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Dynamic information-flow enforcement systems automat-
ically protect applications against confidentiality and in-
tegrity threats. Unfortunately, existing solutions cause un-
desirable side effects, if not crashes, due to unconstrained
modification of run-time values (e.g. anonymizing sensitive
identifiers even when these are used for authentication).

To address this problem, we present Functionality-Aware
Security Enforcement (FASE), a lightweight approach for ef-
ficiently securing applications without breaking their func-
tionality. The key idea is to let developers specify function-
ality constraints and then use a run-time synthesizer to re-
place sensitive values with constraint-compliant ones. Con-
cretely, FASE consists of: (i) an efficient fine-grained data-
flow-tracking engine, (ii) a domain-specific language (DSL)
for expressing functionality constraints, (iii) a synthesizer
that derives constraint-compliant values at security-sensitive
operations, and (iv) an enforcement mechanism that auto-
matically repairs illicit flows at run time.

We instantiated FASE to the problem of securing Android
applications. Our experiments show that the FASE system
is useful in practice: Its average run-time overhead is <12%;
it avoids the crashes, side effects, and run-time errors exhib-
ited by existing solutions; and the constraints in the FASE
DSL are readable and concise.

1. INTRODUCTION
Improper enforcement of information-flow security remains

the main cause of software vulnerabilities [22, 24]. This
comes as no surprise—enforcing information-flow security is
hard as it requires global reasoning about transitive infor-
mation flows throughout the application as well as subtle
checks and mutations of sensitive data.
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Figure 1: Functionality-Aware Security Enforcement

Beyond these general challenges, there are also factors
that are specific to the mobile setting. Mobile developers
have to cope with pressing demand for software releases and
updates, leaving little room for security education and prac-
tice. At the same time, mobile platforms are rich in security-
sensitive APIs—for example, for accessing device sensors
and performing inter-application communication (IAC). Us-
ing these APIs in a secure manner requires special knowledge
that developers often do not have.

Existing Work. The tension between the security needs
of mobile software and the general lack of security savvy
among developers motivates solutions for dynamic security
enforcement. Recently, several promising approaches featur-
ing low run-time overheads have been proposed; see e.g. [1,
18, 31]. However, existing solutions ignore constraints due
to the application’s functionality, and thus cause undesir-
able side effects and crashes [18]. For example, mocking an
identifier (e.g., the device ID) may be acceptable if the mo-
bile application sends it to a remote server for advertising
or analytics purposes, but not if it is used for identifying the
user. Fundamentally, securing an application dynamically
without breaking it hinges on precisely understanding its
functionality, which is difficult to uncover in a purely auto-
mated manner. Nonetheless, this is an essential requirement
for the wide adoption of automated protection solutions.

Our Approach. We present Functionality-Aware Security
Enforcement (FASE), a dynamic security enforcement ap-
proach designed for developers without security background.
Our key insight is that combining fine-grained information-
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flow tracking with a concise description of the application’s
functionality is sufficient to precisely detect, and correctly
repair, information-flow vulnerabilities at run time. De-
velopers declaratively specify functionality constraints in a
designated DSL. The security enforcement system, in turn,
automatically repairs information-flow vulnerabilities while
satisfying all specified constraints.

We illustrate the overall flow and key components of FASE
in Figure 1. The security goal is to protect applications
against: (i) confidentiality violations (leaking private data to
unauthorized parties, such as remote servers and other apps
running on the device), and (ii) integrity violations (using
unsanitized data in security-sensitive computations). Below,
we briefly describe FASE’s key components.

Fine-grained Information-flow Tracking. FASE fea-
tures a dynamic fine-grained tracking engine that traces sen-
sitive data at the byte (rather than the object) level as it flows
from sources (i.e., methods that output private or untrusted
data) to sinks (i.e. private data releasing points or security
operations using untrusted input). Byte-level tracking is an
essential prerequisite for precisely repairing illicit flows at
run time for two reasons. First, dynamic data correction
requires contextual information that is only available at the
sink. Therefore, sensitive data cannot be anonymized/sani-
tized at the source. Second, data typically undergoes multi-
ple transformations before reaching a sink. Therefore, data-
flow tracking must be fine-grained to prevent benign data
from being unnecessarily modified as this will likely cause
undesirable side effects and crashes. For example, confiden-
tial data is often concatenated to URL strings. The system
must modify only the confidential parts of the URL string
because changes to the other URL parts (e.g. the host path)
may result in unwanted side effects or even cause application
crashes.

Two Kinds of Functionality Awareness. There are two
kinds of functionality awareness. The first kind includes
generic constraints imposed by the API, such as the pre-
conditions of network and file-system APIs. For example, a
URL string flowing into a network API must remain a well-
formed URL string after the protection system modifies it.
These constraints are general, and hence they are preconfig-
ured in the security enforcement system. The second kind
includes application constraints, such as the distinction be-
tween essential and extraneous servers to which identifiers
are sent, which impose further constraints on the URL. As
these constraints are specific to the application at hand, they
are defined by the application’s developers.

Domain-specific Language. FASE features a DSL that
developers use to declaratively express application-specific
functionality constraints. The constraints are purely functional—
free of any security considerations—which creates a clean
separation of concerns: the developers focus on the applica-
tion’s functionality, while the enforcement system augments
the application’s behavior with security aspects. We empiri-
cally show that our DSL is sufficiently expressive for captur-
ing constraints arising in real-world apps while restricting
the run-time overhead of constraint solving to a tolerable
level.

Run-time Synthesis. Enforcing information-flow security
amounts to replacing all sensitive data passed to sinks with
constraint-compliant values; see Figure 1. Generating values

that satisfy all functionality constraints—both generic and
application-specific—is nontrivial as the constraints are of-
ten interdependent. Towards this, FASE features a special-
ized and highly-efficient synthesizer for string constraints.
The FASE system utilizes the synthesizer to automatically
generate values that satisfy all their associated constraints.

Contributions. Our main contributions are:
• A new approach, called FASE, for enforcing information-

flow security at run time while preserving functionality.
• An efficient fine-grained information-flow-tracking en-

gine for strings and primitive values, ensuring that the
enforcement system modifies only sensitive data (§3).
• A domain specific language expressive enough to cap-

ture functionality constraints of real-world apps (§4).
• A synthesizer consisting of a specialized solver that is

fast and scalable, and can precisely enforce the desired
functionality constraints (§5).
• An implementation of FASE for Android featuring an

efficient fine-grained information-flow-tracking engine.
Our experiments with real-world applications indicate
that (i) our DSL can capture interesting constraints,
(ii) the FASE system is robust and does not cause func-
tional side effects or application crashes, and (iii) the
run-time overhead is less than 12% on average (§6).

2. OVERVIEW
In this section, we outline the FASE system. We do so

with reference to an Android application that releases con-
fidential data to the network. Afterwards, we discuss the
challenges that must be accounted for when securing this
application and we illustrate how FASE addresses them. Fi-
nally, we present our attacker model and state the security
guarantees provided by the FASE system.

2.1 Motivating Example
The program shown in Figure 2(left) implements an An-

droid service component for fetching user data from the ap-
plication’s backend server and for collecting user data for
analytics. The service sends an HTTP request to the ap-
plication’s analytics server. This request contains the Inter-
national Mobile Subscriber Identity (IMSI), obtained via a
call to the getSubscriberId API. The analytics server uses
only the first 6 digits of the IMSI, which are sufficient to ex-
tract the country code and the network code of the device.
The service then creates a second request, this time pass-
ing the IMSI to the backend server, which uses the IMSI to
identify the user’s device. The Android service executes two
security-sensitive operations: (i) sending the IMSI to the
analytics server, and (ii) sending it to the backend server.
As we illustrate next, in both cases, the enforcement system
cannot naively anonymize the URI strings that contain the
IMSI.

2.2 Security Enforcement Challenges
We next outline some of the key challenges that must be

accounted for when securing the presented Android applica-
tion.

Generic Constraints. Naively masking all confidential
data to protect the user’s privacy fails in practice because it
may end up violating the application’s overall functionality.
In our example, one cannot replace the URI strings passed
as parameters to get at lines 4 and 6 with arbitrary strings,



1 public class UserData extends Service {
2 public void onBind(Intent msg) {
3 String imsi = getSubscriberId();
4 get("http://analytics.com?id="+imsi);
5 HttpResponse userData =
6 get("http://backend.com?id="+imsi);
7 ...
8 }
9 public HttpResponse get(String s) {

10 URI u = null;
11 try {
12 u = new URI(s);
13 } catch (URISyntaxException e) {...}
14 HttpGet req = new HttpGet(u);
15 return httpClient.execute(req);
16 }
17 }

(source)

(sink)

(HttpClient.execute(HttpUriReqeust), req.uri) 7→ Uri

Uri ::= "http" "s"? "://" Chars "." Dom Args
Chars ::= [a�zA�Z0�9]+

Dom ::= "com" | "net" | "org" | ...
Args ::= ε | ”?” Arg
Arg ::= Chars "=" Chars | Arg "&"Arg

(a) Generic constraint (G)

sink HttpClient.execute(req)
if req.uri.startsWith(”http : //analytics.com”)

constrain req.uri〈IMSI〉 to val.substr(0,6) · [0-9]?
if req.uri.startsWith(”http : //backend.com”)

keep req.uri〈IMSI〉

(b) Application-specific constraint (A)

G = L(Uri)
∩

A = L("http://analytics.com?id=310152" · [0-9]?) Synthesizer

http : //analytics.com?
id = 310152843957264

http : //analytics.com?
id = 310152000000000

Figure 2: Securing an Android application using the FASE approach

because the execute API invoked at line 15, accepts only
HTTP request objects with well-formed URI strings [27].
The security-enforcement system must ensure that such pre-
conditions are satisfied to prevent run-time errors and ap-
plication crashes. We refer to such preconditions as generic
constraints.

We remark that such generic constraints are common for
integrity sinks as well. For example, any modifications to
an untrusted user input appended to an SQL query must
preserve the well-formdness of the SQL query before it is
passed to the SQLiteDatabase.execQuery integrity sink.

Application-specific Constraints. Satisfying generic con-
straints alone is, however, often insufficient for securing an
application without causing side effects. For example, the
application’s functionality is disrupted if the security system
completely anonymizes the IMSI. The security system must
keep the IMSI intact when it is sent to the backend server,
because this server uses the IMSI to identify the user’s de-
vice. However, the security system can anonymize the last 9
digits of the IMSI when it is sent to the analytics server,
because this server, for its purposes, should only use the
first 6 digits and ignore the remaining 9 digits. We refer to
such application-specific functional requirements as applica-
tion constraints.

Sink Sensitivity. Modifying sensitive data correctly de-
pends on the sink and the run-time values flowing into it.
For example, anonymizing the IMSI in our example depends
on the URL object passed to the sink; concretely, it depends
on the host name, which identifies whether the IMSI is being
sent to the backend or to the analytics server. It is there-
fore impossible to anonymize the IMSI directly at the source
(i.e., at line 3).

2.3 The FASE System
FASE automatically secures the application by guarantee-

ing that any confidential/untrusted data is anonymized/san-

itized before being used in a sink, while enforcing the func-
tional constraints imposed by the application and its library
dependencies. We now illustrate how the motivating exam-
ple is secured using the FASE system without breaking its
functionality.

Fine-grained Information-Flow Tracking. The FASE
tracking engine assigns the label IMSI to each byte (or, char-
acter) of the string returned by the source API call at line 3.
Byte-level data flow tracking is key to precisely anonymize
sensitive data because the data typically undergoes multiple
transformations before reaching the sink. FASE propagates
the label IMSI as the application appends the imsi string
to construct the two URI strings at lines 4 and 6, and later
when it constructs URI objects at line 12 and HTTP requests
at line 14. FASE inspects the HTTP requests passed to the
sink API at line 15. The application invokes the sink twice,
and in both cases the passed HTTP request objects point
to the labeled imsi string. The data flow tracker reports
precisely which bytes of the URI strings represent the IMSI.

Functionality Constraints. To avoid side effects, the pro-
tection system is configured with generic constraints and
application-specific constraints. The relevant constraints for
our motivating example are shown in Figure 2(a-b).

The generic constraint in Figure 2(a) defines the precon-
dition of the execute API method. This constraint formal-
izes, using the context-free grammar with start symbol Uri ,
that the URI strings in HTTP requests must indeed be
well-formed URI strings. Such generic constraints are pre-
configured in our FASE system, as they are not application-
specific.

Developers capture application-specific functionality con-
straints using the FASE DSL. These constraints enable de-
velopers to designate the sensitive values that are important
for the application’s functionality. Intuitively, these con-
straints restrict how the FASE system modifies strings that
originate from a source and flow to a sink. For example,



the first rule Figure 2(b) imposes that whenever the appli-
cation sends the IMSI to the analytics server, FASE must
not modify its first 6 characters, while it can arbitrarily re-
place the remaining 9. This is specified via regular expres-
sion val.substr(0,6) · [0-9]?, where val is bound to the imsi

string at run time. The second constraint imposes that the
IMSI must not be modified when it is sent to the backend
server. This constraint is needed because the backend server
uses the IMSI to identify the user’s device. Both constraints
restrict changes to the URI strings of HTTP requests. The
FASE DSL also supports constraints that restrict modifi-
cations to sensitive values passed as parameters of HTTP
POST requests. We give an example of such an application-
specific constraint in Section 4.2.

Synthesizer. Any sensitive data passed to a sink is au-
tomatically repaired by calling a synthesizer at run time.
The synthesizer guarantees that the anonymized/sanitized
values satisfy all functionality constraints. By default, the
synthesizer forbids all explicit flows.

Figure 2 shows how the URI string used to connect to the
analytics server is anonymized using the synthesizer. For
illustration, we fix the imsi string to "3101522843957264".
Based on the concrete URI string at run time, the syn-
thesizer derives a regular expression r from the application
constraints A. The URI strings contained in this regular ex-
pression are indeed precisely those that keep the host name
as well as the first 6 digits of the IMSI intact. Finally, the
synthesizer intersects the language (denoted by L(·)) of the
derived regular expression r with the language of the sink’s
context-free grammar Uri , a task known to be decidable,
and returns a value that is contained in both languages.

2.4 Assumptions and Security Guarantees
We now describe our system and threat models, and then

we state the security guarantees provided by FASE.

System Assumptions. We consider benign (as opposed to
malicious) applications. These applications may have sen-
sitive data flows, both legitimate (e.g. sending the IMSI to
identify the user’s device) and illegitimate (e.g. untrusted
third-party applications sending values that are used to con-
struct SQL queries and advertising libraries exfiltrating pri-
vate data). To secure their applications, developers specify
application-specific constraints to (i) identify the legitimate
flows and to (ii) restrict changes to sensitive data over these
flows. The latter is necessary because, as we have illustrated
with our example, unconstrained modifications over legiti-
mate flows may disrupt functionality. We remark that we
intentionally ask developers to write only functionality con-
straints (as opposed to security rules), as they generally un-
derstand the functionality of their applications better than
security.

Threat Model. We consider an adversary who can (i)
observe sensitive values output to confidentiality sinks and
(ii) can inject inputs at integrity sources. Our adversary can,
for example, observe data that is sent as part of HTTP GET
and POST requests over network APIs. Furthermore, our
adversary can inject values through integrity sources such
as inter-application communication APIs and network APIs.
The latter may allow the attacker to crash the application
by injecting malformed inputs, and to even compromise the
integrity of sensitive data stored by the application. For
example, the Google+ Android application was vulnerable

to SQL injection attacks, allowing third-party applications
to modify the application’s database.

We remark that we focus on explicit data flows. There-
fore, malicious applications that exfiltrate sensitive data over
covert channels and implicit flows fall outside of our scope.

Security Guarantees. The FASE system, by default, masks
all explicit flows unless the developer’s constraints restrict
such modifications. Therefore, the FASE system guaran-
tees that any sensitive data passed over illegitimate explicit
flows is masked with values that satisfy the functionality
constraints.

Finally, we remark that our assumptions are consistent
with similar state-of-the-art data flow security systems. Both
static and dynamic data flow protection solutions, such as [2,
10], are easily bypassed by malicious applications.

3. FINE-GRAINED INFORMATION-FLOW
TRACKING

In this section, we describe the FASE algorithm for fine-
grained information-flow tracking.

3.1 Basic Notions and Notation
We begin by introducing several supporting notations and

definitions. In our semantics, we partition the live values
into disjoint sets Objs of objects and Prims of primitive val-
ues. Let Strs ⊆ Objs be the set of (live) string objects. We
denote by 〈c1c2 · · · cn〉 the sequence of characters compris-
ing a given string s, and by len(s) the length of s. Given
indexes i and j, such that 1 ≤ i ≤ j ≤ len(s), we let s[i]
denote character ci and s[i, j] the substring 〈ci · · · cj〉.

We also fix a set Labels of source labels. Intuitively, labels
reflect two types of security-sensitive information: private
values (such as the IMEI, IMSI and location, as in Figure
2) and untrusted inputs (such as those emanating from the
Internet, IPC messages, etc.).

Finally, we fix a set API = {m1,m2, . . . ,mh} of method
signatures. Methods that output security-relevant data (i.e.,
either private or untrusted data) are called sources, and
are defined by Sources ⊆ API . A given source returns
a particular label from Labels, as defined by the function
labelType : Sources → Labels. Methods that perform security-
sensitive operations (i.e., either a data release or a sensitive
computation) are referred to as sinks, and are defined by
Sinks ⊆ API .

3.2 Instrumentation
FASE performs information-flow tracking over strings and

primitive values. We do not explicitly track labels over ob-
jects. Instead, we track object labels indirectly by tracking
strings and primitive values that are (transitively) reachable
from the object’s fields. The labels assigned to an object are
then the union of the labels assigned to transitively reach-
able strings and primitives.

More precisely, FASE instruments the concrete state with
function τ : Objs ∪Prims → P(Labels), which maps objects
(including string objects) and primitive values to labels. For
object o, τ(o) returns the set of labels assigned to the strings
and primitive values pointed-to by the object o through a
sequence of zero or more field dereferences.

FASE implements two different label tracking strategies:
character-level tracking for strings and value-based tracking
for primitive values. We explain these strategies below.



Character-level Tracking for Strings. Given a source
methodm, such that labelType(m) = l, let s = 〈c1c2 · · · cn〉 ∈
Strs be a string object pointed-to by the object returned
by m. (For sources that return a string, the returned object
is s itself.) Via platform-level instrumentation, FASE maps
each character ci ∈ {c1, · · · , cn} to the label l, and therefore
we have τ(s) = {l}.

To precisely propagate the labels associated with individ-
ual characters, FASE instruments the Android implemen-
tation of all string operations. As an illustration, concate-
nation of strings s = 〈c1c2 · · · cn〉, s′ = 〈c′1c′2 · · · c′n′〉, with
τ(s) = {l}, τ(s′) = {l′}, yields s′′ = 〈c1c2 · · · cnc′1c′2 · · · c′n′〉,
with τ(s′′) = {l, l′}. FASE maintains a label for each char-
acter, and so the first n characters of s′′ have label l, while
the remaining n′ have label l′ (i.e., τ(s′′[1, n]) = {l} and
τ(s′′[n+ 1, n+n′]) = {l′}). Other string operations, such as
substring and replace, are defined analogously.

Value-based Tracking for Primitives. Tracking primi-
tives is needed for confidentiality, such as anonymizing the
device’s location, which is stored using doubles. The track-
ing engine implements a value-based strategy for primitive
values, motivated by the insight that sensitive primitive val-
ues are mostly unique [31] (e.g., the latitude and longitude
are 64-bit primitives.) Given a source m ∈ Sources, such
that labelType(m) = l, let v ∈ Prims be a primitive value
reachable from the object returned by m. Using application
instrumentation, FASE updates the map τ [v 7→ {l}], which
tracks the labels assigned to primitive values at run-time.

Our experience with real-world applications suggests that
primitive values are often leaked as part of string values
(e.g., as part of the URL query string). The engine instru-
ments operations, e.g. StringBuffer.append(double), that in-
sert primitives into strings. That is, given primitive value
v carrying label l, with string representation sv, if sv is ap-
pended to string s, then FASE assigns label l to each char-
acter of sv in the resulting string s · sv.

Our empirical experience further indicates that operations
on security-relevant primitives, such as addition and multi-
plication, are rare in practice. Hence, we intentionally avoid
instrumenting them to retain low overhead.

Example. We conclude by illustrating the behavior of the
FASE tracking engine. The example in Figure 3a motivates
the handling of primitive values, the tracking of their con-
version to strings, as well as the character-level precision
for strings. In Figure 3b, we show how FASE assigns and
propagates labels for this code.

At line 1, the returned Location object points to the prim-
itive values that represent the location’s latitude and longi-
tude. Suppose these values are 37.3876 and 122.0575. To
label these values, FASE updates the map τ as follows:

τ ← τ [37.3876 7→ {Location}, 122.0575 7→ {Location}]

At lines 2 and 3, the labeled primitive values are stored into
variables lat and lon. Note that FASE has already assigned
the appropriate labels to these primitive values.

At line 4, the primitive values stored at lat and lon are
appended to a string. To propagate their respective labels to
the constructed string, FASE instruments the append method
and propagates labels only to the characters corresponding
to the appended primitive values. The constructed string is
"http://adserver.com?lat=37.3876&lon=122.0575". FASE la-
bels the substrings "37.3876" and "122.0575" with Location.

1 Location l = getLastKnownLocation(GPS);
2 double lat = l.getLatitude();
3 double lon = l.getLongitude();
4 String q = "?lat=" + lat + "&lon=" + lon;
5 URL url = new URL("http://adserver.com"+q);

(a) Source code of the example

l← latitude= 37.3876

longitude= 122.0575

Location
object

lat← 37.3876

lon← 122.0575

q←"?lat="+ "37.3876" + "&lon="+ "122.0575"

url← urlStr = "http:adserver.com

?lat= 37.3876 &lon= 122.0575 "

URL
object

Propagate via StringBuilder.append(double)

Value-based tracking for primitives

Char-level tracking for strings

(b) Dynamic information-flow tracking

Figure 3: A common example of an information flow from a
Location source to a network sink

At line 5, the URL constructor takes the constructed string
"http://adserver.com?lat=37.3876&lon=122.0575", where the
characters of the substrings "37.3876" and "122.0575" are
those marked with the label Location.

4. EXPRESSING FUNCTIONALITY CON-
STRAINTS

We now describe the specification of generic constraints,
and we present a DSL for application constraints. We con-
sider string-related constraints as string is the predominant
data type in the context of security and privacy. Examples
includes strings received from untrusted users or third-party
applications, which may compromise the integrity of the ap-
plication’s data, as well as strings that contain confidential
information that the application exports.

4.1 Generic Constraints
We refer to the sinks’ preconditions, which are defined by

API designers, as generic constraints. These are defined by
the function

G : Sinks ×Vars → CFGs

where Vars is a set of variables and CFGs is the set of
context-free grammars over a standard alphabet. A context-
free grammar g = G(snk , x) defines that the string stored
at the variable x must be in L(g), where L(g) denotes the
language of g. Unlike the application constraints, defined
shortly, the generic constraints do not depend on the values
passed to the sink and on the current application state. This
is expected as they reflect constraints imposed by the API,
not by the application.

As an example, consider the generic constraint:

(SQLiteDatabase.execSQL, sql) 7→ SQL ,

where SQL is the CFG that defines the set of well-formed
SQL queries; see Figure 2. This constraint specifies that
the SQL query string, stored at the variable sql, must be in



Constrs ::= Constr , . . . ,Constr
Constr ::= sink name if Cond Expr
Cond ::= bool op(arg, · · · , arg)

| (Cond and Cond) | (not Cond)
Expr ::= constrain var〈label〉 to Regex
Regex ::= SymbStr | Regex∗ | Regex · Regex

| Regex + Regex
SymbStr ::= str | var | val | str op(arg , · · · , arg)

Figure 4: BNF of the FASE DSL: name ∈ Sinks, var ∈
Vars, label ∈ Labels, str ∈ Strs, arg ∈ Vars ∪ Strs.

the language L(SQL). Note that our motivating example is
an object-oriented Android program, and req.uri represents
the variable req followed by the field identifier uri. For sim-
plicity, we do not refine variables into variables followed by
(zero or more) field identifiers.

We note that the generic constraints are application in-
dependent. That is, they are defined once for each sink,
regardless of how different applications use that sink.

4.2 Application-specific Constraints
We now define the FASE DSL for specifying application-

specific constraints.

Requirements. We start with the abstract requirements
that guided the design of the FASE DSL.

Sink Sensitivity: The constraints usually depend on where a
sensitive value is used. For example, the constraints stipu-
lating how sensitive values are handled when they are used
in a database API may differ from the constraints for a net-
work API.

Source Sensitivity: The constraints are source sensitive: the
correct handling of sensitive values depends on where the
values come from. For example, a device identifier is usually
handled differently than the device’s location.

State Sensitivity: The constraints often depend on the values
passed to the sink. The application constraints of our mo-
tivating example, for instance, depend on HTTP request’s
host name and on the concrete IMSI value concatenated to
the URL string.

Byte-level Granularity: The constraints often pertain to sub-
sets of data. For example, the second application constraint
of our motivating example states that the first 6 digits of
the IMSI must not be modified while the last 9 digits can
be anonymized.

Next, we define our FASE DSL, which is adequate with re-
spect to these requirements.

Syntax and Semantics. The FASE language syntax is
given in Figure 4. An application constraint has the form
sink name if Cond Expr , where name is the signature of
a sink method. A constraint conditionally restricts changes
to strings passed to the sink.

A condition bool op(arg , · · · , arg) is evaluated with re-
spect to the current state. Here bool op is a pure method
returning a boolean value. The arguments arg can be con-
stant values, such as strings, or variables, which are resolved
at run time. An application constraint is applicable to the
current program state if its condition evaluates to true, oth-

erwise it is ignored. For example, the constraint

sink HttpClient.execute(req)

if req.uri.startsWith("http://analytics.com") Expr

is applicable only to HTTP requests to the analytics server.
Atomic conditions can be composed with the standard con-
junction (and) and negation (not) connectives. Additional
boolean connectives can be derived in the standard way.

The expression x〈l〉, where x is a variable and l a label,
returns a substring s of the string stored at x such that
all characters in s are labeled with l and the characters
wrapped around s are not labeled with l. That is, the sub-
string s is a block of characters uniformly labeled with l.
For example, if the variable sql points to the SQL string
"SELECT name, ph_number FROM contacts WHERE id=10 OR 1=1",
where the substring "10 or 1=1" is marked with the label
UNTRUSTED, then sql〈UNTRUSTED〉 returns "10 or 1=1". Note
that a string may contains multiple such blocks.

The expression constrain x〈l〉 to r introduces a con-
straint that restricts modifications to a substring labeled
with l: All substrings x〈l〉 must be replaced with strings
from the language of the regular expression r. For example,
consider the expression constrain req.uri〈IMSI〉 to [0-9]?

and let req.uri point to the string "imsi=0123" where "imsi="

is not labeled and "0123" is labeled with IMSI. This expres-
sion restricts modifications to req.uri to strings from the
language L("imsi=" · [0-9]?).

The FASE DSL features symbolic regular expressions which
are resolved at run time. These are constructed out of vari-
ables, the keyword val, and pure methods str op that re-
turn strings. The keyword val in the regular expression of
a constraint constrain x〈l〉 to r returns the substring x〈l〉.
Referring to the labeled substring is needed for regular ex-
pressions whose definition depends on the labeled substring,
as illustrated in our example of Section 2. Using variables
and the keyword val, developers can thus write regular ex-
pressions that are semantically resolved at run time. For
example, the constraint

constrain req.uri〈IMSI〉 to val.substr(0,6) · [0-9]?

formalizes that the first 6 characters of the IMSI must be
kept intact, while the remaining characters can replaced.
We will illustrate the semantics of this constraint with an
example shortly.

To simplify the writing of constraints, we introduce several
simple syntactic shorthands: we write sink mc1e1c2e2 for
the two constraints sink mc1e1 and sink mc2e2. We also
write keep x〈l〉 for constrain x〈l〉 to val, which formalizes
that substrings labeled with l must be kept intact. Note
that we have used these shorthands to write the application-
specific constraints for our motivating example in Section 2.

The semantics of an application-specific constraint A, de-
noted by [[A]], is defined as a function mapping an application
state σ, a sink method snk , and a sink variable x to a regular
expression r = [[A]](σ, snk , x). Note that application-specific
constraints depend on the current state σ because the con-
straint’s condition, which defines whether the constraint is
applicable or not, as well as all variables that appear in sym-
bolic regular expressions are evaluated with respect to the
current state. A string s satisfies the application-specific
constraint A for the given state σ, sink snk , and variable x,
if s ∈ L([[A]](σ, snk , x)), where L(·) denotes the language
of the regular expression. Note that a set of application-



specific constraints is satisfied iff the string s is in the inter-
section of the languages defined by the constraints’ regular
expressions. Due to the technical nature of the FASE DSL’s
semantics, we relegate the formal treatment of the semantics
to Appendix B. To describe the semantics of the language,
we give a simple, but illustrative, example below.

Example. Consider the application-specific constraint:

sink HttpClient.execute(req)

if req.uri.startsWith("http://analytics.com")

constrain req.entity.content〈IMSI〉
to val.substr(0,6) · [0-9]?

This constraint restricts modifications to the entity of cer-
tain HTTP POST requests. Similarly to the constraint from
our motivating example given in Figure 2, this constraint is
applicable to states where the string stored at req.uri starts
with "http://analytics.com". The above constraint formal-
izes that any substring stored at req.entity.content and la-
beled with IMSI must be replaced with a string from the
regular language defined by val.substr(0,6) · [0-9]?. Note
that while in our motivating example the application-specific
constraint restricts modifications to URL strings, which in
the case of HTTP GET requests often contain sensitive data,
here the constraint restrict changes to sensitive values passed
as parameters via HTTP POST requests. To illustrate,
suppose req.entity.content points to "id=310152843957264",
where the substring "310152843957264" is labeled with IMSI.
According to the semantics, the substring "310152843957264"

is replaced by a string from the language of symbolic regular
expression val.substr(0,6) · [0-9]?. which evaluates to the
concrete regular expression "310152"·[0-9]?. The remaining
characters are not labeled and thus remain unchanged. The
derived regular expression is "id=310152"·[0-9]?. The string
"id=310152000000000", for example, satisfies this application
constraint, while the string "id=310152xxxxxxxxx" does not.

4.3 Enforcement
Here we define the notion of correct security enforcement

with respect to generic and application-specific constraints.
Consider an app that calls a sink method snk in a given
state σ. Imagine that the string s, pointed-to by the vari-
able x, is labeled. The security enforcement system re-
places s with s′. The enforcement is correct iff s′ satisfies
the generic constraint G and the application-specific con-
straints A, i.e. s′ is in the language of the CFG g = G(snk , x)
as well as in the language of the regular expression r =
[[A]](σ, snk , x). The reduces to checking their intersection:
s′ ∈ L(g)∩L(r). We detail the FASE synthesizer for correct
enforcement in Section 5.

Discussion. We remark on several key points about the
FASE DSL. We deliberately designed the language to sup-
port regular application constraints and context-free generic
constraints. The intersection between a regular and a context-
free language is context-free, which guarantees that member-
ship is decidable. Note that using context-free languages for
all constraints breaks decidability [17].

We opted for CFGs for sinks’ preconditions as they are
more subtle to encode. For example, the precondition of
the sink SQLiteDatabase.execSQL(String), which accepts only
well-formed SQL queries, is not regular.

Algorithm 1: The main steps of synthesizer. All labeled
values passed to a sink snk are replaced with constraint-
compliant values.

Input: Generic constraints G,
Application constraints A,
Sink signature snkk(x1, . . . , xk),
State σ

Output: Repaired state σ
1 begin
2 L← []
3 for x ∈ {x1, . . . , xk} do
4 if τ(x) 6= ∅ then
5 r ← [[A]](σ, snk , x)
6 dfa ← convert r to DFA
7 g ← G(snk , x)
8 cfg ← intersect dfa with g
9 s← generate a string from cfg

10 L← L+ [(x, s)]

11 for (x, s) ∈ L do
12 store s at x

13 return σ

We can approximate more complex context-free applica-
tion constraints using regular approximations [20, 21]. For
instance, one can under-approximate a context-free applica-
tion constraint g with a regular expression r. This guaran-
tees that any string that satisfies r also satisfies g, simply
because L(r) ⊆ L(g).

5. SYNTHESIZER
We describe our specialized synthesizer for strings, char-

acterize its properties, and discuss several optimizations.
The synthesizer is invoked immediately before the appli-

cation invokes a sink. For the example of Figure 2, it is
invoked immediately before calling the sink API method
HTTPClient.execute(). The synthesizer replaces each sen-
sitive value passed to the sink with a value that satisfies
all functionality constraints—both generic and application-
specific.

We illustrate the main steps of the synthesizer in Algo-
rithm 1. Our synthesizer is configured with the generic con-
straints G and a set A of application constraints expressed
in the FASE DSL. The sink signature snk(x1, . . . , xk) iden-
tifies all variables that may point to labeled strings at run
time. The synthesizer computes a new value for each vari-
able x ∈ {x1, . . . , xk} that stores a sensitive value according
to τ . Note that x stores a sensitive value if the labeling func-
tion τ maps x to a nonempty set of labels. To synthesize a
new value, the synthesizer first derives the regular expres-
sion r from the application constraints A, as defined in the
FASE DSL semantics (line 5). Then, it converts the derived
regular expression to a DFA (line 6) and intersects this DFA
with the CFG G(snk , x) of the sink (line 8). Here, our syn-
thesizer leverages that the intersection of a context-free and
a regular language is a context-free language [17] to com-
pute the conjunction of all constraints. If this intersection
is empty, then the synthesizer aborts and reports about the
inconsistency. Otherwise, the synthesizer deterministically
derives a string s from the computed CFG, generating the



replacement string for the variable x. The synthesized string
s for the variable x is added to the list L (line 10). Finally,
the synthesizer updates the variables with the synthesized
strings (lines 11–12).

Key Points. There are several points of interest. First,
the synthesizer, by default, forbids all explicit flows from
sources to sinks, unless the application constraints restrict
this. In more detail, without any application constraints, the
synthesizer generates a fixed value that satisfies the sink’s
precondition and that does not depend on the actual sensi-
tive value. Second, although the worst complexity for trans-
lating a regular expression of size n to a DFA (line 6) is
exponential, our experimental results show that the regu-
lar expressions used in practical constraints have small DFA
representations. Third, the problem of computing the in-
tersection between a DFA and a context-free grammar is
tractable. Finally, generating a string from the computed
grammar takes linear time.

Optimizations. We conclude with two optimizations that
address expensive computation steps, thereby improving the
synthesizer’s performance.

The regular expressions r derived from application con-
straints often imply the generic constraint g, i.e. L(r) ⊆
L(g). Common cases are sensitive strings in URL strings
such as "http://a.com?arg=<sensitive>" where application-
specific constraints restrict changes to <sensitive> to al-
phanumerical strings. Any string satisfying the application
constraints is a well-formed URL string that satisfies the
generic constraint.

Deciding whether L(r) ⊆ L(g) is as expensive as comput-
ing L(r) ∩ L(g). We thus select a string v ∈ L(r) and then
check v ∈ L(g). If v 6∈ L(g), the synthesizer falls back to the
original approach and computes the intersection.

As a further optimization, we can cache all computed
context-free grammars used for deriving constraint-compliant
strings. This works well as many labeled strings differ only
in their labeled parts.

6. EXPERIMENTAL EVALUATION
We now present the experiments conducted to evaluate

the design choices governing FASE and its effectiveness.

6.1 Implementation
The FASE system implements our fine-grained information-

flow tracking engine (Section 3) and our synthesizer for gen-
erating values satisfying generic and application-specific con-
straints (Section 5).

To implement the character-level tracking for strings, the
FASE system instruments the libraries String, StringBuffer,
StringBuilder, and AbstractStringBuilder. To keep the over-
head incurred by tracking low, we use spatial locality and
store labels in the same character array used to store string
characters. Since the String class is declared as final, in-
strumentation at the application-level based on inheritance
is not possible.

The value-based tracking for primitive values is imple-
mented using application-level instrumentation. FASE in-
jects code for maintaining the key/value table that maps
primitive values to labels. The instrumentation augments
calls to methods such as StringBuffer.append(double) with
code for propagating labels, as explained in Section 3.2.

The application-level instrumentation also injects byte-

Configuration Byte-level Generic App-specific
Tracking Constraints Constraints

Coarse Tracking 7 7 7
No Constraints X 7 7
Generic constraints X X 7
All functional constraints X X X

Table 1: FASE features used by each configuration.

code for intercepting the calls to all sources and sinks in
the FASE configuration, and insert calls to the synthesizer
(Section 5), which we implemented in Java.

Technically, our instrumentation scheme is defined atop
the ASM 5.0 framework [3] and the Dex2Jar tool [9], which
transforms Dalvik code into Java bytecode. We used the
ACLA framework [6, 7] to implement the synthesizer.

6.2 Engineering Requirements
We evaluate the FASE system with respect to three engi-

neering requirements:

(R1) Robustness. The FASE system must secure appli-
cations without causing crashes, run-time errors, or
other visible side effects.

(R2) Overhead. The overall overhead caused by the FASE
system must be low.

(R3) Constraint Conciseness. Application constraints
for real-world applications can be expressed concisely
in the FASE DSL.

6.3 Experimental Setup
There have been numerous studies on popular Android ap-

plications with sensitive information flows; see e.g. [10, 18,
31]. As we needed precisely such applications for our exper-
iments, we randomly selected applications from the experi-
mental suites of [18] and [31]. Statistics about the selected
applications are given in Figure 8 of Appendix A. We remark
that many applications have more than a thousands sinks
and all applications have sensitive flows. Common sensitive
flows include confidentiality-relevant flows such as sending
private data sent over HTTP GET and POST requests as
well as integrity-relevant flows such as opening files with un-
sanitized file paths and executing unsanitized SQL queries.
To gather a more complete data on the behavior of each of
the applications, we wrote scripts to simulate user interac-
tion, which exercise the applications more thoroughly. To
write the scripts we had a user manually click through the
application and record all the user’s actions in the script.

We configured FASE with the set of sensitive sources and
sinks specified in [25]. We conducted all the experiments
using a Nexus 7 device running a modified Android with
support for the FASE information-flow tracking engine.

6.4 Results
In the following, we present several sets of results and

discuss our engineering requirements.

R1: Robustness. To obtain a better understanding of
which features are needed for repairing sensitive informa-
tion flows without causing side effects, we ran the selected
applications using four different configurations:



App Name Coarse Tracking No Constraints Generic Constraints All Constraints (FASE)
Crash Side-effects Errors Crash Side-effects Errors Crash Side-effects Errors Crash Side-effects Errors

Candy Crush Saga # # 0 # # 0 # # 0 # # 0
Yellow Pages   5 # # 2 # # 2 # # 0
Paper Toss   1   1   1 # # 0
Smiley Pops # # 1 # # 1 # # 1 # # 0
Coffee Finder # G# 3 # G# 3 # G# 3 # G# 1
Bump # # 0 # # 0 # # 0 # # 0
iHeartRadio   1   1   1 # # 0
SmartTacToe # # 0 # # 0 # # 0 # # 0
AccuWeather   2 #  2 #  2 # # 0
aiMinesweeper # # 0 # # 0 # # 0 # # 0
Antsmasher   4   4 # G# 1 # # 0
Cat Hair Saloon # G# 0 # G# 1 # G# 1 # # 0
Tiny Flashlight # # 0 # # 0 # # 0 # # 0
Celebrity Care   5 # G# 0 # G# 0 # # 0
Mako Mobile # # 1 # # 1 # # 0 # # 0
Video Poker # # 2 # # 2 # # 0 # # 0
Check: Bill & Money # # 3 # # 2 # # 2 # # 0
Princess Nail Salon   5 # G# 0 # G# 0 # # 0
Extreme Droid Jump # # 0 # # 0 # # 0 # # 0
Transparent Screen   3   3   3 # # 0

Crash:  Application crashes # Application loads successfully
Side Effects:  Major side effects G# Minor side effects # No side effects

Table 2: Crashes, visual side effects, and run-time errors observed when running the applications using the four configurations.

Coarse Tracking Object-level tracking, labeled strings are
replaced with arbitrary ones (even if only partially la-
beled).

No constraints Byte-level tracking, labeled characters are
replaced with arbitrary strings (without conforming to
functionality constraints).

Generic constraints Byte-level tracking, labeled strings
are replaced while satisfying the generic constraints
(but may violate application-specific constraints).

All functionality constraints Byte-level tracking, labeled
strings are replaced while satisfying both generic and
application-specific constraints.

A summary of which FASE features are used by each con-
figuration is given in Table 1. The last configuration uses
the full set of available features in the FASE system. For
this configuration, we inspected the traces for each appli-
cation and wrote application constraints in the FASE DSL.
We inspected the sensitive information flows observed when
running the application using the other three configurations,
and then examined their logs and run-time errors to derive
application-specific functional constraints.

To asses the robustness of each configuration, we ran each
application using our user scripts and noted (i) whether
the application crashes or otherwise loads successfully; (ii)
whether there are major, minor or no visual side effects; and
(iii) the number of unique run-time errors. We measure (i)
and (iii) by inspecting the trace for each application using
the Android adb tool. We used the methodology of [18]
to measure (ii): we capture screenshots between user com-
mand, automatically highlight visual differences, and man-
ually classify discrepancies into major (an essential visual

element is missing), minor (a nonessential visual element,
such as an ad, is missing) and none (the screenshots are
identical).

We present our results in Table 2. Using the coarse con-
figuration, 40% of the applications crash, 50% show visual
side effects, and 65% throw run-time errors. When fine-
grained tracking is enabled, we observe fewer—but still a
significant number of—problems. Remediation using generic
constraints further reduces the observed side effects: 15%
of the applications crash, 45% have visual side effects, and
50% throw run-time errors. Finally, using the all function-
ality constraints configuration only one application throws
a run-time error while also exhibiting a minor visual side ef-
fect. Further analysis reveals, however, that this is not due
to the FASE algorithm, the problem being an authentica-
tion error with the Google Maps API caused by resigning
the application after instrumentation.

To gain better understanding of the results, we manually
inspected the crashes and visual side effects. An example
of an application that crashes due to violation of a generic
constraint is Antsmasher, and we depict the relevant code
fragment in Figure 5. The constructor argument, s1, is re-
ceived from a JSON object, and if it is anonymized by re-
placing every character with "x", then the URL constructor
throws an exception, leaving the variable url uninitialized.
Later, when the doInBackground method is called, the appli-
cation throws a NullPointerException and crashes. Similar
crashes also occur due to changes to unsanitized strings that
represent file paths. All such paths must be sanitized to
prevent path traversal attacks [23]. However, unconstrained
modifications may result in invalid paths that then lead to
exceptions thrown by the constructor.

AccuWeather is an application where respecting only the
generic constraints is insufficient; see Figure 6. This appli-



1 public class DownloadManager
2 extends AsyncTask <String, Void, String> {
3 private URL url;
4 public DownloadManager(String s1,
5 String s2, AsyncTaskCompleteListener l) {
6 ...
7 try {
8 this.url = new URL(s1);
9 return;

10 } catch (MalformedURLException e) {
11 e.printStackTrace();
12 }
13 }
14
15 private String doInBackground(String[] s) {
16 ...
17 Connection c = this.url.openConnection();
18 // crash: null pointer exception
19 InputStream i = c.getInputStream();
20 }
21 }

Figure 5: The fragment from the Antsmasher application
which shows that violating a generic constraint can crash
the application.

(a) Coarse Tracking (b) Generic Constr. (c) All Constraints

Figure 6: The generic constraint alone is insufficient to avoid
major side effects for the AccuWeather application.

cation transmits private data over the network as follows:
http://api.accuweather.com?apikey=..&lang=en&..

If the system modifies the argument en with an invalid lan-
guage identifier such as xx, then the application’s back-end
server returns an error as it fails to recognize the language, as
shown in Figure 6b. Note, however, that the modified URL
string satisfies the generic sink constraint. To avoid this
problem, we wrote an application constraint that allows the
application to send this information to its back-end server,
resulting in absence of any visual side effects, as Figure 6c
shows.

To summarize, our results provide evidence that FASE’s
key features—fine-grained tracking, generic constraints, and
application-specific constraints—are necessary and sufficient
to secure applications while avoiding side effects. The FASE
system therefore meets our robustness engineering require-
ment.

R2: Overhead. To check whether the FASE system meets
our second engineering requirement, we measured the over-
head incurred by the system.

To precisely measure the overhead, we measured the to-
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Figure 7: CPU time for running the 20 applications, using
our user scripts, on a stock Android and a FASE device.

tal CPU time each application needs to complete all user
actions defined in our user scripts. We deliberately mea-
sure CPU time, instead of measuring the time to complete
a task, to avoid the noise due to the scheduling of unrelated
events. For our experiments we used a stock Android device
alongside a modified Android device that features the FASE
tracking engine. We ran each application 10 times.

We plot the results in Figure 7. The data shows that the
average overhead for real-world applications is 11.7%. De-
spite the fine granularity of the tracking engine, this over-
head is in line with state-of-the-art run-time security sys-
tems (e.g. TaintDroid [10] and [31]). We remark that as
mobile applications are event driven, this overhead is hardly
felt in practice.

R3: Constraint Conciseness. This requirement reflects
the usability of FASE. If the application constraints are large
and complex, then it may be hard for developers to write
them.

First, note that the generic constraints are already defined
and are packaged into the FASE system. The developer
should therefore only write application-specific constraints.

Second, we have observed that for most applications a
single application constraint is sufficient to fix one run-time
error. The average size of all application constraints among
the selected applications is 4. We spent much less than an
hour to write all constraints for an application. We there-
fore believe that a developer who is familiar with the FASE
syntax can write the constraints in several minutes.

Most the constraints were indeed intuitive to write. To il-
lustrate this, the constraint that prevents the run-time error
in the AccuWeather application shown in Figure 6 is:

sink java.net.URL(url)

if url.startsWith("api.accuweather.com") then

keep url〈Lang〉

We did not encounter application constraints that have com-
plex encoding in the FASE DSL.

Although developers may resort to more complex con-
straints to account for behaviors that we did not observe
in our experiments, the average number of application con-
straints is likely to be in the same range (i.e. approximately
10 rules). This suggests that it is feasible to write appli-
cation constraints for real-world applications in the FASE
DSL.



7. RELATED WORK
There are numerous static and dynamic approaches for

information-flow tracking. For static analyses, we refer the
reader to [2, 12] and the references therein. Several ap-
proaches, such as [26], use static data flow trackers to aug-
ment applications with policy-enforcement capabilities. While
these approaches often feature efficient enforcement, they
cannot enforce complex, dynamic policies, such as mask the
last six digits of the IMSI before it is sent to an unknown
server, due to the inherent imprecision of their static anal-
ysis. As for the dynamic approaches, the state-of-the-art
data flow tracking system for Android, TaintDroid [10], ac-
counts for flows through variables and methods, as well as
files and messages exchanged between applications. While
TaintDroid also features low overhead, it supports neither
fine-grained tracking nor run-time remediation.

Extensions of TaintDroid include AppFence [18], which
(i) substitutes shadow data in place of confidential data and
(ii) blocks network transmissions that contain private val-
ues; and Kynoid [29], which extends TaintDroid with user-
defined security policies. These solutions are not sensitive
to the target application’s functionality, and inherit Taint-
Droid’s coarse-grained tracking.

Several dynamic approaches enforce information-flow se-
curity by computing policy-compliant values based on ex-
plicit high- and low-views of the sensitive values. The Jeeves
system [32], and its extension Jeeves∗ [5], enables devel-
opers to specify and enforce policies that describe which
views of the sensitive values should be exposed to a sink.
Approaches based on faceted values, such as [4], guarantee
policy-compliant outputs by simulating program executions
with different views of the sensitive values. While offering
strong security guarantees, these systems have more com-
plex tracking mechanisms: the Jeeves programming model
tracks symbolic constraints and relies on SMT solving to
enforce policies, while [4] simulates multiple executions. In
contrast to these approaches, the FASE approach relies only
on data flow tracking which can be efficiently implemented.

In the area of automatic remediation, Livshits and Chong
propose a system for automated sanitizer placement [19].
To keep the run-time overhead low, the sanitizers are placed
statically whenever possible, and dynamically otherwise. Sim-
ilarly, ScriptGard [28] dynamically corrects instances of mis-
placed sanitization. The problem of sanitizer placement does
not address the challenge of correctly anonymizing/sanitiz-
ing data [30]. FASE addresses this issue with sensitivity to
application functionality, complementing existing work on
correct placement of endorsement functions.

BEK [15] is an expressive DSL for encoding sanitizers,
which are traditionally hard to get right. The language is
amenable to precise analysis for idempotence, commutativ-
ity, and equivalence properties. Unlike BEK, which develop-
ers use to specify how sensitive data is sanitized, the FASE
DSL expresses functionality constraints, which formalize re-
quirements made by the program that security enforcement
must respect.

Several works have presented character-level dynamic taint
tracking for Web applications [8, 13, 33] with comparable
overhead to the FASE tracking engine, which is also due to
instrumenting only the string library. Unlike our FASE sys-
tem, these systems do not account for primitive values, and
defend only against integrity threats. Also, run-time reme-
diation is limited to blocking operations without rewriting

values with sensitivity to functionality.
The FASE tracking engine for primitive values is similar

to BayesDroid [31], a dynamic system for detecting confiden-
tiality leaks using Bayesian reasoning. BayesDroid, however,
is designed specifically for privacy analysis; it does not per-
form online remediation.

Finally, for the solver component, there are existing general-
purpose solvers for string constraints [34, 11, 14, 16, 6].
These decide standard regular and CFL problems, including
language membership, intersection and equivalence. Such
solvers can compute the intersection between FASE’s regular
application constraints and context-free generic constraints
(step 5 of Algorithm 1). The FASE solver extends the solver
of the ACLA framework [6] with support for deriving regu-
lar expressions from application constraints expressed in our
DSL and (partially) labeled strings.

8. CONCLUSION AND FUTURE WORK
We presented functionality-aware security enforcement,

a lightweight approach for online information-flow enforce-
ment without disrupting the functionality of applications.
FASE’s key components are: (i) application and generic
constraints, which capture the intrinsic functional needs of
the applications and their libraries, (ii) a byte-level data
flow engine tracking sensitive value at run time, and (iii)
an run-time synthesizer for repairing sensitive values using
constraint-compliant ones.

We presented a FASE implementation for Android and
reported on experiments over popular Android apps. Our
results show that the FASE system incurs an overhead of
roughly 10% and achieves side-effect-free enforcement.

In the future, we plan to enhance FASE with inference
capabilities, allowing synthesis of functionality constraints
from static analysis of the app and/or dynamic (sandboxed)
monitoring of the app’s execution. We also plan to expand
the concept of functionality-aware security enforcement in
further dimensions beyond information flow, such as access
control.
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[11] V. Ganesh, A. Kieżun, S. Artzi, P. Guo, P. Hooimeijer,
and M. Ernst. HAMPI: A String Solver for Testing,
Analysis and Vulnerability Detection. In CAV. 2011.

[12] M. Gordon, D. Kim, J. Perkins, L. Gilham,
N. Nguyen, and M. Rinard. Information-Flow Analysis
of Android Applications in DroidSafe. In NDSS, 2015.

[13] W. G. J. Halfond, A. Orso, and P. Manolios. Using
Positive Tainting and Syntax-aware Evaluation to
Counter SQL Injection Attacks. In FSE, 2006.

[14] J. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund,
B. Paige, T. Rauhe, and A. Sandholm. Mona:
Monadic second-order logic in practice. In TACAS,
1995.

[15] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and
M. Veanes. Fast and Precise Sanitizer Analysis with
BEK. In USENIX Security, 2011.

[16] P. Hooimeijer and W. Weimer. A Decision Procedure
for Subset Constraints over Regular Languages. In
PLDI, 2009.

[17] J. Hopcroft and J. Ullman. Introduction to Automata
Theory, Languages, and Computation.
Addison-Wesley, 1979.

[18] P. Hornyack, S. Han, J. Jung, S. Schechter, and
D. Wetherall. These Aren’t the Droids You’Re
Looking for: Retrofitting Android to Protect Data
from Imperious Applications. In CCS, 2011.

[19] B. Livshits and S. Chong. Towards Fully Automatic
Placement of Security Sanitizers and Declassifiers. In
POPL, 2013.

[20] M. Mohri and M. jan Nederhof. Regular
Approximation Of Context-Free Grammars Through
Transformation, 2000.

[21] M.-J. Nederhof. Practical Experiments with Regular
Approximation of Context-free Languages.
Computational Linguistics, 2000.

[22] OWASP Web Application Security Project,
https://www.owasp.org/.

[23] OWASP. Path Traversal Attack.
https://www.owasp.org/index.php/Path Traversal.

[24] OWASP Mobile Security Project, https://www.owasp.
org/index.php/OWASP Mobile Security Project.

[25] S. Rasthofer, S. Arzt, and E. Bodden. A
Machine-learning Approach for Classifying and
Categorizing Android Sources and Sinks. In NDSS,
2014.

[26] S. Rasthofer, S. Arzt, E. Lovat, and E. Bodden.
DroidForce: Enforcing Complex, Data-centric,
System-wide Policies in Android. In ARES, 2014.

[27] Uniform Resource Identifiers (URI): Generic Syntax,
http://www.ietf.org/rfc/rfc2396.txt.

[28] P. Saxena, D. Molnar, and B. Livshits. ScriptGard:
Automatic Context-sensitive Sanitization for
Large-Scale Legacy Web Applications. In CCS, 2011.

[29] D. Schreckling, J. Posegga, J. Köstler, and M. Schaff.
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APPENDIX
A. TEST SUBJECTS DETAILS

In Figure 8 we give statistics about the selected apps. For
each app, we list its number of source and sink APIs, source
and sink call sites, as well as detected sensitive information-
flows.

B. FORMAL SEMANTICS OF THE FASE
DSL

Here we formalize the FASE DSL semantics. We assume
a standard environment ∆ ∈ Env : Vars → Objs ∪ Prims
mapping variables to objects (including strings) and primi-
tive values. For readability we do not model the heap, and
we assume that field identifiers are dereferenced in the stan-
dard way. The labeling τ ∈ Lab : Objs ∪Prims → P(Labels)
maps objects and primitives to their labels, as described in
Section 3.2. We designate the label l⊥ ∈ Labels to repre-
sents public/trusted data. We overload τ and write τ(x),
where x ∈ Vars is a variable, for τ(∆(x)), i.e. τ(x) returns
the label assigned to the object/primitive value stored at
x. A state σ = (∆, τ) ∈ Env × Lab defines the current
environment and labeling function.

An application constraint maps a sink snk , a state σ, and a
variable x to a set of strings encoded as a regular expression
r. We define the derivation of r below.

Given a state σ and a string v, the relation ` defines the
grounding of symbolic regular expressions rsym, i.e. regular
expressions that contain variables and the keyword val, to
concrete regular expressions rconc; see Figure 10. The key-
word val evaluates to the string v, constant strings s eval-
uate to s, and variables x evaluate to ∆(x). Composite
regular expressions are evaluated recursively.

The satisfaction relation |= given in Figure 9 formalizes
the evaluation of conditions for a given state σ.

Given a state σ, a variable x, and a label l, we define
block(σ, x, l) ⊆ N× N as:

(i, j) ∈ block(σ, x, l)
m

τ(x[i, j]) = l ∧ τ(x[i− 1]) 6= l ∧ τ(x[j + 1]) 6= l .

A pair (i, j) is contained in block(σ, x, l) iff the substring
x[i, j] is a substring block uniformly labeled with l.
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https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
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App Name Package Name Source APIs Sink APIs Sources Sinks Sensitive Flows

Candy Crush Saga com.king.candycrushsaga 49 64 250 956 3
Yellow Pages com.avantar.wny 103 95 975 1647 13
Paper Toss com.bfs.papertoss 33 54 128 579 10
Smiley Pops com.boolbalabs.smileypops 55 55 578 667 5
Coffee Finder com.brennasoft.findastarbucks 80 87 564 1505 6
Bump com.bumptech.bumpga 51 67 329 708 1
iHeartRadio com.clearchannel.iheartradio.controller2 27 51 117 235 7
SmartTacToe com.dynamix.mobile.SmartTacToe 31 36 85 160 5
AccuWeather com.accuweather 89 87 1208 1683 18
Antsmasher com.bestcoolfungames.antsmasher 64 72 441 1060 18
aiMinesweeper artfulbits.aiMinesweeper 24 44 110 550 1
Cat Hair Saloon com.coolfish.cathairsalon 40 60 202 602 10
Tiny Flashlight com.devuni.flashlight 44 70 360 499 2
Celebrity Care com.g6677.android.cbaby 44 54 279 594 11
Mako Mobile com.goldtouch.mako 91 95 973 2236 23
Video Poker com.infimosoft.videopoker 81 80 898 1545 39
Check: Bill Pay com.netgate 80 92 948 2194 23
Princess Nail Salon com.g6677.android.pnailspa.apk 44 54 279 594 15
Extreme Droid Jump com.electricsheep.edj 49 61 316 906 2
Transparent Screen com.digisoft.TransparentScreen 61 71 286 1139 14

Figure 8: Information about the Android apps used in our experiments.

σ |= Cond

bool op(∆(x1), . . . ,∆(xk)) 6= false
BOp

(∆, τ) |= bool op(x1, . . . , xk)

σ 6|= c
Not

σ |= (not c)

σ |= c1 σ |= c2
And

(σ |= c1 and c2)

Figure 9: Satisfaction relation between states and conditions

LetR? denote the regular expression that accepts all strings.
We write (x〈l〉 to r) for (constrain x〈l〉 to r) to avoid clut-
ter. Given an expression (x〈l〉 to r), a state σ = (∆, τ), a
variable x, and p, q ∈ N, we define α as

α
(
(x〈l〉 to r), σ, x[p, q]

)
= x[p, q] if τ(x[p, q]) = l⊥

α
(
(x〈l〉 to r), σ, x[p, q]

)
= R? if τ(x[p, q]) = l′ 6= l

α
(
(x〈l〉 to r), σ, x[p, q]

)
= r1 · r2 · r3 otherwise

where for some (i, j) ∈ block(σ, x, l), we have

r1 = α
(
(x〈l〉 to r), σ, x[p, i]

)
,

σ, x[i, j] ` r ⇓ r2, and
r3 = α

(
(x〈l〉 to r), σ, x[j, q]

)
.

Here α evaluates a substring x[p, q] to itself if it is not la-
beled, to the accept-all regular expression R? if x[p, q] is
a block assigned with a label other than the one in the
constraint, and otherwise it recursively evaluates its labeled
blocks. We write α

(
(x〈l〉 to r), σ, x

)
as a shorthand for for

α
(
(x〈l〉 to r), σ, x[0, len(x)]

)
.

The semantics of a set A of constraints is defined as:

[[A]](σ, snk , x) =
⋂{

α
(
(x〈l〉 to r), σ, x

)
|

(snk if c x〈l〉 to r) ∈ A ∧ σ |= c
}
.

[[A]] returns the intersection of all applicable constraints. We
remark that our synthesizer translates the regular expres-
sions into DFAs, and then uses the standard algorithm for
intersecting DFAs; see Section 5.

σ, v ` rsym ⇓ rconc

Str
σ, v ` s ⇓ s Var

(∆, τ), v ` x ⇓ ∆(x)

s = str op(∆(x1), . . . ,∆(xn))
StrOp

(∆, τ), v ` str op(x1, . . . , xn) ⇓ s

Val
σ, v ` val ⇓ v

σ, v ` r ⇓ rc
Star

σ, v ` r? ⇓ (rc)
?

σ, v ` r ⇓ rc σ, v ` r′ ⇓ r′c
Conc

σ, v ` (r · r′) ⇓ (rc · r′c)

σ, v ` r ⇓ rc σ, v ` r′ ⇓ r′c
Alt

σ, v ` (r + r′) ⇓ (rc + r′c)

Figure 10: Grounding symbolic regular expressions
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