;*(x) < xx A @;7(x) = x;), which implies
I <xp <ul O

THEOREM 4.9. The affine abstract transformer preserves the invariant.

Proor. Note that s” and t’ are finite, because in each step, the maximal index of a variable
whose coeflicient in, respectively, bs and c; is nonzero decreases by at least one. Assume Vk €
[i]. a;f (x) < xp A a;f (x) = x1. We have to show that by (x) < x; and ¢y (x) > x;. It suffices to show
that Vs € [s']. bs(x) < x; and Vi € [t']. ¢, (x) > x;.

To show Vs € [s’]. bs(x) < x;, we use induction on s. We have b;(x) = ags(x) < x;. Assuming
bs(x) < x; and bs(x) = 0" + Xjepr w]’. -xjforsome k € [i—1],v" e R,w’' € R¥, we have

xi > by(x) =0 + Z Wi X;
jelk]

=0 + Z (max(0, w}) -x; + min(w}, 0) -x;)

jelk] ———— ——
>0 <0
’ ’ 1< . ’ 7>
>0 + Z (max(0, w;) - a; (x) + min(w}, 0) - a; (x))
Jjelk]
= bsy1(x).

To show Vt € [t']. ¢;(x) > x;, we use induction on t. We have ¢;(x) = a/*(x) > x;. Assuming
cr(x) > xj and ¢/ (x) = V" + X jepr WJ’. - xj for some k € [i = 1],2" e R,w’ € R¥, we have

xi < c(x) =0 + Zw;-xj

JjElk]
=0 + Z (max(0, w}) -x; + min(w}, 0) -x;)
jelk] V——— ——
>0 <0
<v' + Z (max(0, w}) - a}z(x) + min(w;, 0) - aj'.s(x))
Jjelk]
= cr41(x).
Therefore, (Vk € [i]. a;=(x) < xx A a;7(x) > x) implies I] < x; < u]. O

4.7 Soundness under Floating Point Arithmetic

The abstract domain and its transformers above are sound under real arithmetic but unsound under
floating point arithmetic if one does not take care of the rounding errors. To obtain soundness,
let F be the set of floating point values and @&, ©f, ®r, @ be the floating point interval addition,
subtraction, multiplication, and division, respectively, as defined in [Miné 2004] with lower bounds
rounded towards —co and upper bounds rounded towards +oo. For a real constant ¢, weuse ¢~ c* € F
to denote the floating point representation of ¢ with rounding towards —co and +co respectively.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

An Abstract Domain for Certifying Neural Networks 41:17

We use the standard interval linear form, where the coefficients in the constraints are intervals
instead of scalars, to define an abstract element a € A, over n variables in our domain as a tuple
a={a%,a>,l,u) where for i € [n]:

ai,a;f € {x - [v,v"] &f Zje[i_l][w;,w;r] ®f xj | v, 0" € FU {—c0, +oo}, w™, w* € FI"1}

and [,u € (F U {—o0, +00})". For a floating point interval [I, u], let inf and sup be functions that
return its lower and upper bound. The concretization function y, : A, — P(F") is given by

Yn(a) = {x € F" | Vi € [n].inf(a(x)) < x; A x; < sup(a®(x))}.
We next modify our abstract transformers for soundness under floating point arithmetic. It is

straightforward to modify the maxpool transformer so we only show our modifications for the
ReLU, sigmoid, tanh, and affine abstract transformers assigning to the variable x;.

ReLU abstract transformer. It is straightforward to handle the cases [; > 0 or u; < 0. For the
remaining case, we add the following constraints:

(A Al ®f xj < [1,1] ®F xi,
(L1 erxi <Yy & x; & [0, 47,

where A € {0,1} and [y, ¢*] = [uj,uf]l o ([uj,ufl o [I7,LD, (w7, p*] = (-, =171 &
[u7,uf]) @f ([u;,uj]16f [I],17]). Finally, we set [; = A - [; and u; = u;.

Sigmoid and tanh abstract transformers. We consider the case when [; < 0. We soundly compute
an interval for the possible values of A under any rounding mode as [A™,A*] = ([g(u;)~, g(u;)"] ©f
[9(1;))~. g()"]) @f ([u u; ler [l l+]) Similarly, both ¢’(l;) and g’(u;) are soundly abstracted by
the intervals [¢'(];)", g (l)] and [g (1), 9’ (u;)*], respectively. Because of the limitations of the
floating point format, it can happen that the upper polyhedral constraint with slope A passing
through [; intersects the curve at a point < u;. This happens frequently for smaller perturbations.
To ensure soundness, we detect such cases and return the box [g(l;)~, g(u;)*]. Other computations
for the transformers can be handled similarly.

Affine abstract transformer. The affine abstract transformer x; «— v + 2. ;¢[;_1] W; - X;j for some w €
F'~! first adds the interval linear constraints a;=(x) = a,*(x) = [v™, v*] &f X e(i-1] [w;, wil®r x;.
We modify the backsubstitution for the computation of /; and u;. Formally, if we want to obtain
I!, we start with bl(x) = a/=(x). If we have by(x) = [v"",v"*] & Zje[k][w}’, w}*] ®r x; for some

keli-1],v",v wj’_,w“r € F, then

Wi wit] @ af=(x), ifw]” >0,
bsi1(x) = 0] @ Z [’+ 1®r a’>(x) ifw]’fr <0,
Jelk] 9+] otherwise.

Here, [0, 0] € Fare the floating point values of the lower bound of the interval [w w F1®r[l, u;]
rounded towards —oo and +oo respectively. We iterate until we reach by with b (x) [0, 0],
i.e., s’ is the smallest number with this property. We then set I = v"'~. We compute u analogously.

5 REFINEMENT OF ANALYSIS RESULTS

In this section, we show how to apply a form of abstraction refinement based on trace partitioning
[Rival and Mauborgne 2007] in order to verify robustness for more complex adversarial regions,
which cannot be accurately represented using a set of interval constraints. In particular, we will
show how to handle adversarial regions that, in addition to permitting small perturbations to each
pixel, allow the adversary to rotate the input image by an angle 0 € [«, f] within an interval.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

41:18 Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev

Algorithm 1 Rotate image I by 0 degrees.

procedure RoTaTE(, 0)

Input: I € [0,1]™",0 € [-n,x], Output: R € [0, 1]™*"

forie{1,....,m},je{1,...,n}do
(y) —(G-(+1)/2,(m+1)/2-1)
(x",y") « (cos(—0) - x — sin(—0) - y, sin(—0) - x + cos(—0) - y)
(s Ipign) < (max(1, [(m +1)/2 = y']), min(m, [(m + 1)/2 = y']))
(jllow’jllligh) «— (max(1, |x" + (n+1)/2]), min(n, [x" + (n + 1)/2]))
te— Zi}"ghl Zjhigh max(0,1 — +/(j' = x')2 + (i’ — y’)?)

-/=i’0W j/=jl,0W
if t # 0 then
il i
Ri,j — (1/t) : Zl},lf};/ Z h‘g}f maX(O, 1- \/(]' - x')z + (l, - yl)Z) . Ii',j'

T
low —J low

else
Ri, j < 0
end if
end for
return R
end procedure

Verifying robustness against image rotations. Consider Algorithm 1, which rotates an m X n-pixel
(grayscale) image by an angle 6. To compute the intensity R; ; of a given output pixel, it first
computes the (real-valued) position (x’, y") that would be mapped to the position of the center of
the pixel. Then, it performs linear interpolation: it forms a convex combination of pixels in the
neighborhood of (x’, y”), such that the contribution of each pixel is proportional to the distance to
(x",y’), cutting off contributions at distance 1.

Our goal is to verify that a neural network N: R™" — R’ classifies all images obtained by
rotating an input image using Algorithm 1 with an angle 6 € [a, f] C [, 7] in the same way.
More generally, if we have an adversarial region X C R™*" (represented using componentwise
interval constraints), we would like to verify that for any image I € X and any angle 0 € [a, f], the
neural network N classifies ROTATE(I, 0) to a given class k. This induces a new adversarial region
X’ = {RoTaTE(L,0) | I € X,0 € [a, f]}. Note that because we deal with regions (and not only
concrete images) as well as rotations that employ linear interpolation, we cannot simply enumerate
all possible rotations as done for simpler rotation algorithms and concrete images [Pei et al. 2017b].

Interval specification of X’. We verify robustness against rotations by deriving lower and upper
bounds on the intensities of all pixels of the rotated image. We then verify that the neural network
classifies all images satisfying those bounds to class k. To obtain bounds, we apply abstract inter-
pretation to Algorithm 1, using the interval domain (more powerful numerical domains could be
applied). We use standard interval domain transformers, except to derive bounds on t and R; ,
which we compute (at the same time), by enumerating all possible integer values of i _, i}’ﬁgh’ Tow
and j;, ¢h (respecting the constraints if +1 > i/, oh and ji +12> j];igh, and refining the intervals
for x” and y’ based on the known values i| and j/) and joining the intervals resulting from
each case. For each case, we compute intervals for R; ; in two ways: once using interval arithmetic,
restricting partial sums to the interval [0, 1], and once by observing that a convex combination of
pixel values will be contained in the union of intervals for the individual values. We intersect the
intervals resulting from both approaches.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

An Abstract Domain for Certifying Neural Networks 41:19

Refinement of abstract inputs by trace partitioning. For large enough intervals [«,], the derived
bounds often become too imprecise. Thus, when our analyzer is invoked with these bounds, it
may fail to verify the property, even though it actually holds. We can make the following simple
observation: if we have n sets X/, ..., X} that cover the adversarial region X', i.e. X’ C UL, X/,
then it suffices to verify that the neural network N classifies all input images to class k for each
individual input region X/ for i € {1,...,n}. We obtain X, ..., X, by subdividing the interval
[, B] into n equal parts: {RoTaTe(L,0) | T e X, 0 € [(i-1)/n-(f-a)+a,i/n-(f-a)+a]} CX].
Note that each X| is obtained by running the interval analysis on the rotation code with the given
angle interval and the adversarial region X. After obtaining all X[’s, we run our neural network
analyzer separately with each X as input.

Batching. As interval analysis tends to be imprecise for large input intervals, we usually need to
subdivide the interval [«, f] into many parts to obtain precise enough output intervals from the
interval analysis (a form of trace partitioning [Rival and Mauborgne 2007]). Running our neural
network analysis for each of these can be too expensive. Instead, we use a separate refinement
step to obtain more precise interval bounds for larger input intervals. We further subdivide each
of the n intervals into m parts each, for a total of n - m intervals in n batches. For each of the n
batches, we then run interval analysis m times, once for each part, and combine the results using
a join, i.e., we compute the smallest common bounding box of all output regions in a batch. The
additional refinement within each batch preserves dependencies between variables that a plain
interval analysis would ignore, and thus yields more precise boxes X7, ..., X, on which we run
the neural network analysis.

Using the approach outlined above, we were able to verify, for the first time, that the neural
network is robust to non-trivial rotations of all images inside an adversarial region.

6 EXPERIMENTAL EVALUATION

In this section we evaluate the effectiveness of our approach for verifying the robustness properties
of large, challenging, and diverse set of neural networks. We implemented our method in an analyzer
called DeepPoly. The analyzer is written in Python and the abstract transformers of our domain are
implemented on top of the ELINA library [Singh et al. 2017, 2018b] for numerical abstractions. We
have implemented both a sequential and a parallel version of our transformers. All code, networks,
datasets, and results used in our evaluation are available at http://safeai.ethz.ch. We compared the
precision and performance of DeepPoly against the three state-of-the-art systems that can scale to
larger networks:

e AI’ by Gehr et al. [2018] uses the Zonotope abstract domain [Ghorbal et al. 2009] implemented
in ELINA for performing abstract interpretation of feedforward and convolutional ReLU
networks. Their transformers are generic and do not exploit the structure of ReLU. As a
result, AI? is often slow and imprecise.

e Fast-Lin by Weng et al. [2018] performs layerwise linear approximations tailored to exploit
the structure of ReLU feedforward networks. We note that Fast-Lin is not sound under floating
point arithmetic and does not support convolutional networks. Nonetheless, we still compare
to it despite the fact it may contain false negatives (adapting their method to be sound in
floating point arithmetic is non-trivial).

e DeepZ by Singh et al. [2018a] provides specialized Zonotope transformers for handling ReLU,
sigmoid, and tanh activations, and supports both feedforward and convolutional networks. It
is worth mentioning that although Fast-Lin and DeepZ employ very different techniques for
robustness analysis, both can be shown to have the same precision on feedforward neural
networks with ReLU activations. On our benchmarks, DeepZ was often faster than Fast-Lin.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

http://safeai.ethz.ch

41:20 Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev

Table 1. Neural network architectures used in our experiments.

Dataset ~ Model Type #Hidden units #Hidden layers
MNIST FFNNSmall fully connected 610 6
FFNNMed fully connected 1810 9
FFNNBig fully connected 4106 4
FFNNSigmoid fully connected 3010 6
FFNNTanh fully connected 3010 6
ConvSmall convolutional 3604 3
ConvBig convolutional 34688 6
ConvSuper convolutional 88500 6
CIFAR10 FFNNSmall fully connected 610 6
FFNNMed fully connected 1810 9
FFNNBig fully connected 7178 7
ConvSmall convolutional 4852 3
ConvBig convolutional 62464 6

Our experimental results indicate that DeepPoly is always more precise than all three competing
tools on our benchmarks while maintaining scalability. This demonstrates the suitability of DeepPoly
for the task of robustness verification of larger neural networks.

6.1 Experimental Setup

All of our experiments for the feedforward networks were run on a 3.3 GHz 10 core Intel i9-7900X
Skylake CPU with a main memory of 64 GB; our experiments for the convolutional networks were
run on a 2.6 GHz 14 core Intel Xeon CPU E5-2690 with 512 GB of main memory. We next describe
our experimental setup including the datasets, neural networks, and robustness properties.

Evaluation datasets. We used the popular MNIST [Lecun et al. 1998] and CIFAR10 [Krizhevsky
2009] image datasets for our experiments. MNIST contains grayscale images of size 28 X 28 pixels
and CIFAR10 consists of RGB images of size 32 X 32 pixels. For our evaluation, we chose the first
100 images from the test set of each dataset. For the task of robustness certification, out of these
100 images, we considered only those that were correctly classified by the neural network.

Neural networks. Table 1 shows the MNIST and the CIFAR10 neural network architectures used
in our experiments. The architectures considered in our evaluation contain up to 88K hidden units.
We use networks trained with adversarial training, i.e., defended against adversarial attacks, as
well as undefended networks. We used DiffAl by Mirman et al. [2018] and projected gradient
descent (PGD) from Dong et al. [2018] for adversarial training. In our evaluation, when we consider
the certified robustness of the defended and undefended networks with the same architecture
together, we append the suffix Point to the name of a neural network trained without adversarial
training and the name of the training procedure (either DiffAI or PGD) to the name of a defended
network. In the table, the FFNNSigmoid and FFNNTanh networks use sigmoid and tanh activations,
respectively. All other networks use ReLU activations. The FFNNSmall and FFNNMed network
architectures for both MNIST and CIFAR10 datasets were taken from Gehr et al. [2018] whereas
the FFNNBig architectures were taken from Weng et al. [2018]. The ConvSmall, ConvBig, and
ConvSuper architectures were taken from Mirman et al. [2018].

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

An Abstract Domain for Certifying Neural Networks 41:21

Robustness properties. We consider the following robustness properties:

(1) Loo-norm [Carlini and Wagner 2017]: This attack is parameterized by a constant €. The
adversarial region contains all perturbed images x’ where each pixel X} has a distance of at
most € from the corresponding pixel x; in the original input x. We use different values of €
in our experiments. In general, we use smaller € values for the CIFAR10 dataset compared to
the MNIST dataset since the CIFAR10 networks are known to be less robust against L,-norm
attacks for larger e values [Weng et al. 2018].

(2) Rotation: The input image is first perturbed using a perturbation bounded by € in the Lq-
norm. The resulting image is then rotated by Algorithm 1 using an arbitrary 8 € [«, f]. The
region Rx ¢ [«,p) contains all images that can be obtained in this way.

Verified robustness Time (s)
80
—A— AP —A— A2
100% —4— Fast-Lin —4— Fast-Lin
—=— DeepZ —a— DeepZ

60

—e— DeepPoly A, —e— DeepPoly

80%

60% 40 e

40%
20
20%

0% 0—e + * * - .
0.005 0.010 0.015 0.020 0.025 0.030 0.005 0.010 0.015 0.020 0.025 0.030
(2) MNIST FFNNSmall (b) MNIST FFNNSmall

Fig. 5. Verified robustness and runtime for Leo-norm perturbations by DeepPoly against AI?, Fast-Lin, and
DeepZ on the MNIST FFNNSmall. DeepZ and Fast-Lin are equivalent in robustness.

6.2 L,-Norm Perturbation

We first compare the precision and performance of DeepPoly vs AI?, Fast-Lin, and DeepZ for
robustness certification against L.,-norm based adversarial attacks on the MNIST FFNNSmall
network. We note that it is straightforward to parallelize Fast-Lin, DeepZ, and DeepPoly. However,
the abstract transformers in AI? cannot be efficiently parallelized. To ensure fairness, we ran all four
analyzers in single threaded mode. Fig. 5 compares the percent of robustness properties proved and
the average runtime per e-value of all four analyzers. We used six different values for € shown on
the x-axis. For all analyzers, the number of proved properties decreases with increasing values of €.
As can be seen, DeepPoly is the fastest and the most precise analyzer on the FFNNSmall network.
DeepZ has the exact same precision as Fast-Lin but is up to 2.5x faster. Al has significantly worse
precision and higher runtime than all other analyzers.

For all of our remaining experiments, we compare the precision and performance of the paral-
lelized versions of DeepPoly and DeepZ.

MNIST fully connected feedforward networks. Fig. 6 compares the percentage of verified robustness
properties and the average runtime of DeepPoly against DeepZ on the MNIST FFNNMed and
FFNNBig neural networks. Both networks were trained without adversarial training. DeepPoly
proves more properties than DeepZ on both networks. As an example, considering the verified

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

41:22

Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev

Verified robustness Time (s)
8
—m— DeepZ —a— DeepZ
100% —e— DeepPoly —e— DeepPoly
6
80%
60% 4
40%
2
20% ././././4—_.
T
0% — T T T T = 0 — T T T T T
0.005 0.010 0.015 0.020 0.025 0.030 0.005 0.010 0.015 0.020 0.025 0.030
(a) MNIST FFNNMed (b) MNIST FFNNMed
Verified robustness Time (s)
50
—m— DeepZ —a— DeepZ
100% —e— DeepPoly —e— DeepPoly
40
80%
30
60%
20
40%
10 //f/./F’A
20% G
0% — T T - A A 0 — T T T T T
0.005 0.010 0.015 0.020 0.025 0.030 0.005 0.010 0.015 0.020 0.025 0.030

(c) MNIST FFNNBig

(d) MNIST FFNNBig

Fig. 6. Verified robustness and runtime for Loo-norm perturbations by DeepPoly vs. DeepZ on the MNIST
FFNNMed and FFNNBig networks.

robustness for € = 0.01, we notice that DeepPoly proves 69% of properties on the FFNNMed network
whereas DeepZ proves 46%. The corresponding numbers on the FFNNBig network are 79% and 58%
respectively. DeepPoly is also significantly faster than DeepZ on both networks achieving a speedup
of up to 4x and 2.5x on the FFNNMed and FFNNBig networks.

We compare the average percentage of the number of hidden units that can take both positive
and negative values per e-value for the MNIST FFNNSmall and FFNNMed neural networks in Fig. 7.
Since the ReLU transformer in both DeepPoly and DeepZ is inexact for such hidden units, it is
important to reduce their percentage. For both networks, DeepPoly produces strictly less hidden
units for which the ReLU transformer is inexact than DeepZ.

In Fig. 8, we compare the precision of DeepPoly and DeepZ on the MNIST FFNNSigmoid and
FFNNTanh networks. Both networks were trained using PGD-based adversarial training. On both
networks, DeepPoly is strictly more precise than DeepZ. For the FFNNSigmoid network, there is a
sharp decline in the number of proved properties by DeepZ starting at € = 0.02. DeepZ proves only
23% of the properties when € = 0.03; in contrast, DeepPoly proves 80%. Similarly, for the FFNNTanh
network, DeepZ only proves 1% of properties when € = 0.015, whereas DeepPoly proves 94%. We
also note that DeepPoly is more than 2x faster than DeepZ on both these networks (we omit the

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

An Abstract Domain for Certifying Neural Networks 41:23

% hidden units % hidden units
100 —a— DeepZ 100 —a— DeepZ
—e— DeepPoly —e— DeepPoly
80 80
60 60
40 40
20 20

0 0

T T T T T T T T T T T T
0.005 0.010 0.015 0.020 0.025 0.030 0.005 0.010 0.015 0.020 0.025 0.030

(a) MNIST FFNNSmall (b) MNIST FFNNMed

Fig. 7. Average percentage of hidden units that can take both positive and negative values for DeepPoly
vs. DeepZ on the MNIST FFNNSmall and FFNNMed networks.

Verified robustness Verified robustness
:D?:pegjy o= D
100% o 100% . —e— DeepPoly
80% \- 80%
60% 60%
40% 40%
20% 20%

0% 0%

T T hal

T T T T T T T " "
0.005 0.010 0.015 0.020 0.025 0.030 0.005 0.010 0.015 0.020 0.025 0.030

(a) MNIST FFNNSigmoid (b) MNIST FFNNTanh

Fig. 8. Verified robustness and runtime for Lo,-norm perturbations by DeepPoly vs. DeepZ on the MNIST
FFNNSigmoid and FFNNTanh networks.

relevant plots here as timings do not change with increasing values of €): DeepZ has an average
runtime of < 35 seconds on both networks whereas DeepPoly has an average runtime of < 15
seconds on both.

MNIST convolutional networks. Fig. 9 compares the precision and the average runtime of DeepPoly
vs DeepZ on the MNIST ConvSmall networks. We consider three types of ConvSmall networks
based on their training method: (a) undefended (Point), (b) defended with PGD (PGD), and (c)
defended with DiffAl (DiffAl). Note that our convolutional networks are more robust than the
feedforward networks and thus the values of € considered in our experiments are higher than those
for feedforward networks.

As expected, both DeepPoly and DeepZ prove more properties on the defended networks than on
the undefended one. We notice that the ConvSmall network trained with DiffAI is provably more

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

41:24 Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev

Verified robustness Time (s)
8
—m— DiffAl DeepZ —e— DiffAI_DeepPoly —m— DiffAl DeepZ —e— DiffAI_DeepPoly
-m- PGD_DeepZ - @ PGD_DeepPoly -m- PGD_DeepZ - @ PGD_DeepPoly
--m-- Point_DeepZ --@-- Point_DeepPoly --m-- Point_DeepZ --@-- Point_DeepPoly
100% 6 e
o o
. @-nnn® -
SRR Jobivinte SSER ®

50%

0%

T T T T T T T T T T T T
0.020 0.040 0.060 0.080 0.100 0.120 0.020 0.040 0.060 0.080 0.100 0.120

(a) MNIST ConvSmall (b) MNIST ConvSmall

Fig. 9. Verified robustness and runtime for Loo-norm perturbations by DeepPoly vs. DeepZ on the MNIST
ConvSmall networks.

Table 2. Verified robustness by DeepZ and DeepPoly on the large convolutional networks trained with DiffAl.

Dataset ~ Model € % Verified robustness Average runtime

DeepZ DeepPoly DeepZ DeepPoly

MNIST ConvBig 0.1 97 97 5 50
ConvBig 0.2 79 78 7 61
ConvBig 0.3 37 43 17 88
ConvSuper 0.1 97 97 133 400
CIFAR10 ConvBig 0.006 50 52 39 322
ConvBig 0.008 33 40 46 331

robust. Overall, DeepPoly proves more properties than DeepZ on all neural networks. The difference
between the number of properties proved by DeepPoly and DeepZ is higher for larger values of €. It
is interesting to note that on the DiffAI defended network, DeepZ proves slightly more properties
than DeepPoly for € < 0.10. However, for € = 0.12, the percentage of properties proved by DeepZ
drops to 53% whereas DeepPoly proves 70% of the robustness properties. We notice that DeepPoly is
slower than DeepZ on all ConvSmall networks. This is due to the fact that the assigned expressions
during affine transforms in the convolutional layers are sparse. The Zonotope representation in
DeepZ allows the corresponding transformers to utilize this sparsity better than our domain. We
also note that DeepPoly is up to 2x faster on the DiffAl network as compared to the other two
networks.

Table 2 shows our experimental results on the larger MNIST convolutional networks trained
using DiffAl For the ConvBig network, DeepPoly proves significantly more than DeepZ for € = 0.3.
For the ConvSuper network, DeepPoly has the same precision as DeepZ for € = 0.1 and proves 97%
of robustness properties. On both these networks, DeepPoly is slower than DeepZ.

CIFAR10 feedforward networks. Fig. 10 compares DeepPoly against DeepZ on the CIFAR10 feed-
forward networks. As with the MNIST feedforward networks, DeepPoly verifies more properties

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

An Abstract Domain for Certifying Neural Networks

Verified robustness Time (s)

—a— DeepZ

100% —e— DeepPoly

80%
60%
40%
20%

0%

T T T T T T
0.0002 0.0004 0.0006 0.0008 0.0010 0.0012

(a) CIFAR10 FFNNSmall

Verified robustness Time (s)

—a— DeepZ

100% —e— DeepPoly

80%
60%
40%

20%

T T T T T T
0.0002 0.0004 0.0006 0.0008 0.0010 0.0012

(c) CIFAR10 FFNNMed

Verified robustness Time (s)

—m— DeepZ

100% —e— DeepPoly

80%
60%
40%

20%

0% T T T T T T
0.0002 0.0004 0.0006 0.0008 0.0010 0.0012

(e) CIFAR10 FFNNBig

41:25

—a— DeepZ
—e— DeepPoly

4 p——SE TS

e— e o —0¢ —@ O
0

0.0‘002 0.0‘004 0.0‘006 0.0‘008 0.0‘010 0.0(‘)12
(b) CIFAR10 FFNNSmall

20
—a— DeepZ

—a— DeepPoly

e

15
10

e

0

T T T T T T
0.0002 0.0004 0.0006 0.0008 0.0010 0.0012

(d) CIFAR10 FFNNMed

300
—a— DeepZ

—e— DeepPoly

200

R

100

e——e e —0 —0 o

0

T T T T T T
0.0002 0.0004 0.0006 0.0008 0.0010 0.0012

(f) CIFAR10 FFNNBig

Fig. 10. Verified robustness and runtime for Loo-norm perturbations by DeepPoly vs. DeepZ on the CIFAR10
fully connected feedforward networks.

than DeepZ and is faster on all the considered networks. Considering € = 0.001, DeepPoly proves
65%, 53%, and 84% of properties on the FFNNSmall, FFNNMed, and FFNNBig networks respectively

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

41:26 Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev

whereas DeepZ proves 42%, 33%, and 64% of properties. Notice that the average runtime of both
DeepPoly and DeepZ on the CIFAR10 FFNNMed is higher than on the MNIST FFNNMed network
even though the number of hidden units is the same. The slowdown on the CIFAR10 networks is
due to the higher number of input pixels. DeepPoly is up to 7x, 5x, and 4.5x faster than DeepZ on
the FFNNSmall, FFNNMed, and FFNNBig networks, respectively.

CIFAR10 convolutional networks. Fig. 11 evaluates DeepPoly and DeepZ on the CIFAR10 ConvSmall
networks. We again consider undefended (Point) networks and networks defended with PGD and
DiffAl. We again notice that the ConvSmall network trained with DiffAl is the most provably
robust network. DeepPoly overall proves more properties than DeepZ on all networks. As with the
MNIST ConvSmall network defended with DiffAl, DeepZ is slightly more precise than DeepPoly for
€ = 0.008; however, DeepPoly proves more properties for € = 0.012. DeepPoly is slower than DeepZ
on all the considered ConvSmall networks.

The last two rows in Table 2 compare the precision and performance of DeepPoly and DeepZ
on the CIFAR10 ConvBig convolutional network trained with DiffAl It can be seen that DeepPoly
proves more properties than DeepZ for both € = 0.006 and € = 0.008.

Verified robustness Time (s)
40
—u— DiffAI_DeepZ —e— DiffAl_DeepPoly —u— DiffAl_DeepZ —e— DiffAl_DeepPoly
-m- PGD_DeepZ - @~ PGD_DeepPoly -u- PGD_DeepZ - @~ PGD_DeepPoly
--m-- Point_DeepZ --@-- Point_DeepPoly --m-- Point_DeepZ --@-- Point_DeepPoly

30

100%

50% =
o iy g
0.002 0.004 0006 0008 0010 0.012 0.002 0.004 0006 0.008 0010 0.012

(a) CIFAR10 ConvSmall (b) CIFAR10 ConvSmall

Fig. 11. Verified robustness and runtime for Loo-norm perturbations by DeepPoly vs. DeepZ on the CIFAR10
ConvSmall networks.

6.3 Rotation Perturbation

As described in earlier sections, we can apply refinement to the input so to prove a neural network
robust against rotations of a certain input image. Specifically, our analysis can prove that the
MNIST FFNNSmall network classifies a given image of the digit 3 correctly, even if each pixel
is first Lo, -perturbed with € < 0.001 and then rotated using an arbitrary angle 6 between —45
and 65 degrees. Fig. 12 shows example regions and analysis times for a number of choices of
parameters to the refinement approach. For example, #Batches = 220, Batch Size = 300 means that
we split the interval [«, f] into n = 220 batches. To analyze a batch, we split the corresponding
interval into m = 300 input intervals for interval analysis, resulting in 300 regions for each batch.
We then run DeepPoly on the smallest common bounding boxes of all regions in each batch, 220
times in total. Fig. 12 shows a few such bounding boxes in the Regions column. Note that it is
not sufficient to compute a single region that captures all rotated images. Fig. 12 shows two such
attempts: one where we did not use batching (therefore, our interval analysis approach was applied

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

An Abstract Domain for Certifying Neural Networks 41:27

#Batches Batch Size Region(s) (I, %(l +u), u) Analysis time ~ Verified?

1 0.5s + 1.9s No
1 22.2s + 1.8s No
220 1.2s + 5m51s No
220 2m29s + 5m30s Yes

Fig. 12. Results for robustness against rotations with the MNIST FFNNSmall network. Each row shows a
different attempt to prove that the given image of the digit 3 can be perturbed within an Ly, ball of radius
€ = 0.001 and rotated by an arbitrary angle 6 between —45 to 65 degrees without changing its classification.
For the second two attempts, we show 4 representative combined regions (out of 220, one per batch). The
running time is split into two components: (i) the time used for interval analysis on the rotation algorithm
and (ii), the time used to prove the neural network robust with all of the computed bounding boxes (using
DeepPoly).

to the rotation algorithm using an abstract 6 covering the entire range), and one where we used a
batch size of 10,000 to compute the bounding box of the perturbations rather precisely. However,
those perturbations cannot be captured well using interval constraints, therefore the bounding box
contains many spurious inputs and the verification fails.

We then considered two verification attempts with 220 batches, with each batch covering a range
of 0 of length 0.5 degrees. It was not sufficient to use a batch size of 1, as some input intervals become
large. Using a batch size of 300, the neural network can be proved robust for this perturbation.

7 RELATED WORK

We already extensively discussed the works that are most closely related throughout the paper,
here we additionally elaborate on several others.

Generating adversarial examples. There is considerable interest in constructing examples that
make the neural network misclassify an input. Nguyen et al. [2015] find adversarial examples
without starting from a test point, Tabacof and Valle [2016] use random perturbations for generating
adversarial examples, Sabour et al. [2015] demonstrate non-robustness of intermediate layers, and

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

41:28 Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev

Grosse et al. [2016] generate adversarial examples for malware classification. Pei et al. [2017a]
systematically generate adversarial examples covering all neurons in the network. Bastani et al.
[2016] under-approximate the behavior of the network under Lo,-norm based perturbation and
formally define metrics of adversarial frequency and adversarial severity to evaluate the robustness
of a neural network against adversarial attack.

Formal verification of neural network robustness. Existing formal verifiers of neural network
robustness can be broadly classified as either complete or incomplete. Complete verifiers do not have
false positives but have limited scalability and cannot handle neural networks containing more
than a few hundred hidden units whereas incomplete verifiers approximate for better scalability.
Complete verifiers are based on SMT solving [Ehlers 2017; Katz et al. 2017], mixed integer linear
programming [Tjeng and Tedrake 2017] or input refinement [Wang et al. 2018] whereas existing
incomplete verifiers are based on duality [Dvijotham et al. 2018; Raghunathan et al. 2018], abstract
interpretation [Gehr et al. 2018; Singh et al. 2018a], and linear approximations [Weng et al. 2018;
Wong and Kolter 2018]. We note that although our verifier is designed to be incomplete for better
scalability, it can be made complete by refining the input iteratively.

Adversarial training. There is growing interest in adversarial training where neural networks are
trained against a model of adversarial attacks. Gu and Rigazio [2014] add Gaussian noise to the
training set and remove it statistically for defending against adversarial examples. The approach of
Goodfellow et al. [2015] first generates adversarial examples misclassified by neural networks and
then designs a defense against this attack by explicitly training against perturbations generated by
the attack. Madry et al. [2018] shows that training against an optimal attack also guards against non-
optimal attacks. While this was effective in experiments, Carlini et al. [2017] demonstrated an attack
for the safety-critical problem of ground-truthing, where this defense occasionally exacerbated
the problem. Mirman et al. [2018] train neural networks against adversarial attacks using abstract
transformers for the Zonotope domain. As mentioned earlier, our abstract transformers can be
plugged into such a framework to potentially improve the training results.

8 CONCLUSION

We introduced a new method for certifying deep neural networks which balances analysis precision
and scalability. The core idea is an abstract domain based on floating point polyhedra and intervals
equipped with abstract transformers specifically designed for common neural network functions
such as affine transforms, ReLU, sigmoid, tanh, and maxpool. These abstract transformers enable
us to soundly handle both, feed-forward and convolutional networks.

We implemented our method in an analyzer, called DeepPoly, and evaluated it extensively on
a wide range of networks of different sizes including defended and undefended networks. Our
experimental results demonstrate that DeepPoly is more precise than prior work yet can handle
large networks.

We also showed how to use DeepPoly to prove, for the first time, the robustness of a neural
network when the input image is perturbed by complex transformations such as rotations employing
linear interpolation.

We believe this work is a promising step towards more effective reasoning about deep neural net-
works and a useful building block for proving interesting specifications as well as other applications
of analysis (for example, training more robust networks).

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their constructive feedback. This research
was supported by the Swiss National Science Foundation (SNF) grant number 163117.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

An Abstract Domain for Certifying Neural Networks 41:29

REFERENCES

Filippo Amato, Alberto Lopez, Eladia Maria Pefia-Méndez, Petr Vanhara, Ales Hampl, and Josef Havel. 2013. Artificial
neural networks in medical diagnosis. Journal of Applied Biomedicine 11, 2 (2013), 47 - 58.

Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya V. Nori, and Antonio Criminisi. 2016.
Measuring Neural Net Robustness with Constraints. In Proc. Neural Information Processing Systems (NIPS). 2621-2629.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D. Jackel,
Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. 2016. End to End Learning for
Self-Driving Cars. CoRR abs/1604.07316 (2016).

Nicholas Carlini, Guy Katz, Clark Barrett, and David L. Dill. 2017. Ground-Truth Adversarial Examples. CoRR abs/1709.10207
(2017).

Nicholas Carlini and David A. Wagner. 2017. Towards Evaluating the Robustness of Neural Networks. In Proc. IEEE
Symposium on Security and Privacy (SP). 39-57.

Patrick Cousot and Nicolas Halbwachs. 1978. Automatic Discovery of Linear Restraints Among Variables of a Program. In
Proc. Principles of Programming Languages (POPL). 84-96.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. 2018. Boosting adversarial
attacks with momentum. In Proc. Computer Vision and Pattern Recognition (CVPR).

Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy Mann, and Pushmeet Kohli. 2018. A Dual Approach to
Scalable Verification of Deep Networks. In Proc. Uncertainty in Artificial Intelligence (UAI). 162-171.

Riidiger Ehlers. 2017. Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks. In Proc. Automated Technology
for Verification and Analysis (ATVA). 269-286.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin Vechev. 2018. Al2:
Safety and Robustness Certification of Neural Networks with Abstract Interpretation. In Proc. IEEE Symposium on Security
and Privacy (SP), Vol. 00. 948-963.

Khalil Ghorbal, Eric Goubault, and Sylvie Putot. 2009. The Zonotope Abstract Domain Taylor1+. In Proc. Computer Aided
Verification (CAV). 627-633.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and Harnessing Adversarial Examples. In Proc.
International Conference on Learning Representations (ICLR).

Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick D. McDaniel. 2016. Adversarial
Perturbations Against Deep Neural Networks for Malware Classification. CoRR abs/1606.04435 (2016). http://arxiv.org/
abs/1606.04435

Shixiang Gu and Luca Rigazio. 2014. Towards deep neural network architectures robust to adversarial examples. arXiv
preprint arXiv:1412.5068 (2014).

Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. 2017. Reluplex: An Efficient SMT Solver
for Verifying Deep Neural Networks. In Proc. International Conference on Computer Aided Verification (CAV). 97-117.

Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images. Technical Report.

Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document recognition.
In Proc. of the IEEE. 2278-2324.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018. Towards deep learning
models resistant to adversarial attacks. In Proc. International Conference on Learning Representations (ICLR).

Antoine Miné. 2004. Relational Abstract Domains for the Detection of Floating-Point Run-Time Errors. In Proc. European
Symposium on Programming (ESOP). 3-17.

Matthew Mirman, Timon Gehr, and Martin Vechev. 2018. Differentiable Abstract Interpretation for Provably Robust Neural
Networks. In Proc. International Conference on Machine Learning (ICML). 3575-3583.

Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. 2015. Deep neural networks are easily fooled: High confidence predictions
for unrecognizable images. In Proc. IEEE Computer Vision and Pattern Recognition (CVPR). 427-436.

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017a. DeepXplore: Automated Whitebox Testing of Deep Learning
Systems. In Proc. Symposium on Operating Systems Principles (SOSP). 1-18.

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017b. Towards Practical Verification of Machine Learning: The Case
of Computer Vision Systems. CoRR abs/1712.01785 (2017).

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. 2018. Certified Defenses against Adversarial Examples. In Proc.
International Conference on Machine Learning (ICML).

Xavier Rival and Laurent Mauborgne. 2007. The Trace Partitioning Abstract Domain. ACM Trans. Program. Lang. Syst. 29, 5
(2007).

Sara Sabour, Yanshuai Cao, Fartash Faghri, and David J. Fleet. 2015. Adversarial Manipulation of Deep Representations.
CoRR abs/1511.05122 (2015).

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Piischel, and Martin Vechev. 2018a. Fast and Effective Robustness
Certification. In Proc. Neural Information Processing Systems (NIPS).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

http://arxiv.org/abs/1606.04435
http://arxiv.org/abs/1606.04435

41:30 Gagandeep Singh, Timon Gehr, Markus Piischel, and Martin Vechev

Gagandeep Singh, Markus Pischel, and Martin Vechev. 2017. Fast Polyhedra Abstract Domain. In Proc. Principles of
Programming Languages (POPL). 46-59.

Gagandeep Singh, Markus Piischel, and Martin Vechev. 2018b. A Practical Construction for Decomposing Numerical
Abstract Domains. Proc. ACM Program. Lang. 2, POPL (2018), 55:1-55:28.

Pedro Tabacof and Eduardo Valle. 2016. Exploring the space of adversarial images. In Proc. International Joint Conference on
Neural Networks (IJCNN). 426—433.

Vincent Tjeng and Russ Tedrake. 2017. Verifying Neural Networks with Mixed Integer Programming. CoRR abs/1711.07356
(2017).

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018. Formal Security Analysis of Neural
Networks using Symbolic Intervals. In Proc. USENIX Security Symposium (USENIX Security 18). 1599-1614.

Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning, and Inderjit Dhillon.
2018. Towards Fast Computation of Certified Robustness for ReLU Networks. In Proc. International Conference on Machine
Learning (ICML). 5273-5282.

Eric Wong and Zico Kolter. 2018. Provable Defenses against Adversarial Examples via the Convex Outer Adversarial
Polytope. In Proc. International Conference on Machine Learning (ICML). 5283-5292.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 41. Publication date: January 2019.

	Abstract
	1 Introduction
	2 Overview
	3 Background: Neural Networks and Adversarial Regions
	4 Abstract Domain and Transformers
	4.1 ReLU Abstract Transformer
	4.2 Sigmoid and Tanh Abstract Transformers
	4.3 Max Pool Abstract Transformer
	4.4 Affine Abstract Transformer
	4.5 Neural Network Robustness Analysis
	4.6 Correctness of Abstract Transformers
	4.7 Soundness under Floating Point Arithmetic

	5 Refinement of Analysis Results
	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 normalnormalL-Norm Perturbation
	6.3 Rotation Perturbation

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

