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ABSTRACT
Concurrent garbage collectors require write barriers to preserve
consistency, but these barriers impose significant direct and indirect
costs. While there has been a lot of work on optimizing write barri-
ers, we present the first study of their elision in a concurrent collec-
tor. We show conditions under which write barriers are redundant,
and describe how these conditions can be applied to both incremen-
tal update or snapshot-at-the-beginning barriers. We then evaluate
the potential for write barrier elimination with a trace-based limit
study, which shows that a significant percentage of write barriers
are redundant. On average, 54% of incremental barriers and 83%
of snapshot barriers are unnecessary.

General Terms
Experimentation, Languages, Measurement, Performance

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Dynamic storage management; D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection);
D.4.2 [Operating Systems]: Storage Management—Allocation/
deallocation strategies, Garbage collection

1. INTRODUCTION
Garbage collection is a useful feature of most modern object ori-

ented and functional programming languages. Garbage collection
reduces memory management errors that occur in languages with
explicit heap management. Ideally, a collector would reclaim just
enough memory, induce no application pause times, and maximize
throughput. In reality, there exist many different collector imple-
mentations each with its own advantages and disadvantages.

In this paper we focus on concurrent garbage collectors (also
called “on-the-fly” collectors). The main advantage of concurrent
over stop-the-world garbage collectors is the reduction of applica-
tion pause times. A concurrent collector usually runs in its own
thread, either on the same processor as the application threads or in
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parallel with them on another CPU. There exist a number of differ-
ent implementations for concurrent or mostly-concurrent collectors
[3, 12, 18, 21]. In contrast to stop-the-world collectors, application
threads (mutators) are not stopped or are stopped for a short quan-
tum. Achieving even and short application response times comes
at the price of decreased throughput. Therefore the goal for con-
current collectors is keeping their pause times low, while simulta-
neously increasing the application throughput.

In order to prevent the erroneous reclamation of reachable ob-
jects, the runtime system utilizes a synchronization technique called
a write barrier. A write barrier traps pointer stores to the heap and
records some information that prevents race conditions between the
mutator and the collector. It performs a different procedure de-
pending on the granularity of the barrier. For an excellent survey of
barrier techniques, see [20].

Write barriers in concurrent collectors are undesirable for a num-
ber of reasons:

• Direct run-time cost of executing the additional instructions
at every pointer store;

• Indirect run-time cost due to I-cache pollution by write bar-
rier code and suppression of compiler optimizations across
the barrier, which is generally a collector safe point;

• Collector cost to process the information recorded by the bar-
rier, and in the case of incremental update barriers, the cost
of re-tracing some portion of the heap;

• Space cost for the write barrier data structures (usually se-
quential store buffers);

• Reduction in minimum mutator utilization (MMU) [4, 9];

• Increased compile time; and

• Increased application code size.

While there has been work on reducing the cost of generational
write barriers [7], the costs for concurrent write barriers is generally
significantly higher, so those results often do not apply.

We are particularly concerned with the additional work that write
barriers create for the garbage collector. The write barrier remem-
bers pointers which the collector must process at the end of its col-
lection cycle. The collector must process all pointers stored by the
write barrier, even though processing only a fraction of them may
suffice to preserve application correctness. Reducing the number of
pointers the collector must process can indirectly lead to increases
in mutator utilization: because the collector will have less work
to perform, more processing time can be dedicated to application
activity.

13



The focus of this paper is removing unnecessary write barriers in
concurrent garbage collectors. In concurrent schemes, write barri-
ers protect against interleaving between the collector and the muta-
tors. Such interleaving can cause reachable objects to be collected
incorrectly. Write barriers for concurrent schemes can be broadly
classified as incremental-update and snapshot-at-the-beginning; see
[27] for a complete discussion. Steele [25] and Dijkstra [11] pio-
neered incremental write barrier techniques, while snapshot barri-
ers became popular with Yuasa [28].

In this paper we present elimination conditions for removing re-
dundant write barriers. We consider the three main write barrier
types. Although there are many variations of Dijkstra, Steele and
Yuasa, they all can be reasoned about using our conditions.

We perform a trace-based limit study that provides an upper
bound on how many write barriers can be removed for simple elim-
ination conditions. Such information suggests which elimination
conditions are most useful to concentrate on during the static anal-
ysis. Our results indicate that write barriers are unnecessary in the
majority of cases. If all elimination conditions are utilized, on av-
erage 54% of Dijkstra/Steele and 83% of Yuasa write barriers are
redundant.

We also perform various forms of correlation analysis to study
how barrier elimination relates to object attributes such as size, life-
time, and popularity.

The dynamic analysis is based on traces generated by an instru-
mented Java virtual machine (Jikes RVM 2.2.0 [2]). We consider
benchmarks from the SPECjvm98 suite as well as other Java bench-
marks.

The paper is organized as follows: Section 2 presents background
on write barriers. Section 3 presents the write barrier elimination
conditions. In Section 4 we discuss our results from the dynamic
trace analysis. Section 5 discusses related work and finally we con-
clude and present our ideas for future research in section 6.

2. BACKGROUND
In this section we introduce some necessary terminology. We

discuss why write barriers are necessary for correctness and how
they are utilized in some of the more recently introduced on-the-fly
collectors.

A garbage collection cycle usually consists of three main phases:
root set marking, tracing through the heap connectivity graph start-
ing from the objects in the root set, and finally reclaiming the space
of all unreachable objects. The root set marking phase typically
consists of marking the objects reachable from thread stack frames
and CPU registers. In the case of Java, root set pointers also contain
JNI global references and class class static data. Depending on the
implementation, other pointers could also be categorized as root set
pointers.

In the second phase, the collector traces through the heap and
marks as live all objects transitively reachable from the root set.
In the last phase, all objects which have not been marked as live
are reclaimed as garbage. In Dijkstra’s tri-color terminology, if an
object is white, then it is either garbage or has not been reached by
the collector yet. If it is gray, then it has been marked as reachable
for this collection cycle but its contents have not been scanned yet.
Once all the pointers an object contains are marked as reachable
(gray), the color of the object turns from gray to black.

In a concurrent collector, the mutators can preempt the collector
and change the heap connectivity graph during the collection cycle.
The write barrier is a synchronization mechanism which protects
the collector from reclaiming reachable objects. To see why write
barriers are necessary, consider the sequence in Figure 1 and let
us suppose we operate without applying write barriers. Initially
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Figure 1: A sequence of pointer operations that can lead to
erroneous collection of the live object C.

we have a part of the connectivity graph as shown in Figure 1(a).
The collector is in the middle of its second (tracing) phase and has
already scanned object B (that is, B is black). Object A, which
contains pointerp1 to object C, is reachable but has not yet been
reached by the collector.

In the next step, shown in Figure 1(b), an application thread (mu-
tator) introduces pointerp2 to object C. The pointer is introduced
in a part of the heap which the collector has already scanned, that
is, in object B. Object A is still not marked.

In Figure 1(c), the mutator destroys pointerp1 and the collector
then scans object A, not finding pointerp1 there. The collector then
proceeds to its sweeping phase with object C unmarked. It collects
object C incorrectly, as shown in Figure 1(d), makingp2 a dangling
pointer.

In terms of pointer lifetimes, we observe that pointerp1 is cre-
ated before pointerp2 and is deleted whilep2 is still active. We
denote the start of a pointer’s lifetime byS(p) and its end byE(p).
ThusS(p1) < S(p2), S(p2) < E(p1) andE(p1) < E(p2). We
observe that if we do not utilize write barriers, then at time 3 in
Figure 1(e), the collector may reclaim object C although it is still
reachable through pointerp2.

The situation depicted in Figure 1(e) is precisely the pointer life-
time combination against which write barriers are meant to protect.
Nonetheless, as discussed in the following sections, we can elimi-
nate redundant write barriers if we have a different combination of
pointer lifetimes and/or if we have further information on the types
of pointers involved in the combination.

Three approaches are commonly used to protect object C:

Steele’s method: When pointerp2 is installed, we mark object B
as live, that is, the object to be rescanned. This action undoes
the work of the collector. This is an incremental technique.
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SteeleWB(source, slot, newtarget)
{
if (tracingOn && newtarget != NULL)
store(source);

}

(a) Steele Write Barrier

DijkstraWB(source, slot, newtarget)
{
if (tracingOn && newtarget != NULL)

store(newtarget);
}

(b) Dijkstra Write Barrier

YuasaWB(source, slot, newtarget)
{
oldtarget = source[slot];
if (tracingOn && oldtarget != NULL)

store(oldtarget);
}

(c) Yuasa Write Barrier

Figure 2: Write barrier pseudo-code. Steele’s and Dijkstra’s
barriers support an incremental update collector, while Yuasa’s
supports a snapshot-based collector.

Dijkstra’s method: Upon installing pointerp2 in object B we mark
C as reachable. That is, we prevent the introduction of a
pointer that resides in a scanned part of the heap to a part of
the heap that has not yet been scanned by the collector. This
is also an incremental mechanism.

Yuasa’s method: Upon overwriting pointerp1 in Figure 1(c), we
mark object C as live. This is a snapshot technique which
does not allow the destruction of any path in the heap con-
nectivity graph.

Wilson [27] has classified concurrent write barrier techniques
as either incremental-update (the Dijkstra and Steele barriers) or
snapshot-at-the-beginning (the Yuasa barrier). We use this termi-
nology throughout.

Each technique has its advantages and disadvantages. From the
perspective of reducing floating garbage, Steele’s method is least
conservative, while Yuasa’s will not collect garbage that has be-
come such during the current collection cycle. A problem with
Steele’s method is that it increases collector work. This is because,
we are graying the source object where the pointer is stored into.
In order to uncover the stored pointer, the collector would need to
rescan all the slots of the source object, even if many of the slots
are NULL or have already been marked.

On the other hand, a Yuasa-style barrier will usually mark fewer
objects than Dijkstra since Yuasa barriers are active only when a
pointer value is overwritten, while Dijkstra always marks the ob-
ject pointed to by the stored reference. Steele’s and Dijkstra’s write
barriers protect the same object, which is the object whose address
is written into a memory location, while Yuasa’s barrier protects
the object denoted by the overwritten pointer. A significant disad-
vantage of the Yuasa barrier is that it must load the old value of the
pointer.

Several variations of Yuasa’s and Steele’s style write barriers
exist. With Yuasa, instead of marking object C when pointerp1

is overwritten, we could mark all objects that object A points to.
Such an approach is utilized by Azatchi et al. [3]. In contrast, Do-
mani and Kolodner [12] takes the usual approach and marks object
C only. There are trade-offs in each approach. While Azatchi et
al. claim increased application locality, they do so at the expense
of holding a special thread-local pointer inside each object. The
traditional approach of marking only one object has the disadvan-
tage that in the current collector cycle we could possibly mark more
objects than necessary if the same slot is mutated more than once.
With Azatchi et al.’s method this problem is alleviated since we
know we have marked all the pointers in an object. Steele’s barrier
is widely used with various granularities. One could mark object B,
but one could also mark a whole card for rescanning, as in Barabash
et al. [5].

Regardless of the granularity and the type of the write barrier, its
purpose is protecting object C from being collected erroneously.

The write barrier itself typically consists of two parts, as shown
in Figure 2: afilter which checks whether a pointer needs to be
stored and aslow pathwhich performs some action. The slow
path usually stores a pointer into a log buffer or marks an object
as reachable. Depending on the write barrier type, the two parts of
the barrier may differ slightly.

Generally, there exists a trade off between how precise the write
barrier is and how much work it creates for the collector. In regard
to write barrier execution speed, Steele barriers have the potential to
be the fastest of the three. A Steele write barrier can omit the filter
check and simply color the source object as reachable. Dijkstra and
Yuasa barriers need to perform the filter check. A Dijkstra barrier
needs at least a comparison instruction to check whether the new
target is NULL. A Yuasa barrier needs a load and a comparison
instructions to check whether the overwritten value is non-NULL.
See Detlefs et al. [10] for a discussion on the trade off.

A redundant write barrieris a barrier which when removed will
not cause the reclamation of a reachable object, regardless of the
scheduling between the mutator and the collector.

Two complementary approaches exist for eliminating write bar-
riers statically. The first approach proves that the filter always eval-
uates to false. That is, either the pointer in question is always null
or the collector is not in its tracing phase. Clearly, we cannot eval-
uate statically whether the collector is tracing. Therefore, the only
plausible condition left is statically analyzing for the NULL check.
In the case of Yuasa, if the overwritten pointer is null [19] we do
not need a write barrier. Similarly, for Dijkstra and Steele, if the
new pointer is null we can eliminate the write barrier.

The second approach is possible if we are not able to statically
determine the filter evaluates to false, but we are able to show that
the slow path is redundant. In such cases we can also remove the
write barrier. Elimination conditions for proving the redundancy of
the slow path are significantly more complex and are described in
the next section.

Nonetheless, the two approaches are complementary and for max-
imum efficiency should be utilized together.

One possible implementation could use a Steele-like fast write
barrier which ignores the filter check and simply colors the source
object gray. To reduce the amount of work the collector must do,
we could combine the static approach which will utilize the elimi-
nation conditions in this paper together with the dynamic solution
presented in Detlefs et al. [10].

3. ELIMINATION CONDITIONS
In this section we present four conditions for eliminating redun-

dant write barriers for non-null pointers. That is, these are con-
ditions that deal with detecting redundancy in the slow path of
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Figure 3: Single Covering Condition (SCC)

the write barrier. Each condition by itself is sufficient for eliding
a write barrier. The conditions are categorized into two distinct
elimination classes:covering conditionsandallocation conditions.
Covering conditions are more general in the sense that they apply
to all pointers (heap, stack, global). In addition, covering condi-
tions apply to both incremental update (Dijkstra/Steele) and snap-
shot (Yuasa) write barriers, while allocation conditions are valid
only for incremental barrier elimination. Regardless of the elim-
ination class, the fundamental property behind the reasoning for
write barrier removal is the lifetimes of the pointers to the particu-
lar object in question.

Reasoning about Dijkstra and Steele barriers is essentially the
same because they fundamentally protect the same object, namely
the one pointed to by the newly installed pointer.

3.1 Covering Conditions
The main observation behind covering elimination conditions is

that write barriers performed on pointers which do not determine
the lifetime of an object are not required. For example, if an ob-
ject is being pointed to by a long-lived static pointer and during
this period, a number of write barriers protecting the object are ex-
ecuted, then we could reason about their elimination. In the next
two sections, we present two covering elimination conditions. The
first condition is more intuitive and deals with cases when the life-
time of one pointer allows the barrier on another one to be elimi-
nated. The second condition extends these ideas by using multiple
pointers with write barriers to act as single “virtual” pointers with
a longer cumulative lifetime.

3.1.1 Single Covering Condition
We first present an elimination condition that deals with barrier

elimination in a pair-wise fashion, that is, it only considers combi-
nations of two pointers. The condition is illustrated in Figure 3.

In Figure 3(a), pointerp1 exists from object A to object C and
object B contains no (non-null) pointers. Next, in Figure 3(b) the
application installs a pointerp2 from object B to object C. If an in-
cremental update (Dijkstra or Steele) barrier is used, then we must
perform a write barrier when pointerp2 is installed in object B. The
application proceeds and in Figure 3(c), it overwrites pointerp2

with another value. If we are using a snapshot (Yuasa) mechanism,
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Figure 4: Multiple Covering Condition (MCC)

then we would need to apply a write barrier at the time pointerp2

is overwritten.
We observe that throughout these three execution steps, the life-

time of pointerp1 covers the lifetime of pointerp2, that is, pointer
p1 was installed beforep2 andp2 ended beforep1. The timing re-
lationship between pointersp1 andp2 is illustrated in Figure 3(d).
Since the lifetime ofp2 is entirely contained within the lifetime of
p1, we callp1 acovering pointerwith respect top2

We observe that the write barrier performed on pointerp2 is not
necessary, regardless of whether it is an incremental update barrier
which occurs at the beginning of the pointer’s lifetime, or a snap-
shot barrier which occurs at the end of the pointer’s lifetime. Re-
gardless of the particular scheduling between the mutators and the
collector, pointerp2 does not determine the lifetime of the object.
Therefore protecting the object from being collected by applying
write barriers through pointerp2 is not needed. Stated formally:

SINGLE COVERING CONDITION (SCC): If pointers p1 and p2

point to object C and ifS(p1) < S(p2) andE(p1) > E(p2), then
the write barrier for pointerp2 can be safely eliminated. For an
incremental update barrier this eliminates the barrier whenp2 is
stored, and for a snapshot barrier this eliminates the barrier when
p2 is overwritten.

If we consider a setS of pointers to the object at timet, a partial
order relation can be formed between the elements in the setS. A
pair (p1, p2) of pointers belongs to the partially ordered set if and
only if p1 coversp2 as defined in the single covering condition. An
interesting item for future work is determining how easy would it
be to modify the program so that every pair of elements in the setS

has a least upper bound. That would be a pointerpx which would
cover all other pointers. Note that if we introduce such a pointerpx,
we would not require any write barriers on pointers to that object.
In practice, it would be difficult to introducepx precisely, because
that would be equivalent to knowing exactly when the object dies.
Therefore,px could be introduced with an extended lifetime. The
length of pointerpx implies a question of trade-off between keep-
ing the object live for a longer period than necessary versus the
overhead of the write barrier.

3.1.2 Multiple Covering Condition
In this section we generalize the single covering condition. In the

previous section, we considered the case where one pointer covers
another pointer and hence we can eliminate barriers on the covered
pointer. The material in this section extends the idea of coverage
to multiple pointers. If we are presented with three pointers, could
we still eliminate a write barrier provided that the single cover-
ing condition cannot? The condition presented in this section is
a generalization of the single covering condition to three or more
pointers.
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The elimination condition is illustrated in Figure 4: we observe
that the single covering condition does not hold for any combina-
tion of two pointers. For example, we cannot establish a covering
relation between (p1, p2), (p2, p3) or (p1, p3). Therefore, when
presented with such an example, we cannot eliminate any write
barriers with the single covering condition.

However, we can generalize the single covering condition. While
a pointer may not be covered by a single pointer, there may be mul-
tiple pointers that together cover it. Once again, if a write barrier is
performed on a pointer which does not determine the lifetime of the
object, then the write barrier is redundant. In Figure 4, we observe
that pointerp3 is covered from one side (start time) by pointerp1

and from the other side (end time) by pointerp2. Additionally, p2

starts whenp1 is active. Therefore, pointerp3 is covered jointly
by pointersp1 andp2 and we claim that we do not require a write
barrier on pointerp3.

We observe that if pointersp1 andp2 are joined together, we
obtain a new virtual pointerp4 and now we can apply the single
covering condition of the previous section to the combination (p4,
p3). Note that the write barrier at the end ofp1 (for snapshot barri-
ers) or the beginning ofp2 maynot be eliminated if the combined
pointer is used as the basis for elimination.

The condition generalizes to an arbitrary number of pointers. We
simply join the overlapping times of the pointers of interest. Stated
formally,

MULTIPLE COVERING CONDITION (MCC): Let p1, p2, . . . , pn

andq be pointers to an object C, such thatS(pi+1) > S(pi) and
S(pi+1) < E(pi) andS(p1) < S(q) andE(q) < E(pn). Assum-
ing that none of the write barriers onpi are eliminated, then the
write barrier onq can be safely eliminated.

The single covering condition in the previous section is a special
case of the multiple covering condition. Essentially, virtual pointer
p4 in Figure 4 corresponds to a physical pointer in the single cover-
ing condition. As with the single covering condition, the multiple
covering condition will hold for any interleaving between the mu-
tators and the collector and applies to both incremental update and
snapshot write barriers.

Maximal elimination will be achieved by finding the smallest set
of pointerspi covering a given interval, and then eliminating the
barriers which they cover. However, this is largely of theoretical
interest, since in practice it will be difficult to apply the multiple
covering condition statically, and there are unlikely to be multiple
choices about which pointers to select to create a covering.

3.2 Allocation Conditions
In this section we show how knowledge about the creation of

an object can be used to eliminate additional barriers. Unlike the
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Figure 6: Multiple Allocation Condition (MAC)

covering conditions, theseallocation conditionsonly apply to in-
cremental update (Dijkstra/Steele) barriers.

3.2.1 Single Allocation Condition
Consider the pointer lifetimes shown in Figure 5. Pointerp1 is

the result of allocating the object in question. The resulting pointer
is placed in stack/register locationb. Pointerp2 is a pointer from a
heap locationa.

Assume that the collector (a) marks all roots before commencing
the heap marking phase, and (b) allocates new objects as reachable
(black or gray). Note that many incremental update collectors allo-
cate objects as unreachable (white) and rescan the stack(s) to ensure
that such objects are not lost, so this technique may not always be
applicable. At any rate, if (a) and (b) are true then an incremental
update barrier on pointerp2 can be eliminated.

At the time the write barrier is to occur, that is, at time 2 in
Figure 5, the object will already be marked as reachable (black or
gray). There are two cases to consider. First, if pointerp1 was
introduced while the collector had already commenced its tracing
phase, then the object would have been created reachable (black or
gray) already. On the other hand, ifp1 was introduced before the
collection started, then the corresponding object would have been
marked as reachable in the root scanning phase. That is, at the
time pointerp2 is introduced, the object is already guaranteed to be
marked as reachable.

The allocation condition relies on the fact that objects allocated
reachable (black) include an implicit barrier, and therefore it is not
possible for the mutators to “hide” the pointer to the object from the
collector by moving it between different memory locations. More
formally the condition can be stated as follows:

SINGLE ALLOCATION CONDITION (SAC): In a collector that al-
locates objects as marked, ifp1 andp2 are pointers to object C and
pointer p1 is introduced as a result of creating object C (p1 is a
root pointer) andS(p1) < S(p2) and S(p2) < E(p1), then the
incremental update (Dijkstra or Steele) write barrier on pointerp2

can be eliminated.

That is, if pointerp2 is created within the lifetime of pointerp1

andp1 is the result of allocating the object, then incremental update
barriers onp2 are unnecessary.

There is no corresponding allocation condition for snapshot bar-
riers. At the time an incremental update barrier happens, we guar-
antee that the object is already marked as reachable. We cannot
make the same guarantee at the time a Yuasa barrier occurs. The
collection cycle could have started just after the pointer to the allo-
cated object ended its lifetime, that is, just afterp1 ends in Figure 5
(i.e. at time 3.5). Then the object would not have been allocated as
marked at that time and might be collected incorrectly.
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Program Description Input Objects Allocated Bytes Allocated
power Solves the power system optimization problem - 783,406 73,228,028
deltablue Constraint solver - 443,923 77,502,904
bh Solves the N-body problem using hierarchical methods-b 500 s 10 639,675 83,503,920
health Simulates Columbian health care system -l 5 t 500 s 1 1,196,725 86,718,316
ipsixql Performs queries against persistent XML document 3 2 5,941,536 351,117,828
xalan XSLT tree transformation language processor 3 2 4,420,252 488,960,484

SPECjvm98
compress Modified Lempel-Ziv method (LZW) -s100 2204 159,951,240
mpegaudio Decompresses ISO MPEG Layer-3 audio files -s100 2096 51,372,816
db Performs database functions on memory resident database-s100 3,213,006 133,782,036
javac Java compiler from JDK 1.0.2 -s100 6,376,872 579,746,244
mtrt Multi-threaded raytracer -s100 4,594,918 237,305,784
jack A Java parser generator -s100 7,471,385 473,120,964

Table 1: Benchmarks

3.2.2 Multiple Allocation Condition
The condition presented in this section extends the single allo-

cation condition and similarly applies to incremental update write
barriers only. As with the multiple covering condition, we can view
several overlapping pointers as comprising a single virtual pointer
which then allow another pointer to be eliminated using the reason-
ing of the single allocation condition.

The condition is depicted in Figure 6. Assume thatp1 is the re-
sult of allocating an object and thatp2 is another root pointer andp3

is a heap pointer. We cannot apply the single allocation condition
on the pair(p1, p3) becausep1 andp3 have disjoint lifetimes and
we cannot apply the single allocation condition to(p2, p3) because
p2 is not a pointer resulting from object allocation. Nonetheless,
we observe that the start ofp3 is covered byp2, whose start in turn
is covered byp1. Subsequently, the start ofp3 is covered jointly by
p1 andp2.

Intuitively, since the roots (stack pointers) are treated as a single
unit, it does not matter if a pointer is copied from one stack loca-
tion to another and then the first pointer is overwritten, because the
object is always being pointed to from somewhere in the stack.

Similarly to the multiple covering condition, we reason about
joining pointer lifetimes together. That is,p1’s andp2’s lifetime are
joined to create a virtual pointerp4. The single allocation condition
of the previous section can now be applied between(p3, p4).

The main difference between the multiple covering condition
and the multiple allocation condition presented in this section is a
restriction on the type of pointers that could be joined. The restric-
tion states that the lifetime of virtual pointer can only be composed
of root pointers. That is, ifp2 was not a root pointer, then we would
not have been able to apply this condition.

To see why the multiple allocation condition can not be applied
when the chain of pointers are not all root (stack) pointers, consider
the case in Figure 6 ifp2 were a heap pointer. If collection begins
afterp1 is popped off the program’s stack, and beforep3 is created,
then the collector will not seep1 when it scans the stack and may
not seep2 if p2 is overwritten before the collector scans it.

Stated formally, the elimination condition is

MULTIPLE ALLOCATION CONDITION (MAC): Letp0, . . . , pn be
root pointers to an object C andq be a heap pointer to object C,
such thatS(pi+1) > S(pi) andS(pi+1) < E(pi) andp0 is the
pointer returned by the creation of object C. Then ifS(p0) < S(q)
and S(q) < E(pn), the incremental update (Dijkstra or Steele)
write barrier onq can be safely eliminated.

3.3 Implementation-Specific Elimination
The fundamental reason for write barriers is to prevent loss of

connectivity information when the mutator moves a pointer from
an unscanned portion of the heap to a scanned portion of the heap.
So far, we have assumed that any heap write may cause this to
happen. However, if the collector is implemented in such a way as
to guarantee certain traversal orders, additional barrier elimination
may be possible.

For instance, assume that the collector always scans objects from
low to high addresses. Then if a pointer were moved from a lower
to a higher field or array element, a write barrier could be elimi-
nated: for incremental update barriers, it would be the write barrier
on the store to the new location, and for snapshot barriers, it would
be the write barrier on the overwrite of the old location.

Such elimination conditions could also be applied if we certain
traversal orders were statically provable, for instance of linked lists
or trees.

However, applying such conditions may impose subtle additional
complications. For instance, large arrays are often processed piece-
wise. In that case, it would be necessary to require that the pieces
were processed in order. In addition, overflow of the marking stack
may perturb the marking order.

4. RESULTS
In this section we present the results of our dynamic limit study.

The results provide an upper bound on how many dynamic write
barriers can be eliminated, by considering how many of them could
be eliminated in a particular execution of a program.

We measured the potential for barrier removal based on both
null pointers and on the elimination conditions for non-null point-
ers presented in the previous section. For elimination of non-null
pointers, we measured the applicability of the single elimination
conditions (SCC and SAC) only. When both conditions apply, we
consider it as a case of SCC. This ensures that in our measure-
ments any particular barrier can only be eliminated via one method:
NULL, SCC, or SAC. In addition to providing an upper bound for
each elimination condition, we study how various object attributes
such as lifetime, popularity, and size relate to write barrier removal.
We also measured how the potential for barrier elimination is cor-
related with time: whether it is bursty or continuous.

4.1 Traces and Methodology
We analyzed traces generated using an instrumented version of

the Jikes RVM 2.2.0 Java virtual machine. The traces were gener-
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Program Write Barriers Eliminated Barriers
Null % SCC % SAC % Total %

Incremental Update (Dijkstra/Steele)

power 23403 0 0.0 0 0.0 11835 50.6 11835 50.6
deltablue 3996808 133200 3.3 3077905 77.0 118155 3.0 3329260 83.3
bh 224676 40 0.0 68499 30.5 23244 10.4 91783 40.9
health 11671235 410547 3.5 10643082 91.2 54214 0.5 11107843 95.2
ipsixql 14214647 1806519 12.7 3274954 23.0 3004026 21.1 8085499 56.9
xalan 4423072 49881 1.1 162979 3.7 1636555 37.0 1849415 41.8

compress 1727 93 5.4 104 6.0 306 17.7 503 29.1
mpegaudio 143210 19 0.0 39434 27.5 1212 1.0 40665 28.4
db 33040494 674 0.0 26711999 80.9 83565 0.3 26796238 81.1
javac 13249090 1335482 10.1 3861753 29.2 1280108 9.7 6477343 48.9
mtrt 6122912 2287321 37.4 1115248 18.2 223346 3.7 3625915 59.2
jack 8848212 2043928 23.1 251517 2.8 212736 2.4 2508181 28.4

Snapshot (Yuasa)

power 23403 23403 100.0 0 0.0 — — 23403 100.0
deltablue 3996808 816506 20.4 2894180 72.4 — — 3710686 92.8
bh 224676 135331 60.2 53968 24.0 — — 189299 84.3
health 11671235 1639602 14.0 9948309 85.2 — — 11587911 99.3
ipsixql 14214647 10667235 75.0 1341692 9.4 — — 12008927 84.5
xalan 4423072 4308205 97.4 101265 2.3 — — 4409470 99.7

compress 1727 1506 87.2 1 0.1 — — 1507 87.3
mpegaudio 143210 1865 1.3 39353 27.5 — — 41218 28.8
db 33040494 8496557 25.7 21548367 65.2 — — 30044924 90.9
javac 13249090 9431706 71.2 2272659 17.2 — — 11704365 88.3
mtrt 6122912 3761696 61.4 672986 11.0 — — 4434682 72.4
jack 8848212 6147535 69.5 214138 2.4 — — 6361673 71.9

Table 2: Eliminated Barriers

ated by Hirzel for use in [14]. We analyzed benchmarks from the
SPECjvm98 suite [1] as well as other large-scale programs, sum-
marized in Table 1. The traces contain the following heap events:
thread creation, pointer assignments, object allocations, local/stack
variable writes, static variable writes, and object death events. The
death events are generated using the method of Hertz et al. [13].

There are three types of allocated objects in Jikes RVM: the Jikes
RVM boot image objects, objects allocated by the running VM and
objects allocated by the application. The boot image objects are
allocated when the VM boots. Once the Jikes RVM has booted,
the allocation site is used to classify objects into VM or application
objects. If the allocation site is within the standard Java library, the
dynamic chain is traversed until the caller is identified : either the
RVM runtime system or the application. Since our primary goal is
analyzing how applications behave, we have performed a dynamic
analysis for application objects only.

Note that for the multi-threadedmtrt benchmark the potential
for barrier elimination may be inflated, since some pointers may be
covered by others purely as a result of the particular interleaving in
the trace.

4.2 Elimination Results
Table 2 provides an upper bound on how many write barriers can

be eliminated by utilizing the NULL condition and the SCC and
SAC conditions. The table contains results for both incremental up-
date (Dijkstra/Steele) and snapshot (Yuasa) write barriers. The first
and second columns denote the application program together with
the total number of application write barriers active. The third and
fourth columns show how many barriers can be eliminated because

the pointer in question is NULL. The next four columns show the
elimination potential of the single covering condition (SCC) and
the single allocation condition (SAC). SAC is only applicable to
incremental update barriers. The last two columns denote the total
number of write barriers that can be eliminated by combining the
NULL, SCC, and SAC conditions. Figures 7 and 8 present the in-
formation graphically for incremental update and snapshot barriers,
respectively.

We observe that in all cases we can eliminate a greater number
of snapshot barriers than incremental update barriers. By combin-
ing the results from the NULL and SCC conditions, there is the
potential to eliminate over 71% of the snapshot barriers for all ap-
plications exceptmpegaudio. That is, with effective write barrier
elimination, significantly fewer write barriers would be needed if
a snapshot barrier were used. Snapshot-based collectors also have
the advantage of much simpler and more efficient termination con-
ditions.

On other hand, snapshot write barriers are more conservative and
consequently suffer from more floating garbage. Snapshot barriers
are also inherently more expensive because they must load the old
pointer before over-writing it.

We also observe that a significant number of snapshot barriers
can be eliminated by using only the NULL condition. But while
this holds for the majority of benchmarks we measured, there are
exceptions such asdeltablue, health anddb.

Snapshot barriers have another advantage in terms of barrier elim-
ination because the NULL condition is far more prevalent, and we
expect the NULL condition to be easier to prove than SCC or SAC.
Since a significant number of snapshot barriers can be eliminated
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Figure 7: Eliminated Incremental Barriers
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Figure 8: Eliminated Snapshot Barriers

20



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

1476 2283 3083 3884 4686 5488 6288 7088 7892 8692 9493 10293 11093 11894 12697 13498 14298 15098 15899

Figure 9: Time (in MB allocated) vs. Eliminated Snapshot Bar-
riers (javac benchmark)

using the SCC and NULL conditions alone, a static analysis is un-
likely to benefit from utilizing the MCC condition. That is, we
cannot expect to eliminate significant number of barriers using the
MCC. On the other side, in the case of incremental update barriers,
a static analysis could possibly benefit by detecting the MAC and
the MCC conditions. Therefore it is possible that the number of
eliminated incremental barriers could increase significantly.

A subject for future study is to compare the overall effectiveness
of incremental update-based collectors versus snapshot collectors,
once write barrier elimination is performed. That is, to compare the
total systemic effects of a snapshot collector’s increased floating
garbage and more expensive write barriers, as opposed to an incre-
mental update collector’s slower termination and increased number
of write barriers.

4.3 Correlation
In this section we study various properties of write barrier elimi-

nation: how it correlates with object attributes such as size, lifetime
and popularity and whether elimination occurs in bursts. We have
selected two benchmarksjavac anddb which represent the spec-
trum of different results. Thejavac benchmark is representative
of the majority of the benchmarks, whiledb represents program
behavior which deviates from that of the other benchmarks. We
present measurements for snapshot (Yuasa) barriers; the trendsare
the same for incremental update barriers.

4.3.1 Barrier Correlation Based on Time
It is important to understand whether barrier elimination happens

in bursts or in continuous fashion. Such information could poten-
tially guide the static analysis to consider only a small fraction of
the methods executed. The dynamic compiler could effectively use
this information to analyze only hot barrier methods, that is, meth-
ods where potentially a great number of barriers could be removed.
Class file annotations could also be used effectively to hint the dy-
namic compiler of such methods based on profiling the program
offline similarly to the method of Krintz and Calder [17].

Our results show that the potential for barrier elimination does
indeed happen in bursts, and these results hold across all bench-
marks. Bothjavac (Figure 9), which is typical of the applications
anddb (Figure 10), which is generally atypical, exhibit strong pe-
riodic behavior, suggesting the most write barriers can be elimi-
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Figure 10: Time (in MB allocated) vs. Eliminated Snapshot
Barriers (db benchmark)

nated by optimizing a small number of frequently executed loops
or methods.

4.3.2 Barrier Correlation Based on Object Size
Figures 11 and 12 show that the vast majority of eliminated bar-

riers protect small objects, which is consistent with the tendency of
programs to allocate large numbers of small objects, and to mutate
pointers to large objects slowly. This indicates that barrier elimina-
tion is not needed for objects residing in a segregated large object
space.

It also suggests that barrier elimination can concentrate on a
small number of prolific types. Such type-based approaches to lim-
iting the work required of the optimizer are typically highly effec-
tive.

4.3.3 Barrier Correlation Based on Lifetime
Another approach is to concentrate on recently allocated objects.

For instance, the generational write barrier elimination scheme of
Zee and Rinard [29] only eliminates barriers on the most recently
allocated object.

Most benchmarks that we measured showed a very strong cor-
relation between barrier elimination and object youthfulness. Fig-
ure 13 is representative, showing that almost all eliminated barri-
ers occur soon after allocation (note that the y-axis is logarithmic).
On the other hand, Figure 14 shows results for thedb benchmark,
which is known not to obey the generational hypothesis, and in-
deed barrier elimination is also not concentrated on objects of short
lifetime.

Another approach to barrier elimination is to partition the heap
and omit barriers on a certain portion of the heap, using some other
mechanism to ensure that the omitted portion is correctly scanned.
For instance, if the concurrent collector is also generational, then
we can omit barriers for objects in the nursery provided that the
nursery is always scanned synchronously before collection termi-
nates. The fact that barrier elimination is strongly correlated with
youth suggests that such a generation-based elimination scheme
could be highly effective.

4.3.4 Barrier Correlation Based on Popularity
Finally, we investigate how barrier removal correlates with ob-

ject popularity. An object ispopularif it is pointed to by many heap
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Figure 15: Incoming Pointers vs. Eliminated Snapshot Barri-
ers (javac benchmark).
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pointers [16]. Hirzel et al. [15] have argued that there is no corre-
lation between object lifetime and popularity. Our results indicate
that in all of the benchmarks, a significant number of barriers are
eliminated on great number of relatively unpopular objects. This
result can be observed in Figure 15, which is representative of the
overall results for the benchmarks used. Figure 16 reflects the ex-
ceptional behavior of thedbbenchmark.

Overall, our results indicate that in the majority of cases, write
barrier elimination is concentrated on small objects of short lifetime
with few incoming pointers.

Aside from the above mentioned properties, it would be inter-
esting to evaluate how barrier elimination relates to recently intro-
duced notions of prolific types and connectivity. We have not stud-
ied whether there is correlation between barrier elision and these
properties.

5. RELATED WORK
Nandivada and Detlefs [19] have studied the compile-time elim-

ination of redundant snapshot (Yuasa) barriers that always record
null values (null elimination condition). They show that a signifi-
cant number of such barriers can be eliminated by static analysis.
This work is complementary to ours, which focuses primarily on
elimination conditions for non-null pointers, and considers both in-
cremental update as well as snapshot barriers.

Most prior work on barrier elimination has focused on eliminat-
ing write barriers for generational collectors. There has also been
significant work studying the cost of barriers and ways to optimize
them.

Zee and Rinard [29] observed that generational write barriers
for the most recently allocated object are unnecessary, since it is
known to reside in the nursery. Any pointers installed in a nursery
object must point to either other nursery objects or to tenured ob-
jects. The paper presents several static analyses for eliding a write
barrier based on this elimination condition. The approach is only
suited for generational collectors.

Other than generational collectors, alternative heap partitioning
schemes based on connectivity [15] and types [24, 23] have re-
cently been proposed. A specific heap partitioning removes or par-
tially eliminates the need for a generational write barrier between
partitions. Nonetheless, the concurrent barrier would still have to
be active if an on-the-fly collector was used.

Objects not allocated on the heap also do not require a write
barrier. If objects are allocated in a region-like manner [26] using
static or dynamic escape analysis techniques such as that of Qian
and Hendren [22], the write barriers acting on such objects are un-
necessary.

Zorn [30] was the first to systematically study the cost of both
read and write barriers, for both generational and concurrent garbage
collectors. Blackburn and McKinley [7] studied the cost on gener-
ational write barriers, with particular attention to the impact of var-
ious inlining levels. Blackburn and Hosking [6] provide a compre-
hensive study of both read and write barrier overheads in a modern
dynamic Java compiler.

An approach to reducing the overhead of concurrent write barri-
ers is to combine them with a generational barrier, when the collec-
tor is both concurrent and generational. This approach has been
studied by Printezis and Detlefs [21]. Note that a write barrier
would still have to be present at every heap write, but its com-
bined overhead is less than if two separate barriers would have been
used, that is one for generational and one for concurrent purposes.
To remove such a combined barrier, an elimination condition must
provide safety for both the generational and the concurrent compo-
nents. The conditions in this paper deal with the concurrent aspect

while the condition presented in [29] could attack the generational
portion of the write barrier.

In a concurrent collector that moves objects (usually for the pur-
pose of compaction or defragmentation), a read barrier is required
which usually has a direct cost that is significantly higher than that
of the write barrier, since reads tend to outnumber writes by around
five to one. Brooks [8] showed how the cost of such read barri-
ers could be reduced by unconditionally following a forwarding
pointer stored in the header of every object (at the cost of the ex-
tra space for the forwarding pointer). Bacon et al. [4] showed how
the cost of a Brooks-style read barrier could be reduced by a com-
bination of performing barrier operations “eagerly” and compiler
optimizations that perform common subexpression elimination on
read barriers.

6. CONCLUSIONS
We have identified two types of elimination conditions which can

be utilized to elide write barriers for non-null pointers in concurrent
garbage collectors.Covering conditionshold when a pointer or set
of pointers has a lifetime that completely encompasses that of some
other pointer. They can be applied to both incremental update (Di-
jkstra and Steele) barriers and to snapshot-at-the-beginning (Yuasa)
barriers.

Allocation conditionscan only be applied to incremental update
barriers, and hold when the pointer to a newly allocated object is
known to be on the stack when it is copied into the heap.

Each type of elimination condition (covering and allocation) has
two variants: one in which the eliminated barrier is redundant be-
cause of the existence of a single pointer, and another in which
the eliminated barrier is redundant because of the existence of a
collection of pointers with overlapping lifetimes, that can together
be considered as a “virtual pointer” from the standpoint of barrier
elimination.

The elimination conditions are valid for all variations of Dijkstra,
Steele and Yuasa introduced in the research literature so far.

We have presented the results of a limit study that evaluates the
potential for the elimination of barriers either because the pointers
are null or because our elimination conditions hold. The study only
applied the single pointer variants of the elimination conditions.

Our results indicate that for both incremental update and snap-
shot barriers, a significant fraction can be elided based on our elim-
ination conditions. The elimination conditions are slightly more ef-
fective for incremental update barriers. However, when combined
with null pointer elimination, a much higher fraction of snapshot
barriers can be eliminated, since many of these barriers are exe-
cuted when the null pointers in newly allocated objects are over-
written. Using the combined elimination methods, it is possible
to eliminate 71-100% of snapshot barriers for all but one of the
benchmarks.

Of course, since this is a limit study, these statistics represent an
upper bound. The actual achievable results will be lower due to
both imprecision in static analysis and variations in dynamic be-
havior that are not captured in the traces.

Our measurements indicate that analysis overhead can be mini-
mized by concentrating on barriers in frequently executed methods
and for small, frequently allocated objects. This should help reduce
the cost of the necessary static analysis.

The effectiveness of the barrier elimination conditions indicates
that write barrier overhead, particularly for snapshot barriers, can
be reduced by an order of magnitude. This will result in lower mu-
tator overhead, faster garbage collection, less space consumption,
and improved real-time properties.
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[2] A LPERN, B., ET AL . The Jalapẽno virtual machine.IBM Syst. J. 39,
1 (Feb. 2000), 211–238.

[3] A ZATCHI , H., LEVANONI , Y., PAZ , H., AND PETRANK, E. An on-
the-fly mark and sweep garbage collector based on sliding views.
In Proceedings of the 18th ACM SIGPLAN conference on Object-
oriented programing, systems, languages, and applications (Oct
2003), ACM Press, pp. 269–281.

[4] BACON, D. F., CHENG, P., AND RAJAN, V. T. A real-time garbage
collector with low overhead and consistent utilization. InProceedings
of the 30th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages(New Orleans, Louisiana, Jan. 2003).
SIGPLAN Notices, 38, 1, 285–298.

[5] BARABASH, K., OSSIA, Y., AND PETRANK, E. Mostly concur-
rent garbage collection revisited. InProceedings of the 18th ACM
SIGPLAN conference on Object-oriented programing, systems, lan-
guages, and applications(Oct 2003), ACM Press, pp. 255–268.

[6] BLACKBURN , S. M., AND HOSKING, A. L. Barriers: Friend or foe?
In Proc. of the International Symposium on Memory Management
(Vancouver, British Columbia, Oct. 2004).

[7] BLACKBURN , S. M., AND MCK INLEY, K. S. In or out?: putting
write barriers in their place. InProc. of the Third International Sym-
posium on Memory management(Berlin, Germany, June 2002).SIG-
PLAN Notices, 38, 2 (supplement) (Feb., 2003), 175–184.

[8] BROOKS, R. A. Trading data space for reduced time and code space
in real-time garbage collection on stock hardware. InConference
Record of the 1984 ACM Symposium on Lisp and Functional Pro-
gramming(Austin, Texas, Aug. 1984), G. L. Steele, Ed., pp. 256–262.

[9] CHENG, P., AND BLELLOCH, G. E. A parallel, real-time garbage
collector. InProceedings of the ACM SIGPLAN 2001 conference on
Programming language design and implementation(Jun 2001), ACM
Press, pp. 125–136.

[10] DETLEFS, D., CLINGER, W., AND JACOB, M. Concurrent remem-
bered set refinement in generational garbage collection. InUsenix
Java Virtual Machine Research and Technology Symposium(2002).

[11] DIJKSTRA, E., LAMPORT, L., MARTIN , A., SCHOLTEN, C., AND

STEFFENS, E. On-the-fly garbage collection : an exercise in coopera-
tion. In Communications of the ACM(1976).

[12] DOMANI , T., KOLODNER, E. K., LEWIS, E., SALANT , E. E.,
BARABASH, K., LAHAN , I., LEVANONI , Y., PETRANK, E., AND

YANORER, I. Implementing an on-the-fly garbage collector for java.
In Proceedings of the second international symposium on Memory
management(Oct 2000), ACM Press, pp. 155–166.

[13] HERTZ, M., BLACKBURN , S. M., MOSS, J. E. B., MCK INLEY,
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