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Abstract. There are many algorithms for concurrent garbage collection, but they
are complex to describe, verify, and implement. This has resulted in a poor under-
standing of the relationships between the algorithms, and has precluded system-
atic study and comparative evaluation. We present a single high-level, abstract
concurrent garbage collection algorithm, and show how existing snapshot and
incremental update collectors, can be derived from the abstract algorithm by re-
ducing precision. We also derive a new hybrid algorithm thatreduces floating
garbage while terminating quickly. We have implemented a concurrent collector
framework and the resulting algorithms in IBM’s J9 Java virtual machine prod-
uct and compared their performance in terms of space, time, and incrementality.
The results show that incremental update algorithms sometimes reduce memory
requirements (on 3 of 5 benchmarks) but they also sometimes take longer due to
recomputation in the termination phase (on 4 of 5 benchmarks). Our new hybrid
algorithm has memory requirements similar to the incremental update collectors
while avoiding recomputation in the termination phase.

1 Introduction

The wide acceptance of the Java programming language has brought garbage collected
languages into the mainstream. However, the use of traditional synchronous (“stop the
world”) garbage collection is limiting the domains into which Java and similar lan-
guages can expand. The need for concurrent garbage collection is primarily being driven
by two trends: the first is increased heap sizes, which make the pauses longer and less
tolerable; the second is the increase in the use of, and complexity of, real-time systems,
for which even short pauses are often unacceptable. Therefore there is need for rapid
improvement in various kinds of incremental and concurrentcollector technology.

Unfortunately, concurrent garbage collectors are one of the more difficult concur-
rent programs to construct correctly. The study of concurrent collectors began with
Steele [28], Dijkstra [14], and Lamport [21].

Concurrent collectors were considered paradigmatic examples of the difficulty of
constructing correct concurrent algorithms. Steele’s algorithm contained an error which
he subsequently corrected [29], and Dijkstra’s algorithm contained an error discovered
and corrected by Stenning and Woodger [14]. Furthermore, some correct algorithms [9]
had informal proofs that were found to contain errors [26].
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These problems also manifest themselves in practice because concurrent bugs gen-
erally have a non-deterministic effect on the system and arenon-repeatable, so that
connecting the cause of the error to the observed effect is particularly difficult.

Many incremental and concurrent algorithms have been introduced in the last 30
years [1, 3, 4, 6, 7, 10, 11, 12, 13, 16, 17, 18, 20, 22, 24, 25], but there has been very
little comparative evaluation of the properties of the different algorithms due to the com-
plexity of implementing even one algorithm correctly. As noted in [2], because of these
constraints, current state-of-the-art concurrent systems are generally not quantitatively
compared against each other and the exact relationships among the different concurrent
schemes are largely unknown.

For example, early collectors were all examples ofincremental updatecollectors
which “chase down” modifications to the object graph that aremade by the program
during collection. Yuasa [30] introduced snapshot collectors, which do not attempt to
collect garbage allocated after collection begins, but do not require any rescanning of
the object graph. Thus, snapshot collectors trade off reliable termination for a potential
increase in floating garbage. However, costs and benefits relative to incremental update
techniques have not been systematically studied.

This paper presents a high-level algorithm for concurrent collection that subsumes
and generalizes several previous concurrent collector techniques. This algorithm is sig-
nificantly more precise than previous algorithms (at the expense of constant-factor in-
creases in both time and space), and more importantly yieldsa number of insights into
the operation of concurrent collection. For instance, the operation of concurrent write
barriers can be viewed as a form of degenerate reference counting; in our algorithm, we
do true reference counting and are thereby able to find live data more precisely.

Existing algorithms can then be viewed as instantiations ofthe generalized algo-
rithm that sacrifice precision for compactness of object representation and speed of the
collector operations (especially the write barriers).

Additionally, we argue that all of the existing concurrent algorithms fundamentally
share a deeper structure. And there is a whole continuum of existing algorithms, which
we have not yet explored, but could be uncovered if we start from such a structure.
Moreover, by having a common abstract algorithm, much of theconstruction of the
practical collector will be simplified.

The contributions of this paper are:

– A generalized, extendable, abstract concurrent collection algorithm, which is more
precise than previous algorithms;

– A demonstration of how the abstract algorithm can be instantiated to yield existing
snapshot and incremental update algorithms;

– A new snapshot algorithm (derived from the abstract algorithm) that allocates ob-
jects unmarked (“white”) and reduces floating garbage without re-scanning of the
heap required by incremental update algorithms;

– An implementation of four concurrent collectors in a production-quality virtual
machine (IBM’s J9 JVM product): Snapshot (after Yuasa), twoincremental- update
(after both Dijkstra and Steele), and our hybrid snapshot algorithm; and

– A quantitative experimental evaluation comparing the performance of the different
algorithms.
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2 An Abstract Collector

This section presents the abstract collector algorithm. The algorithm is designed for
maximum precision and flexibility, and keeps much more information per object than
would be practical in a realistic implementation. However,the space overhead is only
a constant factor, and thus, does not affect the asymptotic complexity of the algorithm,
while the additional information allows a potential reduction in complexity.

Similarly, a number of operations employed by the abstract algorithm also have
constant time overheads that would be undesirable in a realistic collector. In particu-
lar, there is no special treatment of stack variables: they are assumed to be part of the
heap and therefore every stack operation may incur a constant-time overhead for the
collector to execute an associated barrier operation. There are a number of collectors
for functional languages (such as ML and Haskell) that treatthe stack in exactly this
way.

Our generalized concurrent collection algorithm makes useof the framework of Ba-
con et al. [5]: they showed that for synchronous (“stop the world”) garbage collection,
tracing and reference counting can be considered as dual approaches to computing the
reference count of an object. Tracing computes a least fixpoint, and reference counting
computes a greatest fixpoint. The difference between the greatest and least fixpoints is
the cyclic garbage. In most practical tracing collectors, the reference count is collapsed
into a single bit.

Furthermore, they showed that all collectors could be considered as a combination
of tracing and reference counting, and that any incrementality is due to the use of a
reference counting approach with its write barriers.

This insight is now extended to concurrent tracing collectors: we show that they are
also a tracing/reference counting hybrid. The collector traces the original object graph
as it existed at the time when collection started, but does reference counting for pointers
to live objects that could be lost due to concurrent mutation.

The abstract algorithm makes use of the variables depicted in Table 1. In the discus-
sion that follows, we elaborate more on the semantics of eachshared variable.

2.1 Restrictions and Assumptions

The algorithms we discuss are non-moving and concurrent, but not parallel. That is, the
collector is single-threaded. The ideas derived from this discussion, however, are easily
extendable to algorithms using multiple spaces, such as generational ones.

Furthermore, the algorithm performs synchronization withatomic sections rather
than isolated atomic (compare-and-swap) operations. Atomic sections are relatively ex-
pensive on a multiprocessor, so that although the algorithmcan be executed on a mul-
tiprocessor it is better suited to a uniprocessor system based on safe points, in which
low-level atomicity is a by-product of the implementation style of the run-time system.

Additionally, we assume that the concurrency between the mutators and the col-
lector is bounded by a single cycle. This is a common underlying assumption in most
practical algorithms. Essentially, this means that all mutator operations started in collec-
tor cycle N finish in that cycle. They do not carry over to cycleN + 1, for example. No
pipelining between the collector phases is assumed: sweeping is followed by marking.
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Shared VariableDescription Computed By Value Domain

Global Variables

Phase Current Collector phase Collector [Idle, Tracing, Sweeping]
Hue Scanned Part of the Heap Collector [0, |H|]

Per-Object Variables

Marked Mark flag Collector Boolean
SRC Scanned reference count Mutator [0, |P|]

Shade Scanning progress within objectCollector [0, |N|]
Recorded Recorded in buffer by barrier Mutator Boolean

DontSweep Allocated after Hue Mutator Boolean

Table 1.Shared variables,|N| is object size,|P| is maximum number of pointers in the heap and
|H| is the number of objects in the heap.

For the sake of presentation, we also make a number of simplifying assumptions
about the heap. We assume that all heap objects are the same sizeS and consist only of
collector meta-data and object data fields which are all pointers. The fields of an object
X are denotedX [1] throughX [S].

2.2 Tracing

The abstract algorithm is shown in Fig 1 and 2. We begin by describing the outer col-
lection loop and the tracing phase of collection cycle.

TheCollect() procedure is invoked to perform a (concurrent) garbage collec-
tion. When it starts, thePhase of the collector isIdle, and the first thing it does is to
atomically mark the root object and set the collector phase to Tracing. Atomicity is
required because mutators can perform operations dependent on the collection phase.

Because all variables live in the heap, there is only a singleroot that must be marked
atomically. In a realistic collector that avoided write barriers on stack writes, this single
operation would be replaced by atomic marking of all of the roots – which could be on
stacks or on global variables.

The core of the algorithm is the invocation ofTrace(), which is performed re-
peatedly until the concurrently executing mutators have not modified the object graph
in a way that could result in unmarked live objects.

Tracing in our algorithm is very similar to the tracing in a synchronous collector: it
repeatedly gets an object from the mark stack and scans it.

Shades of Grey In the Scan() procedure the first major difference appears. Like
a standard tracing collector, we iterate over the fields of the object and mark them.
However, as each field is read, theShadeof the object is incremented.

The use of shades is one of the generalizations of our algorithm. Most concurrent
collectors use the well-knowntri-color abstraction: an object is white if it has not been
seen by the collector, grey if it has been seen, but all of its fields have not been seen,
and black if both it and its fields have been seen.
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Collect()
atomic

Mark(root);
Phase = Tracing;

do
Trace();

while (ProcessBarriers());

atomic
ProcessBarriers());
Trace();
Phase = Sweeping;

Sweep();
Phase = Idle;

Trace()
while(! markStack.empty())

Obj = markStack.pop();
Scan(Obj);

Scan(Obj)
for (field = 1; field <= Obj.Size; field++)

atomic
Ptr = Obj[field];
Obj.Shade = field;

Mark(Ptr);

Mark(Obj)
if (! Obj.Marked)

markStack.push(Obj);
Obj.Marked = true;

ProcessBarriers()
retrace = false;
atomic

while (true)
if (barrierBuffer.empty()) return retrace;
Obj = barrierBuffer.remove();
Obj.Recorded = false;
if ((INSTALLATION_COLLECTOR && Obj.SRC == 0) ||

(DELETION_COLLECTOR && Obj.SRC == 0 && isLeaf(Obj)))
continue;

if (! Obj.Marked)
Mark(Obj);
retrace = true;

Fig. 1. Abstract Collector Code
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Sweep()
for (i = 1; i <= Heap.Size; i++)

Hue = i;
Obj = Heap[i];
if (! Obj.Marked && ! Obj.DontSweep)

FREE(Obj)
Reset(Obj)

Hue = 0;

Reset(Obj)
Obj.Shade = Obj.SRC = 0;
Obj.Marked = Obj.Recorded = Obj.DontSweep = false;

atomic WriteBarrier(Obj, field, New, isAllocated)
if (Phase == Tracing)

Old = Obj[field];

if (field < Obj.Shade) // Already scanned by collector
if (! New.Marked)

if (DELETION_COLLECTOR)
if (isAllocated)

Remember(New);
else

if (! New.Recorded)
Remember(New);

New.SRC++;
if (! Old.Marked)

Old.SRC--;
else if (DELETION_COLLECTOR && ! Old.Marked

&& ! Old.Recorded &&
(!isLeaf(Obj) || (isLeaf(Obj) && Old.SRC > 0)))

Remember(Old);
Obj[field] = New;

atomic AllocateBarrier(Obj, field, New)
Reset(New);
if (Phase == Sweeping)

if (Heap.free >= Heap.Hue)
New.DontSweep = true;

else
WriteBarrier(Obj, field, New, true);

Remember(Obj)
BarrierBuffer.append(Obj);
Obj.Recorded = true;

Fig. 2.Abstract Mutator Code
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The color of an object represents the progress of the tracingwavefront as it sweeps
over the graph. However, the tri-color abstraction loses information because it does not
track the progress of sweeping within the object. Fundamentally, the synchronization
between the collector and the mutator depends on whether an object being mutated
has been seen yet by the collector. Therefore, by losing information about the marking
progress, the precision of the algorithm is compromised.

TheShadeof an object is simply a generalization of the tri-color abstraction: objects
are still white, grey, or black, but there are many shades of grey. The shade represents
the exact progress of marking within the object. WhenShadeis 0, the object is white.
When it is the same as the number of fields in the object, the object is black. We will
describe how the shade information is used when we present the write barrier executed
by the mutator.

Once theScan() procedure has updated the shade, it marks the target object.The
Mark() procedure pushes the object onto the mark stack if it was not already marked.

2.3 Mutator Interaction

We now turn to the interaction between the mutator and collector by considering the
actions of the mutator when it changes the object graph. The connectivity graph can be
modified by both pointer modification and object allocation.

Write Barrier The write barrier is depicted by the procedureWriteBarrier() in
Fig 2. In our presentation of the algorithm, the entire writebarrier is atomic. Finer-
grained concurrency is possible, but is not discussed in this paper.

The write barrier takes a pointer to the object being modified, the field in the object
that is being modified, the new pointer that is being stored into the object, and a flag
indicating whether the new pointer refers to an object that was just allocated.

If the collector is not in its tracing phase, it simply performs the write: because it is
the tracing phase that determines reachability of objects,only object graph mutations
during tracing can affect reachability (object graph additions – via allocation – require
some additional synchronization, which is described below).

An object can be protected either (1) when a pointer to it is stored or (2) when a
pointer to it is overwritten. We call saving the pointer at 1 an installation barrier and
saving the pointer at 2 adeletion barrier. The Dijkstra-style barrier is an instance of an
installation barrier; the Yuasa-style barrier is an instance of a deletion barrier.

Earlier, we described our collector as a combination of tracing and reference count-
ing. The reference counting is done in the write barrier. In particular, we keep a count of
the number of references to an unmarked object from scanned portions of the heap. This
is called the Scanned Reference Count orSRC. TheSRCis one of the most important
aspects of our abstract algorithm and allows for a number of interesting insights.

The SRC allows us to defer reachability decisions from the time of a write barrier
to the time when collector tracing is finished. For example, if a pointer to an object
is installed into the scanned portion of the heap, and subsequently removed from the
scanned portion of the heap, then it can not possibly affect the liveness of the object.
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Fig. 3. Erroneous collection of live object Z via deletion of directpointera from object X.

Object Allocation Besides pointer assignments, the mutator can also add objects to
the connectivity graph. Similarly to pointer assignments,the allocation interacts with
the tracing phase. In addition, allocation also interacts with the sweeping phase of the
collector. This is performed in the procedureAllocateBarrier() in Fig 2.

In terms of reachability, if the collector is in its tracing phase, object allocation
can be seen as just another pointer modification event. The main difference between
allocation and pointer writes is that upon allocation we know that the new pointer is
unique. We also know that the new object does not contain any outgoing pointers.

During the sweeping phase, the collector iterates over the heap, reclaims all un-
reachable objects and resets the state of the live objects. We assume that we can desig-
nate which parts of the heap the collector has passed indicated by the variableHeap.Hue.
The variable is similar toShade, exceptShadeis applied per object whileHue is ap-
plied per heap. That is, we have oneHue variable. Similarly toShade, the variable is
monotonic within the same collector cycle.

If the mutator allocates during the collector’s sweeping phase, we require a mech-
anism to protect the object from being collected erroneously. The fieldDontSweepin-
dicates if the object has been allocated in a part of the heap that the collector has yet to
reach in its sweeping action.

2.4 Lost Object Problem

In a concurrent interleaving between the application and the collector, the program can
accidentally hide pointers during collector heap marking.A mutator can store a pointer
into a portion of the heap the collector has already scanned,and subsequently destroy all
paths from an unscanned reachable portion of the heap to thatobject. The problem can
be broken down into hiding directly and transitively reachable objects. For illustration
purposes an object with a black color is one that the collector has marked reachable and
has scanned all of its children. A white-colored object is one that the collector has not
yet reached.

The sequence fordirectlyhidden objects is depicted in Fig. 3. Each state of the graph
is shown in time steps. In the initial state, three are objects: scanned object Y, unscanned
but reachable object X and object Z which is not yet marked, but is reachable only from
X via pointera. In step D1, a mutator copies pointera and stores it into the scanned
object Y resulting in pointerb. In step D2, the mutator removes the only pointer to Z



Derivation and Evaluation of Concurrent Collectors 9

Y
P Q

R
c

ROOTS

P Q
c

ROOTS

e

R

P Q

ROOTS

R

P Q

ROOTS

e

R

S

d

S

d

S

d

S

d
e

MUT MUT GC

P Q

ROOTS

e

GC

T4: Collector incorrectly
       frees object S

T1: Mutator stores 
       pointer e into 
       scanned object P

T2: Mutator removes 
       pointer c from 
       unscanned object Q

T3: Collector scans 
       object Q

Fig. 4. Erroneous collection of live object S via deletion of pointer c from object Q which transi-
tively reaches S through R.

from an unscanned but reachable object X. The mutator is thenimmediately preempted
by the collector and in step D3, the collector processes object X, turns it black (scanned)
and assumes that its marking phase is completed. Next, in step D4, the collector starts
its sweeping phase and erroneously frees object Z, althoughZ is reachable from Y via
pointerb. In this case we say that object Z isdirectlyhidden from the collector.

Alternatively, an object can be hiddentransitively. This case is illustrated in Fig. 4.
In the initial state, object P is scanned and Q, R, and S are reachable but not yet seen.
Starting from this state, in step T1, the mutator introducespointere from a scanned and
visited object P to object S. In step T2, the mutator destroysthe unscanned pointerc
from Q to R, essentially, destroying the only path starting from Q to object S. Next, in
step T3, the collector preempts the mutator and scans objectQ as shown and assumes
to have finished the tracing phase. In step T4, the collector incorrectly frees object S. In
this case we say that object S wastransitivelyhidden from the collector.

The lost object problem consists of two main events in time: storing a pointer to
the particular object to be lost and in a subsequent step destroying all other paths to
that object. The two well-known solutions to this problem operate at either of these
two steps. They either operate at state D1/T1 or at state D2/T2. Dijsktra’s and Steele’s
solutions operate at states D1/T1 and aim to prevent the un-acknowledged introduction
of pointers from scanned portions of the heap to reachable but unmarked objects. They
essentially speculate that a pointer destruction will occur sometime in the future, and
this will lead to hiding of the object. Alternatively, solutions can operate at steps D2/T2.
When a pointer is destroyed as in steps D2 and T2, we reason that a pointer to the
object must have been introduced earlier and make the targetof the overwritten object
reachable. This is the solution chosen by Yuasa. For example, Yuasa would make Z
live when pointera is removed in step D2 or pointerc is removed in step T2. In the
transitive case, even though object R might have become unreachable when the pointer
is destroyed in step T2, Yuasa’s solution requires that object R is kept live as a potential
only path left to the hidden object S.
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2.5 Design Alternatives

The abstract algorithm maintains rich object and heap-level information. This section
attempts to provide an intuitive understanding of the abstract algorithm.

The essence of the abstract algorithm is that it allows for deferring reachability deci-
sions from the mutator to the collector. That is, in the writebarrier the mutator detects a
potential problem and nominates a candidate pointer for thecollector. Subsequently, be-
fore the termination of its tracing phase, the collector examines the nominated pointers
and optionally discards unnecessary candidates. The specific choices of which point-
ers are selected by the mutator and which pointers are processed by the collector are
discussed in the following sections.

Mutator Selection When a mutator hits the write barrier, it can protect an object using
either theinstallation choice or thedeletionchoice. Intuitively, to protect an object,
the mutator speculates about reachability, since it has no knowledge of how the graph
changes before the collector has finished tracing. In the abstract algorithm, the mutator
detects a potential problem, but does not make explicit decisions whether the object is
reachable at the end of tracing.

If the installationchoice is utilized, the object is nominated by the mutator assoon
as theSRCbecomes> 0, thereby, protecting the objectdirectly rather than transitively.
The installation choice speculates that right after theSRCbecomes> 0, the only path
to the object from an unscanned, but reachable object will bedestroyed. Immediately
after nominating the pointer, the SRC could be decremented back to zero effectively
undoing the previous operation.

For thedeletionapproach, if a pointer in an unscanned object is overwritten, an-
other object can become hidden either transitively or directly. If the SRC(X)is > 0 and
a pointer to object X is overwritten from an unscanned portion of the heap, we need to
protect object X directly. Therefore, the mutator must nominate this pointer. Alterna-
tively, if the SRC(X)is 0, we might need to protect some transitively reachable object
from X. The key is to recognize that if X does not contain any outgoing pointers, then
no object can be hidden transitively. In such cases, we do notneed to nominate X.

Determining whether object X is a leaf can be done by using thetype of the object.
Examples of acyclic types are scalar arrays as well as newly allocated objects before
pointers are stored into them. Objects of acyclic types are leaves for their entire lifetime
while newly allocated objects can be leaves only temporarily.

Moreover, even if object X is not a leaf, a write barrier couldpossibly perform
nested checks and determine that at, for example, two-levels deep all objects pointed
from X are leaves and their SRC is 0. In this case, we can again refrain from nominating
the overwritten X pointer.

In some way, it would be logical to make a conclusion that the deletion choice
should be more precise, since it always reasons about an event which has already oc-
curred: theSRCof some object has become> 0. The installation choice speculates
about the future, that may be at some point an unscanned pointer will be destroyed.
Although a deletion collectors reasons about past event andshould have more informa-
tion, it has no practical way of determining those transitive objects whoseSRC> 0. In
contrast, theinstallationchoice always has an immediate access to the critical object.
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Besides pointer events, the mutator can modify the connectivity graph via object
allocation. Allocation can be seen as an instance of a write barrier with special knowl-
edge that the target pointer is unique. For installation choice collectors, allocation events
are treated exactly as all pointer events. For deletion choice collectors, if the result-
ing pointer from an allocation request is stored into a scanned portion of the heap, it
is possible that the object will be lost. We can then think of allocation as a normal
pointer store, except that immediately after the pointer store into a scanned region of
the heap, an unscanned virtual pointer to the object is overwritten. Since the virtual
event cannot be captured by the barrier, wesimulateit in the barrier. The flagisAl-
locatedis passed specifically for this reason from theAllocateBarrier() to the
WriteBarrier() procedure.

Characterizing graphs that allow different barrier choices per object is an interesting
though primarily theoretical question. It is generally notpossible to make that decision
arbitrary without some local knowledge of the graph.

Finally, if all barriers occur on leaf objects, the deletionchoice will always require
us to nominate fewer pointers. Of course, in both barrier choices precisely the same
number of objects will be marked live. This can be logically explained by the fact
that in both cases, the immediate object is available duringthe pointer store therefore
we can reason locally about reachability. In that case, for leaf objects, the decision of
which barrier to use can be made per-object rather than per-collector-cycle. We do not
deal with this topic further.

Collector Choice Once the collector has finished the initial tracing of the heap, there
could be a number of unmarked candidates nominated by the mutator. It is possible that
in between the time when the mutator has nominated a candidate and the collector sees
it, the candidate is no longer necessary.

Similarly to the mutator’s pointer selection mechanism, the collector also uses a
mechanism to filter out unnecessary candidates. This selection mechanism for the col-
lector is the same as that for the mutator. This can be seen in the write barrier processing
phase, the procedureProcessBarriers() in Fig. 1.

Although the collector uses the same mechanism as the mutator, it is possible that
candidates nominated by the mutator are ignored by the collector. For example, if the
installationchoice is used and if the object’sSRCis > 0, when the collector sees such
pointers, the corresponding object must be retraced. If theobject’sSRCis 0 however,
then the object was recorded by the mutator, but before tracing finished, itsSRCdropped
to 0. Such objects are skipped by the collector in this phase.They have either become
garbage or are live but hidden. In the latter case, the objectis reachable transitively from
a chain of reachable objects starting at an object whoseSRCis > 0. We therefore only
need to re-trace objects whoseSRCis > 0. Similar reasoning although with a different
selection criteria is applied to the deletion choice.

Maintaining an accurateSRChas several advantages. First, the SRC prevents us
from inducingfloating garbage. That is because at the time a pointer store occurs, the
mutatornominatesobjects that could bepotentiallyhidden from the collector. It need
not make an explicit decision whether they will actually be reachable once the tracing is
complete. The reachability is left to the collector when thebarrier tracing phase occurs.
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It is because of theSRCthat the mutator does not need to make such explicit decisions
about reachability. Secondly, the collector must start re-scanning only from specific
objects. For example, for the installation choice it does not need to consider objects
whoseSRCis 0.

3 Transformations: Trading Precision for Efficiency

The abstract algorithm of the previous section provides a much higher degree of preci-
sion than previously published and implemented algorithms, but it is also impractical.
In this section we describe how practical collectors can be derived via orthogonal trans-
formations of the abstract collector. Since the transformations are orthogonal, and since
the reduction in precision can be modulated, this frameworkallows the derivation of a
much broader set of algorithms than have previously been described, as we will show
in the following section.

The transformations presented are (1) reduction in write barrier overhead by treating
multiple pointers as roots; (2) reduction in root processing by eliminating re-scanning
of the root set; (3) reduction in object space overhead and barrier time overhead by
reducing the size of the scanned reference count (SRC); (4) reducing object space over-
head by reducing the precision of the per-object shade; (5) conflation of shade and SRC
to further reduce object space overhead and speed up the write barrier.

These transformations are not strictly semantics-preserving, since the set of col-
lected objects is changed. However, they are invariant-preserving in that live data is
never collected (the collector safety property).

3.1 Root Sets: Eliminating Write Barriers

In the abstract algorithm, all memory is reached from a single root. Thus stacks and
global variables are treated as objects like any other. Suchan approach is actually used
in some implementations of functional programming languages [12]. However, in sys-
tems with a significant level of optimization, the cost of such an approach is prohibitive
because the mutation rate of the stack is generally extremely high and every stack mu-
tation must include a write barrier.

Therefore, we can transform an abstract algorithm with a uniform treatment of
memory into an algorithm which partitions memory into two regions: the roots and
theheap. The roots generally include the stack and may also contain the static variables
and other distinguished pointer data.

In common parlance the static variables are generally considered to be roots, but if
they are barriered then they are in effect treated as fields ofthe “global variable object”,
and only the pointer to that “object” is a true root. From the point of view of the root
transformation, the only issue is that the memory is partitioned into two sets, the roots
and the heap, such that there are no pointers from the heap into the roots.

In the abstract collector, there is a single root pointer. Therefore, examining the root
is an inherently atomic operation. With the addition of multiple roots, they must either
be processed atomically or a further transformation must beapplied to incrementalize
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root processing [15]. In this work we restrict ourselves to algorithms with atomic root
processing.

In particular, at the beginning of every collection, we stopthe mutators and mark
all heap objects directly reachable from roots, placing them on the work queue (mark
stack). Subsequently, when the roots are mutated, no write barrier is executed.

Since the roots are processed atomically at the beginning ofcollection, they are in
effect ascanned object. However, since we no longer perform a barrier on mutation, the
SRC field of objects referenced by mutated roots is no longer guaranteed to be correct
and they will not have been placed in the barrier buffer. Therefore, the algorithm must
be adjusted to correct or accomodate this imprecision.

The imprecision can be corrected by atomicallyre-scanningthe roots before barrier
processing. Consider a sequence of stores into a particularroot pointer. These stores
must be treated like stores into a scanned portion of the heap, so that the SRC of the in-
stalled and overwritten pointers must be incremented and decremented, respectively. If
we rescan the roots, then any pointers which were scanned previously will have already
been marked, and the SRC will be unaffected.

When a pointer to an unscanned object is stored into a root forthe first time, the
pointer that is being overwritten must point to a marked object, since all direct referents
of roots are marked atomically at the start of collection. Thus the SRC of the overwritten
pointer would not have changed if the write had been barriered. However, the SRC of
the newly installed pointer would have been incremented, but if the roots are rescanned
this pointer will be discovered and since it points to an unmarked object it is known to
be a new pointer, and the SRC is incremented. Thus in the case of a single store to a
root, the SRC is correct.

Inductively, if there are multiple stores to a root, then each subsequent store will
cause the SRC of the overwritten pointer to be decremented and the SRC of the installed
pointer to be incremented. The decrement will cancel the increment that was performed
on the same pointer when it was previously installed. Therefore, a sequence of stores
to a particular root pointer will result in the SRC of all objects except the last one to
remain unchanged.1

Since that object is found by rescanning, rescanning will compute an accurate SRC,
and the transformation that separates the memory into rootsand heap leaves the preci-
sion of the algorithm unchanged.

3.2 Root Rescan Elimination

As we have just shown, the special treatment of roots does notaffect the precision of
the collector if root re-scanning is used to correct the SRC.However, re-scanning is
undesirable because it increases the running time of the algorithm.

If root re-scanning is eliminated, then the SRC values may beunder-approximations
(because the increment of the final pointer stored in a root will have been missed). Since
increments may keep objects live that would otherwise have been collected, this means

1 This is the same reasoning that was applied by Barth to eliminate redundant reference count
updates at compile time [8], and by Levanoni and Petrank to remove redundant reference count
updates between epochs in a concurrent reference counting collector [23].
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that any reclamation of an object based on its SRC being 0 is unsafe. Therefore, the
algorithm must be conservative in such cases and precision will be sacrificed.

Furthermore, when an installation barrier is used the installation of pointers into
the scanned portion of the heap is what causes them to be remembered in the barrier
buffer for further tracing during barrier processing. Thismeans that regardless of the
imprecision of the SRC, objects that would have had a non-zero SRC must be seen
during barrier processing. In effect, this means re-scanning can not be eliminated for
algorithms that use the installation barrier.

For algorithms that use the deletion barrier, the only pointers to new objects that
are remembered in the write barrier are the newly allocated objects. Therefore, as long
as those objects are placed in the barrier buffer by the allocator, and the SRC-based
computation in the barrier processing is eliminated, then the root re-scanning can be
safely eliminated.

Since no collector decisions are based on the value of the SRC, it is redundant and
can be eliminated. The result is an algorithm with more floating garbage (in particu-
lar, all newly allocated objects are considered live), of which Yuasa’s algorithm is an
example.

3.3 Shade Compression

The shade of an object represents the progress of the collector as it processes the indi-
vidual pointers in the object. The precision of the shade canalways safely be reduced
as long as the processing of the pointers in the object in the write barrier treats the
imprecise shade conservatively.

In particular, since many objects have a small number of pointersN , it is efficient
to treat the shade which originally had the range[0, N ] as the set{0, [1 . . .N − 1], N}.
These three values represent an object for which collector processing has not yet begun,
is in progress, or has been completed. This is the standard tri-color abstraction intro-
duced by Dijkstra, where the three values are called white, grey, and black, respectively.

WhenN is small, the chance is low that the mutator will store a pointer into the ob-
ject currently being processed by the collector, so the reduction in precision is likely to
be low. However, with large objects (such as pointer arrays)the reduction in precision
can be more noticable. Some collectors therefore treat sections of the array indepen-
dently, in effect mapping equal-sized subsections of the array into different shades.

3.4 Scanned Reference Count Compression

The scanned reference count (SRC) can range from 0 to the number of pointers in the
system. However, the number of references to an object is usually small, and the SRC
will be even lower (since it only counts references from the scanned portion of the heap
to unmarked objects). Therefore, the SRC can be compressed and the loss of precision
is likely to be low.

However, the compression must be conservative to ensure that live objects are not
collected. This is accomplished by making the SRC into a “sticky” count [27]: once it
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reaches its maximum value, it is never decremented. As a result, the SRC is an over-
approximation, which is always safe since it will only causeadditional objects to be
treated as live.

An important special case for collectors that use an installation barrier is a one-bit
SRC, since in this case the SRC becomes equivalent to the Recorded flag, allowing
those two fields to be collapsed.

3.5 Conflation of Shade and Scanned Reference Count

In a collector using an installation barrier with a one-bit sticky SRC and tri-color shade,
an object with a stuck SRC must be scanned by the collector. Similarly, a grey object
must be scanned by the collector. Thus the meaning of these two states can be collapsed
and the grey color can be used to indicate a non-zero (stuck) SRC, which also represents
the Recorded flag.

This is in fact the representation used by most collectors that have been imple-
mented. In effect, they have collapsed numerous independent invariants into a small
number of states. This helps to understand why such algorithms are bug-prone: collaps-
ing the states corresponding to algorithmic invariants relies on subtle transformations
and simultaneously reduces redundancy in the representation.

4 Using Transformations to Derive Practical Collectors

In this section, we derive various practical algorithms by applying the previously dis-
cussed transformations to the abstract collector algorithm. Some of the schemes are
well-known concurrent algorithms such as Dijkstra and Yuasa, while others are new
derivations.

4.1 Derivation of a Dijkstra Algorithm

The Dijkstra algorithm is an instance of an abstract installation collector and to derive
it we apply the following transformations:

1. Root Setstransformation
2. Shade compressionto tri-color
3. SRC compressionto a single sticky bit
4. Conflation of ShadeandSRC

Although at the end of the transformation steps, we arrive ata practical Dijkstra al-
gorithm, the intermediate steps also represent valid algorithms with different precision.

The compressions ofSRCandShadecan lead to floating garbage. However, unlike
ShadeandSRCcompressions, theConflationtransformation does not lead to increased
floating garbage. On the other side, it reduces, both, space consumption in the header
of the object, and, complexity of the write barrier.

The Root Setstransformation also preserves the treatment of allocated objects.
When a new object is allocated and stored into the roots, the mutator will not nomi-
nate the pointer because the store will occur into a scanned partition (roots) and the
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MarkRoots()
while (! roots.end())

Obj = roots.get();
Mark(Obj);

MarkRootsDirect()
while (! roots.end())

Obj = roots.get();
if (Obj.isAllocatedInThisCycle)

Obj.Color = black;

Collect()
atomic

MarkRoots();
Phase = Tracing;

do
Trace();

while (ProcessBarriers());

atomic
MarkRootsDirect();
ProcessBarriers());
Trace();
Phase = Sweeping;

Sweep();

Phase = Idle;

atomic WriteBarrier(Obj, field, New)
if (Phase == Tracing)

Old = Obj[field];

if (New.Color == white && New.isAllocatedInThisCycle)
New.Color = black;

if ( Obj.Color != black && Old.Color == white
&& !Old.Recorded )
Remember(Old);

Obj[field] = New;

Fig. 5. Pseudo Code For The Hybrid Collector
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write barrier is not active on the roots. If the pointer to theallocated object gets stored
in the heap, then it will be processed in the mutator write barrier, similarly to all other
objects existing at collection startup. If the allocated object dies before the roots are
rescanned, the collector will not mark that object as live.

A Steele-like collector is similar to a Dijkstra collector except that its transformation
covers a wider range of rescanning. A Steele algorithm is notlimited to rescanning only
the roots, but can also rescan heap partitions. However, thebarrier processing phase and
the selection criteria are exactly the same as in the Dijkstra collector.

4.2 Derivation of a Yuasa Algorithm

Our second derived collector is a Yuasa snapshot algorithm.The Yuasa algorithm is an
instance of a deletion collector. The algorithm can be derived by applying the following
transformations to the abstract collector:

1. Root Setstransformation
2. Shade compressionto tri-color
3. Root Rescan Elimination

During barrier processing, deletion collectors can skip objects whoseSRC is 0
and are leafs. However, sinceRoot Rescan eliminationprevents the roots rescanning
process, an accurateSRCcannot be computed, and subsequently the collector selection
criteria cannot be applied. Therefore, in order to preservethe safety property of the ab-
stract collector, the collector must mark all overwritten pointers and rescan from them.
TheSRCis removed since it cannot serve its primary purpose: a guidefor the collector
selection criteria.

The Yuasa collector is the most conservative approach to floating garbage. It does
not allow any destruction in the connectivity graph once thecollector has started and it
effectively allocates only reachable object (black).

One fundamental difference between Yuasa and Dijkstra algorithms is that in the
presence of aRoot Setstransformation, installation collectors must never use the Root
Rescan elimination, while deletion collectors have no requirement to apply it.The res-
canning in deletion collectors is done mostly to eliminate floating garbage, albeit, at the
expense of triggering work to rescan the roots.

Also, although at the end of our derivation, we arrived at a Yuasa algorithm, the
result of every intermediate step is a valid deletion collector.

4.3 Derivation Of a Hybrid Algorithm

The third derived practical algorithm is the Hybrid collector. The Hybrid algorithm is
an instance of an abstract deletion collector. The Hybrid algorithm can be derived by
applying the following transformations:

1. Root Setstransformation
2. Shade compressionto tri-color
3. SRC compressionto a single sticky bit
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4. Conflation of Shade and SRC
5. Root Rescan elimination for existing objects
6. Over approximate Shade

The first two transformation steps are the same as for the Yuasa algorithm. However,
in the Hybrid algorithm, we utilize the rescanning of roots only for newly allocated
objects. The roots rescan transformation is parameterizedto be active only for existing
objects. The idea is to obtain a deletion Yuasa algorithm forthe existing heap graph
while maintaining a less restricted policy for newly allocated objects, similarly to the
Dijkstra collector. By eliminating rescanning for existing objects, we can remove the
SRCfor those objects. Whenever the collector encounters an existing object during its
barrier processing phase it will always mark the object, without applying any selection
criteria.

After step 5 we still have a working deletion algorithm, but we would like to ob-
tain more of the properties of Yuasa, namely, bounded re-tracing of newly allocated
objects triggered by roots rescanning. To do that, we perform an additional transforma-
tion where if a newly allocated pointer is stored into the heap, the object is marked as
reachable for this collection cycle. This simply means thatif a newly allocated pointer
is stored into the heap, we always increase theSRC, ignoring what the color of the des-
tination object is. This is clearly a trivial over-approximation transformation on Shade
of the destination object as indicated in step 6. With this, the collector now only needs
to trace from existing objects and not from newly allocated objects. Newly allocated
objects are essentially allocated white and colored black either during roots rescanning
or during a pointer store in the heap.

TheHybrid collector is particularly suited for hard real-time applications, where it
is desirable to achieve a bound on the roots rescanning work while reducing the floating
garbage.

The skeleton code for the algorithm is illustrated in Fig. 5.MarkRootsDirect

is the procedure that performs the one-level deep rescanning procedure for the roots
partition while theisAllocatedInThisCycle bit is used to differentiate between newly
allocated and existing objects.

5 Experimental Evaluation

We have implemented a concurrent collector framework in IBM’s J9 virtual machine.
The collector supports both standard work-based collection (for everya units of alloca-
tion the collector performska units of collection work) as well as time-based collection
(the collector runs forc out of q time units). This collector has been built as a second-
generation Metronome real-time collector [4].

However, in this paper we will concentrate on work-based collection because its use
is more common in more widely used soft real-time systems, and is likely to provide a
better basis for comparison with other work. Isolated experiments have shown that the
trends we report for work-based collection generally hold for time-based collection as
well.

Our collector is implemented in a J2ME-based system that places a premium on
space in the virtual machine. Therefore, we use the microJITrather than the much
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Fig. 6.Summary of the maximal space usage of the four collector algorithms. Data is normalized
to the Hybrid algorithm. Shorter bars represent lower spaceusage.

more resource-intensive optimizing compiler. The microJIT is a high-quality single-
pass compiler, producing code roughly a factor of 2 slower than the optimizing JIT.

The system runs on Linux/x86, Windows/x86, and Linux/ARM. The measurements
presented here were performed on a Windows/x86 machine witha Pentium 4 3GHz
CPU and 500MB of RAM.

The measurements presented all use a collector to mutator work ratio of 1.5, that is,
for every 6K allocated by the mutator, the collector processes 9K. Collection is triggered
when heap usage reaches 10MB.

We have measured the SPECjvm98 benchmarks, which exhibit a fairly wide range
of allocation behavior (with the exception of compress, which performs very little allo-
cation).

Figure 7 summarizes the performance of the four collector algorithms. The left
graph shows the maximum heap size, the right graph total execution time. Both graphs
are normalized to the Hybrid algorithm, and shorter bars represent better performance
(less heap usage or shorter execution times). A geometric mean is also shown. These
graphs summarize more detailed performance data which can be found in the Appendix.

5.1 Space Consumption

As expected, the incremental update collectors (Dijkstra and Steele) often require less
memory than the snapshot collector (Yuasa). This is becausethe incremental update
collectors allocate white (unmarked) and only consider live those objects which are
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Fig. 7.Summary of overall execution time of the four collector algorithms. Data is normalized to
the Hybrid algorithm. Shorter bars represent faster execution time.

added to the graph. However, there is no appreciable difference on 2 of the five bench-
marks (jess and jack), which confirms that the space savings from incremental update
collectors are quite program-dependent.

The use of Steele’s write barrier instead of Dijkstra’s theoretically produces less
floating garbage at the expense of more re-scanning, since itmarks the source rather
than the target object of a pointer update. This means that ifthere are multiple updates
to the same object, only the most recently installed pointerwill be re-scanned.

However, the Steele barrier only leads to significant improvement in one of the
benchmarks (db). This is because db spends much of its time performing sort oper-
ations. These operations permute the pointers in an array, and each update triggers a
write barrier. With a Steele barrier, the array is tagged forre-scanning. But with a Dijk-
stra barrier, each object pointed to by the array is tagged for re-scanning. As a result,
there is a great deal more floating garbage because the contents of the array are being
changed over time.

Finally, the hybrid collector which we introduced, a snapshot collector that allocates
white (unmarked), significantly reduces the space overheadof snapshot collection: the
space overhead over the best collector is at worst 13% (for javac), which is quite rea-
sonable.
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5.2 Execution Time

While the incremental update collectors are generally assumed to have an advantage
in space, their potential time cost is not well understood. Incremental update collec-
tors may have to repeatedly re-scan portions of the heap thatchanged during tracing.
Termination could be difficult if the heap is being mutated very quickly.

Our measurements show that incremental update collectors do indeed suffer time
penalties for their tighter space bounds. The Dijkstra barrier causes significant slow-
down in db, javac, mtrt, and jack. The Steele barrier is less prone to slowdown – only
suffering on javac – but it does suffer the worst slowdown, about 12%. These measure-
ments are total application run-time, so the slow-down of the collector is very large –
this represents about a factor of 2 slowdown in collection time.

Once again, our hybrid collector performs very well – it usually takes time very
close to the fastest algorithm. Thus the hybrid collector appears to be a very good com-
promise between snapshot and incremental update collectors.

Because its only rescanning is of the stack, it suffers no reduction in incrementality
from a standard Yuasa-style collector, which must already scan the stack atomically.
Its advantage over a standard snapshot collector is that it significantly reduces floating
garbage by giving newly allocated objects time to die. But because it never rescans the
heap, it avoids the termination problems of incremental update collectors and is still
suitable for real-time applications.

As shown by the more detailed graphs in the appendix, the primary reason why the
Yuasa and Hybrid algorithms are quicker is that the Dijkstraand Steele collectors both
scan significantly more data during barrier buffer processing.

The benchmark with the most unusual behavior is jack, for which the Yuasa snap-
shot collector uses theleastmemory, while the Steele algorithm uses the least time. We
are still in the process of investigating this behavior.

6 Conclusions

We have presented an abstract concurrent garbage collection algorithm and showed
how incremental update collectors in the style of Dijkstra,and snapshot collectors in
the style of Yuasa, can be derived from this abstract algorithm by reducing precision
through various transformations.

We have also used the insights from this formulation to derive a new type of Hy-
brid snapshot collector which allocates its objects unmarked, and therefore induces less
floating garbage.

We have implemented all four collectors in a production virtual machine and com-
pared their time and space requirements. Incremental update collectors do indeed suffer
less floating garbage, while the pure snapshot collector sometimes uses significantly
more memory. The Hybrid collector greatly reduces the spacecost of snapshot collec-
tion.

Incremental update collectors can significantly slow down garbage collection, lead-
ing to noticeable slow-downs in application execution speed. Our new Hybrid snapshot
collector is generally about as fast as the fastest algorithm. For most applications, this
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Fig. 9. Collector Rescanning Work: javac

collector will represent a good compromise between time andspace efficiency, and has
the notable advantage of snapshot collectors in terms of predictable termination.

We hope this work will spur further systematic study of algorithms for concurrent
collection and further quantitative evaluation of those algorithms.

Appendix: Detailed Performance Data

This section includes graphs that illustrate for each benchmark, the behavior of the four
collectors with respect to space utilization and barrier-induced work.

Figure 8 shows space usage over time by javac. Each data pointrepresents the
amount of data in use when the tracing and barrier processingterminated, but before
sweeping. This represents the point of maximum memory use. The Yuasa-style collec-
tor consistently uses more memory than the others, but it also terminates the quickest
(at termination, memory consumption is 0).

The reason why the Yuasa and Hybrid algorithms are quicker can easily be seen
in Figure 9: the Dijkstra and Steele collectors both scan significantly more data during
barrier buffer processing. Note that barrier-induced scanning is still significant even for
the pure snapshot (Yuasa) collector. This is because pointers to some objects that are
part of the snapshot may have been overwritten and not discovered during marking.
Therefore, the snapshot it “completed” during barrier buffer processing. However, the
total work will be based on the live data in the object graph atthe time collection began,
whereas in the incremental update algorithms it varies.

The rescanning overhead that we observed above for the db benchmark with Dijk-
stra’s barrier can be seen clearly in Figure 11: rescanning typically causes about 20%
of the heap to be re-visited, while rescanning for the other three collectors is negligible.

Details for the remaining benchmarks are found in Figures 12through 17.
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