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Abstract. Probabilistic programming is an emerging technique for mod-
eling processes involving uncertainty. Thus, it is important to ensure
these programs are assigned precise formal semantics that also cleanly
handle typical exceptions such as non-termination or division by zero.
However, existing semantics of probabilistic programs do not fully accom-
modate different exceptions and their interaction, often ignoring some or
conflating multiple ones into a single exception state, making it impos-
sible to distinguish exceptions or to study their interaction.
In this paper, we provide an expressive probabilistic programming lan-
guage together with a fine-grained measure-theoretic denotational se-
mantics that handles and distinguishes non-termination, observation fail-
ures and error states. We then investigate the properties of this seman-
tics, focusing on the interaction of different kinds of exceptions. Our work
helps to better understand the intricacies of probabilistic programs and
ensures their behavior matches the intended semantics.

1 Introduction

A probabilistic programming language allows probabilistic models to be specified
independently of the particular inference algorithms that make predictions using
the model. Probabilistic programs are formed using standard language primitives
as well as constructs for drawing random values and conditioning. The overall
approach is general and applicable to many different settings (e.g., building cog-
nitive models). In recent years, the interest in probabilistic programming systems
has grown rapidly with various languages and probabilistic inference algorithms
(ranging from approximate to exact). Examples include [11,13,14,25,36,26,27,29]
and [10]; for a recent survey, please see [15]. An important branch of recent prob-
abilistic programming research is concerned with providing a suitable semantics
for these programs enabling one to formally reason about the program’s behav-
iors [2,3,4,33,34,35].

Often, probabilistic programs require access to primitives that may result
in unwanted behavior. For example, the standard deviation σ of a Gaussian
distribution must be positive (sampling from a Gaussian distribution with neg-
ative standard deviation should result in an error). If a program samples from
a Gaussian distribution with a non-constant standard deviation, it is in general



undecidable if that standard deviation is guaranteed to be positive. A similar sit-
uation occurs for while loops: except in some trivial cases, it is hard to decide if
a program terminates with probability one (even harder than checking termina-
tion of deterministic programs [20]). However, general while loops are important
for many probabilistic programs. As an example, a Markov Chain Monte Carlo
sampler is essentially a special probabilistic program, which in practice requires
a non-trivial stopping criterion (see e.g. [6] for such a stopping criterion). In
addition to offering primitives that may result in such unwanted behavior, many
probabilistic programming languages also provide an observe primitive that in-
tuitively allows to filter out executions violating some constraint.

Motivation. Measure-theoretic denotational semantics for probabilistic programs
is desirable as it enables reasoning about probabilistic programs within the rig-
orous and general framework of measure theory. While existing research has
made substantial progress towards a rigorous semantic foundation of proba-
bilistic programming, existing denotational semantics based on measure theory
usually conflate failing observe statements (i.e., conditioning), error states and
non-termination, often modeling at least some of these as missing weight in a
sub-probability measure (we show why this is practically problematic in later
examples). This means that even semantically, it is impossible to distinguish
these types of exceptions1. However, distinguishing exceptions is essential for a
solid understanding of probabilistic programs: it is insufficient if the semantics
of a probabilistic programming language can only express that something went
wrong during the execution of the program, lacking the capability to distin-
guish for example non-termination and errors. Concretely, programmers often
want to avoid non-termination and assertion failure, while observation failure
is acceptable (or even desirable). When a program runs into an exception, the
programmer should be able determine the type of exception, from the semantics.

This Work. This paper presents a clean denotational semantics for a Turing
complete first-order probabilistic programming language that supports mixing
continuous and discrete distributions, arrays, observations, partial functions and
loops. This semantics distinguishes observation failures, error states and non-
termination by tracking them as explicit program states. Our semantics allows
for fine-grained reasoning, such as determining the termination probability of a
probabilistic program making observations from a sequence of concrete values.

In addition, we explain the consequences of our treatment of exceptions by
providing interesting examples and properties of our semantics, such as commu-
tativity in the absence of exceptions, or associativity regardless of the presence
of exceptions. We also investigate the interaction between exceptions and the
score primitive, concluding in particular that the probability of non-termination
cannot be defined in this case. score intuitively allows to increase or decrease the
probability of specific runs of a program (for more details, see Section 5.3).
1 In this paper, we refer to errors, non-termination and observation failures collectively
as exceptions. For example, a division by zero is an error (and hence and exception),
while non-termination is an exception but not an error.



2 Overview

In this section we demonstrate several important features of our probabilistic
programming language (PPL) using examples, followed by a discussion involving
different kinds of exception interactions.

2.1 Features of Probabilistic Programs

In the following, we informally discuss the most important features of our PPL.

y:=0;

if flip( 1
2
) {

y=gauss(0,1);

}else{

y=gauss(2,1);

}

return y;

Listing 1. Simple
Gaussian mixture

Discrete and continuous primitive distributions. List-
ing 1 illustrates a simple Gaussian mixture model (the
figure only shows the function body). Depending on the
outcome of a fair coin flip x (resulting in 0 or 1), y is
sampled from a Gaussian distribution with mean 0 or
mean 2 (and standard deviation 1). Note that in our
PPL, we represent gauss(·, ·) by the more general con-
struct sampleFromf (·, ·), with f : R × [0,∞) → R → R
being the probability density function of the Gaussian

distribution f(µ, σ)(x) = 1√
2πσ2

e−
(x−µ)2

2σ2 .

x:=uniform(0,1);

y:=uniform(0,1);

observe(x+y>1);

return x;

Listing 2. Condi-
tioning on a contin-
uous distribution

Conditioning. Listing 2 samples two independent val-
ues from the uniform distribution on the interval [0, 1]
and conditions the possible values of x and y on the
observation x + y > 1 before returning x. Intuitively,
the first two lines express a-priori knowledge about the
uncertain values of x and y. Then, a measurement de-
termines that x+ y is greater than 1. We combine this
new information with the existing knowledge. Because x+y > 1 is more likely for
larger values of x, the return value has larger weight on larger values. Formally,
our semantics handles observe by introducing an extra program state for observa-
tion failure  . Hence, the probability distribution after the third line of Listing 2
will put weight 1

2 on  and weight 1
2 on those x and y satisfying x+ y > 1.

In practice, one will usually condition the output distribution on there being
no observation failure ( ). For discrete distributions, this amounts to computing:

Pr[X = x | X 6=  ] =
Pr[X = x ∧X 6=  ]

Pr[X 6=  ]
=

Pr[X = x]

1− Pr[X =  ]

where x is the outcome of the program (a value, non-termination or an error)
and Pr[X = x] is the probability that the program results in x. Of course, this
conditioning only works when the probability of  is not 1. Note that tracking
the probability of  has the practical benefit of rendering the (often expensive)
marginalization Pr[X 6=  ] =

∑
x 6= Pr[X = x] unnecessary.

Other semantics often use sub-probability measures to express failed obser-
vations [4,34,35]. These semantics would say that Listing 2 results in a return



value between 0 and 1 with probability 1
2 (and infer that the missing weight

of 1
2 is due to failed observations). We believe one should improve upon this

approach as the semantics only implicitly states that the program sometimes
fails an observation. Further, this strategy only allows tracking a single kind of
exception (in this case, failed observations). This has led some works to conflate
observation failure and non-termination [18,34]. We believe there is an important
distinction between the two: observation failure means that the program behav-
ior is inconsistent with observed facts, non-termination means that the program
did not return a result. if flip( 1

2
) {

x:=0;

observe(flip( 1
2
));

}else{

x:=1;

observe(flip( 1
4
));

}

Listing 3. The need
for tracking  

Listing 3 illustrates that it is not possible to condi-
tion parts of the program on there being no observa-
tion failure. In Listing 3, conditioning the first branch
x := 0; observe(flip( 12 )) on there being no observation
failure yields Pr[x = 0] = 1, rendering the observation
irrelevant. The same situation arises for the second
branch. Hence, conditioning the two branches in iso-
lation yields Pr[x = 0] = 1

2 instead of Pr[x = 0] = 2
3 .

n:=0;

while !flip( 1
2
) {

n=n+1;

}

return n;

Listing 4. Geometric
distribution

Loops. Listing 4 shows a probabilistic program with
a while loop. It samples from the geometric( 12 ) dis-
tribution, which counts the number of failures (flip
returns 0) until the first success occurs (flip returns
1). This program terminates with probability 1, but
it is of course possible that a probabilistic program
fails to terminate with positive probability. Listing 5
demonstrates this possibility.

x := 5;

while x>0 {

if x<10 {

x+=2*flip(
1
2
)-1;

}

}

return x;

Listing 5. Program
that may not termi-
nate

Listing 5 modifies x until either x = 0 or x = 10.
In each iteration, x is either increased or decreased,
each with probability 1

2 . If x reaches 0, the loop ter-
minates. If x reaches 10, the loop never terminates.
By symmetry, both termination and non-termination
are equally likely. Hence, the program either returns
0 or does not terminate, each with probability 1

2 .
Other semantics often use sub-probability mea-

sures to express non-termination [4,23]. Thus, these
semantics would say that Listing 5 results in 0 with
probability 1

2 (and nothing else). We propose to track the probability of non-
termination explicitly by an additional state 	, just as we track the probability
of observation failure ( ).

x:=uniform(-1,1);

x=
√
x;

return x;

Listing 6. Using par-
tial functions

Partial functions. Many functions that are practically
useful are only partial (meaning they are not defined
for some inputs). Examples include uniform(a, b) (un-
defined for b < a) and

√
x (undefined for x < 0). List-

ing 6 shows an example program using
√
x. Usually,

semantics do not explicitly address partial functions [23,24,28,33] or use partial
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Fig. 1. Visual comparison of the exception handling capabilities of different semantics.
For example, 	 is filled in [34] because its semantics can handle non-termination.
However, the intersection between 	 and  is not filled because [34] cannot distinguish
non-termination from observation failure.

functions without dealing with failure (e.g. [19] use Bernoulli(p) without stating
what happens if p /∈ [0, 1]). Most of these languages could use a sub-probability
distribution that misses weight in the presence of errors (in these languages, this
results in conflating errors with non-termination and observation failures).

We introduce a third exception state ⊥ that can be produced when partial
functions are evaluated outside of their domain. Thus, Listing 6 results in ⊥
with probability 1

2 and returns a value from [0, 1] with probability 1
2 (larger val-

ues are more likely). Some previous work uses an error state to capture failing
computations, but does not propagate this failure implicitly [34,35]. In partic-
ular, if an early expression in a long program may fail evaluating

√
−4, every

expression in the program that depends on this failing computation has to check
whether an exception has occurred. While it may seem possible to skip the
rest of the function in case of a failing computation (by applying the pattern
if (x = ⊥) {return ⊥} else {rest of function}), this is non-modular and does
not address the result of the function being used in other parts of a program.

Although our semantics treat ⊥ and  similarly, there is an important distinc-
tion between the two: ⊥ means the program terminated due to an error, while
 means that according to observed evidence, the program did not actually run.

2.2 Interaction of Exception States

Next, we illustrate the interaction of different exception states. We explain how
our semantics handles these interactions when compared to existing semantics.
Figure 1 gives an overview of which existing semantics can handle which (inter-
actions of) exceptions. We note that our semantics could easily distinguish more
kinds of exceptions, such as division by zero or out of bounds accesses to arrays.

x:=0;

while x=0 {

x=flip( 1
2
);

observe(x=0);

}

Listing 7. Mix-
ing loops and ob-
servations

Non-termination and observation failure. Listing 7 shows
a program that has been investigated in [22]. Based on
the observations, it only admits a single behavior, namely
always sampling x = 0 in the third line. This behavior
results in non-termination, but it occurs with probability
0. Hence, the program fails an observation (ending up in
state  ) with probability 1. If we try to condition on not



failing any observation (by rescaling appropriately), this results in a division by
0, because the probability of not failing any observation is 0.

The semantics of Listing 7 thus only has weight on  , and does not allow
conditioning on not failing any observation. This is also the solution that [22]
proposes, but in our case, we can formally back up this claim with our semantics.

Other languages handle both non-termination and observation failure by sub-
probability distributions, which makes it impossible to conclude that the missing
weight is due to observation failure (and not due to non-termination) [4,24,34].
The semantics in [28] cannot directly express that the missing weight is due
to observation failure (rather, the semantics are undefined due to a division by
zero). However, the semantics enables a careful reader to determine that the
missing weight is due to observation failure (by investigating the conditional
weakest precondition and the conditional weakest liberal precondition). Some
other languages can express neither while loops nor observations [23,33,35].

assert(x≥0);
assert(x=bxc);
fac:=1;

while x6=0 {

fac=fac*x;

x=x-1;

}

return fac;

Listing 8. Ex-
plicitly checking
assumptions

Assertions and non-termination. For some programs, it
is useful to check assumptions explicitly. For example, the
implementation of the factorial function in Listing 8 ex-
plicitly checks whether x is a valid argument to the fac-
torial function. If x /∈ N, the program should run into an
error (i.e. only have weight on ⊥). If x ∈ N, the program
should return x! (i.e. only have weight on x!). This exam-
ple illustrates that earlier exceptions (like failing an asser-
tion) should bypass later exceptions (like non-termination,
which occurs for x /∈ N if the programmer forgets the first
two assertions). This is not surprising, given that this is
also the semantics of exceptions in most deterministic languages. Most exist-
ing semantics either cannot express Listing 8 ([23,34] have no assertions, [35]
has no iteration) or cannot distinguish failing an assertion from non-termination
[24,28,33]. The consequence of the latter is that removing the first two assertions
from Listing 8 does not affect the semantics. Handling assertion failure by sum
types (as e.g. in [34]) could be a solution, but would force the programmer to deal
with assertion failure explicitly. Only the semantics in [4] has the expressiveness
to implicitly handle assertion errors in Listing 8 without conflating those errors
with non-termination.

x:=0;

while 1 {

x=x/x;

}

Listing 9. Guar-
anteed failure

Listing 9 shows a different interaction between non-
termination and failing assertions. Here, even though the
loop condition is always true, the first iteration of the
loop will run into an exception. Thus, Listing 9 results in
⊥ with probability 1. Again, this behavior should not be
surprising given the behavior of deterministic languages.
For Listing 9, conflating errors with non-termination means the program seman-
tics cannot express that the missing weight is due to an error and not due to
non-termination.



observe(flip( 1
2
));

assert(flip( 1
2
));

Listing 10. Ob-
servation or asser-
tion failure

Observation failure and assertion failure. In our PPL,
earlier exceptions bypass later exceptions, as illustrated
in Listing 8. However, because we are operating in a
probabilistic language, exceptions can occur probabilis-
tically. Listing 10 shows a program that may run into
an observation failure, or into an assertion failure, or neither. If it runs into an
observation failure (with probability 1

2 ), it bypasses the rest of the program,
resulting in  with probability 1

2 and in ⊥ with probability 1
4 . Conditioning on

the absence of observation failures, the probability of ⊥ is 1
2 .

An important observation is that reordering the two statements of Listing 10
will result in a different behavior. This is the case, even though there is no ob-
vious data-flow between the two statements. This is in sharp contrast to the
semantics in [34], which guarantee (in the absence of exceptions) that only data
flow is relevant and that expressions can be reordered. Our semantics illustrate
that even if there is no explicit data-dependency, some seemingly obvious prop-
erties (like commutativity) may not hold in the presence of exceptions. Some
languages either cannot express Listing 10 ([23,33] lack observations), cannot
distinguish observation failure from assertion failure [24] or cannot handle ex-
ceptions implicitly [34,35].

Summary. In this section, we showed examples of probabilistic programs that
exhibit non-termination, observation failures and errors. Then, we provided ex-
amples that show how these exceptions can interact, and explained how existing
semantics handle these interactions.

3 Preliminaries

In this section, we provide the necessary theory. Most of the material is stan-
dard, however, our treatment of exception states is interesting and important
for providing semantics to probabilistic programs in the presence of exceptions.
All key lemmas (together with additional definitions and examples) are proven
in Appendix A.

Natural numbers, [n], Iverson brackets, restriction of functions. We include 0 in
the natural numbers, so that N := {0, 1, . . . }. For n ∈ N, [n] := {1, . . . , n}. The
Iverson brackets [·] are defined by [b] = 1 if b is true and [b] = 0 if b is false.
A particular application of the Iverson brackets is to characterize the indicator
function of a specific set S by [x ∈ S]. For a function f : X → Y and a subset of
the domain S ⊆ X, f restricted to S is denoted by f|S : S → Y .

Set of variables, generating tuples, preservation of properties, singleton set. Let
Vars be a set of admissible variable names. We refer to the elements of Vars by
x, y, z and xi, yi, zi, vi, wi, for i ∈ N. For v ∈ A and n ∈ N, v!n := (v, . . . , v) ∈ An
denotes the tuple containing n copies of v. A function f : An → A preserves
a property if whenever a1, . . . , an ∈ A have that property, f(a1, . . . , an) ∈ A



has that property. Let 1 denote the set which only contains the empty tuple
(), i.e. 1 := {()}. For sets of tuples S ⊆

∏n
i=1Ai, there is an isomorphism

S × 1 ' 1 × S ' S. This isomorphism is intuitive and we sometimes silently
apply it.

Exception states, lifting functions to exception states. We allow the extension
of sets with some symbols that stand for the occurrence of special events in
a program. This is important because it allows us to capture the event that a
given program runs into specific exceptions. Let X := {⊥, ,	} be a (countable)
set of exception states. We denote by A := A ∪ X the set A extended with X
(we require that A ∩ X = ∅). Intuitively, ⊥ corresponds to assertion failures,
 corresponds to observation failures and 	 corresponds to non-termination.
For a function f : A → B, f lifted to exception states, denoted by f : A → B
is defined by f(a) = a if a ∈ X and f(a) = f(a) if a /∈ X . For a function
f :
∏n
i=1Ai → B, f lifted to exception states, denoted by f :

∏n
i=1Ai → B,

propagates the first exception in its arguments, or evaluates f if none of its
arguments are exceptions. Formally, it is defined by f(a1, . . . , an) = a1 if a1 ∈ X ,
f(a1, . . . , an) = a2 if a1 /∈ X and a2 ∈ X , and so on. Only if a1, . . . , an /∈ X ,
we have f(a1, . . . , an) = f(a1, . . . , an). Thus, f(	, a,⊥) =	. In particular, we
write (a, b) for lifting the tupling function, resulting in for example ( ,	) =  . To
remove notation clutter, we do not distinguish the two different liftings f : A→ B
and f :

∏n
i=1Ai → B notationally. Whenever we write f , it will be clear from

the context which lifting we mean. We write S×T for {(s, t) | s ∈ S, t ∈ T}.

Records. A record is a special type of tuple indexed by variable names. For sets
(Si)i∈[n], a record r ∈

∏n
i=1(xi : Si) has the form r = {x1 7→ v1, . . . , xn 7→ vn},

where vi ∈ Si, with the convenient shorthand r = {xi 7→ vi}i∈[n]. We can access
the elements of a record by their name: r[xi] = vi.

In what follows, we provide the measure theoretic background necessary to
express our semantics.

σ-algebra, measurable set, σ-algebra generated by a set, measurable space, mea-
surable functions. Let A be some set. A set ΣA ⊆ P (A) is called a σ-algebra
on A if it satisfies three conditions: A ∈ ΣA, ΣA is closed under complements
(S ∈ ΣA implies A\S ∈ ΣA) and ΣA is closed under countable unions (for any
collection {Si}i∈N with Si ∈ ΣA, we have

⋃
i∈N Si ∈ ΣA). The elements of ΣA

are called measurable sets. For any set A, a trivial σ-algebra on A is its power set
P (A). Unfortunately, the power set often contains sets that do not behave well.
To come up with a σ-algebra on A whose sets do behave well, we often start with
a set S ⊆ P (A) that is not a σ-algebra and extend it until we get a σ-algebra.
For this purpose, let A be some set and S ⊆ P (A) a collection of subsets of
A. The σ-algebra generated by S denoted by σ(S) is the smallest σ-algebra that
contains S. Formally, σ(S) is the intersection of all σ-algebras on A containing
S. For a set A and a σ-algebra ΣA on A, (A,ΣA) is called a measurable space. We
often leave ΣA implicit; whenever it is not mentioned explicitly, it is clear from
the context. Table 1 provides the implicit σ-algebras for some common sets. As



Set σ-algebra on this set

R
ΣR = B := σ({[a, b] ⊆ R | a ≤ b, a ∈ R, b ∈ R}),
the Borel σ-algebra on R generated by all intervals

S for S ∈ B ΣS = {T ∈ B | T ⊆ S}∏n
i=1Ai Σ∏n

i=1 Ai
= σ

({∏n
i=1 Si | Si ∈ ΣAi

})
∏n
i=1(xi : Ai) Σ

∏n
i=1(xi:Ai)

= σ
({∏n

i=1(xi : Si) | Si ∈ ΣAi
})

A ΣA = {S ∪ S′ | S ∈ ΣA, S′ ∈ P (X )}
Table 1. Implicit σ-algebras on common sets, for measurable spaces (A,ΣA), (Ai, ΣAi)

an example, some elements of ΣR include [0, 1]∪ {⊥} and {1, 3, π}. For measur-
able spaces (A,ΣA) and (B,ΣB), a function f : A → B is called measurable, if
∀S ∈ ΣB : f−1(S) ∈ ΣA. Here, f−1(S) := {a ∈ A : f(a) ∈ S}. If one is familiar
with the notion of Lebesgue measurable functions, note that our definition does
not include all Lebesgue measurable functions. As a motivation to why we need
measurable functions, consider the following scenario. We know the distribution
of some variable x, and want to know the distribution of y = f(x). To figure out
how likely it is that y ∈ S for a measurable set S, we can determine how likely
it is that x ∈ f−1(S), because f−1(S) is guaranteed to be a measurable set.

Measures, examples of measures. For a measurable space (A,ΣA), a function
µ : ΣA → [0,∞] is called a measure on A if it satisfies two properties: null empty
set (µ(∅) = 0) and countable additivity (for any countable collection {Si}i∈I of
pairwise disjoint sets Si ∈ ΣA, we have µ

(⋃
i∈I Si

)
=
∑
i∈I µ(Si)). Measures

allow us to quantify the probability that a certain result lies in a measurable set.
For example, µ([1, 2]) can be interpreted as the probability that the outcome of
a process is between 1 and 2.

The Lebesgue measure λ : B → [0,∞] is the (unique) measure that satisfies
λ([a, b]) = b− a for all a, b ∈ R with a ≤ b. The zero measure 0 : ΣA → [0,∞] is
defined by 0(S) = 0 for all S ∈ ΣA. For a measurable space (A,ΣA) and some
a ∈ A, the Dirac measure δa : ΣA → [0,∞] is defined by δa(S) = [a ∈ S].

Unfortunately, there are measures that do not satisfy some important proper-
ties (for example, they may not satisfy Fubini’s theorem, which we discuss later
on). The usual way to deal with this is to restrict our attention to σ-finite mea-
sures, which are well-known and were studied in great detail. However, σ-finite
measures are too restrictive for our purposes. In particular, the s-finite kernels
that we introduce later on can induce measures that are not σ-finite. This is why
in the following, we work with s-finite measures. Table 2 gives an overview of
the different kinds of measures that are important for understanding our work.
The expression 1/2 · δ1 stands for the pointwise multiplication of the measure δ1
by 1/2: 1/2 · δ1 = λS. 1/2 · δ1(S). Here, the λ refers to λ-abstraction and not to
the Lebesgue measure. To distinguish the two λs, we always write “λx.” (with a
dot) when we refer to λ-abstraction. For more details on the definitions and for
proofs about the provided examples, see Appendix A.1.



Type of Measure Characterization Examples

probability measure µ is a measure and µ(A) = 1 µ = δ1

sub-probability measure µ is a measure and µ(A) ≤ 1 µ = 0 or µ = 1/2 · δ1

σ-finite measure µ is a measure and A =
⋃
i∈N Ai for

Ai ∈ ΣA with µ(Ai) <∞
µ = λ

s-finite measure µ =
∑
i∈N µi for sub-probability

measures µi
µ(S) =

{
0 λ(S) = 0

∞ λ(S) > 0

measure µ(∅) = 0, countable additivity µ(S) =

{
|S| S finite
∞ otherwise

Table 2. Definition and comparison of different measures µ : ΣA → [0,∞] on mea-
surable spaces (A,ΣA). Reading the table top-down, we get from the most restrictive
definition to the most permissive definition. For example, any sub-probability measure
is also a σ-finite measure. We also provide an example for each type of measure that
is not an example of the more restrictive type of measure. For example, the Lebesgue
measure λ is σ-finite but not s-finite.

Product of measures, product of measures in the presence of exception states. For
s-finite measures µ : ΣA → [0,∞] and µ′ : ΣB → [0,∞], we denote the product
of measures by µ× µ′ : ΣA×B → [0,∞], and define it by

(µ× µ′)(S) =
∫
a∈A

∫
b∈B

[(a, b) ∈ S]µ′(db)µ(da)

For s-finite measures µ : ΣA → [0,∞] and µ′ : ΣB → [0,∞], we denote the
lifted product of measures by µ×µ′ : ΣA×B → [0,∞] and define it using the
lifted tupling function: (µ×µ′)(S) =

∫
a∈A

∫
b∈B [(a, b) ∈ S]µ

′(db)µ(da). While the
product of measures µ× µ′ is well known for combining two measures to a joint
measure, the concept of a lifted product of measures µ×µ′ is required to do
the same for combining measures that have weight on exception states. Because
the formal semantics of our probabilistic programming language makes use of
exception states, we always use × to combine measures, appropriately handling
exception states implicitly.

Lemma 1. For measures µ : ΣA → [0,∞], µ′ : ΣB → [0,∞], let S ∈ ΣA and
T ∈ ΣB. Then, (µ× µ′)(S × T ) = µ(S) · µ′(T ).

For µ : ΣA → [0,∞], µ′ : ΣB → [0,∞] and S ∈ ΣA, T ∈ ΣB , in general we
have (µ×µ′)(S × T ) 6= µ(S) · µ′(T ), due to interactions of exception states.

Lemma 2. × and × for s-finite measures are associative, left- and right-dis-
tributive and preserve (sub-)probability and s-finite measures.

Lebesgue integrals, Fubini’s theorem for s-finite measures. Our definition of the
Lebesgue integral is based on [31]. It allows integrating functions that sometimes
evaluate to ∞, and Lebesgue integrals evaluating to ∞.



Here, (A,ΣA) and (B,ΣB) are measurable spaces and µ : ΣA → [0,∞] and
µ′ : ΣB → [0,∞] are measures on A and B, respectively. Also, E ∈ ΣA and
F ∈ ΣB . Let s : A → [0,∞) be a measurable function. s is a simple function if
s(x) =

∑n
i=1 αi[x ∈ Ai] for Ai ∈ ΣA and αi ∈ R. For any simple function s,

the Lebesgue integral of s over E with respect to µ, denoted by
∫
a∈E s(a)µ(da),

is defined by
∑n
i=1 αi · µ(Ai ∩ E), making use of the convention 0 · ∞ = 0. Let

f : A → [0,∞] be measurable but not necessarily simple. Then, the Lebesgue
integral of f over E with respect to µ is defined by∫
a∈E

f(a)µ(da) := sup

{∫
a∈E

s(a)µ(da)

∣∣∣∣ s : A→ [0,∞) is simple, 0 ≤ s ≤ f
}

Here, the inequalities on functions are pointwise. Appendix A.2 lists some
useful properties of the Lebesgue integral. Here, we only mention Fubini’s theo-
rem, which is important because it entails a commutativity-like property of the
product of measures: (µ× µ′)(S) = (µ′ × µ)(swap(S)), where swap switches the
dimensions of S: swap(S) = {(b, a) | (a, b) ∈ S}. The proof of this property
is straightforward, by expanding the definition of the product of measures and
applying Fubini’s theorem. As we show in Section 5, this property is crucial for
the commutativity of expressions. In the presence of exceptions, it does not hold:
(µ×µ′)(S) 6= (µ′×µ)(swap(S)) in general.

Theorem 1 (Fubini’s theorem). For s-finite measures µ : ΣA → [0,∞] and
µ′ : ΣB → [0,∞] and any measurable function f : A×B → [0,∞],∫

a∈A

∫
b∈B

f(a, b)µ′(db)µ(da) =

∫
b∈B

∫
a∈A

f(a, b)µ(da)µ′(db)

For s-finite measures µ : ΣA → [0,∞] and µ′ : ΣB → [0,∞] and any measurable
function f : A×B → [0,∞],∫

a∈A

∫
b∈B

f(a, b)µ′(db)µ(da) =

∫
b∈B

∫
a∈A

f(a, b)µ(da)µ′(db)

(Sub-)probability kernels, s-finite kernels, Dirac delta, Lebesgue kernel, motiva-
tion for s-finite kernels. In the following, let (A,ΣA) and (B,ΣB) be measur-
able spaces. A (sub-)probability kernel with source A and target B is a func-
tion κ : A × ΣB → [0,∞) such that for all a ∈ A : κ(a, ·) : ΣB → [0,∞) is
a (sub-)probability measure, and ∀S ∈ ΣB : κ(·, S) : A → [0,∞) is measur-
able. κ : A × ΣB → [0,∞] is an s-finite kernel with source A and target B if
κ is a pointwise sum of sub-probability kernels κi : A × ΣB → [0,∞), meaning
κ =

∑
i∈N κi. We denote the set of s-finite kernels with source A and target B

by A 7→ B ⊆ A×ΣB → [0,∞]. Because we only ever deal with s-finite kernels,
we often refer to them simply as kernels.

We can understand the Dirac measure as a probability kernel. For a measur-
able space (A,ΣA), the Dirac delta δ : A 7→ A is defined by δ(a, S) = [a ∈ S].
Note that for any a, δ(a, ·) : ΣA → [0,∞] is the Dirac measure. We often write



δ(a)(S) or δa(S) for δ(a, S). Note that we can also interpret δ : A 7→ A as an
s-finite kernel from A 7→ B for A ⊆ B. The Lebesgue kernel λ∗ : A 7→ R is de-
fined by λ∗(a)(S) = λ(S), where λ is the Lebesgue measure. The definition of
s-finite kernels is a lifting of the notion of s-finite measures. Note that for an
s-finite kernel κ, κ(a, ·) is an s-finite measure for all a ∈ A. In the context of
probabilistic programming, s-finite kernels have been used before [34].

Working in the space of sub-probability kernels is inconvenient, because, for
example, λ∗ : R 7→ R is not a sub-probability kernel. Even though λ∗(x) is σ-
finite measure for all x ∈ R, not all s-finite kernels induce σ-finite measures in
this sense. As an example, (λ∗;λ∗)(x) is not a σ-finite measure for any x ∈ R
(see Lemma 15 in Appendix A.1). We introduce (;) shortly in Definition 1.

Working in the space of s-finite kernels is convenient because s-finite kernels
have many nice properties. In particular, the set of s-finite kernels A 7→ B is the
smallest set that contains all sub-probability kernels with source A and target
B and is closed under countable sums.

Lifting kernels to exception states, removing weight from exception states. For
kernels κ : A 7→ B or kernels κ : A 7→ B, κ lifted to exception states κ : A 7→ B is
defined by κ(a) = κ(a) if a ∈ A and κ(a) = δ(a) if a /∈ A. When transforming κ
into κ, we preserve (sub-)probability and s-finite kernels.

Composing kernels, composing kernels in the presence of exception states.

Definition 1. Let (;) : (A 7→ B) → (B 7→ C) → (A 7→ C) be defined by
(f ; g)(a)(S) =

∫
b∈B g(b)(S) f(a)(db).

Note that f ; g intuitively corresponds to first applying f and then g. Throughout
this paper, we mostly use >=> instead of (;), but we introduce (;) because it is
well-known and it is instructive to show how our definition of >=> relates to (;).

Lemma 3. (;) is associative, left- and right-distributive, has neutral element2 δ
and preserves (sub-)probability and s-finite kernels.

Definition 2. Let (>=>) : (A 7→ B) → (B 7→ C) → (A 7→ C) be defined by
(f >=> g)(a)(S) =

∫
b∈B g(b)(S) f(a)(db).

We sometimes write f(a)�= g for (f >=> g)(a).

Lemma 4. For f : A 7→ B and g : B 7→ C, a ∈ A and S ∈ ΣC ,

(f >=> g)(a)(S) = (f ; g)(a)(S) +
∑
x∈X

δ(x)(S)f(a)({x})

Lemma 4 shows how >=> relates to (;), by splitting f >=> g into non-
exceptional behavior of f (handled by (;)) and exceptional behavior of f (handled
by a sum). Intuitively, if f produces an exception state ? ∈ X , then g is not even
evaluated. Instead, this exception is directly passed on, as indicated by δ(x)(S).
2 δ is a neutral element of (;) if (δ;κ) = (κ; δ) = κ for all kernels κ.



If f(a)(X ) = 0 for all a ∈ A, or if S ∩X = ∅, then the definitions are equivalent
in the sense that (f ; g)(a)(S) = (f >=> g)(a)(S). The difference between >=>
and (;) is the treatment of exception states produced by f . Note that technically,
the target B of f : A 7→ B does not match the source B of g : B 7→ C. Therefore,
to formally interpret f ; g, we silently restrict the domain of f to A×ΣB .

Lemma 5. >=> is associative, left-distributive (but not right-distributive), has
neutral element δ and preserves (sub-)probability and s-finite kernels.

Product of kernels, product of kernels in the presence of exception states. For
s-finite kernels κ : A 7→ B, κ′ : A 7→ C, we define the product of kernels, denoted
by κ×κ′ : A 7→ B×C, as (κ×κ′)(a)(S) = (κ(a)×κ′(a))(S). For s-finite kernels
κ : A 7→ B and κ′ : A 7→ C, we define the lifted product of kernels, denoted by
κ×κ′ : A 7→ B × C, as (κ×κ′)(a)(S) = (κ(a)×κ′(a))(S). × and × allow us to
combine kernels to a joint kernel. Essentially, this definition reduces the product
of kernels to the product of measures.

Lemma 6. × and × for kernels preserve (sub-)probability and s-finite kernels,
are associative, left- and right-distributive.

Binding conventions. To avoid too many parentheses, we make use of some
binding conventions, ordering (in decreasing binding strength) ×,×, ; , >=>,+.

Summary. The most important concepts introduced in this section are exception
states, records, Lebesgue integration, Fubini’s theorem and (s-finite) kernels.

4 A Probabilistic Language and its Semantics

We now describe our probabilistic programming language, the typing rules and
the denotational semantics of our language.

4.1 Syntax

Let V := Q ∪ {π, e} ⊆ R be a (countable) set of constants expressible in our
programs. Let i, n ∈ N, r ∈ V, x ∈ Vars, 	 a generic unary operator (e.g., −
inverts the sign of a value, ! is logical negation mapping 0 to 1 and all other
numbers to 0, b·c and d·e round down and up respectively), ⊕ a generic binary
operator (e.g., +, −, ∗, /, ∧ for addition, subtraction, multiplication, division and
exponentiation, &&, || for logical conjunction and disjunction, =, 6=, <,≤, >,≥
to compare values). Let f : A → R → [0,∞) be a measurable function that
maps a ∈ A to a probability density function. We check if f is measurable by
uncurrying f to f : A× R→ [0,∞). Figure 2 shows the syntax of our language.

Our expressions capture () (the only element of 1), r (real numbers), x (vari-
ables), (e1, . . . , en) (tuples), e[i] (accessing elements of tuples for i ∈ N), 	e
(unary operators), e1 ⊕ e2 (binary operators), e1[e2] (accessing array elements),
e1[e2 7→ e3] (updating array elements), array(e1, e2) (creating array of length e1



e ::= () | r | x | (e1, . . . , en) | e[i] | 	e | e1 ⊕ e2 | e1[e2] | (Expressions)
array(e1, e2) | e1[e2 7→ e3] | F (e)

F ::= λx.{P ; return e; } | flip | uniform | sampleFromf (Functions)
P ::= skip | x := e | x = e | P1;P2 | if e {P1} else {P2} | {P} | (Statements)

assert(e) | observe(e) | while e {P}

Fig. 2. The syntax of our probabilistic language.

containing e2 at every index) and F (e) (evaluating function F on argument e). To
handle functions F (e1, . . . , en) with multiple arguments, we interpret (e1, . . . , en)
as a tuple and apply F to that tuple.

Our functions express λx.{P ; return e; } (function taking argument x run-
ning P on x and returning e), flip(e) (random choice from {0, 1}, 1 with prob-
ability e), uniform(e1, e2) (continuous uniform distribution between e1 and e2)
and sampleFromf (e) (sample value distributed according to probability density
function f(e)). An example for f is the density of the exponential distribu-
tion, indexed with rate λ. Formally, f : (0,∞) → R → [0,∞) is defined by
f(λ)(x) = λe−λx if x ≥ 0 and f(λ)(x) = 0 otherwise. Often, f is partial (e.g.,
λ ≤ 0 is not allowed). Intuitively, arguments outside the allowed range of f
produce the error state ⊥.

Our statements express skip (no operation), x := e (assigning to a fresh vari-
able), x = e (assigning to an existing variable), P1;P2 (sequential composition
of programs), if e {P1} else {P2} (if-then-else), {P} (static scoping), assert(e)
(asserting that an expression evaluates to true, assertion failure results in ⊥),
observe(e) (observing that an expression evaluates to true, observation failure re-
sults in  ) and while e {P} (while loops, non-termination results in 	). We addi-
tionally introduce syntactic sugar e1[e2] = e3 for e1 = e1[e2 7→ e3], if (e) {P} for
if e {P} else {skip} and func(e2) for λx.{P ; return e1; }(e2) (using the name
func for the function with argument x and body {P ; return e1}).

4.2 Typing Judgments

Let n ∈ N. We define types by the following grammar in BNF, where τ [] denotes
arrays over type τ . We sometimes write

∏n
i=1 τi for the product type τ1×· · ·×τn.

τ ::= 1 | R | τ [] | τ1 × · · · × τn

Note that we also use the type τ1 7→ τ2 of kernels with source τ1 and target τ2, but
we do not list it here to avoid higher-order functions (discussed in Section 4.5).

Formally, a context Γ is a set {xi : τi}i∈[n] that assigns a type τi to each
variable xi ∈ Vars. In slight abuse of notation, we sometimes write x ∈ Γ if
there is a type τ with x : τ ∈ Γ . We also write Γ, x : τ for Γ ∪ {x : τ} (where
x /∈ Γ ) and Γ, Γ ′ for Γ ∪ Γ ′ (where Γ and Γ ′ have no common variables).



Γ ` () : 1 Γ ` r : R
r ∈ V

Γ ` x : τ x : τ ∈ Γ
Γ ` e1 : τ1 · · · Γ ` en : τn
Γ ` (e1, . . . , en) : τ1 × · · · × τn

Γ ` e : τ0 × · · · × τn−1

Γ ` e[i] : τi
i ∈ {0, . . . , n− 1} Γ ` e : R

Γ ` 	e : R
Γ ` e1 : R Γ ` e2 : R

Γ ` e1 ⊕ e2 : R

Γ ` e1 : τ [ ] Γ ` e2 : R

Γ ` e1[e2] : τ
Γ ` e1 : R Γ ` e2 : τ
Γ ` array(e1, e2) : τ [ ]

Γ ` e1 : τ [ ] Γ ` e2 : R Γ ` e3 : τ
Γ ` e1[e2 7→ e3] : τ [ ]

Γ ` e : τ1 ` F : τ1 7→ τ2
Γ ` F (e) : τ2

x : τ1
P
Γ Γ ` e : τ2

` λx.{P ; return e; } : τ1 7→ τ2 ` flip : R 7→ R ` uniform : R× R 7→ R

` sampleFromf : τ 7→ R
f : A→ R→ [0,∞), A ∈ Στ

Fig. 3. The typing rules for expressions and functions in our language

Γ
skip

Γ

Γ ` e : τ
Γ

x:=e
Γ, x : τ

x /∈ Γ Γ ` e : τ
Γ

x=e
Γ
x : τ ∈ Γ

Γ
P
Γ ′ Γ ′

Q
Γ ′′

Γ
P ;Q

Γ ′′

Γ
P
Γ ′

Γ
{P}

Γ

Γ ` e : R Γ
P1

Γ ′ Γ
P2

Γ ′

Γ
if e {P1} else {P2}

Γ ′

Γ ` e : R

Γ
assert(e)

Γ

Γ ` e : R

Γ
observe(e)

Γ

Γ ` e : R Γ
P
Γ

Γ
while e {P}

Γ

Fig. 4. The typing rules for statements

The rules in Figures 3 and 4 allow deriving the type of expressions, functions
and statements. To state that an expression e is of type τ under a context Γ ,
we write Γ ` e : τ . Likewise, ` F : τ 7→ τ ′ indicates that F is a kernel from τ to
τ ′. Finally, Γ P

Γ ′ states that a context Γ is transformed to Γ ′ by a statement
P . For sampleFromf , we intuitively want f to map values from τ to probability
density functions. To allow f to be partial, i.e., to be undefined for some values
from τ , we use A ∈ Στ (and hence A ⊆ JτK) as the domain of f (see Section 4.3).

4.3 Semantics

Semantic domains. We assign to each type τ a set JτK together with an implicit
σ-algebra Στ on that set. Additionally, we assign a set JΓ K to each context
Γ = {xi : τi}i∈[n]. Concretely, we have J1K = 1 := {()} with Σ1 = {∅, ()},
JRK = R and ΣR = B. The remaining semantic domains are outlined in Figure 5.



Jτ [ ]K =
⋃
i∈N

JτKi Στ [] is generated by
⋃
i∈N

{
i∏

j=1

Sj

∣∣∣∣∣ Sj ∈ Στ
}

Jτ1 × · · · × τnK =
n∏
i=1

JτiK Στ1×···×τn is generated by

{
n∏
i=1

Si

∣∣∣∣∣ Si ∈ Στi
}

JΓ K =
n∏
i=1

(xi : JτiK) ΣΓ is generated by

{
n∏
i=1

(xi : Si)

∣∣∣∣∣ Si ∈ Στi
}

Fig. 5. Semantic domains for types

J()K1(σ)(S) = [() ∈ S] JrKR(σ)(S) = [r ∈ S] JxKτ (σ)(S) = [σ[x] ∈ S]

J(e1, . . . , en)Kτ1×···×τn = Je1Kτ1× · · ·×JenKτn Je[i]Kτi = JeKτ1×···×τn >=> λt.δ(t[i])

Je1/e2KR = Je1KR×Je2KR >=> λ(x, y).

{
δ(x/y) y 6= 0

δ(⊥) y = 0

Je1[e2]Kτ = Je1Kτ []×Je2KR >=> λ(t, i).

{
δ(t[i]) i ∈ N, i < |t|
δ(⊥) otherwise

Je1[e2 7→ e3]Kτ [] = Je1Kτ []×Je2KR×Je3Kτ >=> λ(t, i, v).

{
δ(t[i 7→ v]) i ∈ N, i < |t|
δ(⊥) otherwise

Jarray(e1, e2)Kτ [] = Je1KR×Je2Kτ >=> λ(n, v).

{
δ(v!n) n ∈ N

δ(⊥) otherwise

Fig. 6. The semantics of expressions. v!n stands for the n-tuple (v, . . . , v). t[i] stands
for the i-th element (0-indexed) of the tuple t and t[i 7→ v] is the tuple t, where the
i-th element is replaced by v. |t| is the length of a tuple t. σ stands for a program state
over all variables in some Γ , with σ ∈ JΓ K.

Expressions. Figure 6 assigns to each expression e typed by Γ ` e : τ a proba-
bility kernel JeKτ : JΓ K 7→ JτK. When τ is irrelevant or clear from the context, we
may drop it and write JeK. The formal interpretation of JΓ K 7→ JτK is explained
in Section 3.3 Note that Figure 6 is incomplete, but extending it is straightfor-
ward. When we need to evaluate multiple terms (as in (e1, . . . , en)), we combine
the results using ×. This makes sure that in the presence of exceptions, the first
exception that occurs will have priority over later exceptions. In addition, deter-
ministic functions (like x + y) are lifted to probabilistic functions by the Dirac
delta (e.g. δ(x + y)) and incomplete functions (like x/y) are lifted to complete
functions via the explicit error state ⊥.

3 As a quick and intuitive reminder, κ : A 7→ B means that for every a ∈ A, κ(a) will
be a distribution over B, where B is B enriched with exception states. Hence, κ(a)
may have weight on elements of B, on exception states, or on both.



JflipKR7→R = λp.

{
p · δ(1) + (1− p) · δ(0) p ∈ [0, 1]

δ(⊥) otherwise

JuniformKR 7→R = λ(l, r).

{
λS. 1

r−lλ([l, r] ∩ S) l < r

δ(⊥) otherwise

JsampleFromf Kτ 7→R = λp.

{
λS.

∫
x∈R∩S f(p)(x)λ(dx) p ∈ A

δ(⊥) p /∈ A
Jλx.{P ; return e; }Kτ1 7→τ2 = λv.δ ({x 7→ v}) >=> JP K >=> Je2Kτ2

Fig. 7. The semantics of functions.

JskipK = δ Jx := eK = Jx = eK = δ×JeK >=> λ(σ, v).δ(σ[x 7→ v])

JP1;P2K = JP1K >=> JP2K J{P}K = JP K >=> λσ′.δ(σ′(Γ ))

Jif e {P1} else {P2}K = δ×JeKR >=> λ(σ, b).

{
JP1K(σ) b 6= 0

JP2K(σ) b = 0

Jassert(e)K = δ×JeKR >=> λ(σ, b).

{
δ(σ) b 6= 0

δ(⊥) b = 0

Jobserve(e)K = δ×JeKR >=> λ(σ, b).

{
δ(σ) b 6= 0

δ( ) b = 0

Fig. 8. The semantics of programs in our probabilistic language. Here, σ[x 7→ v] results
in σ with the value stored under x updated to v. σ′(Γ ) selects only those variables from
σ′ that occur in Γ , meaning {xi 7→ vi}i∈I({xi : τi}i∈I′) = {xi 7→ vi}i∈I∩I′ .

Figure 7 assigns to each function F typed by ` F : τ1 7→ τ2 a probability
kernel JF Kτ1 7→τ2 : Jτ1K 7→ Jτ2K. In the semantics of flip, δ(1) : ΣR → [0,∞] is a
measure on R, and p · δ(1) rescales this measure pointwise. Similarly, the sum
p · δ(1) + (1 − p) · δ(0) is also meant pointwise, resulting in a measure on R.
Finally, λp. p · δ(1) + (1− p) · δ(0) is a kernel with source [0, 1] and target R. For
sampleFromf (e), remember that f(p)(·) is a probability density function.

Statements. Figure 8 assigns to each statement P with Γ
P
Γ ′ a probability

kernel JP K : JΓ K 7→ JΓ ′K. Note the use of × in δ×JeK, which allows evaluating e
while keeping the state σ in which e is being evaluated. Intuitively, if evaluating
e results in an exception from X , the previous state σ is irrelevant, and the result
of δ×JeK will be that exception from X .

While loop. To define the semantics of the while loop while e {P}, we introduce
a kernel transformer Jwhile e {P}Ktrans : (JΓ K 7→ JΓ K) → (JΓ K 7→ JΓ K) that
transforms the semantics for n runs of the loop to the semantics for n+ 1 runs



of the loop. Concretely,

Jwhile e {P}Ktrans(κ) = δ×JeK >=> λ(σ, b).

{
JP K(σ)�= κ b 6= 0

δ(σ) b = 0

This semantics first evaluates e, while keeping the program state around using δ.
If e evaluates to 0, the while loop terminates and we return the current program
state σ. If e does not evaluate to 0, we run the loop body P and feed the result
to the next iteration of the loop, using κ.

We can then define the semantics of while e {P} using a special fixed point
operator fix : ((A 7→ A) → (A 7→ A)) → (A 7→ A), defined by the pointwise
limit fix(∆) = limn→∞∆n(			), where 			:= λσ. δ(	) and ∆n denotes the n-fold
composition of ∆. ∆n(			) puts all runs of the while loop that do not terminate
within n steps into the state 	. In the limit, 	 only has weight on those runs of
the loop that never terminate. fix(∆) is only defined if its pointwise limit exists.
Making use of fix, we can define the semantics of the while loop as follows:

Jwhile e {P}K = fix
(
Jwhile e {P}Ktrans

)
Lemma 7. For ∆ as in the semantics of the while loop, and for each σ and
each S, the limit limn→∞∆n(			)(σ)(S) exists.

Lemma 7 holds because increasing n may only shift probability mass from
	 to other states (we provide a formal proof in Appendix B). Kozen shows a
different way of defining the semantics of the while loop [23], using least fixed
points. Lemma 8 describes the relation of the semantics of our while loop to the
semantics of the while loop of [23]. For more details on the formal interpretation
of Lemma 8 and for its proof, see Appendix B.

Lemma 8. In the absence of exception states, and using sub-probability kernels
instead of distribution transformers, the definition of the semantics of the while
loop from [23] is equivalent to ours.

Theorem 2. The semantics of each expression JeK and statement JP K is indeed
a probability kernel.

Proof. The proof proceeds by induction. Some lemmas that are crucial for the
proof are listed in Appendix C. Conveniently, most functions that come up in
our definition are continuous (like a+b) or continuous except on some countable
subset (like a

b ) and thus measurable.

4.4 Recursion

To extend our language with recursion, we apply the same ideas as for the while
loop. Given the source code of a function F that uses recursion, we define its
semantics in terms of a kernel transformer JF Ktrans. This kernel transformer takes



δ×
s
!flip

(
1

2

){
>=> λ(σ, b).

{(
κ×J1K >=> λ(x, y). δ

(
x+ y

))
(σ) b 6= 0

J0K(σ) b = 0

Fig. 9. Kernel transformer JgeomKtrans(κ) for geom given in Listing 11.

semantics for F up to a recursion depth of n and returns semantics for F up to
recursion depth n+1. Formally, JF Ktrans(κ) follows the usual semantics, but uses
κ as the semantics for recursive calls to F (we will provide an example shortly).
Finally, we define the semantics of F by JF K := fix

(
JF Ktrans

)
. Just as for the

while loop, fix
(
JF Ktrans

)
is well-defined because stepping from recursion depth n

to n+1 can only shift probability mass from 	 to other states. We note that we
could generalize our approach to mutual recursion. geom(){

if !flip( 1
2
){

return geom()+1;

}else{

return 0;

}

}

Listing 11. Geomet-
ric distribution

To demonstrate how we define the kernel trans-
former, consider the recursive implementation of the
geometric distribution in Listing 11 (to simplify pre-
sentation, Listing 11 uses early return). Given seman-
tics κ for geom : 1 7→ R up to recursion depth n, we
can define the semantics of geom up to recursion depth
n+ 1, as illustrated in Figure 9.

4.5 Higher-order Functions

Our language cannot express higher-order functions. When trying to give se-
mantics to higher-order probabilistic programs, an important step is to define a
σ-algebra on the set of functions from real numbers to real numbers. Unfortu-
nately, no matter which σ-algebra is picked, function evaluation (i.e. the function
that takes f and x as arguments and returns f(x)) is not measurable [1]. This
is a known limitation that previous work has looked into (e.g. [35] address it by
restricting the set of functions to those expressible by their source code).

A promising recent approach is replacing measurable spaces by quasi-Borel
spaces [16]. This allows expressing higher-order functions, at the price of replac-
ing the well-known and well-understood measurable spaces by a new concept.

4.6 Non-determinism

To extend our language with non-determinism, we may define the semantics of
expressions, functions and statements in terms of sets of kernels. For an expres-
sion e typed by Γ ` e : τ , this means that JeKτ ∈ P (JΓ K 7→ JτK), where P (S)
denotes the power set of S. Lifting our semantics to non-determinism is mostly
straightforward, except for loops. There, Jwhile e {P}K contains all kernels of
the form limn→∞(∆1 ◦ · · · ◦ ∆n)(			), where ∆i ∈ Jwhile e {P}Ktrans. Previous
work has studied non-determinism in more detail, see e.g. [21,22].



5 Properties of Semantics

We now investigate two properties of our semantics: commutativity and associa-
tivity. These are useful in practice, e.g. because they enable rewriting programs
to a form that allows for more efficient inference [5].

In this section, we write e1 ' e2 when expressions e1 and e2 are equivalent
(i.e. when Je1K = Je2K). Analogously, we write P1 ' P2 for JP1K = JP2K.

5.1 Commutativity

In the presence of exception states, our language cannot guarantee commutativ-
ity of expressions such as e1 + e2. This is not surprising, as in our semantics the
first exception bypasses all later exceptions.
Lemma 9. For function F (){while 1 {skip}; return 0},

1

0
+ F () 6' F () + 1

0

Formally, this is because if we evaluate 1
0 first, we only have weight on ⊥.

If instead, we evaluate F () first, we only have weight on 	, by an analogous
calculation. A more detailed proof is included in Appendix D.

However, the only reason for non-commutativity is the presence of exceptions.
Assuming that e1 and e2 cannot produce exceptions, we obtain commutativity:
Lemma 10. If Je1K(σ)(X ) = Je2K(σ)(X ) = 0 for all σ, then e1 ⊕ e2 ' e2 ⊕ e1,
for any commutative operator ⊕.

The proof of Lemma 10 (provided in Appendix D) relies on the absence of
exceptions and Fubini’s Theorem. This commutativity result is in line with the
results from [34], which proves commutativity in the absence of exceptions.

In the analogous situation for statements, we cannot assume commutativ-
ity P1;P2 ' P2;P1, even if there is no dataflow from P1 to P2. We already
illustrated this in Listing 10, where swapping two lines changes the program
semantics. However, in the absence of exceptions and dataflow from P1 to P2,
we can guarantee P1;P2 ' P2;P1.

5.2 Associativity

A careful reader might suspect that since commutativity does not always hold
in the presence of exceptions, a similar situation might arise for associativity of
some expressions. As an example, can we guarantee e1+(e2+e3) ' (e1+e2)+e3,
even in the presence of exceptions? The answer is yes, intuitively because excep-
tions can only change the behavior of a program if the order of their occurrence is
changed. This is not the case for associativity. Formally, we derive the following:

Lemma 11. e1 ⊕ (e2 ⊕ e3) ' (e1 ⊕ e2)⊕ e3, for any associative operator ⊕.
We include notes on the proof of Lemma 11 in Appendix D, mainly relying on

the associativity of × (Lemma 6). Likewise, sequential composition is associative:
(P1;P2);P3 ' P1; (P2;P3). This is due to the associativity of >=> (Lemma 5).



5.3 Adding the score Primitive

Some languages include the primitive score, which allows to increase or decrease
the probability of a certain event (or trace) [34,35].

x:=flip( 1
2
);

if x=1 {

score(2);

}

return x;

Listing 12.
Using score

Listing 12 shows an example program using score. With-
out normalization, it returns 0 with probability 1

2 and 1 with
“probability” 1

2 · 2 = 1. After normalization, it returns 0 with
probability 1

3 and 1 with probability 2
3 . Because score al-

lows decreasing the probability of a specific event, it renders
observe unnecessary. In general, we can replace observe(e) by
score(e 6= 0). However, performing this replacement means
losing the explicit knowledge of the weight on  . x:=gauss(0,1);

score(
√
2πex

2/2);

return x;

Listing 13. Reshap-
ing a distribution.

score can be useful to modify the shape of a given
distribution. For example, Listing 13 turns the distri-
bution of x, which is a Gaussian distribution, into the
Lebesgue measure λ, by multiplying the density of x
by its inverse. Hence, the density of x at any location
is 1. Note that the distribution over x cannot be described by a probability
measure, because e.g. the “probability” that x lies in the interval [0, 2] is 2.

i:=0;

while 1 {

if i=0 {

score(2);

}else{

score( 1
2
);

}

i=1-i;

}

Listing 14.
score vs non-
termination

Unfortunately, termination in the presence of score is
not well-defined, as illustrated in Listing 14. In this pro-
gram, the only non-terminating trace keeps changing its
weight, switching between 1 and 2. In the limit, it is impos-
sible to determine the weight of non-termination.

Hence, allowing the use of the score primitive
only makes sense after abolishing the tracking of non-
termination (	), which can be achieved by only measuring
sets that do not contain non-termination. Formally, this
means restricting the semantics of expressions e typed by
Γ ` e : τ to JeKτ : Γ 7→

(
JτK− {	}

)
. Intuitively, abolish-

ing non-termination means that we ignore non-terminating
runs (these result in weight on non-termination). After doing this, we can give
well-defined semantics to the score primitive.

The typing rule and semantics of score are:
Γ ` e : R

Γ
score(e)

Γ
and Jscore(e)K = δ×JeKR >=> λ(σ, c).c ∗ δ(σ)

After including score into our language, the semantics of the language can
no longer be expressed in terms of probability kernels as stated in Theorem 2,
because the probability of any event can be inflated beyond 1. Instead, the
semantics must be expressed in terms of s-finite kernels.

Theorem 3. After adding the score primitive and abolishing non-termination,
the semantics of each expression JeK and statement JP K is an s-finite kernel.

Proof. As for Theorem 2, the proof proceeds by induction. Most parts of the
proof are analogous (e.g. >=> preserves s-finite kernels instead of probability



Work Language Semantics Typed Higher-order Loops Constraints
We Imperative Probability kernels Typed First-order Loops (FP) Yes
[4] Functional Sub-probability kernels Untyped Higher-order Recursion (FP) Yes
[23] Imperative Distribution transformers Limited First-order Loops (LFP) No
[24] Imperative Sub-probability kernels Limited First-order Loops (LFP) Yes
[28] Imperative weakest precondition Untyped First-order Loops (LFP) Yes
[33] Declarative Probability kernels Limited First-order Loops (LFP) No
[34] Functional s-finite kernels Typed First-order Counting measure score(x)
[35] Functional Measurable functions Typed Higher-order No score(x)

Table 3. Comparison of existing semantics to ours. When adding score to our language
(Section 5.3), our semantics use s-finite kernels (not probability kernels).

kernels). For while loops, the limit still exists (Lemma 7 still holds), but it is not
bounded from above anymore. The limit indeed corresponds to an s-finite kernel
because the limit of strictly increasing s-finite kernels is an s-finite kernel.

score(2);

assert(false);

Listing 15. Inter-
action of score and
assert

In the presence of score, we can still talk about the
interaction of different exceptions, assuming that we do
track different types of exceptions (e.g. division by zero
and out of bounds access of arrays). Then, we keep the
commutativity and associativity properties studied in
the previous sections, because these still hold for s-finite kernels.

while 1 {

score(2);

assert(flip( 1
2
));

}

Listing 16. In-
teraction of score,
assert and loops

Listing 15 shows an interaction of score with assert.
As one would expect, our semantics will assign weight
2 to ⊥ in this case. If the two statements are switched,
our semantics will ignore score(2) and assign weight 1
to ⊥. Hence again, commutativity does not hold.

Listing 16 shows a program that keeps increasing
the probability of an error. In every loop iteration, there
is a “probability” of 1 of running into an error. Overall, Listing 16 results in weight
∞ on state ⊥.

6 Related Work

Kozen provides classic semantics to probabilistic programs [23]. We follow his
main ideas, but deviate in some aspects in order to introduce additional features
or to make our presentation cleaner. The semantics by Hur et al. [19] is heavily
based on [23], so we do not go into more detail here. Table 3 summarizes the
comparison of our approach to that of others.

Kernels. Like our work, most modern approaches use kernels (i.e., functions
from values to distributions) to provide semantics to probabilistic programs
[4,24,33,34]. Borgström et al. [4] use sub-probability kernels on (symbolic) ex-
pressions. Staton [34] uses s-finite kernels to capture the semantics of the score

primitive (when we discuss score in Section 5.3, we do the same).



In the classic semantics of [23], Kozen uses distribution transformers (i.e.,
functions from distributions to distributions). For later work [24], Kozen also
switches to sub-probability kernels, which has the advantage of avoiding redun-
dancies. A different approach uses weakest precondition to define the semantics,
as in [28]. Staton et al. [35] use a different concept of measurable functions
A→ P (R≥0×B) (where P (S) denotes the set of all probability measures on S).

Typing. Some probabilistic languages are untyped [4,28], while others are limited
to just a single type: Rn [23,24] or

⋃∞
i=1 Ni ∪ N∞ [33]. Some languages provide

more interesting types including sum types, distribution types and tuples [34,35].
We allow tuples and array types, and we could easily account for sum types.

Loops. Because the semantics of while loops is not always straightforward, some
languages avoid while loops and recursion altogether [35]. Borgström et al. handle
recursion instead of while loops, defining the semantics in terms of a fixed point
[4]. Many languages handle while loops by least fixed points [23,24,28,33]. Staton
defines while loops in terms of the counting measure [34], which is similar to
defining them by a fixed point. We define the semantics of while loops in terms
of a fixed point, which avoids the need to prove the least fixed point exists (still,
the classic while loop semantics of [23] and our formulation are equivalent).

Most languages do not explicitly track non-termination, but lose probabil-
ity weight by non-termination [4,23,24,34]. This missing weight can be used to
identify the probability of non-termination, but only if other exceptions (such
as fail in [24] or observation failure in [4]) do not also result in missing weight.
The semantics of [33] are tailored to applications in networks and lose non-
terminating packet histories instead of weight (due to a particular least fixed
point construction of Scott-continuous maps on algebraic and continuous di-
rected complete partial orders). Some works define non-termination as missing
weight in the weakest precondition [28]. Specifically, the semantics in [28] can
also explicitly express probability of non-termination or ending up in some state
(using the separate construct of a weakest liberal precondition). We model non-
termination by an explicit state 	, which has the advantage that in the context
of lost weight, we know what part of that lost weight is due to non-termination.

Kaminski et al. [21] investigate the run-time of probabilistic program with
loops and fail (interpreted as early termination), but without observations. In
[21], non-termination corresponds to an infinite run-time.

Error states. Many languages do not consider partial functions (like fractions
a
b ) and thus never run into an exception state [23,24,33]. Olmedo et al. [28] do
not consider partial functions, but support the related concept of an explicit
abort. The semantics of abort relies on missing weight in the final distribution.
Some languages handle expressions whose evaluation may fail using sum types
[34,35], forcing the programmer to deal with errors explicitly (we discuss the
disadvantages of this approach at Listing 6). Formally, a sum type A + B is a
disjoint union of the two sets A and B. Defining the semantics of an expression in
terms of the sum type A+{⊥} allows that expression to evaluate to either a value



a ∈ A or to ⊥. Borgström et al. [4] have a single state fail expressing exceptions
such as dynamically detected type errors (without forcing the programmer to
deal with exceptions explicitly). Our semantics also uses sum types to handle
exceptions, but the handling is implicit, by defining semantics in terms of (>=>)
(which defines how exceptions propagate in a program) instead of (;).

Constraints. To enforce hard constraints, we use the observe(e) statement, which
puts the program into a special failure state  if it does not satisfy e. We can
encode soft constraints by observe(e), where e is probabilistic (this is a general
technique). Borgström et al. [4] allow both soft constraints that reduce the prob-
ability of some program traces and hard constraints whose failure leads to the
error state fail. Some languages can handle generalized soft constraints: they can
not only decrease the probability of certain traces using soft constraints, but also
increase them, using score(x) [34,35]. We investigate the consequences of adding
score to our language in Section 5.3. Kozen [24] handles hard (and hence soft)
constraints using fail (which results in a sub-probability distribution). Some
languages can handle neither hard nor soft constraints [23,33]. Note though that
the semantics of ProbNetKAT in [33] can drop certain packages, which is a sim-
ilar behavior. Olmedo et al. [28] handle hard (and hence soft) constraints by a
conditional weakest precondition that tracks both the probability of not failing
any observation and the probability of ending in specific states. Unfortunately,
this work is restricted to discrete distributions and is specifically designed to
handle observation failures and non-termination. Thus, it is not obvious how to
adapt the semantics if a different kind of exception is to be added.

Interaction of different exception. Most existing work handles at least some
exceptions by sub-probability distributions [4,23,24,33,34]. Then, any missing
weight in the final distribution must be due to exceptions. However, this leads
to a conflation of all exceptions handled by sub-probability distributions (for the
consequences of this, see, e.g., our discussion of Listing 8). Note that semantics
based on sub-probability kernels can add more exceptions, but they will simply
be conflated with all other exceptions.

Some previous work does not (exclusively) rely on sub-probability distribu-
tions. Borgström et al. [4] handle errors implicitly, but still use sub-probability
kernels to handle non-termination and score. Olmedo et al. can distinguish non-
termination (which is conflated with exception failure) from failing observations
by introducing two separate semantic primitives (conditional weakest precondi-
tion and conditional liberal weakest precondition) [28]. Because their solution
specifically addresses non-termination, it is non-trivial to generalize this treat-
ment to more than two exception states. By using sum types, some semantics
avoid interactions of errors with non-termination or constraint failures, but still
cannot distinguish the latter [34,35]. Note that semantics based on sum types can
easily add more exceptions (although it is impossible to add non-termination).
However, the interaction of different exceptions cannot be observed, because the
programmer has to handle exceptions explicitly.



To the best of our knowledge, we are the first to give formal semantics to pro-
grams that may produce exceptions in this generality. One work investigates as-
sertions in probabilistic programs, but explicitly disallows non-terminating loops
[32]. Moreover, the semantics in [32] are operational, leaving the distribution (in
terms of measure theory) of program outputs unclear. Cho et al. [8] investigate
the interaction of partial programs and observe, but are restricted to discrete
distributions and to only two exception states. In addition, this investigation
treats these two exception states differently, making it non-trivial to extend the
results to three or more exception states. Katoen et al. [22] investigate the intu-
itive problems when combining non-termination and observations, but restrict
their discussions to discrete distributions and do not provide formal semantics.
Huang [17] treats partial functions, but not different kinds of exceptions. In gen-
eral, we know of no probabilistic programming language that distinguishes more
than two different kinds of exceptions. Distinguishing two kinds of exceptions is
simpler than three, because it is possible to handle one exception as an explicit
exception state and the other one by missing weight (as e.g. in [4]).

Cousot and Monerau [9] provide a trace semantics that captures probabilistic
behavior by an explicit randomness source given to the program as an argument.
This allows handling non-termination by non-terminating traces. While the work
does not discuss errors or observation failure, it is possible to add both. However,
using an explicit randomness source has other disadvantages, already discussed
by Kozen [23]. Most notably, this approach requires a distribution over the ran-
domness source and a translation from the randomness source to random choices
in the program, even though we only care about the distribution of the latter.

7 Conclusion

In this work we presented an expressive probabilistic programming language
that supports important features such as mixing continuous and discrete dis-
tributions, arrays, observations, partial functions and while-loops. Unlike prior
work, our semantics distinguishes non-termination, observation failures and error
states. This allows us to investigate the subtle interaction of different exceptions,
which is not possible for semantics that conflate different kinds of exceptions.
Our investigation confirms the intuitive understanding of the interaction of ex-
ceptions presented in Section 2. However, it also shows that some desirable prop-
erties, like commutativity, only hold in the absence of exceptions. This situation
is unavoidable, and largely analogous to the situation in deterministic languages.

Even though our semantics only distinguish three exception states, it can
be trivially extended to handle any countable set of exception states. This al-
lows for an even finer-grained distinction of e.g. division by zero, out of bounds
array accesses or casting failures (in a language that allows type casting). Our
semantics also allows enriching exceptions with the line number that the excep-
tion originated from (of course, this is not possible for non-termination). For an
uncountable set of exception states, an extension is possible but not trivial.
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A Proofs for preliminaries

In this section, we provide lemmas, proofs and some definitions that were left out
or cut short in Section 3. For a more detailed introduction into measure theory,
we recommend the book A crash course on the Lebesgue integral and measure
theory [7].

A.1 Measures

Definition 3. Let (A,ΣA) be a measurable space and µ : ΣA → [0,∞] a measure
on A.

– We call µ s-finite if µ can be written as a countable sum
∑
i∈N µi of sub-

probability measures µi.
– We call µ σ-finite if A =

⋃
i∈N Ai for Ai ∈ ΣA, with µ(Ai) <∞.

– We call µ finite if µ(A) <∞.
– We call µ a sub-probability measure if µ(A) ≤ 1.
– We call µ a probability measure if µ(A) = 1.

Note that for a σ-finite measure µ, µ(A) =∞ is possible, even though µ(Ai) <∞
for all i. As an example, the Lebesgue measure is σ-finite because R =

⋃
i∈N[−i, i]

with λ([−i, i]) = 2 ∗ i, but λ(R) =∞.

Lemma 12. The following definition of s-finite measures is equivalent to our
definition of s-finite measures (the difference is that the µis are only required to
be finite):
We call µ : ΣA → [0,∞] an s-finite measure if it can be written as µ =

∑
i∈N µi

for finite measures µi : ΣA → [0,∞].

Proof. Since any sub-probability measure is finite, one direction is trivial. For
the other direction, let µ =

∑
i∈N µ

′
i for finite measures µ′i. Obviously, µ ≥ 0,

µ(∅) = 0 and µ(
⋃
i∈N Ai) =

∑
i∈N Ai for mutually disjoint Ai ∈ ΣA, so µ is a

measure. To show that µ can be written as a sum of sub-probability measures,
let ni := dµ′i(A)e. Then, µ =

∑
i∈N µ

′
i =

∑
i∈N

ni
ni
µ′i =

∑
i∈N

∑
j∈[ni]

1
ni
µ′i. We

let µi := 1
ni
µ′i ≤ 1.

Lemma 13. Any σ-finite measure µ : ΣA → [0,∞] is s-finite.

Proof. Since µ is σ-finite, A =
⋃
i∈N Ai with Ai ∈ ΣA and µ(Ai) <∞. Without

loss of generality, assume that the Ai form a partition of A. Then, µ(S) =∑
i∈N µ(S ∩ Ai), with µ(· ∩ Ai) < ∞. Thus, µ is a countable sum of finite

measures.

Definition 4. The counting measure c : B → [0,∞] is defined by

c(S) =

{
|S| S finite
∞ otherwise



Definition 5. The infinity measure µ : B → [0,∞] is defined by

µ(S) =

{
0 S = ∅
∞ otherwise

Lemma 14. Neither the counting measure nor the infinity measure are s-finite.

Proof. For the counting measure c, assume (toward a contradiction) c =
∑
i∈N ci.

We have R = {r ∈ R | c({r}) > 0} =
⋃
i∈N{r ∈ R | ci({r}) > 0} =⋃

i∈N

⋃
n∈N{r ∈ R | ci({r}) > 1

n}. Because R is uncountable, there must be
i, n ∈ N for which S := {r ∈ R | ci({r}) > 1

n} is uncountable. Thus for any
measurable, countably infinite S′ ⊆ S, ci(S′) = ∞, which means that ci is not
finite. Proceed analogously for the infinity measure.

Lemma 15. The measure µ : B → [0,∞] with µ(S) =

{
0 λ(S) = 0
∞ λ(S) > 0

}
is s-

finite but not σ-finite.

Proof. µ =
∑
i∈N λ, and λ is s-finite, so µ is s-finite. Assume (toward a contra-

diction) that µ is σ-finite. Then R =
⋃
i∈N Ai with Ai ∈ B and µ(Ai) <∞. Thus,

µ(Ai) = 0 and hence µ(R) = µ(
⋃
i∈N Ai) ≤

∑
i∈N µ(Ai) = 0, a contradiction.

Lemma 16.

∀S ∈ ΣA×B : (µ× µ′)(S) =
∫
a∈A

µ′({b ∈ B | (a, b) ∈ S})µ(da)

=

∫
b∈B

µ({a ∈ A | (a, b) ∈ S})µ′(db)

∀S ∈ ΣA×B : (µ×µ′)(S) =
∫
a∈A

µ′({b ∈ B | (a, b) ∈ S})µ(da)

=

∫
b∈B

µ({a ∈ A | (a, b) ∈ S})µ′(db)

Proof.

(µ× µ′)(S) =
∫
a∈A

∫
b∈B

[(a, b) ∈ S]µ′(db)µ(da)

=

∫
a∈A

∫
b∈B

[b ∈ {b′ ∈ B | (a, b′) ∈ S}]µ′(db)µ(da)

=

∫
a∈A

µ′({b′ ∈ B | (a, b′) ∈ S})µ(da)



(µ× µ′)(S) =
∫
a∈A

∫
b∈B

[(a, b) ∈ S]µ′(db)µ(da)

=

∫
b∈B

∫
a∈A

[(a, b) ∈ S]µ(da)µ′(db) Fubini

= . . .

=

∫
b∈B

µ({a′ ∈ A | (a′, b) ∈ S})µ′(db)

In the second line, we have used that (a, b) ∈ S ⇐⇒ b ∈ {b′ ∈ B | (a, b′) ∈ S}.
The proof works analogously for ×.

Lemma 17. Let δ : A 7→ A, κ : A 7→ B. Then,

(δ×κ)(a)(S) = κ(a)({b ∈ B | (a, b) ∈ S})

Proof.

(δ×κ)(a)(S) =
∫
b∈B

δ(a)({a′ ∈ A | (a′, b) ∈ S})κ(a)(db) Lemma 16

=

∫
b∈B

[(a, b) ∈ S]κ(a)(db)

= κ(a)({b ∈ B | (a, b) ∈ S})

Lemma 1. For measures µ : ΣA → [0,∞], µ′ : ΣB → [0,∞], let S ∈ ΣA and
T ∈ ΣB. Then, (µ× µ′)(S × T ) = µ(S) · µ′(T ).

Proof.

(µ× µ′)(S × T ) =
∫
a∈A

µ′({b ∈ B | (a, b) ∈ S × T})µ(da) Lemma 16

=

∫
a∈A

µ′
({

T a ∈ S
∅ otherwise

})
µ(da)

=

∫
a∈S

µ′(T )µ(da)

= µ(S) ∗ µ′(T )

Lemma 2. × and × for s-finite measures are associative, left- and right-dis-
tributive and preserve (sub-)probability and s-finite measures.

Proof. Remember that (µ× µ′)(S) =
∫
a∈A

∫
b∈B [(a, b) ∈ S]µ

′(db)µ(da) and that
(µ×µ′)(S) =

∫
a∈A

∫
b∈B [(a, b) ∈ S]µ

′(db)µ(da). Preservation of (sub-)probability
measures is trivial. Distributivity and preservation of s-finite measures are easily
established by properties of the Lebesgue integral in Lemma 19.
For associativity, let µ : ΣA → [0,∞], µ : ΣB → [0,∞] and µ : ΣC → [0,∞].

((µ× µ′)× µ′′)(S)



=

∫
c∈C

(µ× µ′)({t ∈ A×B | (t, c) ∈ S})µ′′(dc) Lemma 16

=

∫
c∈C

∫
a∈A

∫
b∈B

[(a, b) ∈ {t ∈ A×B | (t, c) ∈ S}]µ′(db)µ(da)µ′′(dc)

=

∫
c∈C

∫
a∈A

∫
b∈B

[(a, b, c) ∈ S]µ′(db)µ(da)µ′′(dc)

=

∫
a∈A

∫
b∈B

∫
c∈C

[(a, b, c) ∈ S]µ′′(dc)µ′(db)µ(da) Fubini

=

∫
a∈A

∫
b∈B

∫
c∈C

[(b, c) ∈ {t ∈ B × C | (a, t) ∈ S}]µ′′(dc)µ′(db)µ(da)

=

∫
a∈A

(µ′ × µ′′)({t ∈ B × C | (a, t) ∈ S})µ(da)

=(µ× (µ′ × µ′′))(S)µ(da) Lemma 16

The proof proceeds analogously for ×.
Lemma 18. Let (A,ΣA) and (B,ΣB) be measurable spaces. Consider measures
µ, µ1, µ2 : ΣA → [0,∞] and ν, ν1, ν2 : ΣB → [0,∞]. We assume that ν1 ≤ ν2 and
µ1 ≤ µ2 hold pointwise. Then,

µ×ν1 ≤ µ×ν2
µ1×ν ≤ µ2×ν

Proof. Let S ∈ ΣA×B and ν1 ≤ ν2. Then, we have

ν1 ≤ ν2

=⇒
∫
b∈B

[(a, b) ∈ S]ν1(db)︸ ︷︷ ︸
=:f(a)

≤
∫
b∈B

[(a, b) ∈ S]ν2(db)︸ ︷︷ ︸
=:g(a)

Lemma 19

=⇒
∫
a∈A

f(a)µ(da) ≤
∫
a∈A

g(a)µ(da) Lemma 19

=⇒ (µ×ν1)(S) ≤ (µ×ν2)(S)

The proof for µ1×ν ≤ µ2×ν is similar.

A.2 Lebesgue integral

Lemma 19. Let (A,ΣA) and (B,ΣB) be measurable spaces, E ∈ ΣA and E′ ∈
ΣB measurable sets, f, fi, g : A → R and h : A × B → R measurable functions,
µ, µi, ν : ΣA → [0,∞] and µ′ : ΣB → [0,∞] measures.∫

a∈E

f(a)µ(da) ∈ [0,∞]



0 ≤ f ≤ g ≤ ∞ =⇒
∫
a∈E

f(a)µ(da) ≤
∫
a∈E

g(a)µ(da)

µ ≤ ν =⇒
∫
a∈E

f(a)µ(da) ≤
∫
a∈E

f(a)ν(da)

∞∑
n=1

∫
a∈E

fn(a)µ(da) =

∫
a∈E

∞∑
n=1

fn(a)µ(da)

∫
a∈E

∫
b∈E′

f(a, b)µ′(db)µ(da) =

∫
b∈E′

∫
a∈E

f(a, b)µ′(da)µ(db) µ, µ′ σ-finite

∫
a∈E

f(a)

( ∞∑
n=1

µi

)
(da) =

∞∑
n=1

∫
a∈E

f(a)µi(da)

∫
a∈E

f(a)δ(x)(da) =f(x) x ∈ E

Finally, if f1 ≤ f2 ≤ · · · ≤ ∞, we have

lim
n→∞

∫
a∈E

fn(a)µ(da) =

∫
a∈E

lim
n→∞

fn(a)µ(da)

Proof. The following properties can be proven for simple functions and limits of
simple functions (this suffices):∫

a∈E
f(a)

( ∞∑
n=1

µi

)
(da) =

∞∑
n=1

∫
a∈E

f(a)µi(da)

µ ≤ ν =⇒
∫
a∈E

f(a)µ(da) ≤
∫
a∈E

f(a)ν(da)∫
a∈E f(a)δ(x)(da) = f(x) is straightforward. For the other properties, see [31].

Theorem 1 (Fubini’s theorem). For s-finite measures µ : ΣA → [0,∞] and
µ′ : ΣB → [0,∞] and any measurable function f : A×B → [0,∞],∫

a∈A

∫
b∈B

f(a, b)µ′(db)µ(da) =

∫
b∈B

∫
a∈A

f(a, b)µ(da)µ′(db)

For s-finite measures µ : ΣA → [0,∞] and µ′ : ΣB → [0,∞] and any measurable
function f : A×B → [0,∞],∫

a∈A

∫
b∈B

f(a, b)µ′(db)µ(da) =

∫
b∈B

∫
a∈A

f(a, b)µ(da)µ′(db)

Proof. Let µ =
∑
i∈N µi and µ

′ =
∑
i∈N µ

′
i for bounded measures µi and µ′i.∫

a∈A

∫
b∈B

f(a, b)µ′(db)µ(da)



=
∑
i,j∈N

∫
a∈A

∫
b∈B

f(a, b)µ′j(db)µi(da) Lemma 19

=
∑
i,j∈N

∫
b∈B

∫
a∈A

f(a, b)µi(da)µ
′
j(db) Fubini for σ-finite measures µi, µ′j

=

∫
b∈B

∫
a∈A

f(a, b)µ(da)µ′(db)

The proof in the presence of exception state is analogous.

Lemma 20. Fubini does not hold for the counting measure c : B → [0,∞] and
the Lebesgue measure λ : B → [0,∞] (because c is not s-finite).

Proof. ∫
x∈[0,1]

∫
y∈[0,1]

[x = y]c(dy)λ(dx) =

∫
x∈[0,1]

1λ(dx) = 1∫
y∈[0,1]

∫
x∈[0,1]

[x = y]λ(dx)c(dy) =

∫
y∈[0,1]

0c(dy) = 0

A.3 Kernels

Lemma 21. Let κ1, κ′1 : A 7→ B and κ2, κ′2 : B 7→ C be s-finite kernels.
If κ1 ≤ κ′1 holds pointwise, then

κ1 >=> κ2 ≤ κ′1 >=> κ2

If κ2 ≤ κ′2 holds pointwise, then

κ1 >=> κ2 ≤ κ1 >=> κ′2

Proof. Assume κ2 ≤ κ′2. Thus, κ2 ≤ κ′2. Now, let a ∈ A, S ∈ ΣC .

(κ1 >=> κ2)(a)(S) =

∫
b∈B

κ2(b)(S)κ1(a)(db)

≤
∫
b∈B

κ′2(b)(S)κ1(a)(db) κ2 ≤ κ′2,Lemma 19

= (κ1 >=> κ′2)(a)(S)

The proof for κ1 >=> κ2 ≤ κ′1 >=> κ2 works analogously.

Lemma 3. (;) is associative, left- and right-distributive, has neutral element4 δ
and preserves (sub-)probability and s-finite kernels.
4 δ is a neutral element of (;) if (δ;κ) = (κ; δ) = κ for all kernels κ.



Proof. Remember that (f ; g)(a)(S) =
∫
b∈B g(b)(S) f(a)(db). Left- and right-dis-

tributivity and the neutral element δ follow from properties of the Lebesgue
integral in Lemma 19.
Associativity and preservation of (sub-)probability kernels is well known (see
for example [12]). For s-finite kernels f =

∑
i∈N fi and g =

∑
i∈N gi and h =∑

i∈N hi, we have (for sub-probability kernels fi, gi, hi)

(f ; g);h =

(∑
i∈N

fi

)
;

∑
j∈N

gj

 ;
∑
k∈N

hk =
∑

i,j,k∈N

(fi; gj);hk

=
∑

i,j,k∈N

fi; (gj ;hk) = f ; (g;h)

(;) preserves s-finite kernels because for s-finite kernels f and g, we have (for
sub-probability kernels fi, gi) f ; g =

∑
i,j∈N fi; gi, a sum of kernels.

Lemma 4. For f : A 7→ B and g : B 7→ C, a ∈ A and S ∈ ΣC ,

(f >=> g)(a)(S) = (f ; g)(a)(S) +
∑
x∈X

δ(x)(S)f(a)({x})

Proof.

(f >=> g)(a)(S) =

∫
b∈B

g(b)(S) f(a)(db)

=

∫
b∈B

g(b)(S) f(a)(db) +

∫
b∈X

g(b)(S) f(a)(db)

=

∫
b∈B

g(b)(S) f(a)(db) +
∑
b∈X

g(b)(S) f(a)({x})

= (f ; g)(a)(S) +
∑
x∈X

δ(x)(S)f(a)({x})

Lemma 5. >=> is associative, left-distributive (but not right-distributive), has
neutral element δ and preserves (sub-)probability and s-finite kernels.

Proof. Remember that (f >=> g)(a)(S) =
∫
b∈B g(b)(S) f(a)(db). Left-distribu-

tivity follows from the properties of the Lebesgue integral in Lemma 19. Right-
distributivity does not necessarily hold because g1 + g2(⊥) 6= g1(⊥) + g2(⊥).
Associativity for f : A 7→ B, g : B 7→ C and h : C 7→ D can be derived by

((f >=> g) >=> h)(a)(S)

=
((
f >=> g

)
;h
)
(a)(S) +

∑
x∈X

δ(x)(S)(f >=> g)(a)({x})

=
((
f ; g + λa′.λS′.

∑
x∈X

δ(x)(S′)f(a′)({x})
)
;h
)
(a)(S)+



∑
x∈X

δ(x)(S)(f >=> g)(a)({x})

=(f ; g;h)(a)(S) +
((
λa′.λS′.

∑
x∈X

δ(x)(S′)f(a′)({x})
)
;h
)
(a)(S)︸ ︷︷ ︸

=0((;) integrates over non-exception states)

+

∑
x∈X

δ(x)(S)(f >=> g)(a)({x})

=(f ; g;h)(a)(S) +
∑
x∈X

δ(x)(S)
(
(f ; g)(a)({x}) +

∑
x′∈X

δ(x′)({x})f(a)({x′})
)

=(f ; g;h)(a)(S) +
∑
x∈X

δ(x)(S)
(
(f ; g)(a)({x}) + f(a)({x})

)
=(f ; g;h)(a)(S) +

∑
x∈X

δ(x)(S)(f ;λa′.λS′.g(a′)(S′))(a)({x})+∑
x∈X

δ(x)(S)f(a)({x})

=(f ; g;h)(a)(S) +
(
f ;
(
λa′.λS′.

∑
x∈X

δ(x)(S′)g(a′)({x})
))

(a)(S)+∑
x∈X

δ(x)(S)f(a)({x})

=
(
f ;
(
g;h+ λa′.λS′.

∑
x∈X

δ(x)(S′)g(a′)({x})
))

(a)(S) +
∑
x∈X

δ(x)(S)f(a)({x})

=
(
f ;
(
g >=> h

))
(a)(S) +

∑
x∈X

δ(x)(S)f(a)({x})

=(f >=> (g >=> h))(a)(S)

Here, we have used Lemma 4, left- and right-distributivity of (;).
To show that f >=> g preserves s-finite kernels, let f : A 7→ B and g : B 7→ C

be s-finite kernels. Then, for sub-probability kernels fi,

(f >=> g)(a)(S) = (f ; g)(a)(S) +
∑
x∈X

δ(x)(S)f(a)({x})

= (f ; g)(a)(S) +
∑
x∈X

∑
i∈N

δ(x)(S)fi(a)({x})

Note that for each x ∈ X and i ∈ N, λa.λS.δ(x)(S)fi(a)({x}) is a sub-probability
kernel. Thus, f >=> g is a sum of s-finite kernels and hence s-finite.

Proving that for sub-probability kernels f and g, f >=> g is also a (sub-
)probability kernel is trivial, since we only need to show that (f >=> g)(a)(C) =
1 (or ≤ 1).

Lemma 22. Let (A,ΣA) and (B,ΣB) be measurable spaces. Let f : A × B →
[0,∞] be measurable and κ : A 7→ B be a sub-probability kernel. Then, f ′ : A →



[0,∞] defined by

f ′(a) :=

∫
b∈B

f(a, b)κ(a)(db)

is measurable.

Proof. See Theorem 20 of [30].

Lemma 23. × and × preserve (sub-)probability kernels.

Proof. Let κ : A 7→ B and κ′ : A 7→ C be (sub-)probability kernels. The fact
that (κ× κ′)(a)(·) for all a ∈ A is a (sub-)probability measure is inherited from
Lemma 2. It remains to show that (κ×κ′)(·)(S) is measurable for all S ∈ ΣB×C ,
with

(κ× κ′)(a)(S) =
∫
b∈B

∫
c∈C

[(b, c) ∈ S]κ′(a)(dc)κ(a)(db)

By Lemma 22, f ′ : A×B → [0,∞] defined by f ′(a, b) =
∫
c∈C [(b, c) ∈ S]κ

′(a)(dc)
is measurable, using the measurable function f : (A × B) × C → [0,∞] de-
fined by f((a, b), c) = [(b, c) ∈ S]. Again by Lemma 22,

∫
b∈B

∫
c∈C [(b, c) ∈

S]κ′(a)(dc)κ(a)(db) is measurable.
Proving that for (sub-)probability kernels κ : A 7→ B and κ′ : A 7→ C, κ×κ′

is a (sub-)probability kernel proceeds analogously.

Lemma 6. × and × for kernels preserve (sub-)probability and s-finite kernels,
are associative, left- and right-distributive.

Proof. Associativity, left- and right-distributivity are inherited from respective
properties of the product of measures established by Lemma 2. Sub-probability
kernels are preserved by Lemma 23.

S-finite kernels are preserved because κ × κ′ = (
∑
i∈N κi) × (

∑
i∈N κ

′
i) =∑

i,j∈N κi × κ′j (analogously for ×).

B Proofs for Semantics

Lemma 7. For ∆ as in the semantics of the while loop, and for each σ and
each S, the limit limn→∞∆n(			)(σ)(S) exists.

Proof. In general, 0 ≤ ∆n(			)(σ)(S) ≤ 1. First, we restrict the allowed argu-
ments for limn→∞∆n(			)(σ)(S) to only those S with 	∈ S. We prove by induc-
tion that ∆n+1(			) ≤ ∆n(			), meaning ∀σ : ∀S : 	∈ S =⇒ ∆n+1(			)(σ)(S) ≤
∆n(			)(σ)(S). Hence, ∆n(			) is monotone decreasing in n and lower bounded by
0, which means that the limit must exist.

As a base case, we have ∆1(			)(σ)(S) ≤ 1 = δ	(S) = ∆0(			)(σ)(S), because
	∈ S. We proceed by induction with

∆n+1(			)(σ)(S) =

(
δ×JeK >=> λ(σ, b).

{
JP K(σ)�= ∆n(			) b 6= 0
δ(σ) b = 0

})
(σ)(S)



≤
(
δ×JeK >=> λ(σ, b).

{
JP K(σ)�= ∆n−1(			) b 6= 0
δ(σ) b = 0

})
(σ)(S)

= ∆n(			)(σ)(S)

In the second line, we have used the induction hypothesis. This application is
valid because κ2 ≤ κ′2 implies κ1 >=> κ2 ≤ κ1 >=> κ′2 (Lemma 21).

We proceed analogously when we restrict the allowed arguments for the kernel
limn→∞∆n(			)(σ)(S) to only those S with 	/∈ S, proving ∆n+1(			) ≥ ∆n(			)
for that case.

Lemma 8. In the absence of exception states, and using sub-probability kernels
instead of distribution transformers, the definition of the semantics of the while
loop from [23] is equivalent to ours.

Definition 6. In [23], Kozen shows a different way of defining the semantics
of the while loop. In our notation, and in terms of probability kernels instead of
distribution transformers, that definition becomes

Jwhile e {P}K = sup
n∈N

n∑
k=0

(
Jfilter(e)K >=> JP K

)k
>=> Jfilter(¬e)K

Here, exponentiation is in terms of Kleisli composition, i.e. κ0 = δ and κn+1 =
κ >=> κn. The sum and limit are meant pointwise. Furthermore, we define
filter by the following expression (note that Jfilter(e)K and Jfilter(¬e)K are only
sub-probability kernels, not probability kernels).

Jfilter(e)K = δ×JeK >=> λ(σ, b).

{
δ(σ) b 6= 0
0 b = 0

}
Jfilter(¬e)K = δ×JeK >=> λ(σ, b).

{
δ(σ) b = 0
0 b 6= 0

}
To justify Lemma 8, we prove the more formal Lemma 24. Note that in the

presence of exceptions (e.g. P is just assert(0)), Definition 6 does not make sense,
because if

Lemma 24. For all S with S ∩ X = ∅(
n∑
k=0

(
Jfilter(e)K >=> JP K

)k
>=> Jfilter(¬e)K

)
(σ)(S) = ∆n+1(			)(σ)(S)

Proof. For n = 0, we have(
0∑
k=0

(
Jfilter(e)K >=> JP K

)k
>=> Jfilter(¬e)K

)
(σ)(S)

=

((
Jfilter(e)K >=> JP K

)0
>=> Jfilter(¬e)K

)
(σ)(S)



=
(
δ >=> Jfilter(¬e)K

)
(σ)(S)

=Jfilter(¬e)K(σ)(S)

=

(
δ×JeK >=> λ(σ′, b).

{
δ(σ′) b = 0
0 b 6= 0

})
(σ)(S)

=

(
δ×JeK >=> λ(σ′, b).

{
δ(σ′) b = 0
			 (σ′) b 6= 0

})
(σ)(S) 	/∈ S

=

(
δ×JeK >=> λ(σ′, b).

{
δ(σ′) b = 0
(JP K >=>			)(σ′) b 6= 0

})
(σ)(S) S ∩ X = ∅

=∆1(			)

For n ≥ 0, we have

(
n+1∑
k=0

(
Jfilter(e)K >=> JP K

)k
>=> Jfilter(¬e)K

)
(σ)(S)

=

((
n∑
k=0

(
Jfilter(e)K >=> JP K

)k+1
+ (Jfilter(e)K >=> P )

0

)
>=> Jfilter(¬e)K

)
(σ)(S)

=

((
n∑
k=0

(
Jfilter(e)K >=> JP K

)k+1
+ δ

)
>=> Jfilter(¬e)K

)
(σ)(S)

=

((
n∑
k=0

(
Jfilter(e)K >=> JP K

)k+1

)
>=> Jfilter(¬e)K

)
(σ)(S) + since S ∩ X = ∅

(
δ >=> Jfilter(¬e)K

)
(σ)(S)

=

((
n∑
k=0

(
Jfilter(e)K >=> JP K

)k+1

)
>=> Jfilter(¬e)K

)
(σ)(S) + Jfilter(¬e)K(σ)(S)

=

((
Jfilter(e)K >=> JP K >=>

n∑
k=0

(Jfilter(e)K >=> JP K)k
)
>=> Jfilter(¬e)K

)
(σ)(S)+

Jfilter(¬e)K(σ)(S)

=

(
Jfilter(e)K >=> JP K >=>

(
n∑
k=0

(Jfilter(e)K >=> JP K)k >=> Jfilter(¬e)K
))

(σ)(S)+

Jfilter(¬e)K(σ)(S)

=
(
Jfilter(e)K >=> JP K >=> ∆

n+1
(			)
)
(σ)(S) + Jfilter(¬e)K(σ)(S)

=

(
δ×JeK >=> λ(σ

′
, b).

{
JP K(σ′)�= ∆n+1(			) b 6= 0
δ(σ′) b = 0

})
(σ)(S)

=∆
n+2

(			)(σ)(S)

In particular, have have used that left-distributivity does hold in this case since
S ∩ X = ∅.

C Probability kernel

In the following, we list lemmas that are crucial to prove Theorem 2 (restated
for convenience).



Theorem 2. The semantics of each expression JeK and statement JP K is indeed
a probability kernel.

Lemma 25. Any measurable function f : A → [0,∞] can be viewed as an s-
finite kernel f : A 7→ 1, defined by f(x)(∅) = 0 and f(x)(1) = f(x).

Proof. We prove that f is an s-finite kernel. Let A∞ := {x ∈ A | f(x) = ∞}.
Since f is measurable, the set A∞ must be measurable. f(x)(S) =

∑
i∈N[x ∈

A∞][() ∈ S] +
∑
i∈N f(x)[i ≤ f(x) < i + 1][() ∈ S], which is a sum of finite

kernels because the sets A∞ and {x | i ≤ f(x) < i + 1} = f−1([i, i + 1)) are
measurable. Note that any sum of finite kernels can be rewritten as a sum of
sub-probability kernels.

Lemma 26. Let κ′ : X 7→ Y and κ′′ : X 7→ Y be kernels, and f : X → R mea-
surable. Then,

κ(x)(S) =

{
κ′(x)(S) if f(x) = 0

κ′′(x)(S) otherwise

is a kernel.

Proof. Let f=0(x) := [f(x) = 0], f 6=0(x) := [f(x) 6= 0]. Then, κ = f=0 × κ′ +
f6=0 × κ′′. Viewing f=0 and f 6=0 as kernels X 7→ 1 immediately gives the desired
result.

Lemma 27. Let (A,ΣA) and (B,ΣB) be measurable spaces. Let {Ai}i∈I be a
partition of A into measurable sets, for a countable set of indices I. Consider
a function f : A → B. If f|Ai : Ai → B is measurable for each i ∈ I, then f is
measurable.

Lemma 28. Let f : A→ B be measurable. Then κ : A 7→ B with κ(a) = δ(f(a))
is a kernel.

The following lemma is important to show that the semantics of the while
loop is a probability kernel.

Lemma 29. Suppose {κn}n∈N is a sequence of (sub-)probability kernels A 7→ B.
Then, if the limit κ = limn→∞ κn exists, it is also a (sub-)probability ker-
nel. Here, the limit is pointwise in the sense ∀a ∈ A : ∀S ∈ ΣB : κ(a, S) =
limn→∞ κn(a)(S).

Proof. For every a ∈ A, κ(a, ·) is a measure, because the pointwise limit of finite
measures is a measure. For every S ∈ ΣB , κ(·, S) is measurable, because the
pointwise limit of measurable functions fn : A→ R (with B as the σ-algebra on
R) is measurable.



D Proofs for consequences

In this section, we provide some proofs of consequences of our semantics, ex-
plained in Section 5.

Lemma 9. For function F (){while 1 {skip}; return 0},

1

0
+ F () 6' F () + 1

0

Proof. If we evaluate 1
0 first, we will only have weight on ⊥.
s
1

0
+ F ()

{

=

s
1

0

{
×JF ()K >=> λ(x, y).δ(x+ y)

=δ(⊥)×JF ()K >=> λ(x, y).δ(x+ y)

=δ(⊥) >=> λ(x, y).δ(x+ y)

=δ(⊥)

If instead, we first evaluate F (), we only have weight on 	, by an analogous
calculation.

Lemma 10. If Je1K(σ)(X ) = Je2K(σ)(X ) = 0 for all σ, then e1 ⊕ e2 ' e2 ⊕ e1,
for any commutative operator ⊕.

Proof.

Je1 ⊕ e2K(σ)(S) = Je1K×Je2K >=> λ(x, y).δ(x⊕ y)

=

∫
z∈R×R

λ(x, y).δ(x⊕ y)(z)(S)(Je1K×Je2K)(σ)(dz)

=

∫
(x,y)∈R×R

δ(x⊕ y)(S)(Je1K× Je2K)(σ)(d(x, y))

=

∫
(y,x)∈R×R

δ(y ⊕ x)(S)(Je2K× Je1K)(σ)(d(y, x))

= Je2 ⊕ e1K(σ)(S)

Here, we crucially rely on the absence of exceptions (for the third equality) and
Fubini’s Theorem (for the fourth equality).

Lemma 11. e1 ⊕ (e2 ⊕ e3) ' (e1 ⊕ e2)⊕ e3, for any associative operator ⊕.

Proof. The important steps of the proof are the following.

Je1 ⊕ (e2 ⊕ e3)K = Je1K×Je2 ⊕ e3K >=> λ(x, s).δ(x⊕ s)

= Je1K×
(
Je2K×Je3K >=> λ(y, z).δ(y ⊕ z)

)
>=> λ(x, s).δ(x⊕ s)



= Je1K×
(
Je2K×Je3K

)
>=> λ(x, (y, z)).δ(x⊕ y ⊕ z)

=
(
Je1K×Je2K

)
×Je3K >=> λ((x, y), z).δ(x⊕ y ⊕ z)

= J(e1 ⊕ e2)⊕ e3K

Here, we make crucial use of associativity for the lifted product of measures in
Lemma 6.
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