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Abstract

We present a new method and system, called DeepZ, for certifying neural network
robustness based on abstract interpretation. Compared to state-of-the-art automated
verifiers for neural networks, DeepZ: (i) handles ReLU, Tanh and Sigmoid activa-
tion functions, (ii) supports feedforward, convolutional, and residual architectures,
(iii) is significantly more scalable and precise, and (iv) and is sound with respect to
floating point arithmetic. These benefits are due to carefully designed approxima-
tions tailored to the setting of neural networks. As an example, DeepZ achieves a
verification accuracy of 97% on a large network with 88, 500 hidden units under
L∞ attack with ε = 0.1 with an average runtime of 133 seconds.

1 Introduction

Neural networks have become an integral part of many critical applications such as vehicle control,
pattern recognition, and medical diagnosis. However, it has been shown recently that neural networks
are susceptible to adversarial attacks, where the network can be easily tricked into making wrong
classification by only slightly modifying its inputs [26, 12, 17, 3, 2, 9, 23, 22]. As a result, there is
considerable interest in formally ensuring robustness of neural networks against such attacks.

Robustness verifiers can be complete or incomplete. Complete verifiers do not have false positives
but have limited scalability as they are based on computationally expensive methods such as SMT
solving [14, 8], mixed integer linear programming [27] or input refinement [28]. On the other
hand, incomplete verifiers can produce false positives but they scale better than complete verifiers.
Incomplete verifiers employ a variety of methods including duality [24, 7], abstract interpretation
[10], and linear approximations [29, 15].

Orthogonal to robustness certification, adversarial training focuses on making neural networks robust
by training against an adversarial model of attack. Gu and Rigazio [13] add concrete noise to the
training set and remove it statistically for defending against adversarial examples. Goodfellow et
al. [12] generate adversarial examples misclassified by neural networks and then design a defense
against this attack by explicit training against perturbations generated by the attack. Madry et al.
[19] show that training against an optimal attack also guards against non-optimal attacks. While this
technique was effective in experiments, Carlini et al. [4] demonstrated an attack for the safety-critical
problem of ground-truthing, where this defense occasionally exacerbated the problem. The work of
[30] and [21] proposes scalable defenses against the standard L∞-based adversarial attacks.

In this paper we build on the work of Gehr et al. [10], which introduces the idea of using the classic
framework of abstract interpretation [5] to soundly approximate the behavior of the network. Similar
to [10], we also use the Zonotope abstraction for sound approximations. The Zonotope domain
provides a closed affine form for each variable and enables a precise and cheap way to capture
the effect of affine transformations inside neural networks, without requiring backpropagation as
in [15, 29]. The key limitation of [10] however, is that it only provides a fairly generic abstract
transformer for the ReLU activation function, which is slow and imprecise. Further, the work does not
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discuss approximations of other important functions (e.g., Sigmoid, Tanh). Indeed, defining sound,
scalable and precise abstract transformers is the most difficult aspect of abstract-interpretation-based
analyses. While generic transformers tend to be easier to reason about and ensure soundness of, they
often lack the scalability and precision of transformers that exploit the underlying properties of the
abstract domain (e.g., Zonotope) and the function being approximated (e.g., ReLU).

Our contributions. In this work we address these limitations and make the following contributions:

• We introduce new, point-wise Zonotope abstract transformers specifically designed for the
ReLU, Sigmoid, and Tanh activations often used by neural networks. Our transformers
minimize the area of the projection of the zonotope to the 2-D input-output plane. Further,
our transformers are sound w.r.t. floating point arithmetic.

• We implemented both, sequential and parallel versions of our transformers in an end-to-end
automated verification system called DeepZ.

• We evaluated DeepZ on the task of verifying local robustness against L∞-norm based
attacks on large MNIST and CIFAR10 feed forward, convolutional, and residual networks.
In our evaluation we considered both, undefended as well as defended versions of the same
network (defended against L∞ attacks using state-of-the-art defenses).

• Our experimental results demonstrate that DeepZ is more precise and faster than prior work.
DeepZ precisely verifies large networks with > 88, 000 hidden units under L∞-norm based
perturbations within few minutes, while being sound w.r.t to floating point arithmetic.

To our best knowledge, DeepZ is currently the most scalable system for certifying local robustness
of neural networks while guaranteed soundness w.r.t to floating point operations (used by all neural
networks). All of our code, datasets and results are publicly available at http://safeai.ethz.ch/.

2 Abstract Interpretation for Verifying Robustness of Neural Networks

Abstract Interpretation [5] is a classic method for sound and precise over-approximation of potentially
unbounded or infinite set of program behaviors. The key idea behind this framework consists of
defining so called abstract transformers for statements used by the program (e.g., affine arithmetic,
ReLU functions, etc). These transformers approximate (i.e., they are sound) the behavior of the
statement by defining its effect on an abstract domain. An abstract domain is simply a set of abstract
elements (approximations) typically ordered in a lattice of some kind.

A key challenge when defining abstract transformers is striking a balance between scalability (how
fast the transformer computes the approximation) and precision (how much precision it loses). Once
transformers are defined, the analysis with abstract interpretation proceeds by executing them on the
particular program (e.g., a neural network) and computing a final approximation (a fixed point). The
relevant property can then be checked on this final approximation: if the property can be proved, then
it holds for any concrete input to the program, otherwise, it may either hold but the abstraction was
too coarse and unable to prove it (i.e., a false positive) or it may indeed not hold.

Verifying robustness properties of neural networks exactly is computationally expensive as it usually
requires evaluating the network exhaustively on a prohibitively large set of inputs. Abstract inter-
pretation can be leveraged for this problem by designing abstract transformers specifically for the
computations used in the network, e.g., affine arithmetic and activation functions. The network can
then be analyzed using these abstract transformers. For example, we can abstract a concrete input x
and relevant perturbations to x (resulting in many different inputs) into one abstract element αR and
then analyze the network starting from αR, producing an abstract output αoR. We can then verify
the robustness property of interest over αoR: if successful, it means we verified it over all concrete
outputs corresponding to all perturbations of the concrete input.

In this paper, we consider local robustness properties (Rx,ε, CL) where Rx,ε represents the set of
perturbed inputs around the original input x ∈ Rm based on a small constant ε > 0. CL is a robustness
condition which defines the set of outputs that all have the same label L:

CL =
{
y ∈ Rn | argmax

i∈{1,...,n}
(yi) = L

}
.
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A robustness property (Rx,ε, CL) holds iff the set of outputs OR corresponding to all inputs inRx,ε
is included in CL. (Rx,ε, CL) can be verified using abstract interpretation by checking if the abstract
output αoR resulting from analyzing the network with an abstraction ofRx,ε is included in CL.

Zonotope Abstraction. In this work, we build on the classic Zonotope numerical abstract domain,
which we discuss below. This domain was already shown to be a suitable basis for analyzing neural
networks by Gehr et al. [10]. In the next section, we introduce our new abstract transformers which
leverage properties of the domain and are the novel contribution of this work.

Let X be the set of n variables. The Zonotope abstraction [11] builds on affine arithmetic by
associating an affine expression x̂ for each variable x ∈ X :

x̂ := α0 +

p∑
i=1

αi · εi, where α0, αi ∈ R, εi ∈ [ai, bi] ⊆ [−1, 1] (1)

This expression consists of a center coefficient α0, a set of noise symbols εi, and coefficients αi
representing partial deviations around the center. Crucially, the noise symbols εi can be shared
between affine forms for different variables which creates implicit dependencies and constraints
between the affine forms. This makes the Zonotope abstraction more powerful than an Interval
abstraction which only maintains ranges of a variable x. A range [lx, ux] can be simply derived from
the affine form by computing the minimal and maximal value possible.

A zonotope Z ⊆ Rn is represented by a collection of affine forms for all variables x ∈ X , and is the
set of all possible (joint) values of the affine forms for an arbitrary instantiation of the noise symbols
εi. As in practice, it is impossible to compute with arbitrary real numbers, we instead use a slightly
modified definition:

x̂ := [α0, β0] +

p∑
i=1

[αi, βi] · εi, where α0, β0, αi, βi ∈ R, εi ∈ [ai, bi] ⊆ [−1, 1] (2)

In this interval affine form, we have replaced all coefficients by intervals. All computations on
intervals are performed using standard interval arithmetic. To ensure soundness with respect to
different rounding modes and to account for the lack algebraic properties such as associativity and
distributivity in the floating point world, the lower bounds and the upper bounds are rounded towards
−∞ and +∞ respectively and suitable error values are added as explained in [20].

Since affine arithmetic is fast and exact for affine transformations, it is an attractive candidate for
the verification of neural networks [10]. However, the Zonotope abstraction is inherently not exact
for non-linear activation functions such as ReLU, Sigmoid, and Tanh. Thus, approximation is
needed, which creates a tradeoff between the cost of computation and precision. As mentioned
earlier, a generic approximation of the ReLU function was proposed by Gehr et al. [10], however,
this approximation is both imprecise and costly as it relies on the expensive Zonotope join operator.
Overall, this results in suboptimal precision and performance of the analysis.

3 Fast Zonotope Abstract Transformers

We now introduce our fast and precise pointwise Zonotope abstract transformers for the ReLU,
Sigmoid, and Tanh activations (Sigmoid and Tanh are not supported by Gehr et al. [10]) and show
their optimality in terms of area in the input-output plane. Our evaluation in Section 4 shows that our
proposed approximations strike a good balance between precision and performance.

3.1 ReLU

The effect of applying the ReLU function on an input zonotope Z can be represented with the
assignment y := max(0, x) where x, y ∈ X . If x can only have positive (lx > 0) or non-positive
values (ux ≤ 0) in Z , then ŷ = x̂ or ŷ = [0, 0] respectively. The affine forms for the remaining
variables are not affected and the resulting zonotope is exact. When x can have both positive and
negative values, then the output cannot be exactly captured by the zonotope abstraction and thus
approximations are required. We define such an approximation for this case. The approximation can
also be applied pointwise per layer, namely, only altering the affine form ŷ while keeping all other
affine forms in Z unaltered.
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Figure 1: Two zonotope approximations for the ReLU function parameterized by the slope λ.

Fig. 1 shows the projections into the xy-plane of two sets of sound zonotope approximations. The
projections have the shape of a parallelogram with two vertical lines and two parallel lines of slope
λ, which is a parameter. To ensure soundness for all approximations in Fig. 1 (a), we require
0 ≤ λ ≤ ux

ux−lx . Similarly, ux

ux−lx ≤ λ ≤ 1 for Fig. 1 (b). Notice that the two sets have one element
in common at λ = ux

ux−lx . Among the different candidate approximations in Fig. 1, we choose the
one minimizing the area of the parallelogram in the xy-plane. The area A1(λ) of the parallelogram
in Fig. 1 (a) is:

A1(λ) = (1− λ) · ux · (ux − lx). (3)
A1(λ) is a decreasing function of λ. Thus A1 is minimized at λ = ux

ux−lx . Similarly, the area A2(λ)
of the parallelogram in Fig. 1 (b) is:

A2(λ) = λ · (−lx) · (ux − lx). (4)
A2(λ) is an increasing function of λ and also minimized at λ = ux

ux−lx . In summary, we obtain the
following theorem:

Theorem 3.1 Let Z be the input to a ReLU function y = ReLU(x). Consider the set of pointwise
Zonotope approximations O of the output that only alter the affine form ŷ of the variable y. The new
affine form ŷ for the output with the minimal area in the xy-plane is given by:

ŷ =


x̂, if lx > 0,

[0, 0], if ux ≤ 0,

[λl, λu] · x̂+ [µl, µu] + [µl, µu] · εnew, otherwise.
(5)

Here λl, λu are floating point representations of λopt =
ux

ux−lx using rounding towards −∞ and +∞
respectively. Similarly, µl, µu are floating point representations of µ = − ux·lx

2·(ux−lx) using rounding
towards −∞ and +∞ respectively, and εnew ∈ [−1, 1] is a new noise symbol.

The running time of the optimal transformer in Theorem 3.1 is linear in the number p of noise
symbols. One can also define an optimal Zonotope transformer minimizing the volume of the output
zonotope, however this is too expensive and the resulting transformer cannot be applied pointwise.

3.2 Sigmoid

The effect of applying the Sigmoid function on an input zonotope Z can be represented with the
assignment y := σ(x) where x, y ∈ X and σ(x) = ex

1+ex . For the assigned variable y, we have

[ly, uy] ⊆ [0, 1]. When lx = ux, then ŷ :=
[

eux

1+eux ,
eux

1+eux

]
and the resulting zonotope is exact,

otherwise the output cannot be exactly represented by a zonotope and thus approximations are required.
We define pointwise approximations for the Sigmoid function such that ly = σ(lx), uy = σ(ux) and
then choose the one minimizing the area of its projection in the xy-plane.

Fig. 2 shows the projections into the xy-plane of a set of sound zonotope approximations for the output
of the Sigmoid function which have ly = σ(lx), uy = σ(ux). As for ReLU, the projections have the
shape of a parallelogram with two vertical lines and two parallel lines of slope λ which parameterizes
the set. To ensure soundness, we have 0 ≤ λ ≤ min(σ′(lx), σ

′(ux)) where σ′x = ex

(1+ex)2 .

The area A(λ) of the parallelogram with slope λ in Fig. 2 is:
A(λ) = (σ(ux)− σ(lx)− λ · (ux − lx)) · (ux − lx) (6)
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x̂

ŷ

ŷ = f(lx) + λ · (x̂− lx)

ŷ = f(ux) + λ · (x̂− ux)

lx ux

Figure 2: Zonotope approximation for the sigmoid function parameterized by slope λ, where
0 ≤ λ ≤ min(f ′(lx), f

′(ux)).

A(λ) is a decreasing function of λ and thus A(λ) is minimized at λopt = min(σ′(lx), σ
′(ux)). This

yields the following theorem:

Theorem 3.2 Let Z be the input to a smooth S-shaped1 function y = f(x) (such as the Sigmoid
function y = σ(x) = ex

1+ex ). Consider the set of pointwise Zonotope approximations O of the output
that only alter the affine form ŷ of the variable y and where the box concretization of ŷ satisfies
ly = σ(lx), uy = σ(ux). The new affine form ŷ for the output with the minimum area in the xy-plane
is given by:

ŷ =

{
[f(ux)l, f(ux)u], if lx = ux,

[λl, λu] · x̂+ [µ1
l , µ

1
u] + [µ2

l , µ
2
u] · εnew, otherwise,

(7)

Here, f(ux)l, f(ux)u are floating point representations of f(ux) rounded towards −∞ and +∞ re-
spectively and λl, λu are floating point representations of λopt = min(f ′(lx), f

′(ux)) using rounding
towards −∞ and +∞ respectively. Similarly µ1

l , µ
1
u and µ2

l , µ
2
u are floating point representations of

µ1 = 1
2 (f(ux)+f(lx)−λopt ·(ux+lx)) and µ2 = 1

2f(ux)−f(lx)−λopt ·(ux−lx) computed using
rounding towards −∞ and +∞ and adding the error due to the non-associativity of floating point
addition, and εnew ∈ [−1, 1] is a new noise symbol. As with ReLU, the optimal Sigmoid transformer
in Theorem 3.2 has linear running time in the number of noise symbols and can be applied pointwise.

3.3 Tanh

The Tanh function is also S-shaped, like the Sigmoid function. A fast, optimal, and pointwise Tanh
transformer can be defined using Theorem 3.2 by setting f(x) = tanh(x) and f ′(x) = 1− tanh2(x).

4 Experiments

We now evaluate the effectiveness of our new Zonotope transformers for verifying local robustness
of neural networks. Our implementation is available as an end-to-end automated verifier, called
DeepZ. The verifier is implemented in Python, however, the underlying abstract transformers are
implemented in C (for performance) in both the sequential and the parallel version, and are made
available as part of the public ELINA [1, 25] library.

4.1 Experimental setup

Evaluation datasets. We used the popular MNIST [18] and CIFAR10 [16] datasets for our experi-
ments. MNIST contains 60 000 grayscale images of size 28× 28 pixels and CIFAR10 consists of
60 000 RGB images of size 32× 32 pixels.

Neural networks. Table 1 shows the fully connected feedforward (FFNNs), convolutional (CNNs),
and residual networks for the MNIST and CIFAR10 datasets used in our experiments. We used both

1A smooth function f : R→ R is said to be S-shaped if f ′(x) ≥ 0 and there exists a value x′ such that for
all x ∈ R, we have f ′′(x) ≤ 0⇔ x ≤ x′.
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Table 1: Neural network architectures used in our experiments.

Dataset Model Type #Hidden units

MNIST FFNNSmall fully connected 610
FFNNBig fully connected 3 010
ConvSmall convolutional 3 604
ConvMed convolutional 4 804
ConvBig convolutional 34 688
ConvSuper convolutional 88 500
Skip residual 71,650

CIFAR10 FFNNBig fully connected 3 010
ConvSmall convolutional 4 852
ConvBig convolutional 62 464
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Figure 3: Comparing the performance and precision of DeepZ with the state of the art.

undefended and defended training procedures for training our networks. For adversarial training, we
used DiffAI [21] and projected gradient descent (PGD) [6] parameterized with ε. In our evaluation,
we refer to the undefended nets as Point, and to the defended networks with the name of the training
procedure (either DiffAI or PGD). More details on our neural networks and the training procedures
can be found in the appendix.

Robustness property. We consider the standard L∞-norm-based perturbation regions Rx,ε [3],
whereRx,ε contains all perturbed inputs x′ where each pixel x′i has a distance of at most ε from the
corresponding pixel xi in the original input x. Rx,ε can be exactly represented by a single zonotope.

Benchmarks. We selected the first 100 images from the test set of each data set. Then, we specified
a robustness property for each image using a set of robustness bounds ε.

4.2 Experimental results

All experiments for the FFNNs were carried out on a 3.3 GHz 10 core Intel i9-7900X Skylake CPU
with 64 GB main memory; the CNNs and the residual network were evaluated on a 2.6 GHz 14 core
Intel Xeon CPU E5-2690 with 512 GB main memory. We used a time limit of 10 minutes per run for
all our experiments.

Comparison with prior work. We compare the precision and performance of the sequential version
of DeepZ against two state-of-the-art certifiers Fast-Lin [29] and AI2 [10] on the FFNNSmall MNIST
network with ReLU activation. We note that both of these certifiers support only a subset of the
network architectures that DeepZ can support. Specifically, Fast-Lin only supports FFNNs with
ReLU activations whereas AI2 supports FFNNs and CNNs with ReLU activations. We also note that
Fast-Lin is not sound under floating point semantics.
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Figure 4: Verified robustness by DeepZ on the MNIST networks with ReLU activations.

Table 2: Verified robustness by DeepZ on the large networks trained with DiffAI.

Dataset Model ε % verified robustness average runtime(s)

MNIST ConvBig 0.1 97 5
ConvBig 0.2 79 7
ConvBig 0.3 37 17
ConvSuper 0.1 97 133
Skip 0.1 95 29

CIFAR10 ConvBig 0.006 50 39

Fig. 3 shows the percentage of verified robustness and the average analysis time of all three certifiers.
The values of ε are shown on the x-axis. DeepZ has the same precision as Fast-Lin but is up to 2.5x
times faster. We note that the runtime of DeepZ increases with increasing value of ε; this is because
the complexity of our analysis is determined by the maximum number of noise symbols in the affine
form. Our ReLU transformer creates one noise symbol for any variable that can take both positive
and negative values. The number of such cases rises with the increasing value of ε. On the other hand,
AI2 is significantly less precise and slower compared to both Fast-Lin and DeepZ. We also compared
DeepZ against the duality-based certifier from [7], however it always timed out in our experiments.

Detailed experiments. Next, we evaluate DeepZ on the remaining networks using the parallelized
version of our Zonotope transformers. Fig. 4 shows the percentage of verified robustness and the
average analysis time of DeepZ for the MNIST networks with ReLU activations. DeepZ analyzes all
FFNNBig networks with average runtime ≤ 22 seconds and proves 95% of the robustness properties
for ε = 0.04 for the defended PGDε=0.3 network. DeepZ is able to analyze all ConvSmall networks
with average runtime ≤ 2 seconds. It proves 95% of the robustness properties for ε = 0.1 on the
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Figure 5: Verified robustness by DeepZ on the MNIST networks with Sigmoid and Tanh activations.

ConvSmall network defended with DiffAI. Table 2 shows the precision and the performance of
DeepZ on ConvBig, ConvSuper, and Skip networks trained with DiffAI. DeepZ proves 95% and 97%
of robustness properties for the Skip and ConvSuper networks containing > 71, 000 and > 88 000
hidden units respectively in 29 and 133 seconds on average.

Fig. 5 shows the precision and the performance of DeepZ on the MNIST FFNNBig and ConvMed
networks with Sigmoid and Tanh activations. It can be seen that DeepZ verifies 74% of the robustness
properties on the FFNNBig Sigmoid and Tanh networks trained with PGDε=0.3 for ε = 0.03. DeepZ
verifies 82% of the robustness properties on the ConvMed Sigmoid network for ε = 0.1. The
corresponding number for the Tanh network is 33%. We note that unlike the ReLU transformer, both
Sigmoid and Tanh transformers always create a new noise symbol whenever lx 6= ux. Thus, the
runtime does not increase significantly with ε and is not plotted. DeepZ has an average runtime of
≤ 35 and ≤ 22 seconds on all FFNNBig and ConvMed networks, respectively.

Fig. 6 shows that DeepZ has an average runtime of ≤ 50 seconds for the CIFAR10 FFNNBig ReLU
networks. It can be seen that the defended FFNNBig CIFAR10 ReLU networks are not significantly
more provable than the undefended network. However, DeepZ verifies more properties on the
defended ConvSmall networks than the undefended one and proves 75% of robustness properties
on the DiffAI defended network for ε = 0.01. DeepZ has an average runtime of ≤ 3 seconds on all
ConvSmall networks. DeepZ is able to verify 50% of robustness properties for ConvBig network
defended with DiffAI with an average runtime of 39 seconds as shown in Table 2.

DeepZ verifies 82% of robustness properties on the FFNNBig Sigmoid network defended with
PGDε=0.0078 for ε = 0.012 in Fig. 7. It verifies 46% of the robustness properties on the FFNNBig
network with Tanh activation trained using PGDε=0.0313 for the same ε. The average runtime of
DeepZ on all networks is ≤ 90 seconds.
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Figure 6: Verified robustness by DeepZ on the CIFAR10 networks with ReLU activations.
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Figure 7: Verified robustness by DeepZ on the CIFAR10 networks with Sigmoid and Tanh activations.

5 Conclusion

We introduced fast and precise Zonotope abstract transformers for key non-linear activations used
in modern neural networks. We used these transformers to build DeepZ, an automated verifier for
proving the robustness of neural networks against adversarial attacks. We evaluated the effectiveness
of DeepZ on verifying robustness of large feedforward, convolutional, and residual networks against
challenging L∞-norm attacks. Our results show that DeepZ is more precise and faster than prior
work, while also ensuring soundness with respect to floating point operations.
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A Dataset Normalization

For each dataset we include a normalization layer (which gets applied after the ε-sized box has been
calculated) using an approximated mean µ and standard deviation σ per channel as X−µ

σ .

MNIST: µ = 0.1307, σ = 0.3081.

CIFAR10: µ = [0.4914, 0.4822, 0.4465], σ = [0.2023, 0.1994, 0.2010].

B Neural Networks Evaluated

We test with six networks: one feed forward, four convolutional (without maxpool), and one with
a residual connection. These are trained in various ways. In the following descriptions, we use
ConvsC ×W ×H to mean a convolutional layer that outputs C channels, with a kernel width of W
pixels and height of H , with a stride of s which then applies ReLU to every output. FC n is a fully
connected layer which outputs n neurons without automatically applying ReLU.

For each architecture we test three versions: (i) an undefended network; (ii) a network defended with
MI-FGSM (a PGD variant which we refer to as PGD in the graphs) [6] with µ = 1, 22 iterations and
two restarts, where the step size is ε = 5.5−1 for the ε used for training; (iii) a network defended with
a system based on DiffAI [21].

FFNN. A 6 layer feed forward net with 500 nodes in each and an activation (ReLU, Sigmoid, Tanh)
after each layer except the last.

ConvSmall. Our smallest convolutional network with no convolutional padding.

x→ Conv216× 4× 4→ ReLU→ Conv232× 4× 4→ ReLU→ FC 100→ z.

ConvMed. Similar to ConvSmall, but with a convolutional padding of 1. Here we test with the three
activations Act = ReLU, Sigmoid, and Tanh.

x→ Conv216× 4× 4→ Act→ Conv232× 4× 4→ Act→ FC 1000→ z.

ConvBig. A significantly larger convolutional network with a convolutional padding of 1.

x → Conv132× 3× 3→ ReLU→ Conv232× 4× 4→ ReLU
→ Conv164× 3× 3→ ReLU→ Conv264× 4× 4→ ReLU
→ FC 512→ ReLU→ FC 512→ z.

ConvSuper Our largest convolutional network with no padding.

x → Conv132× 3× 3→ Conv132× 4× 4

→ Conv164× 3× 3→ Conv164× 4× 4

→ FC 512→ ReLU→ FC 512→ z.

Skip Two convolutional networks of different sizes, which are then concatenated together. This
network uses no convolutional padding.

x → Conv116× 3× 3→ ReLU
→ Conv116× 3× 3→ ReLU
→ Conv132× 3× 3→ ReLU→ FC 200→ o1,

x → Conv116× 3× 3→ ReLU
→ Conv116× 3× 3→ ReLU
→ Conv132× 3× 3→ ReLU→ FC 200→ o2,

CAT(o1, o2) → ReLU→ FC 200→ ReLU → z.
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