Proc. of the European Conference on Object-Oriented Rmagiag, Glasgow, UK, July 2005

Derivation and Evaluation of Concurrent Collectors

Martin T. Vechev, David F. Baco#, Perry Cheng, and David Grové

! Computer Laboratory, Cambridge University
Cambridge CB3 OFD, U.K.

2 |BM T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598, U.S.A.

Abstract. There are many algorithms for concurrent garbage collechiot they
are complex to describe, verify, and implement. This haslted in a poor under-
standing of the relationships between the algorithms, @sdonecluded system-
atic study and comparative evaluation. We present a siriglelavel, abstract
concurrent garbage collection algorithm, and show howtiexjssnapshot and
incremental update collectors, can be derived from theattstlgorithm by re-
ducing precision. We also derive a new hybrid algorithm teahuces floating
garbage while terminating quickly. We have implementedracoarent collector
framework and the resulting algorithms in IBM’s J9 Javauaitmachine prod-
uct and compared their performance in terms of space, tinteireerementality.
The results show that incremental update algorithms somestreduce memory
requirements (on 3 of 5 benchmarks) but they also sometiakesionger due to
recomputation in the termination phase (on 4 of 5 benchmagks new hybrid
algorithm has memory requirements similar to the increalamdate collectors
while avoiding recomputation in the termination phase.

1 Introduction

The wide acceptance of the Java programming language haghirgarbage collected
languages into the mainstream. However, the use of tradit®ynchronous (“stop the
world”) garbage collection is limiting the domains into whiJava and similar lan-
guages can expand. The need for concurrent garbage aotiécprimarily being driven
by two trends: the first is increased heap sizes, which makedises longer and less
tolerable; the second is the increase in the use of, and exitypbf, real-time systems,
for which even short pauses are often unacceptable. Thertfere is need for rapid
improvement in various kinds of incremental and concurceliector technology.

Unfortunately, concurrent garbage collectors are one ®itlore difficult concur-
rent programs to construct correctly. The study of coneuroellectors began with
Steele [28], Dijkstra [14], and Lamport [21].

Concurrent collectors were considered paradigmatic elesrgf the difficulty of
constructing correct concurrent algorithms. Steele’sidtlym contained an error which
he subsequently corrected [29], and Dijkstra’s algoritlumtained an error discovered
and corrected by Stenning and Woodger [14]. Furthermoreesmrrect algorithms [9]
had informal proofs that were found to contain errors [26].
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These problems also manifest themselves in practice becamsurrent bugs gen-
erally have a non-deterministic effect on the system andnarerepeatable, so that
connecting the cause of the error to the observed effecrieplarly difficult.

Many incremental and concurrent algorithms have beenduoted in the last 30
years [1, 3, 4, 6, 7, 10, 11, 12, 13, 16, 17, 18, 20, 22, 24, 28]iHere has been very
little comparative evaluation of the properties of theeliént algorithms due to the com-
plexity of implementing even one algorithm correctly. Agewin [2], because of these
constraints, current state-of-the-art concurrent systara generally not quantitatively
compared against each other and the exact relationshipsgtine different concurrent
schemes are largely unknown.

For example, early collectors were all examplesnafemental updateollectors
which “chase down” modifications to the object graph thatrasele by the program
during collection. Yuasa [30] introduced shapshot collestwhich do not attempt to
collect garbage allocated after collection begins, but aiorequire any rescanning of
the object graph. Thus, snapshot collectors trade offbiglisermination for a potential
increase in floating garbage. However, costs and benefitvwesto incremental update
techniques have not been systematically studied.

This paper presents a high-level algorithm for concurrefiection that subsumes
and generalizes several previous concurrent collectbniqaes. This algorithm is sig-
nificantly more precise than previous algorithms (at theeesp of constant-factor in-
creases in both time and space), and more importantly yéetdsnber of insights into
the operation of concurrent collection. For instance, theration of concurrent write
barriers can be viewed as a form of degenerate referencdicguin our algorithm, we
do true reference counting and are thereby able to find litee w@re precisely.

Existing algorithms can then be viewed as instantiationthefgeneralized algo-
rithm that sacrifice precision for compactness of objectespntation and speed of the
collector operations (especially the write barriers).

Additionally, we argue that all of the existing concurrelggaithms fundamentally
share a deeper structure. And there is a whole continuumistirex algorithms, which
we have not yet explored, but could be uncovered if we starhfsuch a structure.
Moreover, by having a common abstract algorithm, much ofcwstruction of the
practical collector will be simplified.

The contributions of this paper are:

— A generalized, extendable, abstract concurrent cadlieetigorithm, which is more
precise than previous algorithms;

— A demonstration of how the abstract algorithm can be iristiad to yield existing
shapshot and incremental update algorithms;

— A new snapshot algorithm (derived from the abstract allyon) that allocates ob-
jects unmarked (“white”) and reduces floating garbage withie-scanning of the
heap required by incremental update algorithms;

— An implementation of four concurrent collectors in a protion-quality virtual
machine (IBM’s J9 JVM product): Snapshot (after Yuasa), imasemental- update
(after both Dijkstra and Steele), and our hybrid snapstgarghm; and

— A quantitative experimental evaluation comparing théqrerance of the different
algorithms.
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2 An Abstract Collector

This section presents the abstract collector algorithne dlgorithm is designed for
maximum precision and flexibility, and keeps much more infation per object than
would be practical in a realistic implementation. Howevke space overhead is only
a constant factor, and thus, does not affect the asympimtiplexity of the algorithm,
while the additional information allows a potential redantin complexity.

Similarly, a number of operations employed by the abstrigrahm also have
constant time overheads that would be undesirable in astigatiollector. In particu-
lar, there is no special treatment of stack variables: tleyaasumed to be part of the
heap and therefore every stack operation may incur a cdr#tas overhead for the
collector to execute an associated barrier operation.eTaer a number of collectors
for functional languages (such as ML and Haskell) that ttieatstack in exactly this
way.

Our generalized concurrent collection algorithm makesofiflee framework of Ba-
con et al. [5]: they showed that for synchronous (“stop theldipgarbage collection,
tracing and reference counting can be considered as duadagyes to computing the
reference count of an object. Tracing computes a least fitpand reference counting
computes a greatest fixpoint. The difference between thetegtand least fixpoints is
the cyclic garbage. In most practical tracing collectdrs,ieference count is collapsed
into a single bit.

Furthermore, they showed that all collectors could be d®rsid as a combination
of tracing and reference counting, and that any incremignial due to the use of a
reference counting approach with its write barriers.

This insight is now extended to concurrent tracing collectere show that they are
also a tracing/reference counting hybrid. The collectacés the original object graph
as it existed at the time when collection started, but ddeserce counting for pointers
to live objects that could be lost due to concurrent mutation

The abstract algorithm makes use of the variables depict€alile 1. In the discus-
sion that follows, we elaborate more on the semantics of shated variable.

2.1 Restrictions and Assumptions

The algorithms we discuss are non-moving and concurrenhdiyparallel. That is, the
collector is single-threaded. The ideas derived from tiesuksion, however, are easily
extendable to algorithms using multiple spaces, such asrggonal ones.
Furthermore, the algorithm performs synchronization veitbmic sections rather
than isolated atomic (compare-and-swap) operations. isteattions are relatively ex-
pensive on a multiprocessor, so that although the algorihmbe executed on a mul-
tiprocessor it is better suited to a uniprocessor systeradban safe points, in which
low-level atomicity is a by-product of the implementatidyls of the run-time system.
Additionally, we assume that the concurrency between th&tors and the col-
lector is bounded by a single cycle. This is a common undeglgissumption in most
practical algorithms. Essentially, this means that allatartoperations started in collec-
tor cycle N finish in that cycle. They do not carry over to cydle 1, for example. No
pipelining between the collector phases is assumed: swgépfollowed by marking.
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|Shared Variablescription |[Computed By~ Value Domain |
| Global Variables |
Phase Current Collector phase Collector |[ldle, Tracing, Sweeping]
Hue Scanned Part of the Heap Collector [0, |H]]
| Per-Object Variables |
Marked  |Mark flag Collector Boolean
SRC Scanned reference count Mutator [0, P[]
Shade Scanning progress within objectCollector [0, |N]]
Recorded |Recorded in buffer by barrier Mutator Boolean
DontSweep |Allocated after Hue Mutator Boolean

Table 1. Shared variable$N| is object size|P| is maximum number of pointers in the heap and
[H| is the number of objects in the heap.

For the sake of presentation, we also make a number of syimgifassumptions
about the heap. We assume that all heap objects are the saseasid consist only of
collector meta-data and object data fields which are allteodn The fields of an object
X are denoted [1] throughX[S].

2.2 Tracing

The abstract algorithm is shown in Fig 1 and 2. We begin byrileiag the outer col-
lection loop and the tracing phase of collection cycle.

TheCol | ect () procedure is invoked to perform a (concurrent) garbagecoll
tion. When it starts, thPhase of the collector id dl e, and the first thing it does is to
atomically mark the root object and set the collector phase aici ng. Atomicity is
required because mutators can perform operations depeméme collection phase.

Because all variables live in the heap, there is only a sirgglethat must be marked
atomically. In a realistic collector that avoided write bars on stack writes, this single
operation would be replaced by atomic marking of all of thetse- which could be on
stacks or on global variables.

The core of the algorithm is the invocation ®f ace( ) , which is performed re-
peatedly until the concurrently executing mutators havenmadified the object graph
in a way that could result in unmarked live objects.

Tracing in our algorithm is very similar to the tracing in ansjironous collector: it
repeatedly gets an object from the mark stack and scans it.

Shades of Grey In the Scan() procedure the first major difference appears. Like
a standard tracing collector, we iterate over the fields efdhject and mark them.
However, as each field is read, tBhadeof the object is incremented.

The use of shades is one of the generalizations of our abgorivost concurrent
collectors use the well-knowmi-color abstraction: an object is white if it has not been
seen by the collector, grey if it has been seen, but all ofélsi$i have not been seen,
and black if both it and its fields have been seen.
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Col l ect ()
atom c
Mar k(root);
Phase = Tracing;

do
Trace();
while (ProcessBarriers());

atomc
ProcessBarriers());
Trace();
Phase = Sweepi ng;

Sweep() ;
Phase = Idl e;

Trace()
whil e(! markStack.enpty())
Obj = markSt ack. pop();
Scan(Obj ) ;

Scan( Obj )
for (field =1; field <= Obj.Size; field++)
atom c
Ptr = oj[field];
bj . Shade = field;
Mark(Ptr);

Mar k( Cbj )
if (! Obj.Marked)
mar kSt ack. push( Qbj ) ;
oj . Marked = true;

ProcessBarriers()
retrace = fal se;

atom c
while (true)
if (barrierBuffer.enpty()) return retrace;
Cbj = barrierBuffer.remove();

bj . Recorded = fal se;
i f ((INSTALLATI ON_COLLECTOR && Obj.SRC == 0) ||
(DELETI ON_COLLECTOR && Obj.SRC == 0 && isLeaf (hj)))
conti nue;
if (! Obj.Marked)
Mar k( Qbj ) ;
retrace = true;

Fig. 1. Abstract Collector Code
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Sweep()
for (i = 1; i <= Heap.Size; i++)
Hue = i;
Qbj = Heap[i];
if (! Obj.Marked & & ! Obj. Dont Sweep)
FREE( Obj )
Reset (Obj )

Hue = O;
Reset (hj )

oj . Shade = nj . SRC = 0;
Qoj . Marked = Cbj . Recorded = (Cbj . Dont Sweep = fal se;

atomic WiteBarrier(Obj, field, New, isAllocated)
if (Phase == Tracing)
ad = hj[field];

if (field < nj.Shade) // Al ready scanned by coll ector
if (! New Marked)
i f (DELETI ON_COLLECTOR)
if (isAllocated)
Renmenber ( New) ;
el se
if (! New Recorded)
Renmenber ( New) ;
New. SRC++;
if (! dd.Mrked)
ad. SRC--;
el se if (DELETI ON_COLLECTOR && ! O d. Mar ked
&& ! O d. Recorded &&

(VisLeaf (Obj) || (isLeaf(Cbj) & O d.SRC > 0)))

Remenber (A d) ;
Obj[field] = New

atomc AllocateBarrier(CObj, field, New)
Reset ( New) ;
if (Phase == Sweepi ng)
if (Heap.free >= Heap. Hue)
New. Dont Sweep = true;
el se
WiteBarrier(Qbj, field, New, true);

Renmenber (hj )

Barri er Buf f er. append( Qbj);
oj . Recorded = true;

Fig. 2. Abstract Mutator Code
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The color of an object represents the progress of the tracavgfront as it sweeps
over the graph. However, the tri-color abstraction losésrination because it does not
track the progress of sweeping within the object. Fundaallgnthe synchronization
between the collector and the mutator depends on whethebjactdeing mutated
has been seen yet by the collector. Therefore, by losingrimdtion about the marking
progress, the precision of the algorithm is compromised.

TheShadef an object is simply a generalization of the tri-color ahstion: objects
are still white, grey, or black, but there are many shades®j.d he shade represents
the exact progress of marking within the object. Wis#rades 0, the object is white.
When it is the same as the number of fields in the object, thecbig black. We will
describe how the shade information is used when we presemtrite barrier executed
by the mutator.

Once theScan() procedure has updated the shade, it marks the target oblject.
Mar k() procedure pushes the object onto the mark stack if it waslrezsdy marked.

2.3 Mutator Interaction

We now turn to the interaction between the mutator and cliday considering the
actions of the mutator when it changes the object graph. ®heectivity graph can be
modified by both pointer modification and object allocation.

Write Barrier The write barrier is depicted by the procedMya t eBarri er () in
Fig 2. In our presentation of the algorithm, the entire whtarier is atomic. Finer-
grained concurrency is possible, but is not discussed spdper.

The write barrier takes a pointer to the object being moditieel field in the object
that is being modified, the new pointer that is being storéad the object, and a flag
indicating whether the new pointer refers to an object thes just allocated.

If the collector is not in its tracing phase, it simply perfos the write: because it is
the tracing phase that determines reachability of objectty, object graph mutations
during tracing can affect reachability (object graph adds — via allocation — require
some additional synchronization, which is described bglow

An object can be protected either (1) when a pointer to itasest or (2) when a
pointer to it is overwritten. We call saving the pointer atriliastallation barrier and
saving the pointer at 2 @eletion barrier The Dijkstra-style barrier is an instance of an
installation barrier; the Yuasa-style barrier is an instaaf a deletion barrier.

Earlier, we described our collector as a combination ofitigaand reference count-
ing. The reference counting is done in the write barrierdrtipular, we keep a count of
the number of references to an unmarked object from scarorédms of the heap. This
is called the Scanned Reference CounS&C The SRCis one of the most important
aspects of our abstract algorithm and allows for a numbertefésting insights.

The SRC allows us to defer reachability decisions from theetof a write barrier
to the time when collector tracing is finished. For examgdi& pointer to an object
is installed into the scanned portion of the heap, and sulesdty removed from the
scanned portion of the heap, then it can not possibly affecliveness of the object.
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D1: Mutator stores D2: Mutator removes D3: Collector scans D4: Collector incorrectly
pointer b into pointer a from object X frees object Z
scanned object Y unscanned object X

Fig. 3. Erroneous collection of live object Z via deletion of dir@ciintera from object X.

Object Allocation Besides pointer assignments, the mutator can also addtsljec
the connectivity graph. Similarly to pointer assignmetts, allocation interacts with
the tracing phase. In addition, allocation also interadgth the sweeping phase of the
collector. This is performed in the procedudel ocat eBarri er () in Fig 2.

In terms of reachability, if the collector is in its tracindngse, object allocation
can be seen as just another pointer modification event. Tl difference between
allocation and pointer writes is that upon allocation wewrtbat the new pointer is
unique. We also know that the new object does not contain atgoing pointers.

During the sweeping phase, the collector iterates over #ap hreclaims all un-
reachable objects and resets the state of the live objeeteisdlime that we can desig-
nate which parts of the heap the collector has passed iedibgtthe variabléleap.Hue
The variable is similar t&chade exceptShadeis applied per object whilélue is ap-
plied per heap. That is, we have oHee variable. Similarly toShadethe variable is
monotonic within the same collector cycle.

If the mutator allocates during the collector's sweepingg# we require a mech-
anism to protect the object from being collected errongoUsie fieldDontSweejn-
dicates if the object has been allocated in a part of the Hestlie collector has yet to
reach in its sweeping action.

2.4 Lost Object Problem

In a concurrent interleaving between the application aectilector, the program can
accidentally hide pointers during collector heap markkgutator can store a pointer
into a portion of the heap the collector has already scararatisubsequently destroy all
paths from an unscanned reachable portion of the heap tobfett. The problem can
be broken down into hiding directly and transitively redallezobjects. For illustration
purposes an object with a black color is one that the coltdwis marked reachable and
has scanned all of its children. A white-colored object is tmat the collector has not
yet reached.

The sequence fatirectly hidden objects is depicted in Fig. 3. Each state of the graph
is shown in time steps. In the initial state, three are objextanned object Y, unscanned
but reachable object X and object Z which is not yet marketlidneachable only from
X via pointera. In step D1, a mutator copies pointeiand stores it into the scanned
object Y resulting in pointeb. In step D2, the mutator removes the only pointer to Z
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T1: Mutator stores T2: Mutator removes T3: Collector scans T4: Collector incorrectly
pointer e into pointer ¢ from object Q frees object S
scanned object P unscanned object Q

Fig. 4. Erroneous collection of live object S via deletion of pomtdrom object Q which transi-
tively reaches S through R.

from an unscanned but reachable object X. The mutator isitherediately preempted
by the collector and in step D3, the collector processesbljgurns it black (scanned)
and assumes that its marking phase is completed. Next,pristethe collector starts
its sweeping phase and erroneously frees object Z, althdugheachable from Y via
pointerb. In this case we say that object Zdsectly hidden from the collector.

Alternatively, an object can be hiddé&ansitively. This case is illustrated in Fig. 4.
In the initial state, object P is scanned and Q, R, and S achaéde but not yet seen.
Starting from this state, in step T1, the mutator introdymsatere from a scanned and
visited object P to object S. In step T2, the mutator desttbgsunscanned pointer
from Q to R, essentially, destroying the only path startirogrf Q to object S. Next, in
step T3, the collector preempts the mutator and scans dBjastshown and assumes
to have finished the tracing phase. In step T4, the collectariectly frees object S. In
this case we say that object S weansitivelyhidden from the collector.

The lost object problem consists of two main events in tinberirsg a pointer to
the particular object to be lost and in a subsequent stepoyasy all other paths to
that object. The two well-known solutions to this problenergie at either of these
two steps. They either operate at state D1/T1 or at state DPijsktra’s and Steele’s
solutions operate at states D1/T1 and aim to prevent thekinesvledged introduction
of pointers from scanned portions of the heap to reachallerbmarked objects. They
essentially speculate that a pointer destruction will os@metime in the future, and
this will lead to hiding of the object. Alternatively, solahs can operate at steps D2/T2.
When a pointer is destroyed as in steps D2 and T2, we reasb@ thainter to the
object must have been introduced earlier and make the tafgje¢ overwritten object
reachable. This is the solution chosen by Yuasa. For exarvpbesa would make Z
live when pointera is removed in step D2 or pointeris removed in step T2. In the
transitive case, even though object R might have becomeahable when the pointer
is destroyed in step T2, Yuasa’s solution requires thatablijes kept live as a potential
only path left to the hidden object S.
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2.5 Design Alternatives

The abstract algorithm maintains rich object and heaptiefermation. This section
attempts to provide an intuitive understanding of the aoslgorithm.

The essence of the abstract algorithm is that it allows fterd@g reachability deci-
sions from the mutator to the collector. That is, in the whiserier the mutator detects a
potential problem and nominates a candidate pointer focaliector. Subsequently, be-
fore the termination of its tracing phase, the collectomeixees the nominated pointers
and optionally discards unnecessary candidates. Thefigpeltoices of which point-
ers are selected by the mutator and which pointers are medds the collector are
discussed in the following sections.

Mutator Selection When a mutator hits the write barrier, it can protect an ahjsing
either theinstallation choice or thedeletionchoice. Intuitively, to protect an object,
the mutator speculates about reachability, since it haswwledge of how the graph
changes before the collector has finished tracing. In thieadiglgorithm, the mutator
detects a potential problem, but does not make explicitsitats whether the object is
reachable at the end of tracing.

If the installationchoice is utilized, the object is nominated by the mutatsam
as theSRCbecomes> 0, thereby, protecting the objedirectly rather than transitively.
The installation choice speculates that right after$iRCbecomes> 0, the only path
to the object from an unscanned, but reachable object witldstroyed. Immediately
after nominating the pointer, the SRC could be decremergelf to zero effectively
undoing the previous operation.

For thedeletionapproach, if a pointer in an unscanned object is overwritien
other object can become hidden either transitively or diyeld the SRC(X)is > 0 and
a pointer to object X is overwritten from an unscanned partbthe heap, we need to
protect object X directly. Therefore, the mutator must noaeé this pointer. Alterna-
tively, if the SRC(X)is 0, we might need to protect some transitively reachabjeabb
from X. The key is to recognize that if X does not contain antgoing pointers, then
no object can be hidden transitively. In such cases, we doeed to nominate X.

Determining whether object X is a leaf can be done by usingythe of the object.
Examples of acyclic types are scalar arrays as well as nelalyaded objects before
pointers are stored into them. Objects of acyclic typeseaeds for their entire lifetime
while newly allocated objects can be leaves only tempagtaril

Moreover, even if object X is not a leaf, a write barrier coplaissibly perform
nested checks and determine that at, for example, twodeedp all objects pointed
from X are leaves and their SRC is 0. In this case, we can aghaim from nominating
the overwritten X pointer.

In some way, it would be logical to make a conclusion that teketibn choice
should be more precise, since it always reasons about ahwhéh has already oc-
curred: theSRCof some object has become 0. Theinstallation choice speculates
about the future, that may be at some point an unscannedepaeitit be destroyed.
Although a deletion collectors reasons about past evenslanald have more informa-
tion, it has no practical way of determining those transitijects whos&RC> 0. In
contrast, thénstallationchoice always has an immediate access to the critical object
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Besides pointer events, the mutator can modify the conrigctraph via object
allocation. Allocation can be seen as an instance of a waitddy with special knowl-
edge that the target pointer is unique. For installationahcollectors, allocation events
are treated exactly as all pointer events. For deletioncehoollectors, if the result-
ing pointer from an allocation request is stored into a sedrportion of the heap, it
is possible that the object will be lost. We can then think kdcation as a normal
pointer store, except that immediately after the pointeresinto a scanned region of
the heap, an unscanned virtual pointer to the object is awtew. Since the virtual
event cannot be captured by the barrier, simulateit in the barrier. The flagsAl-
locatedis passed specifically for this reason from #tid ocat eBarri er () to the
WiteBarrier() procedure.

Characterizing graphs that allow different barrier chsiger object is an interesting
though primarily theoretical question. It is generally possible to make that decision
arbitrary without some local knowledge of the graph.

Finally, if all barriers occur on leaf objects, the delethoice will always require
us to nominate fewer pointers. Of course, in both barrieicg®precisely the same
number of objects will be marked live. This can be logicalkplained by the fact
that in both cases, the immediate object is available duhiegointer store therefore
we can reason locally about reachability. In that case,daf dbbjects, the decision of
which barrier to use can be made per-object rather thangiketor-cycle. We do not
deal with this topic further.

Collector Choice Once the collector has finished the initial tracing of thefhehere
could be a number of unmarked candidates nominated by thegonuit is possible that
in between the time when the mutator has nominated a caedidatthe collector sees
it, the candidate is no longer necessary.

Similarly to the mutator’s pointer selection mechanisng tollector also uses a
mechanism to filter out unnecessary candidates. This g@leniechanism for the col-
lector is the same as that for the mutator. This can be sebr inrite barrier processing
phase, the proceduRe ocessBarri er s() in Fig. 1.

Although the collector uses the same mechanism as the mutasopossible that
candidates nominated by the mutator are ignored by theatotled=or example, if the
installationchoice is used and if the objecBRCis > 0, when the collector sees such
pointers, the corresponding object must be retraced. 1bbject'sSRCis 0 however,
then the object was recorded by the mutator, but beforengdiiished, itsSRCdropped
to 0. Such objects are skipped by the collector in this phBlsey have either become
garbage or are live but hidden. In the latter case, the oigjeeachable transitively from
a chain of reachable objects starting at an object wisd¥@is > 0. We therefore only
need to re-trace objects whoSRCis > 0. Similar reasoning although with a different
selection criteria is applied to the deletion choice.

Maintaining an accurat8RChas several advantages. First, the SRC prevents us
from inducingfloating garbageThat is because at the time a pointer store occurs, the
mutatornominatesobjects that could bpotentiallyhidden from the collector. It need
not make an explicit decision whether they will actually bachable once the tracing is
complete. The reachability is left to the collector whenltlaerier tracing phase occurs.
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It is because of th&RCthat the mutator does not need to make such explicit deasion
about reachability. Secondly, the collector must starsaaaning only from specific
objects. For example, for the installation choice it doesmeed to consider objects
whoseSRCis 0.

3 Transformations: Trading Precision for Efficiency

The abstract algorithm of the previous section provides emmigher degree of preci-
sion than previously published and implemented algorithusit is also impractical.
In this section we describe how practical collectors candsevdd via orthogonal trans-
formations of the abstract collector. Since the transfaiona are orthogonal, and since
the reduction in precision can be modulated, this framewatidws the derivation of a
much broader set of algorithms than have previously beecrithesl, as we will show
in the following section.

The transformations presented are (1) reduction in writddraoverhead by treating
multiple pointers as roots; (2) reduction in root procegdiy eliminating re-scanning
of the root set; (3) reduction in object space overhead amndelbdime overhead by
reducing the size of the scanned reference count (SRC)eddicing object space over-
head by reducing the precision of the per-object shadep{#)ation of shade and SRC
to further reduce object space overhead and speed up theeharitier.

These transformations are not strictly semantics-prasgrgince the set of col-
lected objects is changed. However, they are invariargdguuéng in that live data is
never collected (the collector safety property).

3.1 Root Sets: Eliminating Write Barriers

In the abstract algorithm, all memory is reached from a singbt. Thus stacks and
global variables are treated as objects like any other. 8oapproach is actually used
in some implementations of functional programming langsgd 2]. However, in sys-
tems with a significant level of optimization, the cost oflsan approach is prohibitive
because the mutation rate of the stack is generally extseinigh and every stack mu-
tation must include a write barrier.

Therefore, we can transform an abstract algorithm with doami treatment of
memory into an algorithm which partitions memory into twaimns: the roots and
theheap The roots generally include the stack and may also corttaistatic variables
and other distinguished pointer data.

In common parlance the static variables are generally densd to be roots, but if
they are barriered then they are in effect treated as fielthediglobal variable object”,
and only the pointer to that “object” is a true root. From theénp of view of the root
transformation, the only issue is that the memory is part&d into two sets, the roots
and the heap, such that there are no pointers from the heafhantoots.

In the abstract collector, there is a single root pointeer€&fore, examining the root
is an inherently atomic operation. With the addition of riplé roots, they must either
be processed atomically or a further transformation mustgpdied to incrementalize
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root processing [15]. In this work we restrict ourselveslgodathms with atomic root
processing.

In particular, at the beginning of every collection, we stbp mutators and mark
all heap objects directly reachable from roots, placingrtios the work queue (mark
stack). Subsequently, when the roots are mutated, no vaitéebis executed.

Since the roots are processed atomically at the beginniegltEfction, they are in
effect ascanned objecHowever, since we no longer perform a barrier on mutatios, t
SRC field of objects referenced by mutated roots is no longaranteed to be correct
and they will not have been placed in the barrier buffer. €fare, the algorithm must
be adjusted to correct or accomodate this imprecision.

The imprecision can be corrected by atomicadlyscanninghe roots before barrier
processing. Consider a sequence of stores into a parti@gapointer. These stores
must be treated like stores into a scanned portion of the, Iseahat the SRC of the in-
stalled and overwritten pointers must be incremented antedeented, respectively. If
we rescan the roots, then any pointers which were scannepsty will have already
been marked, and the SRC will be unaffected.

When a pointer to an unscanned object is stored into a roghé&ofirst time, the
pointer that is being overwritten must point to a marked obhgnce all direct referents
of roots are marked atomically at the start of collectioru3the SRC of the overwritten
pointer would not have changed if the write had been badidiewever, the SRC of
the newly installed pointer would have been incrementetif itioe roots are rescanned
this pointer will be discovered and since it points to an urkad object it is known to
be a new pointer, and the SRC is incremented. Thus in the dassingle store to a
root, the SRC is correct.

Inductively, if there are multiple stores to a root, thenteaobsequent store will
cause the SRC of the overwritten pointer to be decrementétharSRC of the installed
pointer to be incremented. The decrement will cancel theeiment that was performed
on the same pointer when it was previously installed. Theesfa sequence of stores
to a particular root pointer will result in the SRC of all obfie except the last one to
remain unchanged.

Since that object is found by rescanning, rescanning witijgote an accurate SRC,
and the transformation that separates the memory into esat$ieap leaves the preci-
sion of the algorithm unchanged.

3.2 Root Rescan Elimination

As we have just shown, the special treatment of roots doesffett the precision of
the collector if root re-scanning is used to correct the SR@wever, re-scanning is
undesirable because it increases the running time of ttoeit.

If root re-scanning is eliminated, then the SRC values maynaer-approximations
(because the increment of the final pointer stored in a rdbhewe been missed). Since
increments may keep objects live that would otherwise haealzollected, this means

! This is the same reasoning that was applied by Barth to edirmiredundant reference count
updates at compile time [8], and by Levanoni and Petrankitmwe redundant reference count
updates between epochs in a concurrent reference coutiegtor [23].
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that any reclamation of an object based on its SRC being OsafanTherefore, the
algorithm must be conservative in such cases and precidlbbarsacrificed.

Furthermore, when an installation barrier is used the llasian of pointers into
the scanned portion of the heap is what causes them to be tesnedin the barrier
buffer for further tracing during barrier processing. Thigans that regardless of the
imprecision of the SRC, objects that would have had a noo-38C must be seen
during barrier processing. In effect, this means re-saanoan not be eliminated for
algorithms that use the installation barrier.

For algorithms that use the deletion barrier, the only p#to new objects that
are remembered in the write barrier are the newly allocalgelots. Therefore, as long
as those objects are placed in the barrier buffer by the atfbocand the SRC-based
computation in the barrier processing is eliminated, thenrbot re-scanning can be
safely eliminated.

Since no collector decisions are based on the value of the BR®&CGedundant and
can be eliminated. The result is an algorithm with more flaatgarbage (in particu-
lar, all newly allocated objects are considered live), ofclihyuasa’s algorithm is an
example.

3.3 Shade Compression

The shade of an object represents the progress of the aollexit processes the indi-
vidual pointers in the object. The precision of the shadeatasays safely be reduced
as long as the processing of the pointers in the object in thite Wwarrier treats the
imprecise shade conservatively.

In particular, since many objects have a small number oftpaaiV, it is efficient
to treat the shade which originally had the raf@eV] as the sef0,[1... N — 1], N}.
These three values represent an object for which collectmgssing has not yet begun,
is in progress, or has been completed. This is the standeazdltr abstraction intro-
duced by Dijkstra, where the three values are called whits;, @nd black, respectively.

WhenN is small, the chance is low that the mutator will store a gagiiito the ob-
ject currently being processed by the collector, so theagaluin precision is likely to
be low. However, with large objects (such as pointer arrlysyeduction in precision
can be more noticable. Some collectors therefore treaibssctf the array indepen-
dently, in effect mapping equal-sized subsections of theydnto different shades.

3.4 Scanned Reference Count Compression

The scanned reference count (SRC) can range from 0 to theerwhpointers in the
system. However, the number of references to an object &llysmall, and the SRC
will be even lower (since it only counts references from ttesed portion of the heap
to unmarked objects). Therefore, the SRC can be compresskiti@loss of precision
is likely to be low.

However, the compression must be conservative to ensurévbabjects are not
collected. This is accomplished by making the SRC into aksti count [27]: once it



Derivation and Evaluation of Concurrent Collectors 15

reaches its maximum value, it is never decremented. As dtrésel SRC is an over-
approximation, which is always safe since it will only caasilitional objects to be
treated as live.

An important special case for collectors that use an iregtalh barrier is a one-bit
SRC, since in this case the SRC becomes equivalent to therd®ecfiag, allowing
those two fields to be collapsed.

3.5 Conflation of Shade and Scanned Reference Count

In a collector using an installation barrier with a one-kitlsy SRC and tri-color shade,
an object with a stuck SRC must be scanned by the collectmile8ly, a grey object
must be scanned by the collector. Thus the meaning of thesstates can be collapsed
and the grey color can be used to indicate a non-zero (stiRR) &hich also represents
the Recorded flag.

This is in fact the representation used by most collectoas flave been imple-
mented. In effect, they have collapsed numerous indepénileariants into a small
number of states. This helps to understand why such algasidre bug-prone: collaps-
ing the states corresponding to algorithmic invariantesebn subtle transformations
and simultaneously reduces redundancy in the represamtati

4 Using Transformations to Derive Practical Collectors

In this section, we derive various practical algorithms pplging the previously dis-
cussed transformations to the abstract collector algarithome of the schemes are
well-known concurrent algorithms such as Dijkstra and “@jaghile others are new
derivations.

4.1 Derivation of a Dijkstra Algorithm

The Dijkstra algorithm is an instance of an abstract inatalh collector and to derive
it we apply the following transformations:

1. Root Setsransformation

2. Shade compressidn tri-color

3. SRC compressiaio a single sticky bit
4. Conflation of ShadandSRC

Although at the end of the transformation steps, we arriwe@gactical Dijkstra al-
gorithm, the intermediate steps also represent valid #ghgos with different precision.

The compressions @RCandShadecan lead to floating garbage. However, unlike
ShadeandSRCcompressions, théonflationtransformation does not lead to increased
floating garbage. On the other side, it reduces, both, spatsumption in the header
of the object, and, complexity of the write barrier.

The Root Setdransformation also preserves the treatment of allocatgects.
When a new object is allocated and stored into the roots, tit@tor will not nomi-
nate the pointer because the store will occur into a scanagdipn (roots) and the
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Mar kRoot s()
while (! roots.end())
Obj = roots.get();
Mar k( Qbj ) ;

Mar kRoot sDi rect ()
while (! roots.end())
bj = roots.get();
if (Qbj.isAllocatedl nThi sCycle)
bj . Col or = bl ack;

Col l ect ()
atom c
Mar kRoot s() ;
Phase = Traci ng;

do
Trace();
while (ProcessBarriers());

atom c
Mar kRoot sDi rect () ;
ProcessBarriers());
Trace();
Phase = Sweepi ng;

Sweep() ;
Phase = Idle;
atomic WiteBarrier(Cbj, field, New
i f (Phase == Tracing)
ad = Obj[field];

if (New. Color == white && New. i sAl | ocat edl nThi sCycl e)
New. Col or = bl ack;

if ( Qbj . Color !'= black & A d.Color == white
&& ' A d. Recorded )
Remenber (A d) ;
Obj[field] = New,

Fig. 5. Pseudo Code For The Hybrid Collector
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write barrier is not active on the roots. If the pointer to #ilecated object gets stored
in the heap, then it will be processed in the mutator writeibgrsimilarly to all other
objects existing at collection startup. If the allocatedecbdies before the roots are
rescanned, the collector will not mark that object as live.

A Steele-like collector is similar to a Dijkstra collectotaept that its transformation
covers a wider range of rescanning. A Steele algorithm idiméed to rescanning only
the roots, but can also rescan heap partitions. Howevebativeer processing phase and
the selection criteria are exactly the same as in the Dgkstilector.

4.2 Derivation of a Yuasa Algorithm

Our second derived collector is a Yuasa snapshot algoriftwa.Yuasa algorithm is an
instance of a deletion collector. The algorithm can be @erly applying the following
transformations to the abstract collector:

1. Root Setsransformation
2. Shade compressidn tri-color
3. Root Rescan Elimination

During barrier processing, deletion collectors can skipedis whoseSRCis 0
and are leafs. However, sin€oot Rescan eliminatioprevents the roots rescanning
process, an accuraBRCcannot be computed, and subsequently the collector satecti
criteria cannot be applied. Therefore, in order to prestrgesafety property of the ab-
stract collector, the collector must mark all overwrittesirgers and rescan from them.
The SRCis removed since it cannot serve its primary purpose: a doidie collector
selection criteria.

The Yuasa collector is the most conservative approach ttirftpgarbage. It does
not allow any destruction in the connectivity graph oncedbiector has started and it
effectively allocates only reachable object (black).

One fundamental difference between Yuasa and Dijkstraritigos is that in the
presence of &oot Setdransformation, installation collectors must never useRbot
Rescan eliminationwhile deletion collectors have no requirement to applylite res-
canning in deletion collectors is done mostly to eliminadafing garbage, albeit, at the
expense of triggering work to rescan the roots.

Also, although at the end of our derivation, we arrived at aséualgorithm, the
result of every intermediate step is a valid deletion cadec

4.3 Derivation Of a Hybrid Algorithm

The third derived practical algorithm is the Hybrid collectThe Hybrid algorithm is
an instance of an abstract deletion collector. The Hybm@@hm can be derived by
applying the following transformations:

1. Root Setsransformation
2. Shade compressidn tri-color
3. SRC compressiao a single sticky bit
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4. Conflation of Shade and SRC
5. Root Rescan elimination for existing objects
6. Over approximate Shade

The first two transformation steps are the same as for theaYalgsrithm. However,
in the Hybrid algorithm, we utilize the rescanning of rootdyofor newly allocated
objects. The roots rescan transformation is parametetizkd active only for existing
objects. The idea is to obtain a deletion Yuasa algorithnmtHerexisting heap graph
while maintaining a less restricted policy for newly allted objects, similarly to the
Dijkstra collector. By eliminating rescanning for exisiiobjects, we can remove the
SRCfor those objects. Whenever the collector encounters astiegiobject during its
barrier processing phase it will always mark the objecthaut applying any selection
criteria.

After step 5 we still have a working deletion algorithm, bug would like to ob-
tain more of the properties of Yuasa, namely, bounded @ngaof newly allocated
objects triggered by roots rescanning. To do that, we peréor additional transforma-
tion where if a newly allocated pointer is stored into thefhehe object is marked as
reachable for this collection cycle. This simply means thatnewly allocated pointer
is stored into the heap, we always increaseSR&; ignoring what the color of the des-
tination object is. This is clearly a trivial over-approxation transformation on Shade
of the destination object as indicated in step 6. With ttie,dollector now only needs
to trace from existing objects and not from newly allocatégeots. Newly allocated
objects are essentially allocated white and colored blabkeduring roots rescanning
or during a pointer store in the heap.

TheHybrid collector is particularly suited for hard real-time applions, where it
is desirable to achieve a bound on the roots rescanning woitk veducing the floating
garbage.

The skeleton code for the algorithm is illustrated in Fig.A$ark RootsDirect
is the procedure that performs the one-level deep rescammotedure for the roots
partition while theis AllocatedInT hisCycle bit is used to differentiate between newly
allocated and existing objects.

5 Experimental Evaluation

We have implemented a concurrent collector framework in 1888 virtual machine.
The collector supports both standard work-based colle¢far everya units of alloca-
tion the collector perform&a units of collection work) as well as time-based collection
(the collector runs for out of ¢ time units). This collector has been built as a second-
generation Metronome real-time collector [4].

However, in this paper we will concentrate on work-basetectibn because its use
is more common in more widely used soft real-time systems jsalikely to provide a
better basis for comparison with other work. Isolated eixpents have shown that the
trends we report for work-based collection generally holdtime-based collection as
well.

Our collector is implemented in a J2ME-based system thategla premium on
space in the virtual machine. Therefore, we use the microdtfier than the much
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Fig. 6. Summary of the maximal space usage of the four collectoritifgns. Data is normalized
to the Hybrid algorithm. Shorter bars represent lower spsege.

more resource-intensive optimizing compiler. The micfoil a high-quality single-
pass compiler, producing code roughly a factor of 2 slowantitne optimizing JIT.

The system runs on Linux/x86, Windows/x86, and Linux/ARMegTmeasurements
presented here were performed on a Windows/x86 machineaMiiantium 4 3GHz
CPU and 500MB of RAM.

The measurements presented all use a collector to mutatkmraitio of 1.5, that is,
for every 6K allocated by the mutator, the collector proes€K. Collection is triggered
when heap usage reaches 10MB.

We have measured the SPECjvm98 benchmarks, which exhigita fide range
of allocation behavior (with the exception of compress,ahtperforms very little allo-
cation).

Figure 7 summarizes the performance of the four collectgorithms. The left
graph shows the maximum heap size, the right graph totaléixedime. Both graphs
are normalized to the Hybrid algorithm, and shorter barsasgnt better performance
(less heap usage or shorter execution times). A geometi@n risealso shown. These
graphs summarize more detailed performance data whichecBrubd in the Appendix.

5.1 Space Consumption

As expected, the incremental update collectors (Dijkstich Steele) often require less
memory than the snapshot collector (Yuasa). This is bec#ngsancremental update
collectors allocate white (unmarked) and only consideg livose objects which are
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Fig. 7. Summary of overall execution time of the four collector altfons. Data is normalized to
the Hybrid algorithm. Shorter bars represent faster exactime.

added to the graph. However, there is no appreciable diféeren 2 of the five bench-
marks (jess and jack), which confirms that the space saviogs ihcremental update
collectors are quite program-dependent.

The use of Steele’s write barrier instead of Dijkstra’s ttetically produces less
floating garbage at the expense of more re-scanning, simoarks the source rather
than the target object of a pointer update. This means thia¢ie are multiple updates
to the same object, only the most recently installed pointktibe re-scanned.

However, the Steele barrier only leads to significant imprognt in one of the
benchmarks (db). This is because db spends much of its timierpéng sort oper-
ations. These operations permute the pointers in an amayeach update triggers a
write barrier. With a Steele barrier, the array is taggeddéescanning. But with a Dijk-
stra barrier, each object pointed to by the array is taggedef@canning. As a result,
there is a great deal more floating garbage because the t®nfahe array are being
changed over time.

Finally, the hybrid collector which we introduced, a snagstollector that allocates
white (unmarked), significantly reduces the space overb&adapshot collection: the
space overhead over the best collector is at worst 13% (@ac)awhich is quite rea-
sonable.
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5.2 Execution Time

While the incremental update collectors are generallyrassuto have an advantage
in space, their potential time cost is not well understoodrémental update collec-
tors may have to repeatedly re-scan portions of the heaphizatged during tracing.

Termination could be difficult if the heap is being mutatedaguickly.

Our measurements show that incremental update collectonsdeed suffer time
penalties for their tighter space bounds. The Dijkstraibagauses significant slow-
down in db, javac, mtrt, and jack. The Steele barrier is less@to slowdown — only
suffering on javac — but it does suffer the worst slowdowrowtd 2%. These measure-
ments are total application run-time, so the slow-down efchbllector is very large —
this represents about a factor of 2 slowdown in collectioreti

Once again, our hybrid collector performs very well — it ugutakes time very
close to the fastest algorithm. Thus the hybrid collectqregpys to be a very good com-
promise between snapshot and incremental update cobector

Because its only rescanning is of the stack, it suffers nagtah in incrementality
from a standard Yuasa-style collector, which must alreamdy ghe stack atomically.
Its advantage over a standard snapshot collector is thighifisantly reduces floating
garbage by giving newly allocated objects time to die. Butese it never rescans the
heap, it avoids the termination problems of incrementalatgaollectors and is still
suitable for real-time applications.

As shown by the more detailed graphs in the appendix, thegpyimeason why the
Yuasa and Hybrid algorithms are quicker is that the Dijkammd Steele collectors both
scan significantly more data during barrier buffer proaegsi

The benchmark with the most unusual behavior is jack, foctvitihe Yuasa snap-
shot collector uses tHeastmemory, while the Steele algorithm uses the least time. We
are still in the process of investigating this behavior.

6 Conclusions

We have presented an abstract concurrent garbage cafleadtjorithm and showed
how incremental update collectors in the style of Dijksaad snapshot collectors in
the style of Yuasa, can be derived from this abstract algoriby reducing precision
through various transformations.

We have also used the insights from this formulation to deaivnew type of Hy-
brid snapshot collector which allocates its objects unma@rknd therefore induces less
floating garbage.

We have implemented all four collectors in a productionuattmachine and com-
pared their time and space requirements. Incremental egdiéctors do indeed suffer
less floating garbage, while the pure snapshot collectoreioms uses significantly
more memory. The Hybrid collector greatly reduces the sgpaséof snapshot collec-
tion.

Incremental update collectors can significantly slow doarbgge collection, lead-
ing to noticeable slow-downs in application execution sh&wur new Hybrid snapshot
collector is generally about as fast as the fastest algariffor most applications, this
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collector will represent a good compromise between timesmade efficiency, and has
the notable advantage of snapshot collectors in terms digiedle termination.

We hope this work will spur further systematic study of altjons for concurrent
collection and further quantitative evaluation of thosgoaithms.

Appendix: Detailed Performance Data

This section includes graphs that illustrate for each bevark, the behavior of the four
collectors with respect to space utilization and barnmelviced work.

Figure 8 shows space usage over time by javac. Each data nepirgsents the
amount of data in use when the tracing and barrier processingnated, but before
sweeping. This represents the point of maximum memory use.Ylasa-style collec-
tor consistently uses more memory than the others, butdttalsninates the quickest
(at termination, memory consumption is 0).

The reason why the Yuasa and Hybrid algorithms are quickereesily be seen
in Figure 9: the Dijkstra and Steele collectors both scani@antly more data during
barrier buffer processing. Note that barrier-induced sanis still significant even for
the pure snapshot (Yuasa) collector. This is because psitiesome objects that are
part of the snapshot may have been overwritten and not disedwduring marking.
Therefore, the snapshot it “completed” during barrier buffrocessing. However, the
total work will be based on the live data in the object grapthatime collection began,
whereas in the incremental update algorithms it varies.

The rescanning overhead that we observed above for the dinfvemk with Dijk-
stra’s barrier can be seen clearly in Figure 11: rescannipigdlly causes about 20%
of the heap to be re-visited, while rescanning for the othiezd collectors is negligible.

Details for the remaining benchmarks are found in Figurethd@igh 17.
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