
Bayonet: Probabilistic Inference for Networks

Timon Gehr
ETH Zurich

timon.gehr@inf.ethz.ch

Sasa Misailovic
UIUC

misailo@illinois.edu

Petar Tsankov
ETH Zurich

ptsankov@inf.ethz.ch

Laurent Vanbever
ETH Zurich

lvanbever@ethz.ch

Pascal Wiesmann
ETH Zurich

wipascal@student.ethz.ch

Martin Vechev
ETH Zurich

martin.vechev@inf.ethz.ch

Abstract

Network operators often need to ensure that important prob-
abilistic properties are met, such as that the probability of
network congestion is below a certain threshold. Ensuring
such properties is challenging and requires both a suitable
language for probabilistic networks and an automated pro-
cedure for answering probabilistic inference queries.
We present Bayonet, a novel approach that consists of:

(i) a probabilistic network programming language and (ii) a
system that performs probabilistic inference on Bayonet
programs. The key insight behind Bayonet is to phrase
the problem of probabilistic network reasoning as inference
in existing probabilistic languages. As a result, Bayonet
directly leverages existing probabilistic inference systems
and offers a flexible and expressive interface to operators.

We present a detailed evaluation of Bayonet on common
network scenarios, such as network congestion, reliability of
packet delivery, and others. Our results indicate that Bayo-
net can express such practical scenarios and answer queries
for realistic topology sizes (with up to 30 nodes).

CCS Concepts • Mathematics of computing → Proba-
bilistic reasoning algorithms; • Networks → Network simu-
lations;

Keywords Probabilistic Programming, Computer Networks

ACM Reference Format:

Timon Gehr, Sasa Misailovic, Petar Tsankov, Laurent Vanbever,
Pascal Wiesmann, and Martin Vechev. 2018. Bayonet: Probabilis-
tic Inference for Networks. In Proceedings of 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI’18). ACM, New York, NY, USA, 17 pages. https://doi.org/10.
1145/3192366.3192400

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI’18, June 18–22, 2018, Philadelphia, PA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5698-5/18/06. . . $15.00
https://doi.org/10.1145/3192366.3192400

1 Introduction

Computer networks often exhibit probabilistic behaviors.
Packets can get dropped because of random failures (de-
vices or links) or congestion events. The paths that packets
take are not necessarily deterministic, as network operators
often employ probabilistic load-balancing techniques (e.g.,
ECMP [29]) to reduce network load. In addition, network
traffic itself is also probabilistic – each host individually de-
cides when, how much, and where to send packets.

There is little work in the literature on automatically rea-
soning about the effects of probabilistic behaviors in net-
works, an exception being the work of [61] (though as dis-
cussed in our relatedwork, the two approaches differ substan-
tially). While network simulators or emulators [11, 41, 56, 64]
can be used to evaluate properties under uncertainty, their
power is limited and they cannot provide statistical guar-
antees. Finally, many inherently deterministic network pro-
gramming languages [3, 46, 53], routing protocols [49, 58],
and verification tools [37, 38] require a developer to remove
randomness from their assumptions, which can make the
analyzed (deterministic) network models significantly dif-
ferent from the physical networks, rendering the analysis
results inaccurate.

Key Challenges As a result, key challenges for effective
and operator-friendly analysis of networks are: (i) the de-
sign of a language that allows operators to capture practical
probabilistic network scenarios and properties, and (ii) an in-
ference system capable of automated probabilistic reasoning
about these scenarios. Addressing these challenges would
allow operators to more quickly experiment with various
adversarial scenarios and design more robust networks.

This Work We introduce Bayonet, a novel approach that
consists of: (i) a probabilistic network programming lan-
guage able to capture interesting and practical network sce-
narios, and (ii) a system that performs automated probabilis-
tic inference on Bayonet programs. An important insight
of Bayonet is that it phrases the problem of probabilistic
network reasoning as inference in standard probabilistic pro-
gramming systems, accomplished by translating Bayonet
programs to probabilistic programs. This is an important
insight because it allows Bayonet to directly take advan-
tage of state-of-the-art probabilistic inference systems and

https://doi.org/10.1145/3192366.3192400
https://doi.org/10.1145/3192366.3192400
https://doi.org/10.1145/3192366.3192400

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Gehr, Misailovic, Tsankov, Vanbever, Wiesmann, and Vechev

Bayonet program

Property S

Translate

Probabilistic

program

Analyze

Psi

(exact)

WebPPL

(approximate)
.
.
.

Probabilistic

inference

Output
0

1 Pr(S)

Result

Pr(S) = #

Parameter

synthesis

Check

Figure 1. Probabilistic Inference for Networks with Bayonet.

algorithms. For instance, we show how to use Bayonet to
automatically synthesize the configuration of a probabilistic
network, such as link costs.

Flow of Probabilistic Inference and Use Cases Figure 1
presents the flow of probabilistic inference for networks us-
ing Bayonet. A Bayonet program captures the network
topology, the network programs for each router, and a prob-
abilistic property S . Bayonet translates these inputs to an
underlying probabilistic program and computes the proba-
bility Pr(S) that the property S holds using existing proba-
bilistic inference engines. Our design has the advantage that
(i) it abstracts away the properties (e.g., queues) a network
operator would normally need to somehow express in the
unfamiliar lower-level probabilistic language, (ii) it decou-
ples network specification from any individual probabilistic
language and inference system, and (iii) it allows analysis
of network integrity properties which would be harder to
achieve in general-purpose languages.

We demonstrate the use of Bayonet for two kinds of sce-
narios: (i) probabilistic analysis: Bayonet can either output
a concrete value for Pr(S) or check if this value is within
the required bounds, shown in the bottom part of the last
step in Figure 1, and (ii) probabilistic synthesis: Bayonet can
automatically configure the probabilistic network by first
obtaining a symbolic expression for Pr(S) parameterized by
the unknown symbolic configuration parameters and then
infer concrete values for these parameters that satisfy the
property S with a developer-specified probability. In both
scenarios, we leverage the insight that probabilistic program-
ming systems can act as powerful solvers for problems in
systems and networks akin to how SMT solvers have been
successfully used in program verification.

Evaluation We show that Bayonet is effective for many
common networking scenarios, such as computing the prob-
ability of congestion, probability of correct load-balancing,
reliability of packets, and convergence in gossip protocols.
We evaluate Bayonet on different choices of inputs, sched-
ulers and network topologies (up to 30 nodes). Our results
indicate that Bayonet’s approach works for networks of
realistic sizes: a recent analysis of 141 production networks

indeed reported that 70% of them have 30 point-of-presences
or less, each of which acting as one node [39].

Benefits over general PPL Bayonet provides three benefits
over general probabilistic programming languages (PPL): (1)
it checks various domain-specific integrity constraints (e.g.,
link queue capacities) that are harder to check in a general
PPL, (2) it requires less code to express the desired function-
ality, and (3) it can be more easily compiled to general PPL,
thus benefiting from different solvers.

Main Contributions Our main contributions are:
• The Bayonet language for specifying probabilistic inter-
actions in networks (Sections 3.1 and 3.2).
• A query language for expressing probabilistic network
properties (Section 3.3).
• The Bayonet system, which leverages state-of-the-art
probabilistic inference engines by translating Bayonet
programs and properties to these languages (Section 4).
• An experimental evaluation, which demonstrates the ef-
fectiveness of Bayonet on a set of 13 interesting network
scenarios (Section 5).

2 Overview

In this section, we demonstrate Bayonet on a simple, but
illustrative example, showing how to express a non-trivial
network in the language.We use this example to demonstrate
how Bayonet computes probability of congestion, which oc-
curs whenever a packet is dropped because it exceeds the
capacity of a network switch. Reasoning about congestion
is challenging when routers forward traffic probabilistically
(e.g., for load-balancing reasons) as each packet can be for-
warded along one of many possible paths. We will also show
how to automatically infer network configuration parame-
ters so as to lower this probability, effectively automating a
common traffic engineering task.

2.1 Example Probabilistic Network

We present the topology of our example network, along
with the Bayonet programs for all network nodes (hosts
and switches), in Figure 2. In this example, routers rely on
the Open Shortest Path First (OSPF) protocol to compute

Bayonet: Probabilistic Inference for Networks PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

H0 S0 S1 H1

S2

pt1 pt3 pt1 pt1 pt3 pt1

pt2

pt1

pt2

pt2

topology {

nodes { H0, H1, S0, S1, S2 }

links { (H0,pt1) <-> (S0,pt3),

(S0,pt1) <-> (S1,pt1), (S0,pt2) <-> (S2,pt1),

(S1,pt2) <-> (S2,pt2), (S1,pt3) <-> (H1,pt1) }

}

1 packet_fields { dst }

2 programs { H0 -> h0, H1 -> h1,

3 S0 -> s0, S1 -> s1,

4 S2 -> s2 }

5
6 def h0(pkt, pt) state pkt_cnt(0) {

7 if pkt_cnt < 3 {

8 new;

9 pkt.dst = H1;

10 fwd(1);

11 pkt_cnt = pkt_cnt + 1;

12 } else { drop; }

13 }

14 def h1(pkt, pt) state pkt_cnt(0) {

15 pkt_cnt = pkt_cnt + 1;

16 drop;

17 }

18 def s2(pkt, pt) {

19 if pt == 1 {

20 fwd(2);

21 } else {

22 fwd(1);

23 }

24 }

24 def s0(pkt, pt)

25 state route1(0), route2(0) {

26 if pt == 1 {

27 fwd(3);

28 } else if pt == 2 {

29 if pkt.dst == H0 {

30 fwd(3);

31 } else {

32 fwd(1);

33 }

34 } else if pt == 3 {

35 route1 = COST_01 ;

36 route2 = COST_02 + COST_21 ;

37 if route1 < route2 or

38 (route1 == route2

39 and flip(1/2)) {

40 fwd(1);

41 } else {

42 fwd(2);

43 }

44 }

45 }

46 def s1(pkt, pt)

47 state route1(0), route2(0) {

48 if pt == 1 {

49 fwd(3);

50 } else if pt == 2 {

51 if pkt.dst == H1 {

52 fwd(3);

53 } else {

54 fwd(1);

55 }

56 } else if pt == 3 {

57 route1 = COST_01 ;

58 route2 = COST_02 + COST_21 ;

59 if route1 < route2 or

60 (route1 == route2

61 and flip(1/2)) {

62 fwd(1);

63 } else {

64 fwd(2);

65 }

66 }

67 }

Figure 2. Topology of the network example and its Bayonet representation

point-to-point paths with minimum costs, and forward pack-
ets along these paths. If there are multiple paths with the
same cost, routers load balance traffic among all of them
uniformly, a widely-used load-balancing technique known
as Equal-Cost MultiPath routing (ECMP). For simplicity, we
assume the load-balancing decision is done for each packet
individually; a per-flow decision is easy to model: since all
packets in a flow have identical headers, one can simply base
the decision on the hash of the packet headers.

Network Topology A network topology defines the net-
work nodes, which can be hosts or switches, and the links
that interconnect them. The network in Figure 2 has two
hosts, H0 and H1, and three switches, S0, S1, and S2. Each link
between nodes is represented by two ports. For instance, S0’s
port pt1 and S1’s port pt1 determine the link S0↔S1. Each
node has an input queue, which contains packets received
on the node’s input ports, and an output queue with packets
to be dispatched to the node’s output ports. In our example,
all queues have a capacity of 2 packets.
A packet can follow multiple paths though the network.

For instance, a packet from H0 to H1 can follow the direct

route S0→S1 or the route S0→S2→S1. Switch S0 compares
the costs of the two routes to decide which one is followed.

Capturing Probabilistic Hosts and Switches To capture
the behavior of a network node, the network operator speci-
fies a Bayonet program, which defines how the node pro-
cesses packets (e.g., program s1 defines the behavior of the
switch S1). Since the network nodes read packet fields while
handling packets, the operator also specifies any relevant
fields, such as dst, the destination IP address of the packet.

Figure 2 presents the Bayonet programs for the five net-
work nodes. Each program takes two inputs: pkt is the packet
on top of the input queue and pt is the (integer) port on
which the packet was received. A program may use the key-
word state to define additional variables whose values are
preserved while processing packets; e.g., at line 6, program
h0 declares variable pkt_cnt and initializes it to 0. Bayonet
programs manipulate packets using: new, which creates a
new packet on the node’s input queue; drop, which removes
the packet on top of the input queue; and fwd(pt), which
forwards the packet on top of the input queue to port pt.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Gehr, Misailovic, Tsankov, Vanbever, Wiesmann, and Vechev

A program can run on a node whenever there is at least
one packet in its input queue. In the beginning, there is a
single packet in the input queue of host H0 and all other
queues are empty.
We now describe the Bayonet programs associated to

the hosts and switches in our example network. The Bay-
onet program associated with host H0 is declared at line 6.
This program creates a new packet, sets its destination to
H1, and sends it to port pt1 (which is connected to switch
S0). The host performs this action at most three times, since
it is guarded by the condition pkt_cnt < 3 and pkt_cnt is
increased every time a packet is sent.

The program of switch S0 is declared at line 24. Switch S0

forwards packets received on port pt1 to host H0 via port
pt3. Packets received on port pt2 and destined to H0 are also
forwarded to H0 via port pt3, while the remaining packets
received on pt2 are forwarded to switch S1 via port pt1. If
switch S0 receives a packet from H0 on port pt3, it forwards
this packet either directly over the link S0→S1 or over link
S0→S2. To decide which link to forward the packet to, the
switch computes the costs associated with the two candidate
routes based on the costs of the links S0→S1, S0→S2, and
S2→S1 (denoted as symbolic constants COST_01, COST_02, and
COST_21). The program computes the costs of the two routes
and stores the result in state variables route1 and route2;
see lines 35-36. If both routes have equal costs, it randomly
selects a route via a call to flip (line 39). If the direct route to
S1 has smaller cost, or it is selected by flip, the packet is sent
to S1 (line 40). Otherwise, the packet is sent to S2 (line 42).

The remaining Bayonet programs associated to the other
nodes are fairly simple: the program of switch S1 is analogous
to that of S0; switch S2 forwards packets received from S0 to
host H1; host H1 counts and discards received packets.

Probabilistic Scheduling ofNetworkNodes The host and
switches in a real network execute asynchronously. In Bayo-
net, this asynchrony is captured via a probabilistic scheduler,
which selects an action (a statement in a node’s program)
with a specified probability. For flexibility, Bayonet allows
operators to specify a probabilistic scheduler as a program
written in the Bayonet language.We further discuss schedul-
ing and specify a uniform scheduler in Section 3. In practice,
the scheduler might be used to model properties of the equip-
ment, such as link transmission delays and switch speed.

2.2 Analysis of Probabilistic Networks

We now show how to express probabilistic properties for
networks, such as probability of congestion, and demonstrate
how Bayonet automatically analyzes such properties using
exact and approximate probabilistic inference engines. We
discuss further properties and examples in our evaluation
(Section 5).

ExpressingRelevant Properties Wefirst demonstrate how
to express the probability of congestion for our network ex-
ample in Figure 2. The probability of congestion is given by
the probability that some packets are dropped due to over-
flowing the capacity of the queues. For our network example,
this can be expressed with the query

probability(pkt_cnt@H1 < 3)

Here, the value of pkt_cnt@H1 corresponds to the number
of packets received by host H1, as specified in its program.
Since host H0 sends exactly 3 packets to host H1, if H1 re-
ceives less than 3 packets then congestion has occurred. The
Bayonet system automatically computes that for link costs
COST_01 = 2, COST_02 = 1, and COST_21 = 1, we have

probability(pkt_cnt@H1 < 3) =
30378810105265
67706637778944

≈ 0.45

To capture different properties, network operators can re-
place the predicate S in the query probability(S) with a
predicate that specifies the property of interest.

Further, Bayonet allows operators to write queries of the
form expectation(V), which computes the expected value of
the expression V. For instance, the query

expectation(pkt_cnt@H1)

captures the expected number of packets received by host H1.
As we will show in our evaluation section, these two types
of queries enable network operators to express a range of
interesting network properties, including correctness of load-
balancing, reliability of packet delivery, convergence of gos-
sip protocols, and traffic distribution.

Answering Queries using Exact or Approximate Infer-

ence Given a query probability(S), Bayonet computes the
probability that predicate S is satisfied on the network’s fi-
nal state (i.e., the state from which no further steps can be
executed). To reason about such queries, Bayonet translates
the programs associated with all network nodes into a prob-
abilistic program (in a standard probabilistic programming
language), encodes the query, and runs existing probabilistic
inference engines. While most probabilistic engines are ap-
proximate [25, 26, 43], several recent systems support exact
probabilistic inference [24, 52]. Bayonet leverages the power
of these systems as well as any future advances (instead of
reinventing them from scratch).

Concretely, our Bayonet system translates node programs
to programs in the PSI language [24]; we present this trans-
lation step in Section 4. The PSI framework has the option to
either perform exact symbolic inference with its own solver
or to use approximate inference by translating PSI programs
to WebPPL [27], a popular framework that uses approxi-
mate, sampling-based methods. Thus, Bayonet can analyze
probabilistic networks using either exact solvers (especially
suitable for experimenting with smaller networks and when
exact results are desirable) or solvers based on approximate

Bayonet: Probabilistic Inference for Networks PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Probability of congestion Symbolic constraint

30378810105265
67706637778944

≈ 0.4487 COST_01 = COST_02+COST_21

491806403
1088391168

≈ 0.4519 COST_01 < COST_02+COST_21

2025575442161
4231664861184

≈ 0.4787 COST_01 > COST_02+COST_21

Figure 3. Probability of congestion as a function of the sym-
bolic parameters COST_01, COST_02, and COST_21.

inference (if one would like to scale the analysis to larger
networks where reduced precision may be acceptable).

Bayesian Inference with Observations Bayonet sup-
ports analysis of probabilistic networks that include addi-
tional evidence about the state of hosts and switches. This is
useful as existing network management systems routinely
sample network traffic processed by switches for billing and
statistics [13, 57]. With Bayonet, operators can leverage
these sampled packets as observations to determine whether
a given property is met or not, e.g. whether the network
correctly load-balances packets along multiple paths. Specif-
ically, network operators can encode evidence using observe

statements and use Bayonet to perform classic Bayesian
reasoning to answer this question (Section 5.5).

2.3 Synthesis of Network Configuration Parameters

To improve network utilization, such as minimizing the prob-
ability of congestion, operators often have to manually tai-
lor the routers’ configurations. In our example, this means
finding specific values for the symbolic constants COST_01,
COST_02, and COST_21, which represent link costs.
To support this scenario, Bayonet allows network oper-

ators to leave relevant configuration parameters symbolic.
By using the PSI exact solver, Bayonet can operate on sym-
bolic constraints and output the probability of congestion (or
other queries) as a function of such parameters. The resulting
constraints can then be used to synthesize concrete values
that optimize a given property of interest (e.g. congestion).
For instance, the probability of congestion

p(COST_01, COST_02, COST_21)

for our example which is produced by Bayonet, is given in
Figure 3. The minimum congestion probability, ≈ 0.4487, is
obtained when the condition COST_01 = COST_02 + COST_21

holds. Note that when this condition holds, then switch S0

load-balances packets destined to H1 along the two possible
paths to reach H1. Concrete values that satisfy this condition
can be obtained using existing solvers, such as Mathematica
or Z3 [17].

3 The Bayonet Language

In this section, we present the Bayonet language. We first
define the syntax and then describe its semantics.

3.1 Specifying Probabilistic Networks in Bayonet
We depict the syntax of the Bayonet language in Figure 4.

Network Topology We consider networks with multiple
hosts and switches. We do not distinguish between hosts and
switches and refer to them as (network) nodes. Each network
node is uniquely identified with a natural number between 1
and k and has up to l ports. A node’s port defines an interface,
which can be connected to another node’s interface. An
interface is a pair (n, pt), where n is a node and pt is a port,
and a link is a pair of two interfaces. The network topology
is defined by all nodes and their links.

Packets and Queues Switches process packets based on
their header fields. Bayonet allows operators to define the
fields necessary to specify the behavior of hosts and switches,
such as id, src, dst, and protocol.

To model the input and output queues of network nodes,
we introduce packet queues (p, c), which are lists of packets
p with a designated capacity c . We write (pkt, pt) ::(p, c) to
denote a queue whose head element is (pkt, pt), and denote
the enqueue operation as:

(p, c) ::(pkt, pt) =
{
(p ++ [(pkt, pt)], c) if length(p) < c
(p, c) otherwise

where ++ denotes list concatenation. Note that the enqueue
operation does not modify the queue if the number of packets
has reached the capacity of the queue.

Probabilistic Packet-processing Programs The behav-
ior of hosts and switches is defined by probabilistic packet
processing programs, which are programs that send and re-
ceive packets; we call these Bayonet programs. A Bayo-
net program takes as input a packet and outputs zero or
more packets, to be forwarded to other nodes in the net-
work. Bayonet programs are probabilistic programs that
feature designated network commands, such as drop and fwd.
To record information relevant to a node’s behavior, each
network node may keep local state in its local variables; e.g.
a switch records which of its interfaces are up since it cannot
forward packets along interfaces that are down.

Along with standard arithmetic expressions, Bayonet sup-
ports expressions that draw values from probability distri-
butions; e.g., the expression flip(p) draws a value from a
Bernoulli(p) distribution. Drawing such values is necessary
to model probabilistic events, such as link and component
failures, and probabilistic load-balancing protocols, such as
ECMP, which are widely used by existing switches. Further-
more, random values can be drawn to specify prior distribu-
tions on uncertain properties of the network.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Gehr, Misailovic, Tsankov, Vanbever, Wiesmann, and Vechev

Network Topology

(Nodes) n ∈ Nodes = {1, . . . ,k}, for k ∈ N
(Ports) pt ∈ Ports = {1, . . . , l}, for l ∈ N
(Interfaces) Ifaces ⊆ Nodes × Ports
(Links) links ⊆

(Ifaces
2

)
, such that

∀i ∈ Ifaces. |{l ∈ links | i ∈ l}| ≤ 1
(Topology) G = (Nodes, links)

Packets and Packet Queues

(Fields) f ∈ Fields = {id, src, dst, protocol, . . .}
(Values) v ∈ Vals = Q
(Packets) pkt ∈ Pkts = {pkt | pkt : Fields→ Vals}
(Queues) Q ∈ Queues = {(p, c) ∈ (Pkts × Ports)∗ × N

| length(p) ≤ c}

Probabilistic Packet-processing Programs

(Vars) x ∈ Vars
(Values) v ∈ Vals = Q
(State) σ ∈ Vars→ Vals
(Dist) dist ::= flip | uniformInt | · · ·

(AExpr) e ::= v | x | pkt. f | pt | e + e | v · e | dist(e)
(BExpr) b ::= e == e | e < e | b and b | not b

(Stmt) s ::= new | drop | dup | fwd(pt) | x = e | pkt. f = e

| assert(b) | observe(b) | skip | s; s
| if b{ s }else{s } | while b{ s }

(Config) C ::= ⟨σ ,QIN,QOUT, s⟩ ∈ Configs

Network

(Network) Ninit ::= (G,Π : Nodes→ Stmt,σsched,C1, . . . ,Ck)

Figure 4. Syntax of the Bayonet Language

The statement observe(e) specifies a condition that has
been observed to hold, while assert(e) is used to assert that a
given condition e holds. If an observation fails, this indicates
that the current branch of the program has not been realized
and should be disregarded. If an assertion fails, the program
terminates in the special state ⊥. Bayonet also supports
standard sequence, conditional, and looping statements. We
assume that programs terminate with probability 1.
A configuration of a network node is given by a tuple
⟨σ ,QIN,QOUT, s⟩, where σ is the node’s state that assigns
values to variables, QIN and QOUT are the node’s input and,
respectively, output queues, and s is the sequence of un-
executed statements of the node’s Bayonet program.

Creating a Network To specify a network and define the
initial state of all hosts and switches, operators must specify
the initial network configuration Ninit = (G,Π,σs ,C1, . . .Ck),
where G = (Nodes, links) determines the network topology,
Π : Nodes→ Stmt assigns a Bayonet program to each net-
work node, σs defines the scheduler state (see below), and
(C1, . . . ,Ck) are the local node configurations. To avoid clut-
ter, we omit the topologyG and the assignment of Bayonet
programs Π when writing network configurations.

3.2 Semantics of Probabilistic Networks

We now present the semantics of Bayonet networks.

Expressions The meaning of arithmetic expressions is as
expected. An expression e is evaluated at a given state σ and
at a pair (pkt, pt) of a packet and a port (which are at the
head of the input queueQIN). For instance, evaluating a local
variable x at state σ returns the value σ (x), i.e. the value
assigned to x according to the local state σ . The expression
pkt. f returns the values stored at field f of the packet pkt.
All expressions except dist(e) are deterministic. We write

⟨σ , (pkt, pt)⟩, e
p
→ ⟨σ , (pkt, pt)⟩, e ′

to denote that e evaluates to e ′ with probability p.

Local Network Node Semantics The semantics of Bayo-
net programs is defined in terms of transition steps which
follow the form C

p
→ C ′, where C = ⟨σ ,QIN,QOUT, s⟩ and

C ′ = ⟨σ ′,Q ′IN,Q
′
OUT, s

′⟩ are node configurations. Each step
may change the state σ of the network node, its input QIN

and output QOUT queues, and its sequence s of unexecuted
statements. Further, each step C

p
→ C ′ is labeled with a

probability p, which denotes that if the node starts at config-
uration C then it transitions to C ′ with probability p.

In Figure 5, we provide the small-step semantic rules. For
example, Rule L-Drop defines the meaning of statement drop:
it removes the packet on top of the input queue. This step is
deterministic, and it is labeled with probability 1 accordingly.
Rule L-Fwd states that statement fwd(pt′) moves packet pkt
from input queue QIN to output queue QOUT. The input port
pt is changed to pt′. The statement new enqueues a packet at
the node’s input queue, and dup duplicates the packet on top
of the queue. Note that statements such as drop and fwd can
be applied only if the input queue QIN is nonempty. Further,
the statements new and dup cannot cause the queue to exceed
its capacity because the enqueue operation leaves full queues
intact. The remaining rules are fairly standard.

Global Network Semantics The global network seman-
tics defines how the network nodes are executed and how
packets move across the network. These global steps are
scheduled by a probabilistic scheduler, which selects actions
of the form λ ∈ {Run, Fwd} × {1, . . . ,k}. An action (Run, i)
means that the ith network node executes a number of steps
of its Bayonet program, and an action (Fwd, i) means that
a packet processed by the ith node is delivered to its destina-
tion (i.e., to some node’s input queue).

A (global) network configuration is a tuple (σs ,C1, ..,Ck),
where σs is the state of the probabilistic scheduler, and Ci
are the (local) network node configurations. Given scheduler
state σs , and local configurations C1, . . . ,Ck , the probability
with which the scheduler selects action λ and updates its

Bayonet: Probabilistic Inference for Networks PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

pkt ∈ Pkts ∀f ∈ Fields. pkt(f) = 0
⟨σ ,QIN,QOUT, new⟩

1
→ ⟨σ , (pkt, 0) ::QIN,QOUT, skip⟩

L-New

⟨σ , (pkt, pt) ::QIN,QOUT, drop⟩
1
→ ⟨σ ,QIN,QOUT, skip⟩

L-Drop

⟨σ , (pkt, pt) ::QIN,QOUT, dup⟩
1
→ ⟨σ , (pkt, pt) ::(pkt, pt) ::QIN,QOUT, skip⟩

L-Dup

⟨σ , (pkt, pt) ::QIN,QOUT, fwd(pt
′)⟩

1
→ ⟨σ ,QIN,QOUT ::(pkt, pt′), skip⟩

L-Fwd

⟨σ , (pkt, pt)⟩, e
p
→ e ′

⟨σ , (pkt, pt) ::QIN,QOUT,x = e⟩
p
→ ⟨σ , (pkt, pt) ::QIN,QOUT,x = e ′⟩

L-Var1

⟨σ ,QIN,QOUT,x = v⟩
1
→ ⟨σ [x ← v],QIN,QOUT, skip⟩

L-Var2

⟨σ , (pkt, pt)⟩, e
p
→ e ′

⟨σ , (pkt, pt) ::QIN,QOUT, pkt. f = e⟩
p
→ ⟨σ , (pkt, pt) ::QIN,QOUT, pkt. f = e ′⟩

L-Field1

⟨σ , (pkt, pt) ::QIN,QOUT, pkt. f = v⟩
p
→ ⟨σ , (pkt[f ← v], pt) ::QIN,QOUT, skip⟩

L-Field2

⟨σ , (pkt, pt)⟩, e
p
→ e ′

⟨σ , (pkt, pt) ::QIN,QOUT, observe(e)⟩
p
→ ⟨σ , (pkt, pt) ::QIN,QOUT, observe(e

′)⟩

L-Observe1

⟨σ ,QIN,QOUT, observe(true)⟩
1
→ ⟨σ ,QIN,QOUT, skip⟩

L-ObserveT

⟨σ , (pkt, pt)⟩, e
p
→ e ′

⟨σ , (pkt, pt) ::QIN,QOUT, assert(e)⟩
p
→ ⟨σ , (pkt, pt) ::QIN,QOUT, assert(e

′)⟩

L-Assert1

⟨σ ,QIN,QOUT, assert(true)⟩
1
→ ⟨σ ,QIN,QOUT, skip⟩

L-AssertT

⟨σ ,QIN,QOUT, assert(false)⟩
1
→ ⟨⊥⟩

L-AssertF

⟨σ ,QIN,QOUT, s1⟩
p
→ ⟨σ ′,Q ′IN,Q

′
OUT, s

′
1⟩

⟨σ ,QIN,QOUT, s1; s2⟩
p
→ ⟨σ ′,Q ′IN,Q

′
OUT, s

′
1; s2⟩

L-Seq-1

⟨σ ,QIN,QOUT, skip; s2⟩
p
→ ⟨σ ,QIN,QOUT, s2⟩

L-Seq-2

⟨σ , (pkt, pt)⟩,b
p
→ b ′

⟨σ , (pkt, pt) ::QIN,QOUT, if b { s1 }else{s2 }⟩
p
→ ⟨σ , (pkt, pt) ::QIN,QOUT, if b

′{ s1 }else{s2 }⟩

L-If1

⟨σ ,QIN,QOUT, if true{ s1 }else{s2 }⟩
1
→ ⟨σ ,QIN,QOUT, s1⟩

L-IfT

⟨σ ,QIN,QOUT, if false{ s1 }else{s2 }⟩
1
→ ⟨σ ,QIN,QOUT, s2⟩

L-IfF

⟨σ ,QIN,QOUT, if b { s; while b { s } }else{skip }⟩
p
→ ⟨σ ′,Q ′IN,Q

′
OUT, s

′⟩

⟨σ ,QIN,QOUT, while b { s }⟩
p
→ ⟨σ ′,Q ′IN,Q

′
OUT, s

′⟩

L-While

Figure 5. Bayonet local network node semantics

state to σ ′s is ps = Ps (λ,σ
′
s | σs ,C1, . . . ,Ck). The conditional

distribution Ps is specified as a stateful probabilistic program
in Psi, the probabilistic language of Bayonet’s backend. As
an example, in Figure 6 we present the specification of a
uniform scheduler (used in evaluation later). This scheduler
creates an array of actions, appends all actions that can be

executed in the current state, and returns an action selected
uniformly at random. The scheduler can also keep state, in-
troduced with the state declaration. To illustrate this option,
we have declared a state variable num_actions in Figure 6
(though it is not needed to define a uniform scheduler).

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Gehr, Misailovic, Tsankov, Vanbever, Wiesmann, and Vechev

1 def scheduler() state num_actions(0) {

2 actions := []: (R × R)[];

3 for i in [0..K){

4 if (Q_in@i).size() > 0 {

5 actions ~= (Run,i);

6 }

7 if (Q_out@i).size() > 0 {

8 actions ~= (Fwd,i);

9 }

10 }

11 num_actions += 1;

12 return actions[uniformInt(0, actions.length - 1)];

13 }

Figure 6. A uniform scheduler

s = Π(i) QIN,i , ∅ λ = (Run, i)
ps = Ps (λ,σ

′
s | σs ,C1, ..,Ck)

Ci = ⟨σi ,QIN,i ,QOUT,i , s⟩
C ′i = ⟨σ

′
i ,Q

′
IN,i ,Q

′
OUT,i , skip⟩

Ci
p1
→ ⟨σ ′′i ,Q

′′
IN,i ,Q

′′
OUT,i , s

′′⟩
p2
→ · · ·

pn
→ C ′i

p = ps · p1 · p2 · · ·pn

(σs , ..,Ci , ..)
λ,p
=⇒ (σ ′s , ..,C

′
i , ..)

G-Run

((i, pt), (j, pt′)) ∈ links λ = (Fwd, i)
ps = Ps (λ,σ

′
s | σs ,C1, ..,Ck)

Ci = ⟨σi ,QIN,i , (pkt, pt) ::QOUT,i , si ⟩
Cj = ⟨σj ,QIN, j ,QOUT, j , sj ⟩
C ′i = ⟨σi ,QIN,i ,QOUT,i , si ⟩
C ′j = ⟨σj ,QIN, j ::(pkt, pt′),QOUT, j , sj ⟩

(σs , ..,Ci , ..,Cj , ..)
λ,ps
=⇒ (σ ′s , ..,C

′
i , ..,C

′
j , ..)

G-Fwd

Figure 7. Bayonet global network semantics

The global network semantics is given as transition steps

of the form (σs ,C1, ..,Ck)
λ,p
=⇒ (σ ′s ,C

′
1, ..,C

′
k). We label these

steps with the action λ selected by the scheduler and the
probability p of the transition. In Figure 7, we define Bay-
onet’s global network semantics. The action (Run, i) exe-
cutes a number of steps of node i’s Bayonet program. The
probability of this step is p = ps · p1 · p2 · · ·pn , where ps is
the probability with which the scheduler selects the action
(Run, i) and pj , with j ∈ [1 . . .n], is the probability of the
local step j executed by node i .
The action (Fwd, i) takes the packet pkt at port pt at the

head of node i’s output queue and forwards it to the input
queue of its destination. The destination is determined by
checking which node is connected across the interface (i, pt).
The probability of this step equals the probability that the
scheduler selects the action (Fwd, i).

(Values) v ∈ Vals = Q
(Vars) x ∈ Vars
(Nodes) n ∈ Nodes = {1, . . . ,k}, for k ∈ N
(State expressions) e ::= v | x@n | e + e | v · e

(State conditions) b ::= e == e | e < e | b and b | not b

(Query) Q ::= expectation(e) | probability(b)

Figure 8. Syntax for specifying network properties

Network Traces Bayonet checks properties on terminal
network configurations. A configuration N = (σs ,C1, ..,Ck)

is terminal if: (i) the input and output queues of all nodes are
empty and their statements are fully evaluated, or (ii) there
is a node i that is in an error state due to a failed assert.
Given an initial configuration Ninit = (σs ,C1, ..,Ck), we

define a network trace as Ninit
λ,p
⇛ Nm such that Ninit

λ1,p1
=⇒

N1
λ2,p2
=⇒ · · ·

λm,pm
=⇒ Nm , λ = λ1, .., λm , p = p1 · .. · pm , and all

intermediate network configurations N1, ..,Nm−1 are non-
terminal. Here, each λi ∈ {Run, Fwd} × {1, . . . ,k} is an ac-
tion selected by the scheduler. We denote the set of all traces
for a configuration Ninit by Traces(Ninit). The set is finite for
any configuration Ninit that always reaches a terminal one.

NetworkConfigurationProbabilities The unnormalized
probability of reaching a network configuration N is the ag-
gregate of the probabilities of all traces that lead to N . We

define unnormalized aggregate trace semantics: Ninit
p
⇛u N ,

where p =
∑
pt such that t ∈ Traces(Ninit) and Ninit

t,pt
⇛ N .

LetZ be the sum of unnormalized probabilities of terminal
network states. Due to observation failures, Z may be lower
than 1. To obtain normalized probabilities, we divide unnor-
malized probabilities by Z . The normalized aggregate trace

semantics is then given by Ninit
p/Z
⇛ N where Ninit

p
⇛u N .

3.3 Network Properties

Bayonet allows network operators to capture network prop-
erties by evaluating expressions and conditions on the local
states of network nodes. As we show in our evaluation, this
is sufficient to check many practical network properties.

We depict the syntax for specifying network properties in
Figure 8. To check the state of local nodes, network operators
can use the expression x@n where x is a variable and n is
a network node identifier. This expression is evaluated at a
terminal network configuration N , and returns the value of
variable x at the local state of noden. For example, pkt_cnt@H1
returns the value of variable pkt_cnt according to the state of
host H1. Using this expression, network operators can express

- state expressions e , such as pkt_cnt@H1 - pkt_cnt@H0;
- state conditions b, such as pkt_cnt@H1 < 3.

Operators can specify two kinds of Bayonet queries:

Bayonet: Probabilistic Inference for Networks PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

- expectation(e), which returns the expected value of
expression e for all non-error terminating network
configurations;

- probability(b), which returns the probability that con-
dition b holds in all terminating network configura-
tions.

For example, the query expectation(pkt_cnt@H1) returns the
expected number of packets (pkt_cnt) received by host H1,
and probability(pkt_cnt@H1 < 3) returns the probability that
host H1 receives less than three packets.

4 Implementation

Bayonet supports inference with two probabilistic inference
solvers: (i) Psi, which performs exact symbolic inference,
and (ii) WebPPL, which performs approximate inference.
To leverage these solvers, the Bayonet system translates
Bayonet programs to a program in the source language
of Psi, which then has the options to either use its exact
inference engine or to translate to WebPPL programs.

Both inference solvers can be used to compute a concrete
value for a given probability/expectation query. Parameter
synthesis is supported only by the exact solver. It can output
a symbolic expression parameterized by network parameters
(which can be instantiated to concrete values). The Bayonet
system is available at: http://bayonet.ethz.ch/.
To provide an intuition for our translation process, we

illustrate the translation of Bayonet programs to Psi and
then show how the global network semantics is encoded as
a Psi program. The entire process (translation step) is fully
automated.

Translating Bayonet programs to Psi Figure 9 presents
the Bayonet program of switch S0 (top) taken from our net-
work example in Section 2, and the translated version of this
program in Psi (bottom). The translator declares two queues
Q_in and Q_out to capture the input and, respectively, output
queues of the network node. The constructor s0 initializes
the queues and the state variables route1 and route2.

The semantics of the Bayonet program s0 is captured by
the method run(). This method takes the pair (pkt, pt) from
the input queue Q_in, capturing that statements are applied
to the packet and port on top of the input queue. To capture
rule S-Fwd, Bayonet translates the statements fwd(pt`) to
Q_out.pushBack(pkt, pt`), which places the current packet
and the new port pt` at the back of the output queue Q_out.

Capturing Network Semantics In addition to translating
Bayonet programs of hosts and switches, the system also
generates a Psi program that captures the global network
semantics. The generated Psi program for our network ex-
ample is given in Figure 10.
The map programs associates network nodes to Bayonet

programs and the map links captures the topology of the
network. Themethod scheduler() defines the behavior of the

1 def s0(pkt, pt) state route1(0), route2(0){

2 if pt == 1 {

3 fwd(3);

4 } else if pt == 2 {

5 if pkt.dst == H0 {

6 fwd(3);

7 } else {

8 fwd(1);

9 }

10 } else if pt == 3 {

11 route1 = COST_01;

12 route2 = COST_02 + COST_21;

13 if route1 < route2 or

14 (route1 == route2 and flip(1/2)) {

15 fwd(1);

16 } else {

17 fwd(2);

18 }

19 }

20 }

(a) Bayonet program of switch S0

1 dat s0{

2 Q_in: Queue, Q_out: Queue;

3 route1: R, route2: R;

4 def s0() { // (constructor)

5 Q_in = Queue();

6 Q_out = Queue();

7 route1 = 0;

8 route2 = 0;

9 }

10 def run() {

11 (pkt, pt) := Q_in.takeFront();

12 if pt == 1 {

13 Q_out.pushBack(pkt, 3);

14 } else pt == 2 {

15 if pkt.dst == H0 {

16 Q_out.pushBack(pkt, 3);

17 } else {

18 Q_out.pushBack(pkt, 1);

19 }

20 } else if pt == 3 {

21 route1 = COST_01;

22 route2 = COST_02 + COST_21;

23 if route1 < route2 ||

24 (route1 == route2 && flip(1/2)) {

25 Q_out.pushBack(pkt, 1);

26 } else {

27 Q_out.pushBack(pkt, 2);

28 } } } } } }

(b) Translation to Psi
Figure 9. Translating a Bayonet program to Psi

scheduler; see Figure 6 for an example. The method step()

captures the global network steps. In each step, the network
executes a program at the node if the scheduler returns the

http://bayonet.ethz.ch/

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Gehr, Misailovic, Tsankov, Vanbever, Wiesmann, and Vechev

1 dat Network {

2 programs := [0 7→ h0(), 1 7→ s0(), ..];

3 links := [(0, 1) 7→ (1, 3), ..];

4 scheduler_state := ...;

5 def scheduler() {..}

6 def step(){

7 (action, node_id) := scheduler();

8 if action == Run {

9 programs[node_id].run();

10 }

11 if action == Fwd {

12 (pkt, out_pt) :=

13 programs[node_id].Q_out.takeFront();

14 (dst_id, dst_pt) := links[(node_id, out_pt)];

15 programs[dst_id].Q_in.pushBack(pkt, dst_pt);

16 } }

17 def terminated()⇒...;

18 def main() {

19 repeat num_steps {

20 if !terminated() {

21 step();

22 }

23 }

24 assert(terminated());

25 return (<query>); // <query> to check

26 } }

Figure 10. Capturing the global network semantics

action Run, and otherwise it forwards a packet from a node’s
output queue to another node’s input queue.
Finally, the method main() unrolls the steps performed

by the network. The method step() is called whenever the
network has not reached a terminal state. This is checked via
a call to method terminated(), which evaluates the terminal-
state condition defined in Section 3.2. The assert statement
at line 24 checks that the given number of steps is sufficient,
such that the network reaches a terminal state. The program
then returns a concrete result to the Bayonet query (i.e., an
expectation or a probability query). If the operator leaves
some of the input network parameters symbolic, then the
Bayonet system outputs a symbolic expression that captures
the possible values of the Bayonet query in terms of these
symbolic parameters.

Integrity Checking Before translating programs, Bayo-
net checks statically for several common problems when
defining networks. The checks include that each defined
node is used and assigned a proper program, that all nodes
are linked and that each port is connected to only one link,
that the queue capacities are non-negative, that there is at
least one query declaration and that the number of steps
for which to simulate the network is specified exactly once.
These checks are domain-specific and were easy to imple-
ment for Bayonet programs.

Benefits of Translation Our experience is that the trans-
lation of Bayonet programs into Psi programs is fairly direct.
In particular, Bayonet’s operational semantics specifies how
to implement an interpreter for the language, while Psi’s
expressiveness is a good match for the back-end language.
This also interacts well with the ability of Psi to symbolically
analyze probabilistic programs. Similarly, the translation to
WebPPL is also direct (although using a different set of lan-
guage primitives). Note that Bayonet can use any solver that
is powerful enough to capture its semantics. Support for fur-
ther solvers can be added in the future. Bayonet can provide
well-motivated benchmark problems for those solvers.

We note that the resulting translated programs often have
manymore lines of code and are harder to read than Bayonet
programs. In our experiments, Bayonet programs are two to
ten times smaller than the corresponding generated PSI or
WebPPL programs.

The translation approach supports the hypothesis of this
paper, namely, that existing probabilistic languages are a suit-
able backend for more restricted domain-specific languages
(DSLs), yet such DSLs are more suitable and convenient for
domain experts to work with than general probabilistic lan-
guages. An interesting future work item is formally proving
the correctness of such translations.

Complexity Exact inference for an arbitrary Bayonet pro-
gram is a hard problem, because the Bayonet language can
encode non-trivial semantic properties of Turing machines
whose running time can be exponential in the number of
characters of the Bayonet program. In practice, the perfor-
mance of exact inference will depend on the size of the state
space, as well as on the capabilities of the exact solver back-
end to exploit structure in the given problem instance (such
that it does not need to explicitly visit all reachable program
states). The size of the state space depends on the number
of network nodes, links, packets, queue capacities as well
as other specifics such as the exact forwarding rules used,
how many executions are cut short by failing assertions and
observations, and whether packets are distinguishable. In
general, computing the size of the state space for a given
problem instance is an interesting problem in itself. For ex-
ample, in a fully-connected network topology on n nodes
withk distinguishable packets and queue capacity c such that
any distribution of packets into queues can be reached, there
are

∑k
i=min(c,k) i! · (n − 1)i · [x i](

∑c
j=1 x

j)2n states ([x i]p(x)
denotes the coefficient of x i in a polynomial p).
For approximate inference, the size of the state space is

less important. For programs without observations, the prob-
ability of a property can be estimated with good probabilistic
guarantees using standard sampling.
If the property is very unlikely, or the program is condi-

tioned on unlikely events (as it often happens for networks,

Bayonet: Probabilistic Inference for Networks PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

H0 S0

S1

S2

S3 H1

(a) Congestion

H0 S0

S1

S2

S3 H1

pt2

pt3 pfail

(b) Reliability

S0

S1

S2

S3

(c) Gossip

H0 S0

C

S1

H1

(d) Load-balancing

Figure 11. Network topologies used in our benchmarks

e.g. any specific sequence of observed packets may be un-
likely), accurate approximate inference becomes more chal-
lenging. To us, a combination of exact and approximate infer-
ence approaches seems to be the most promising approach
for solving such instances.
As Bayonet is decoupled from the inference algorithms

employed by its backends, it will automatically benefit as
those algorithms improve over time.

5 Evaluation

In this section we present a detailed evaluation of our ap-
proach on a range of practically-relevant network scenarios.

Benchmarks We considered examples that were previ-
ously studied in the context of manual network verifica-
tion [22] but also other queries, beyond those handled in
prior work, including probabilistic inference using evidence
and parameter synthesis.

Wemodel several network topologies and properties: (i) prob-
ability of congestion in networks with probabilistic routing;
(ii) reliability of packet delivery in the presence of proba-
bilistic failures; (iii) expected message propagation for gossip
protocols; (iv) Bayesian reasoning using observations for con-
formance with load-balancing policies and congestion con-
trol; and (v) parameter synthesis for congestion (described
in Section 2.3). Full code for all benchmarks is available at:
http://bayonet.ethz.ch/.
We used the network topologies shown in Figure 11. To

showcase the scalability of Bayonet when using approxi-
mate inference, we scaled topology (b) to 30 nodes for conges-
tion and reliability, by connecting multiple copies of topol-
ogy (b) in a row, and scaled the fully-connected topology (c)
to 30 nodes for gossip. Note that 30 nodes is a practical
network size: a recent analysis of 141 production networks
reported that 70% of them have 30 nodes or less [39].

For each benchmark, we analyzed at least one representa-
tive query (which we describe in each benchmark’s section).
We used two different schedulers: (i) a uniform probabilis-
tic scheduler described on page 8, and (ii) a deterministic

Benchmark Sched. Nodes Exact Approximate

Result Time Result Time

Congestion uni. 5 0.4487 65s 0.4570 22s
Congestion det. 5 1.0000 0.5s 1.0000 19s
Congestion uni. 6 0.4441 595s 0.4650 29s
Congestion det. 6 1.0000 1.4s 1.0000 21s
Congestion det. 30 1.0000 311s 1.0000 320s
Reliability uni. 6 0.9995 0.2s 0.9990 11s
Reliability det. 6 0.9995 0.2s 1.0000 10s
Reliability uni. 30 0.9965 192s 0.9940 288s
Reliability det. 30 0.9965 240s 0.9980 304s
Gossip uni. 4 3.4815 362s 3.4760 11s
Gossip det. 4 3.4815 12s 3.4890 11s
Gossip uni. 20 − - 16.0020 312s
Gossip uni. 30 − - 23.9910 879s

Table 1. Bayonet results for our benchmarks

scheduler that does not use random choices. For approximate
inference inWebPPL, we used the Sequential Monte Carlo
inference method (SMC) with 1000 particles.

All benchmarks were run on a AMD EPYC 7601 Processor
with 500 GB RAM.

Questions We aim to answer three research questions:
• Can Bayonet capture interesting network scenarios suc-
cinctly? To answer this question we present our imple-
mentation of the problems, including the relevant code
snippets. We also discuss how the results depend on the
design choices such as schedulers.
• Can Bayonet perform an efficient inference for networks
of realistic size? To answer this question, we run both the
exact and approximate inference for networks up to size 30,
a representative size for many real networks (see above).
• Can Bayonet perform effective inference with observations?
To answer this question, we focus on two problems: load
balancing and reliability analysis.
For each benchmark, Table 1 presents, for both the exact

(Psi) and the approximate (WebPPL) inference engines, the
result of the query and inference times. We also note that
the code size of Bayonet is significantly smaller than the
code generated for the other languages: around 50% less than
Psi and around 10x less than WebPPL. In the following, we
describe the benchmarks individually. We discuss scaling in
Section 5.4 and inference with observations in Section 5.5.

5.1 Network Congestion for Probabilistic Routing

Network congestion can seriously degrade a network’s per-
formance and utilization. Knowing the probability of con-
gestion is therefore of great interest to network operators.
We measure the probability of congestion for: (i) the net-

work example presented in Section 2 and (ii) the network
shown in Figure 11(a). In both networks, routers direct traffic

http://bayonet.ethz.ch/

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Gehr, Misailovic, Tsankov, Vanbever, Wiesmann, and Vechev

1 def h1(pkt, port)

2 state arrived(0) {

3 arrived=1;

4 drop;

5 }

1 def s0(pkt, port) {

2 if flip(1/2) {

3 fwd(2); // to S1

4 } else {

5 fwd(3); // to S2

6 }

7 }

1 def s2(pkt,port)

2 state failing(2) {

3 if failing == 2 {

4 failing =

5 flip(P_FAIL);

6 }

7 if failing == 1 {

8 drop;

9 } else{

10 fwd(2); // to S3

11 }

12 }

Figure 12. Bayonet programs for our reliability benchmark

along the least-cost paths and they load balance traffic using
ECMP routing if there are multiple equal-cost paths. The
link costs are such that all paths between host nodes H0 and
H1 have the same cost. The capacity of all routers’ queues is
2. The host H0 sends three packets to H1. The probability of
congestion is thus given by probability(pkt_cnt@H1 < 3).
In Table 1 (first five rows) we show the query results

for this experiment. Congestion probabilities computed by
both inference engines are similar: they are identical for the
deterministic scheduler and the difference across the two
methods for the uniform scheduler is < 0.03. Note that the
specific deterministic round-robin scheduler used for this
experiment considers only runs in which congestion occurs.
This hides important information, because in practice it is
likely that a different interleaving occurs. This is modeled
better by the uniform scheduler.

5.2 Reliability of Packet Delivery

Reliability of packet delivery is defined as the probability
that a given packet (or, a flow of packets) is delivered to the
intended destination. Service-level agreements, such as “99%
of all packets destined to network 10.0.1/24 are delivered.”, are
often formulated in terms of reliability requirements. Calcu-
lating the probability of packet delivery is thus important.
We consider a diamond network topology (Figure 11(b))

with a single link (colored in red) that fails with probability
pfail = 1/1000. Host H0 sends a packet to host H1. Switch S0
uses the probabilistic ECMP forwarding strategy, and thus
forwards half of the H0’s packets to S1 and the other half to
S2. Switch S2 forwards packets to S3 unless the link between
S2 and S3 has failed, in which case S2 drops all packets.

The Bayonet programs of switches S0 and S2 and of host
H1 are given in Figure 12. The variable arrived is set to 1
wheneverH1 receives a packet. We can capture the reliability
of packet delivery with the query probability(arrrived@H1).
The results for this query are given in Table 1 (rows 6-8).

The scheduler does not influence the query result, because

in this experiment we track a single packet. The results com-
puted using the approximate method are close (±0.005) to
those computed by the exact one.

5.3 Expected Message Propagation for Gossip

Protocols

Gossip protocols are used to spread information among
nodes in a randomized fashion. In each round, a node se-
lects a neighbor at random and shares a piece of information.
Gossip protocols have many practical applications. For ex-
ample, Google’s Certificate Transparency project uses them
to spread information about suspicious SSL certificates. An
important query is to compute the expected number of nodes
that received the information after a given number rounds.

We consider the network topology depicted in Figure 11(c).
Node S0 starts the process by becoming infected and sending
a single packet to a random adjacent node. Each uninfected
node that receives a packet becomes infected and sends two
more packets to (not necessarily distinct) random adjacent
nodes. The goal is to analyze the distribution of the number
of nodes that will become infected in total.
In the Bayonet program of a node Si , we introduce a

variable infected@Si to represent whether it is infected.
We capture the expected number of infected nodes with
the query expectation(

∑
i infected@Si). The expected num-

ber of infected nodes, computed with exact inference, is
94/27 ≈ 3.4815 (for both schedulers); see Table 1. As before,
the approximate procedure computes results that are close
to the exact one.

5.4 Performance and Network Size

To test scalability of Bayonet’s exact and approximate in-
ference, we analyzed the computation with networks of a
larger size (up to 30). Table 1 presents the performance of
both exact and approximate inferences.

For congestion and reliability, both exact and approximate
inference can produce results of similar accuracy within 8
minutes. For gossip, approximate inference can produce re-
sults within 11 minutes. The exact method did not terminate
within an hour for these queries.

Overall, the performance results show that Bayonet is ef-
fective in analyzing non-trivial networks. Moreover, the fact
that the exact solver is faster than the approximate solver
for some benchmarks emphasizes the need for practical net-
working languages to use multiple backends.

5.5 Bayesian Reasoning using Observations

We next discuss several practical network scenarios which
involve Bayesian reasoning, supported by our approach.

Probability of Correct Load-balancing Switches that use
ECMP routing compute a hash of the packet header to decide
the link for forwarding the packet. Operators select a hash

Bayonet: Probabilistic Inference for Networks PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

1 def h1()

2 state num_arr(0){

3 num_arr = num_arr+1;

4 if num_arr==1 {

5 observe(pkt.id==1);

6 } else if num_arr==2 {

7 observe(pkt.id==3);

8 } else if num_arr==3 {

9 observe(0);

10 }

11 drop;

12 }

(a) Observation (1, 3)

1 def h1()

2 state num_arr(0){

3 num_arr = num_arr+1;

4 if num_arr==1 {

5 observe(pkt.id==1);

6 } else if num_arr==2 {

7 observe(pkt.id==2);

8 } else if num_arr== 3 {

9 observe(pkt.id==3);

10 }

11 drop;

12 }

(b) Observation (1, 2, 3)

Figure 13. Observations added to the program of host H1

function to split traffic across all outgoing links as prescribed
by a load-balancing policy.
We consider the network shown in Figure 11(d). Switch

S0 receives traffic from H0 and splits it, using ECMP, among
a direct link to H1 and a direct link to S1. Switch S1 forwards
all incoming traffic to H1. S0, S1 and H1 are connected to a
controller C , which monitors the network. There is a fixed
sub-sampling probability: each node connected to the con-
troller chooses randomly whether or not to send a copy of
the packet to the controller. This way, the controller gets an
incomplete, but representative picture of the network traffic.
We use Bayonet to perform Bayesian reasoning, using

observations, to compute the probability that S0’s hash func-
tion is bad (captured by probability(bad_hash@S1)). We first
choose a prior probability on two models of S0’s forwarding
behavior. We believe it is likely (probability 9/10) that S0
splits the traffic equally, forwarding a packet to host H1 with
probability 1/2. However, we are aware of the less likely
scenario (probability 1/10) where S0’s hash function is bad,
forwarding a packet to host H1 with a probability of only
1/3. The prior is therefore a Bernoulli(1/10) random variable
specifying whether the hash is bad. This prior is encoded as a
simple generative model and is part of the Bayonet program:
def s1() state bad_hash(flip(1/10)){..}.

HostH0 sends three packets toH1. S0, S1, andH1 randomly
choose whether to send a copy of these packets to the con-
troller. We perform two experiments: in the first experiment,
the controller observes packets from S1, S0, S0, S1, H1, in that
order; in the second experiment, the observed packets are
from H1, S0, S0, H1. The sequence of observations in the first
experiments hints at a bad hash function, while in the second
experiment it is indicative of a good hash function. Using
this information, Bayonet automatically updates the prior
to compute the posterior probability that S0’s hash function
is bad. As expected, the probability that the hash function
is bad increases in the first experiment, to 0.152, indicating
a bad hash function, and it decreases in the second one, to
0.004, indicating a good hash function.

Reliability of Packet Delivery We give another example
that illustrates how Bayonet is used to perform Bayesian
reasoning using observations.
We adapt the reliability scenario from Section 5.2 as fol-

lows. We consider a setting where we are uncertain of the
forwarding strategy implemented by switch S0. A priori, we
consider two equally likely hypotheses: (i) S0 selects a uni-
form random host out of {S1, S2} for each packet; we denote
this strategy by rand, (ii) S0 forwards all packets to the same
host. If case (ii) applies, we also consider it equally likely
that S0 always forwards to S1 and that S0 always forwards
to S2; we denote these strategies by det. S1 and det. S2, re-
spectively.

We consider the scenario where we can observe the pack-
ets arriving at host H1. We know that three packets, num-
bered 1, 2, 3, have been sent from host H0, and we have
observed an (exhaustive) sequence of packets arriving at
hostH1. We can use the observed sequence of packets arrived
at H1 to refine our knowledge of S0’s forwarding strategy.

To illustrate our analysis, we consider two example obser-
vations: (i) packet 1 arrives before packet 3, while packet 2
does not arrive at all; and (ii) all three packets arrived in
the same order they were sent. These two scenarios can be
expressed by modifying the program of H1 (Figure 13).
For the observation (1, 3), the posterior distribution out-

put by the exact inference of Bayonet is: Pr(rand) = 1,
Pr(det. S1) = 0, and Pr(det. S2) = 0. The result is sensible:
the only way that the data can be explained is if S0 forwarded
packets 1 and 3 to switch S1, and packet 2 to switch S2. The
link from S2 to S3 failed, such that packet 2 was dropped.

For the observation (1, 2, 3), we get the following posterior:

Pr(rand) = 41922792469/95643630613 ≈ 0.4383,
Pr(det. S1) = 26873856000/95643630613 ≈ 0.2810,
Pr(det. S2) = 26846982144/95643630613 ≈ 0.2807.

The posterior reflects that random forwarding is less likely
than deterministic forwarding. This is because the packets
were not reordered, and for the random forwarding strategy,
the packets are likely to be received out of order.

Further, forwarding deterministically to S1 is slightly more
likely than to S2. The reason is that there is a small chance
the link between S2 and S3 will fail, in which case no packets
would arrive when deterministically forwarding to S2.

6 Related Work

We now discuss work that is most closely related to ours.

ProbNetKAT We start by comparing to ProbNetKAT [22]
(PNK) and its recent automation [61]:
- Automated Inference: PNK’s approach to automation is to
provide a custom analyzer for programs in its language [61],
while Bayonet translates to standard probabilistic pro-
grams. This allows Bayonet to leverage a rich body of

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Gehr, Misailovic, Tsankov, Vanbever, Wiesmann, and Vechev

existing work on probabilistic inference. Further, PNK does
not support parameter synthesis.

- Synchronous vs. Asynchronous: PNK is based on a synchro-
nous model, while Bayonet uses a stateful probabilistic
scheduler. As networks are asynchronous, we believe Bay-
onet allows for more realistic modeling.

- Observations: In contrast to Bayonet, PNK does not sup-
port observe statements.While it may be possible to extend
PNK with observe statements, doing so requires care to
avoid issues: a direct addition of observe as in [40] can
indeed invalidate the main theorem of [61].

- History vs. State:Bayonetmodels state (e.g., packet queues),
while PNK does not and uses sets of packet histories.
The use of state in Bayonet strikes a good balance be-
tween expressiveness and efficiency of analysis: it can
capture properties such as loops, congestion, and reliabil-
ity [18, 36, 42, 51] as these do not need histories. The use
of state instead of histories also greatly reduces the bur-
den on underlying probabilistic solvers. On the other side,
histories allow to elegantly capture temporal properties
that will require auxiliary state in Bayonet.

- Other Differences: PNK has a limited support for condition-
als (e.g., comparing packet fields only to constants, not to
other fields) and computations (e.g., cannot count the num-
ber of hops in a packet). In contrast, Bayonet supports
standard conditionals, arithmetic, and assignments.

Probabilistic Programming Recent years have seen sig-
nificant interest in probabilistic programming languages in-
cluding Stan [25], PSI [24], Fabular [8], Anglican [67], Au-
gur [63], Church [26], Venture [43] and R2 [54]. Uncertain<T>
is a library that makes probabilistic programming features
available inside mainstream programming languages [9, 50].
The main purpose of these systems is to simplify the de-

velopment of probabilistic models. The systems support dif-
ferent methods for probabilistic inference, including transla-
tion to Bayesian networks (e.g., [54]), sampling (e.g., [67]),
exact symbolic inference for bounded length executions
with both discrete and continuous distributions [24, 52, 60],
probabilistic abstract interpretation [44, 45], axiomatic meth-
ods [5, 35, 48], analysis based on probabilistic model check-
ing [33], and other methods [6, 7, 14, 20, 31, 59]. For a survey
on probabilistic programming, please see [28].
Researchers in computer networks have used Bayesian

inference for problems in traffic classification [4, 15, 47, 66],
security [23], and networkmanagement [34]. However, these
solutions use specific inference techniques, manually tailored
for a specific problem. As such, they lack generality and
cannot benefit from the latest advances in the field of prob-
abilistic inference. Also, many of the previous techniques
tackle problems in data analysis rather than network-wide
reasoning. In contrast, by connecting probabilistic network
reasoning to standard probabilistic programming, Bayonet

can directly leverage the significant effort spent in develop-
ing advanced inference algorithms and systems and bene-
fit from recent and future advances in probabilistic analy-
sis [1, 2, 31, 50], compilation [30, 68], and synthesis [12, 55].

Comparison with Network Simulators Network simula-
tors [56, 64, 65] or emulators [11, 41] can typically operate
in deterministic mode where every run produces the same
result, and randomized mode, where a run produces a differ-
ent result, sampled from a (uniform) pseudorandom number
generator. Statistical model checkers use similar approach
to refine non-deterministic into probabilistic choice [16].
Some simulators expose probabilistic choice to the users. For
instance, in the NS2 network simulator, packets can have
random content and the scheduler can select the next task
uniformly at random. A user can sample data from standard
distributions and specify potentially randomized behavior of
the scheduler using C code [32]. To mirror this flexibility in
specifying probabilistic behaviors, Bayonet allows a devel-
oper to use various standard distributions and randomness
in data, programs, and schedulers.

Network Analysis Over the last few years there has been
substantial interest in analysis and verification of network
behaviors, both usual network protocols and software de-
fined networking (SDN), e.g., [10, 19, 21, 38, 62]. These efforts
are largely orthogonal to our work as they do not consider
probabilistic behaviors.

7 Conclusion

We presented Bayonet, a novel approach for expressing
and reasoning about probabilistic networks. Our approach
consists of two parts: a probabilistic language capable of
expressing practical network scenarios together with an au-
tomated system that performs probabilistic reasoning. A key
idea behind Bayonet’s system is to phrase the problem of
probabilistic network reasoning as classic probabilistic in-
ference, accomplished by compiling Bayonet programs to
standard probabilistic programs. An important benefit of
this approach is that Bayonet brings state-of-the-art ad-
vances in probabilistic inference (e.g., Bayesian reasoning)
to the domain of networks. We demonstrated that Bayo-
net can express interesting and practical network scenarios
and automatically reason about useful probabilistic network
properties. Based on these results, we believe that Bayonet
is a solid basis for reasoning about probabilistic networks.

Acknowledgements

We thank our shepherd Jean-Baptiste Tristan, as well as
Benjamin Bichsel, Keyur Joshi, and the anonymous reviewers
for their useful comments on drafts of the paper. This research
was supported in part by SNF (grant number 163117) and
NSF (Grants No. CCF 1703637 and CCF 1629431).

Bayonet: Probabilistic Inference for Networks PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

References

[1] Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori.
2017. FairSquare: Probabilistic Verification of Program Fairness. Proc.
ACM Program. Lang. 1, OOPSLA, Article 80 (Oct. 2017), 30 pages.
https://doi.org/10.1145/3133904

[2] Torben Amtoft and Anindya Banerjee. 2016. A Theory of Slicing for
Probabilistic Control Flow Graphs. In Foundations of Software Science
and Computation Structures, Bart Jacobs and Christof Löding (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 180–196. https://doi.
org/10.1007/978-3-662-49630-5_11

[3] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jean-
nin, Dexter Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT:
Semantic Foundations for Networks. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’14). ACM, New York, NY, USA, 113–126. https://doi.org/10.
1145/2535838.2535862

[4] T. Auld, A. W. Moore, and S. F. Gull. 2007. Bayesian Neural Networks
for Internet Traffic Classification. IEEE Transactions on Neural Networks
18, 1 (Jan 2007), 223–239. https://doi.org/10.1109/TNN.2006.883010

[5] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella-
Béguelin. 2013. Probabilistic Relational Reasoning for Differential
Privacy. ACM Trans. Program. Lang. Syst. 35, 3, Article 9 (Nov. 2013),
49 pages. https://doi.org/10.1145/2492061

[6] Sooraj Bhat, Ashish Agarwal, Richard Vuduc, and Alexander Gray.
2012. A Type Theory for Probability Density Functions. In Proceedings
of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’12). ACM, New York, NY, USA,
545–556. https://doi.org/10.1145/2103656.2103721

[7] Sooraj Bhat, Johannes Borgström, Andrew D. Gordon, and Claudio
Russo. 2013. Deriving Probability Density Functions from Probabilistic
Functional Programs. In Tools and Algorithms for the Construction and
Analysis of Systems, Nir Piterman and Scott A. Smolka (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 508–522. https://doi.org/10.
1007/978-3-642-36742-7_35

[8] Johannes Borgström, Andrew D. Gordon, Long Ouyang, Claudio
Russo, Adam Ścibior, and Marcin Szymczak. 2016. Fabular: Regres-
sion Formulas As Probabilistic Programming. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’16). ACM, New York, NY, USA, 271–283.
https://doi.org/10.1145/2837614.2837653

[9] James Bornholt, Todd Mytkowicz, and Kathryn S. McKinley. 2014.
Uncertain<T>: A First-order Type for Uncertain Data. In Proceedings
of the 19th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’14). ACM, New
York, NY, USA, 51–66. https://doi.org/10.1145/2541940.2541958

[10] Marco Canini, Daniele Venzano, Peter Perešíni, Dejan Kostić, and
Jennifer Rexford. 2012. A NICE Way to Test Openflow Applications.
In Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation (NSDI’12). USENIX Association, Berkeley,
CA, USA, 10–10. http://dl.acm.org/citation.cfm?id=2228298.2228312

[11] Marta Carbone and Luigi Rizzo. 2010. Dummynet Revisited. SIGCOMM
Comput. Commun. Rev. 40, 2 (April 2010), 12–20. https://doi.org/10.
1145/1764873.1764876

[12] Sarah Chasins and Phitchaya Mangpo Phothilimthana. 2017. Data-
Driven Synthesis of Full Probabilistic Programs. In Computer Aided
Verification, Rupak Majumdar and Viktor Kunčak (Eds.). Springer In-
ternational Publishing, Cham, 279–304.

[13] B. Claise. 2004. Cisco Systems NetFlow Services Export Version 9. RFC
3954 (Informational). (Oct. 2004). http://www.ietf.org/rfc/rfc3954.txt

[14] Guillaume Claret, Sriram K. Rajamani, Aditya V. Nori, Andrew D.
Gordon, and Johannes Borgström. 2013. Bayesian Inference Using
Data Flow Analysis. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2013). ACM, New York,
NY, USA, 92–102. https://doi.org/10.1145/2491411.2491423

[15] A. Dainotti, W. de Donato, A. Pescape, and P. Salvo Rossi. 2008. Clas-
sification of Network Traffic via Packet-Level Hidden Markov Models.
In IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Con-
ference. 1–5. https://doi.org/10.1109/GLOCOM.2008.ECP.412

[16] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikučionis, and
Danny Bøgsted Poulsen. 2015. Uppaal SMC tutorial. International
Journal on Software Tools for Technology Transfer 17, 4 (01 Aug 2015),
397–415. https://doi.org/10.1007/s10009-014-0361-y

[17] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient
SMT Solver. In Tools and Algorithms for the Construction and Analy-
sis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 337–340. https://doi.org/10.
1007/978-3-540-78800-3_24

[18] Oscar Diaz, Feng Xu, Nasro Min-Allah, Mahmoud Khodeir, Min Peng,
Samee Khan, and Nasir Ghani. 2012. Network Survivability for Mul-
tiple Probabilistic Failures. IEEE Communications Letters 16, 8 (Au-
gust 2012), 1320–1323. https://doi.org/10.1109/LCOMM.2012.060112.
120353

[19] Ahmed El-Hassany, Jeremie Miserez, Pavol Bielik, Laurent Vanbever,
and Martin Vechev. 2016. SDNRacer: Concurrency Analysis for
Software-defined Networks. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI ’16). ACM, New York, NY, USA, 402–415. https://doi.org/10.
1145/2908080.2908124

[20] Antonio Filieri, Corina S. Păsăreanu, and Willem Visser. 2013. Re-
liability analysis in Symbolic PathFinder. In 2013 35th International
Conference on Software Engineering (ICSE). 622–631. https://doi.org/
10.1109/ICSE.2013.6606608

[21] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh
Govindan, Ratul Mahajan, and Todd Millstein. 2015. A General Ap-
proach to Network Configuration Analysis. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and Implementa-
tion (NSDI’15). USENIX Association, Berkeley, CA, USA, 469–483.
http://dl.acm.org/citation.cfm?id=2789770.2789803

[22] Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reit-
blatt, and Alexandra Silva. 2016. Probabilistic NetKAT. In Pro-
gramming Languages and Systems, Peter Thiemann (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 282–309. https://doi.org/10.
1007/978-3-662-49498-1_12

[23] P. García-Teodoro, J. Díaz-Verdejo, G.Maciá-Fernández, and E. Vázquez.
2009. Anomaly-based Network Intrusion Detection: Techniques, Sys-
tems and Challenges. Computers & Security 28, 1-2 (Feb. 2009), 18–28.
https://doi.org/10.1016/j.cose.2008.08.003

[24] Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. PSI: Ex-
act Symbolic Inference for Probabilistic Programs. In Computer
Aided Verification, Swarat Chaudhuri and Azadeh Farzan (Eds.).
Springer International Publishing, Cham, 62–83. https://doi.org/10.
1007/978-3-319-41528-4_4

[25] Andrew Gelman, Daniel Lee, and Jiqiang Guo. 2015. Stan: A Probabilis-
tic Programming Language for Bayesian Inference and Optimization.
Journal of Educational and Behavioral Statistics 40, 5 (oct 2015), 530–543.
https://doi.org/10.3102/1076998615606113

[26] Noah D. Goodman, Vikash K. Mansinghka, Daniel Roy, Keith Bonawitz,
and Joshua B. Tenenbaum. 2008. Church: A Language for Genera-
tive Models. In Proceedings of the Twenty-Fourth Conference on Uncer-
tainty in Artificial Intelligence (UAI’08). AUAI Press, Arlington, Virginia,
United States, 220–229. http://dl.acm.org/citation.cfm?id=3023476.
3023503

[27] Noah D Goodman and Andreas Stuhlmüller. 2014. The Design and
Implementation of Probabilistic Programming Languages. (2014). Re-
trieved April 18, 2018 from http://dippl.org

[28] Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sri-
ram K. Rajamani. 2014. Probabilistic Programming. In Proceedings of
the on Future of Software Engineering (FOSE 2014). ACM, New York,
NY, USA, 167–181. https://doi.org/10.1145/2593882.2593900

https://doi.org/10.1145/3133904
https://doi.org/10.1007/978-3-662-49630-5_11
https://doi.org/10.1007/978-3-662-49630-5_11
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1109/TNN.2006.883010
https://doi.org/10.1145/2492061
https://doi.org/10.1145/2103656.2103721
https://doi.org/10.1007/978-3-642-36742-7_35
https://doi.org/10.1007/978-3-642-36742-7_35
https://doi.org/10.1145/2837614.2837653
https://doi.org/10.1145/2541940.2541958
http://dl.acm.org/citation.cfm?id=2228298.2228312
https://doi.org/10.1145/1764873.1764876
https://doi.org/10.1145/1764873.1764876
http://www.ietf.org/rfc/rfc3954.txt
https://doi.org/10.1145/2491411.2491423
https://doi.org/10.1109/GLOCOM.2008.ECP.412
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/LCOMM.2012.060112.120353
https://doi.org/10.1109/LCOMM.2012.060112.120353
https://doi.org/10.1145/2908080.2908124
https://doi.org/10.1145/2908080.2908124
https://doi.org/10.1109/ICSE.2013.6606608
https://doi.org/10.1109/ICSE.2013.6606608
http://dl.acm.org/citation.cfm?id=2789770.2789803
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.3102/1076998615606113
http://dl.acm.org/citation.cfm?id=3023476.3023503
http://dl.acm.org/citation.cfm?id=3023476.3023503
http://dippl.org
https://doi.org/10.1145/2593882.2593900

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Gehr, Misailovic, Tsankov, Vanbever, Wiesmann, and Vechev

[29] C. Hopps. 2013. Analysis of an Equal-Cost Multi-Path Algorithm. RFC
2992. (2 March 2013). https://doi.org/10.17487/rfc2992

[30] Daniel Huang, Jean-Baptiste Tristan, and GregMorrisett. 2017. Compil-
ing Markov Chain Monte Carlo Algorithms for Probabilistic Modeling.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2017). ACM, New York,
NY, USA, 111–125. https://doi.org/10.1145/3062341.3062375

[31] Chung-Kil Hur, Aditya V. Nori, Sriram K. Rajamani, and Selva Samuel.
2014. Slicing Probabilistic Programs. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’14). ACM, New York, NY, USA, 133–144. https:
//doi.org/10.1145/2594291.2594303

[32] Teerawat Issariyakul and Ekram Hossain. 2011. Introduction to network
simulator NS2. Springer Science & Business Media. https://doi.org/10.
1007/978-1-4614-1406-3

[33] Nils Jansen, Christian Dehnert, Benjamin Lucien Kaminski, Joost-
Pieter Katoen, and Lukas Westhofen. 2016. Bounded Model Check-
ing for Probabilistic Programs. In Automated Technology for Verifica-
tion and Analysis, Cyrille Artho, Axel Legay, and Doron Peled (Eds.).
Springer International Publishing, Cham, 68–85. https://doi.org/10.
1007/978-3-319-46520-3_5

[34] Srikanth Kandula, Dina Katabi, and Jean-Philippe Vasseur. 2005.
Shrink: A Tool for Failure Diagnosis in IP Networks. In Proceedings of
the 2005 ACM SIGCOMM Workshop on Mining Network Data (MineNet
’05). ACM, New York, NY, USA, 173–178. https://doi.org/10.1145/
1080173.1080178

[35] Joost-Pieter Katoen, Annabelle K. McIver, Larissa A. Meinicke, and
Carroll C. Morgan. 2010. Linear-invariant Generation for Probabilistic
Programs: Automated Support for Proof-based Methods. In Proceed-
ings of the 17th International Conference on Static Analysis (SAS’10).
Springer-Verlag, Berlin, Heidelberg, 390–406. https://doi.org/10.1007/
978-3-642-15769-1_24

[36] M. Kattenbelt. 2011. Automated Quantitative Software Verification.
Ph.D. Dissertation. Oxford University, Oxford, UK.

[37] Peyman Kazemian, George Varghese, and Nick McKeown. 2012.
Header Space Analysis: Static Checking for Networks. In Proceed-
ings of the 9th USENIX Conference on Networked Systems Design and
Implementation (NSDI’12). USENIX Association, Berkeley, CA, USA,
9–9. http://dl.acm.org/citation.cfm?id=2228298.2228311

[38] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and
P. Brighten Godfrey. 2013. VeriFlow: Verifying Network-wide Invari-
ants in Real Time. In Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation (NSDI’13). USENIX As-
sociation, Berkeley, CA, USA, 15–28. http://dl.acm.org/citation.cfm?
id=2482626.2482630

[39] Simon Knight, Hung X Nguyen, Nick Falkner, Rhys Bowden, and
Matthew Roughan. 2011. The Internet Topology Zoo. IEEE Journal
on Selected Areas in Communications 29, 9 (October 2011), 1765–1775.
https://doi.org/10.1109/JSAC.2011.111002

[40] Dexter Kozen. 2016. Kolmogorov Extension, Martingale Convergence,
and Compositionality of Processes. In Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New
York, NY, USA, July 5-8, 2016. 692–699. https://doi.org/10.1145/2933575.
2933610

[41] Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A Network
in a Laptop: Rapid Prototyping for Software-defined Networks. In
Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks (Hotnets-IX). ACM, New York, NY, USA, Article 19, 6 pages.
https://doi.org/10.1145/1868447.1868466

[42] Hyang-Won Lee, Eytan Modiano, and Kayi Lee. 2010. Diverse Routing
in Networks with Probabilistic Failures. IEEE/ACM Trans. Netw. 18, 6
(Dec. 2010), 1895–1907. https://doi.org/10.1109/TNET.2010.2050490

[43] Vikash Mansinghka, Daniel Selsam, and Yura Perov. 2014. Venture: a
Higher-order Probabilistic Programming Platform with Programmable
Inference. arXiv:1404.0099 Retrieved from https://arxiv.org/abs/1404.

0099.
[44] Piotr Mardziel, Stephen Magill, Michael Hicks, and Mudhakar Srivatsa.

2011. Dynamic Enforcement of Knowledge-Based Security Policies.
In Proceedings of the 2011 IEEE 24th Computer Security Foundations
Symposium (CSF ’11). IEEE Computer Society, Washington, DC, USA,
114–128. https://doi.org/10.1109/CSF.2011.15

[45] David Monniaux. 2000. Abstract Interpretation of Probabilistic Se-
mantics. In Proceedings of the 7th International Symposium on Static
Analysis (SAS ’00). Springer-Verlag, London, UK, UK, 322–339. https:
//doi.org/10.1007/978-3-540-45099-3_17

[46] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford,
and David Walker. 2013. Composing Software-defined Networks.
In Proceedings of the 10th USENIX Conference on Networked Systems
Design and Implementation (NSDI’13). USENIX Association, Berkeley,
CA, USA, 1–14. http://dl.acm.org/citation.cfm?id=2482626.2482629

[47] AndrewW. Moore and Denis Zuev. 2005. Internet Traffic Classification
Using Bayesian Analysis Techniques. In Proceedings of the 2005 ACM
SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS ’05). ACM, New York, NY, USA,
50–60. https://doi.org/10.1145/1064212.1064220

[48] Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Proba-
bilistic Predicate Transformers. ACM Trans. Program. Lang. Syst. 18, 3
(May 1996), 325–353. https://doi.org/10.1145/229542.229547

[49] J. Moy. 1998. OSPF Version 2. RFC 2328 (Standard). (April 1998).
http://www.ietf.org/rfc/rfc2328.txt

[50] Chandrakana Nandi, Dan Grossman, Adrian Sampson, Todd Mytkow-
icz, and Kathryn S. McKinley. 2017. Debugging Probabilistic Programs.
In Proceedings of the 1st ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages (MAPL 2017). ACM,
New York, NY, USA, 18–26. https://doi.org/10.1145/3088525.3088564

[51] Srinivas Narayana, Mina Tashmasbi Arashloo, Jennifer Rexford, and
David Walker. 2016. Compiling Path Queries. In Proceedings of the 13th
Usenix Conference on Networked Systems Design and Implementation
(NSDI’16). USENIX Association, Berkeley, CA, USA, 207–222. http:
//dl.acm.org/citation.cfm?id=2930611.2930626

[52] Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh
Shan, and Robert Zinkov. 2016. Probabilistic Inference by Program
Transformation in Hakaru (System Description). Springer International
Publishing, Cham, 62–79. https://doi.org/10.1007/978-3-319-29604-3_
5

[53] Tim Nelson, Andrew D. Ferguson, Michael J. G. Scheer, and Shri-
ram Krishnamurthi. 2014. Tierless Programming and Reasoning for
Software-defined Networks. In Proceedings of the 11th USENIX Con-
ference on Networked Systems Design and Implementation (NSDI’14).
USENIX Association, Berkeley, CA, USA, 519–531. http://dl.acm.org/
citation.cfm?id=2616448.2616496

[54] Aditya V. Nori, Chung-Kil Hur, Sriram K. Rajamani, and Selva Samuel.
2014. R2: An Efficient MCMC Sampler for Probabilistic Programs. In
Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelli-
gence (AAAI’14). AAAI Press, 2476–2482. http://dl.acm.org/citation.
cfm?id=2892753.2892895

[55] Aditya V. Nori, Sherjil Ozair, Sriram K. Rajamani, and Deepak Vi-
jaykeerthy. 2015. Efficient Synthesis of Probabilistic Programs. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’15). ACM, New York, NY,
USA, 208–217. https://doi.org/10.1145/2737924.2737982

[56] ns-3. 2011. Network Simulator. (2011). Retrieved April 18, 2018 from
http://www.nsnam.org/

[57] P. Phaal, S. Panchen, and N. McKee. 2001. InMon Corporation’s sFlow:
A Method for Monitoring Traffic in Switched and Routed Networks.
RFC 3176 (Informational). (Sept. 2001). http://www.ietf.org/rfc/rfc3176.
txt

[58] Y. Rekhter, T. Li, and S. Hares. 2006. A Border Gateway Protocol 4
(BGP-4). RFC 4271 (Draft Standard). (Jan. 2006). http://www.ietf.org/

https://doi.org/10.17487/rfc2992
https://doi.org/10.1145/3062341.3062375
https://doi.org/10.1145/2594291.2594303
https://doi.org/10.1145/2594291.2594303
https://doi.org/10.1007/978-1-4614-1406-3
https://doi.org/10.1007/978-1-4614-1406-3
https://doi.org/10.1007/978-3-319-46520-3_5
https://doi.org/10.1007/978-3-319-46520-3_5
https://doi.org/10.1145/1080173.1080178
https://doi.org/10.1145/1080173.1080178
https://doi.org/10.1007/978-3-642-15769-1_24
https://doi.org/10.1007/978-3-642-15769-1_24
http://dl.acm.org/citation.cfm?id=2228298.2228311
http://dl.acm.org/citation.cfm?id=2482626.2482630
http://dl.acm.org/citation.cfm?id=2482626.2482630
https://doi.org/10.1109/JSAC.2011.111002
https://doi.org/10.1145/2933575.2933610
https://doi.org/10.1145/2933575.2933610
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1109/TNET.2010.2050490
http://arxiv.org/abs/1404.0099
https://arxiv.org/abs/1404.0099
https://arxiv.org/abs/1404.0099
https://doi.org/10.1109/CSF.2011.15
https://doi.org/10.1007/978-3-540-45099-3_17
https://doi.org/10.1007/978-3-540-45099-3_17
http://dl.acm.org/citation.cfm?id=2482626.2482629
https://doi.org/10.1145/1064212.1064220
https://doi.org/10.1145/229542.229547
http://www.ietf.org/rfc/rfc2328.txt
https://doi.org/10.1145/3088525.3088564
http://dl.acm.org/citation.cfm?id=2930611.2930626
http://dl.acm.org/citation.cfm?id=2930611.2930626
https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.1007/978-3-319-29604-3_5
http://dl.acm.org/citation.cfm?id=2616448.2616496
http://dl.acm.org/citation.cfm?id=2616448.2616496
http://dl.acm.org/citation.cfm?id=2892753.2892895
http://dl.acm.org/citation.cfm?id=2892753.2892895
https://doi.org/10.1145/2737924.2737982
http://www.nsnam.org/
http://www.ietf.org/rfc/rfc3176.txt
http://www.ietf.org/rfc/rfc3176.txt
http://www.ietf.org/rfc/rfc4271.txt
http://www.ietf.org/rfc/rfc4271.txt

Bayonet: Probabilistic Inference for Networks PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

rfc/rfc4271.txt
[59] Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani.

2013. Static Analysis for Probabilistic Programs: Inferring Whole
Program Properties from Finitely Many Paths. In Proceedings of the
34th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’13). ACM, New York, NY, USA, 447–458.
https://doi.org/10.1145/2491956.2462179

[60] Chung-chieh Shan and Norman Ramsey. 2017. Exact Bayesian In-
ference by Symbolic Disintegration. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL
2017). ACM, New York, NY, USA, 130–144. https://doi.org/10.1145/
3009837.3009852

[61] Steffen Smolka, Praveen Kumar, Nate Foster, Dexter Kozen, andAlexan-
dra Silva. 2017. Cantor Meets Scott: Semantic Foundations for Proba-
bilistic Networks. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL 2017). ACM, New York,
NY, USA, 557–571. https://doi.org/10.1145/3009837.3009843

[62] Kausik Subramanian, Loris D’Antoni, and Aditya Akella. 2017. Gen-
esis: Synthesizing Forwarding Tables in Multi-tenant Networks. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages (POPL 2017). ACM, New York, NY, USA, 572–585.
https://doi.org/10.1145/3009837.3009845

[63] Jean-Baptiste Tristan, Daniel Huang, Joseph Tassarotti, Adam Pocock,
Stephen J. Green, and Guy L. Steele, Jr. 2014. Augur: Data-parallel Prob-
abilistic Modeling. In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 2 (NIPS’14). MIT
Press, Cambridge, MA, USA, 2600–2608. http://dl.acm.org/citation.
cfm?id=2969033.2969117

[64] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan
Kostić, Jeff Chase, and David Becker. 2002. Scalability and Accuracy in
a Large-scale Network Emulator. In Proceedings of the 5th Symposium
on Operating Systems Design and implementation (OSDI ’02). USENIX
Association, Berkeley, CA, USA, 271–284. http://dl.acm.org/citation.
cfm?id=1060289.1060315

[65] András Varga and Rudolf Hornig. 2008. An Overview of the OM-
NeT++ Simulation Environment. In Proceedings of the 1st International
Conference on Simulation Tools and Techniques for Communications,
Networks and Systems & Workshops (Simutools ’08). ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering), ICST, Brussels, Belgium, Belgium, Article 60, 10 pages.
http://dl.acm.org/citation.cfm?id=1416222.1416290

[66] Nigel Williams, Sebastian Zander, and Grenville Armitage. 2006. A
Preliminary Performance Comparison of Five Machine Learning Algo-
rithms for Practical IP Traffic Flow Classification. SIGCOMM Computer
Communication Review 36, 5 (Oct. 2006), 5–16. https://doi.org/10.1145/
1163593.1163596

[67] Frank D. Wood, Jan-Willem van de Meent, and Vikash Mansinghka.
2014. A New Approach to Probabilistic Programming Inference. In
Proceedings of the Seventeenth International Conference on Artificial
Intelligence and Statistics, AISTATS 2014, Reykjavik, Iceland, April 22-25,
2014. 1024–1032. http://jmlr.org/proceedings/papers/v33/wood14.html

[68] YiWu, Lei Li, Stuart Russell, and Rastislav Bodik. 2016. Swift: Compiled
Inference for Probabilistic Programming Languages. In Proceedings of
the Twenty-Fifth International Joint Conference on Artificial Intelligence
(IJCAI’16). AAAI Press, 3637–3645. http://dl.acm.org/citation.cfm?id=
3061053.3061128

http://www.ietf.org/rfc/rfc4271.txt
https://doi.org/10.1145/2491956.2462179
https://doi.org/10.1145/3009837.3009852
https://doi.org/10.1145/3009837.3009852
https://doi.org/10.1145/3009837.3009843
https://doi.org/10.1145/3009837.3009845
http://dl.acm.org/citation.cfm?id=2969033.2969117
http://dl.acm.org/citation.cfm?id=2969033.2969117
http://dl.acm.org/citation.cfm?id=1060289.1060315
http://dl.acm.org/citation.cfm?id=1060289.1060315
http://dl.acm.org/citation.cfm?id=1416222.1416290
https://doi.org/10.1145/1163593.1163596
https://doi.org/10.1145/1163593.1163596
http://jmlr.org/proceedings/papers/v33/wood14.html
http://dl.acm.org/citation.cfm?id=3061053.3061128
http://dl.acm.org/citation.cfm?id=3061053.3061128

	Abstract
	1 Introduction
	2 Overview
	2.1 Example Probabilistic Network
	2.2 Analysis of Probabilistic Networks
	2.3 Synthesis of Network Configuration Parameters

	3 The Bayonet Language
	3.1 Specifying Probabilistic Networks in Bayonet
	3.2 Semantics of Probabilistic Networks
	3.3 Network Properties

	4 Implementation
	5 Evaluation
	5.1 Network Congestion for Probabilistic Routing
	5.2 Reliability of Packet Delivery
	5.3 Expected Message Propagation for Gossip Protocols
	5.4 Performance and Network Size
	5.5 Bayesian Reasoning using Observations

	6 Related Work
	7 Conclusion
	References

