
DP-Finder: Finding Differential Privacy Violations
by Sampling and Optimization

Benjamin Bichsel

ETH Zurich, Switzerland

benjamin.bichsel@inf.ethz.ch

Timon Gehr

ETH Zurich, Switzerland

timon.gehr@inf.ethz.ch

Dana Drachsler-Cohen

ETH Zurich, Switzerland

dana.drachsler@inf.ethz.ch

Petar Tsankov

ETH Zurich, Switzerland

petar.tsankov@inf.ethz.ch

Martin Vechev

ETH Zurich, Switzerland

martin.vechev@inf.ethz.ch

ABSTRACT
We present DP-Finder, a novel approach and system that automat-

ically derives lower bounds on the differential privacy enforced by

algorithms. Lower bounds are practically useful as they can show

tightness of existing upper bounds or even identify incorrect upper

bounds. Computing a lower bound involves searching for a coun-

terexample, defined by two neighboring inputs and a set of outputs,

that identifies a large privacy violation. This is an inherently hard

problem as finding such a counterexample involves inspecting a

large (usually infinite) and sparse search space.

To address this challenge, DP-Finder relies on two key insights.

First, we introduce an effective and precise correlated sampling

method to estimate the privacy violation of a counterexample. Sec-

ond, we show how to obtain a differentiable version of the problem,

enabling us to phrase the search task as an optimization objective

to be maximized with state-of-the-art numerical optimizers. This

allows us to systematically search for large privacy violations.

Our experimental results indicate that DP-Finder is effective

in computing differential privacy lower bounds for a number of

randomized algorithms. For instance, it finds tight lower bounds in

algorithms that obfuscate their input in a non-trivial fashion.

CCS CONCEPTS
• Security and privacy; •Mathematics of computing→ Prob-
ability and statistics;

KEYWORDS
Differential privacy; Lower bounds; Sampling; Optimization

ACM Reference Format:
Benjamin Bichsel, Timon Gehr, Dana Drachsler-Cohen, Petar Tsankov,

and Martin Vechev. 2018. DP-Finder: Finding Differential Privacy Violations,

by Sampling and Optimization. In 2018 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS ’18), October 15–19, 2018, Toronto,
ON, Canada. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/

3243734.3243863

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00

https://doi.org/10.1145/3243734.3243863

1 INTRODUCTION
Differential privacy (DP) [12] has emerged as an important property

that measures the amount of leaked information by (randomized)

algorithms [2, 7, 14, 21, 22, 24, 27, 29, 31]. Informally, a randomized

algorithm is ϵ-differentially private (denoted ϵ-DP) if the distance
between the output distributions it produces, for any two neighbor-

ing inputs, is bounded by ϵ . The standard way to enforce ϵ-DP is to

add noise to computations, where the amount of noise is determined

from the bound ϵ that the user would like to enforce. Determining

the exact bound ϵ enforced by a randomized algorithm is important

for two reasons. First, a conservative upper bound requires users to

add more noise than necessary. Second, an incorrect bound (lower

than the one actually enforced) may result in adding an insufficient

amount of noise, thereby leading to actual privacy violations.

To address these issues, ideally one would derive exact privacy

bounds enforced by randomized algorithms. Unfortunately, prov-

ing exact privacy bounds is a challenging task. Thus, in practice,

existing approaches are limited to deriving upper bounds on the

differential privacy enforced by algorithms [3, 4, 6, 15, 27, 32, 35].

These upper bounds are sometimes conservative, and have led to

follow-up works that improved them (e.g., [17]). Moreover, in some

cases, these upper bounds were incorrect, resulting in algorithms

that did not enforce ϵ-DP. For example, [26] showed that a suppos-

edly differentially private variants of the Sparse Vector Technique

were actually not differentially private.

Finding Lower Bounds. In this work, we study the task of com-

puting lower bounds on the ϵ-DP of randomized algorithms. That is,

our goal is to find the largest ϵ for which a randomized algorithm is

not ϵ-DP. Finding such lower bounds is practically useful and, com-

bined with previous results on finding upper bounds, can be used to

determine exactness or, alternatively, suggest that the upper bound

can be improved. Moreover, discovering lower bounds provides

an effective tool for testing the correctness of established upper

bounds, by searching for lower bounds that may exceed them.

Challenges. The task of finding DP violations introduces two

challenges. First, it requires efficiently estimating the violation

induced by particular inputs and a set of outputs. This involves

reasoning about probabilities which are difficult to compute an-

alytically. Second, it requires finding inputs and a set of outputs

that induce large privacy violations. This search involves solving

a complex, non-differentiable maximization problem in a search

space where few inputs and set of outputs induce large privacy

https://doi.org/10.1145/3243734.3243863
https://doi.org/10.1145/3243734.3243863
https://doi.org/10.1145/3243734.3243863

x, x′,Φ

vi
ol

at
io

n

Privacy violation

ϵ (x, x ′, Φ)

x, x′,Φ

vi
ol

at
io

n

estimate

ϵ by ϵ̂

Estimated violation

ϵ̂ (x, x ′, Φ)

x, x′,Φ

vi
ol

at
io

n

make ϵ̂

differentiable

Differentiable violation

ϵ̂d (x, x ′, Φ)

x
Φ
x ′

Counter-

example

argmax

ϵ̂d

ϵ̂ (x, x ′, Φ)
or

ϵ (x, x ′, Φ)

compute

Figure 1: A conceptual overview of our approach. Our goal is to search for the maximal privacy violation ϵ (x ,x ′,Φ), a function
which is hard to compute in general, and non-differentiable. DP-Finder first estimates ϵ (x ,x ′,Φ) with correlated sampling,
resulting in ϵ̂ (x ,x ′,Φ), which estimates ϵ (x ,x ′,Φ) well but is also non-differentiable. Then, DP-Finder transforms ϵ̂ (x ,x ′,Φ) to
a differentiable function ϵ̂d (x ,x ′,Φ). This is then passed to a numerical optimizer to find a maximal counterexample, with
respect to ϵ̂d (x ,x ′,Φ). When a counterexample is returned from the optimizer, DP-Finder computes the estimated violation
ϵ̂ (x ,x ′,Φ), with correlated sampling, or computes the exact violation ϵ (x ,x ′,Φ), with symbolic solvers.

violations. In this work, we address both challenges and present an

effective approach for discovering ϵ-DP violations.

Main Insights. Our approach to finding privacy violations relies

on two main insights. First, we can estimate ϵ using correlated

sampling with relatively few samples that still provide a good esti-

mate for ϵ . To determine the quality of the estimate, we develop a

heuristic inspired by the central limit theorem (CLT) and leveraging

Hinkley’s theorem on the ratio of Gaussian random variables [19].

Second, to search through the sparse space of privacy violations, we

define a differentiable surrogate function that allows us to leverage

numerical optimization methods.

DP-Finder. Based on the above insights, we present a system,

called DP-Finder. The goal of DP-Finder is to find a triple (x ,x ′,Φ)
witnessing the largest possible privacy violation. The values x and

x ′ are inputs to the randomized algorithm, while Φ is a possible set

of outputs. Fig. 1 illustrates the high-level approach of DP-Finder.

The leftmost plot illustrates the search space of DP-Finder: it shows

the privacy violation ϵ as a function of x , x ′, and Φ. Since it is com-

putationally prohibitive to directly maximize ϵ (x ,x ′,Φ), DP-Finder
estimates ϵ (x ,x ′,Φ) with correlated sampling, denoted ϵ̂ (x ,x ′,Φ).
To ensure that the estimate is precise, DP-Finder determines the

number of required samples to achieve a given target precision.

In general, ϵ̂ (x ,x ′,Φ) is non-differentiable (illustrated by the dis-

continuities in its graph). Thus, in the next step, DP-Finder makes

ϵ̂ (x ,x ′,Φ) differentiable through a set of rewrite rules, resulting

in a differentiable violation estimate, denoted ϵ̂d (x ,x ′,Φ). Then,
DP-Finder uses an off-the-shelf numerical optimizer to find a triple

(x ,x ′,Φ) with a high privacy violation, with respect to ϵ̂d (x ,x ′,Φ).
Finally, DP-Finder computes the true privacy violation ϵ (x ,x ′,Φ)
for the final triple (x ,x ′,Φ) using exact symbolic probabilistic

solvers (e.g., PSI [16]), if they succeed (PSI succeeded in all of our

experiments), otherwise we output ϵ̂ (x ,x ′,Φ).
We implemented a prototype of DP-Finder and evaluated it on

a number of randomized algorithms. To the best of our knowledge,

DP-Finder is the first system capable of automatically estimating

differential privacy lower bounds using a general method, appli-

cable to a wide range of algorithms. Our results demonstrate that,

often, the lower bounds discovered by DP-Finder are close to the

known upper bounds (implying tightness). For example, we show

that the noisyMax algorithm, which was proven to satisfy 10%-

DP [26], is not 9.9%-DP. This implies that we can characterize the

exact ϵ as lying in the tight interval [9.9%, 10%]. In few cases, we

compute a lower bound that is further from the respective upper

bound. For example, for the AboveThreshold algorithm, which is

known to be (at least) 45%-DP [26], for arrays of size 4, we were

only able to find 17.3%-DP violations. This suggests that the known

upper bound can potentially be improved or, alternatively, further

research is needed to discover better lower bounds.

Main Contributions. To summarize, our main contributions are:

• An approach that estimates privacy violations through cor-

related sampling, along with a confidence interval (Sec. 4).

• A transformation which translates the non-differentiable es-

timation into a differentiable one, enabling use of numerical

optimizers for finding privacy violations of ϵ-DP (Sec. 5).

• An implementation
1
and evaluation on a number of random-

ized algorithms, showing that our approach is effective in

discovering useful privacy violations of ϵ (Sec. 6).

2 PROBLEM STATEMENT
We address the problem of finding a counterexample to ϵ-DP, for
large ϵ . In the following, we introduce background terms that help

precisely define the notion of ϵ-DP counterexamples.

Randomized Algorithms. We consider randomized algorithms

that obscure their inputs by adding noise to computation steps.

The noise is a random variable with a given distribution, e.g., the

Laplace distribution. For example, consider the above threshold

randomized algorithm AT (Fig. 2), simplified from Lyu et al. [26]. It

is parameterized by a threshold T, and, for an array x, it returns a

Boolean array y whose ith entry indicates whether x[i] exceeds T.

To reduce information leakage of x, it adds noise to the threshold

1
The implementation is available at https://github.com/eth-sri/dp-finder

https://github.com/eth-sri/dp-finder

def AT(x):

ρ = Lap(20)

for i = 1 to k:

ν[i] = Lap(20)

if x[i]+ν[i]≥T+ρ:
y[i] = 1

else

y[i] = 0

return y

Figure 2: An instance of the
above threshold randomized
algorithm.

def checkAT, {[0,0]}(x):

y = AT(x)

c = [0, 0]

ret = 1

for i = 1 to 2:

ret = ret &&

y[i] == c[i]

return ret

Figure 3: Attacker’s check
on AT and {[0, 0]} consists
of running AT and check-
ing inclusion in {[0, 0]}.

and the entries of x. The noise terms are drawn from the Laplace

distribution with scale 20. We note that in the original randomized

algorithm, the noise terms are drawn from a Laplace distribution

which is determined by the target upper bound ϵ (in particular, the

distribution scale is 2/ϵ). To avoid confusion with this ϵ and a lower
bound on the optimal ϵ (which is what DP-Finder is searching for),

we instantiate the target upper bound with ϵ = 0.1, resulting in a

distribution scale of 20.

Differential Privacy (DP). A (randomized) algorithm F : X → Y
is ϵ-differentially private (ϵ-DP) if for every pair of neighboring in-

puts x ,x ′ ∈ X, and for every (measurable) set Φ ⊆ Y , the probabil-

ities of events F (x) ∈ Φ and F (x ′) ∈ Φ are closer than a factor of

exp(ϵ):

Pr [F (x) ∈ Φ] ≤ exp(ϵ) Pr
[
F (x ′) ∈ Φ

]
.

In this work, we focus on algorithms over the real vectors, i.e., X =

Rk , for some k ; however, our results extend to other domains,

e.g., matrices of real numbers. Additionally, we assume Y = Rl

or Y = Dl
, for some l and a finite set D. For example, in AT,

Y = {0, 1}k , i.e., D = {0, 1} and l = k , implying that the output is

a Boolean array with the same size as the input array. If Y = Dl

(i.e., Y is discrete), it suffices to only consider individual outputs

(y ∈ Y), which can be captured in our setting through singleton

sets Φ = {y}.
We next define the concept of a neighborhood. This concept is

inspired from databases, in which x and x ′ are viewed as databases,
and they are neighbors if they differ only in a single user’s data.

Then, if differential privacy holds, the output distribution of F is

almost the same for x and x ′, i.e., adding the differentiating user’s

data does not affect F ’s output significantly. Formally, a neighbor-

hood is captured by a binary relation Neigh ⊆ X × X, i.e., inputs x
and x ′ are neighbors if (x ,x ′) ∈ Neigh. A possible instantiation of

Neigh is the set of all array pairs whose entries differ by at most 1,

denoted Neigh≤1:

(x ,x ′) ∈ Neigh≤1 ⇔ ∀i ∈ {0, ...,k − 1}. |xi − x
′
i | ≤ 1.

For example, ([7.4, 4.7], [8.1, 4.6]) ∈ Neigh≤1. This is useful when
a database contains aggregate data on its users, such as counts of

how many users suffer from certain diseases. Then, adding the data

of a single user can affect each count by at most one.

Attacker’s Check. The set Φ ⊆ Y can be interpreted as a check
on the algorithm’s output that is performed by the attacker to gain

information. For example, the meaning of Φ = {[0, 0]} is that the
attacker tries to guess which of two possible inputs was used to

produce an observed output of AT, by checking if the output is equal

to [0, 0]. If the probability of outputting [0, 0] differs substantially for

two inputs, this allows the attacker to learn which of the two inputs

was likely provided as input. Formally, the randomized program that

checks whether the output of a randomized algorithm F : X → Y
lies in Φ is denoted by checkF ,Φ : X → {0, 1} and is defined as:

checkF ,Φ (x) = [F (x) ∈ Φ],

where [·] denotes the Iverson brackets, returning 1 if F (x) ∈ Φ, and 0
otherwise. Technically, checkF ,Φ (x) runs F on the input x and then

executes additional statements to determine whether F (x) belongs
to Φ. Note that checkF ,Φ (x) is randomized simply because it runs

the randomized algorithm F . Fig. 3 demonstrates the randomized

program checkF ,Φ (x) for F = AT and Φ = {[0, 0]}.

ϵ-DP Counterexamples. An ϵ-DP counterexample is a triple

(x ,x ′,Φ) which violates ϵ-DP:

Pr [F (x) ∈ Φ] > exp(ϵ) · Pr
[
F (x ′) ∈ Φ

]
.

Assuming Pr [F (x ′) ∈ Φ] , 0, this is equivalent to

ϵ < log

Pr [F (x) ∈ Φ]

Pr [F (x ′) ∈ Φ]
. (1)

The privacy violation ϵ (x ,x ′,Φ) for a triple (x ,x ′,Φ) is the supre-
mum of all ϵ satisfying Eq. (1):

ϵ (x ,x ′,Φ) := log

Pr [F (x) ∈ Φ]

Pr [F (x ′) ∈ Φ]
. (2)

Our goal is to find a triple with a large privacy violation, i.e., we

want to solve the following optimization problem:

argmaxx,x ′,Φ ϵ (x ,x ′,Φ)
s.t. (x ,x ′) ∈ Neigh

(3)

Note that ϵ (x ,x ′,Φ) may be negative, in which case we can swap x
andx ′ to get a positive violation or, alternatively, consider ��ϵ (x ,x ′,Φ)��
(this is the approach taken by our implementation). To avoid clutter,

we ignore this in the rest of the paper.

Direct Optimization of ϵ (x ,x ′,Φ). A straightforward approach

is to try and solve the maximization problem in Eq. (3) directly, by

(i) computing Pr [F (x) ∈ Φ] and Pr [F (x ′) ∈ Φ] symbolically and

(ii) optimizing ϵ (x ,x ′,Φ) exactly. We did this by using PSI [16]

for (i) and Mathematica
2
for (ii). Unfortunately, even when only

looking for counterexamples with array size 2, Mathematica cannot

solve the resulting maximization problem (timeout after 6 hours).

In addition, PSI times out on larger array sizes (e.g., array size 4

times out after 6 hours).

2
https://www.wolfram.com/mathematica

https://www.wolfram.com/mathematica

Generalization to (ϵ,δ)-DP. We remark that our problem state-

ment follows the original DP definition [12]. A well-known gener-

alization to ϵ-DP is (ϵ,δ)-DP [13], in which the requirement is:

Pr [F (x) ∈ Φ] ≤ exp(ϵ) Pr
[
F (x ′) ∈ Φ

]
+ δ .

Note that for δ = 0, (ϵ, 0)-DP is exactly ϵ-DP.
Our problem statement can be generalized to (ϵ,δ)-DP, where δ

need not be 0. In this case, the privacy violation depends on δ :

ϵδ (x ,x
′,Φ) := log

Pr [F (x) ∈ Φ] − δ

Pr [F (x ′) ∈ Φ]
. (4)

Solving this generalized problem with our approach is straight-

forward, but complicates the presentation. Thus, we follow the

original definition from here on.

3 OVERVIEW
In this section, we provide an overview of DP-Finder and discuss

its applications. Full details are provided in later sections.

Challenges. DP-Finder aims to solve the maximization prob-

lem (3), which introduces two challenges. The first challenge

is that it is hard to compute the probabilities Pr [F (x) ∈ Φ] and
Pr [F (x ′) ∈ Φ], for x ,x ′, and Φ, and these need to be evaluated

for many intermediate results during optimization. While analytic

approaches (e.g., PSI [16]) can be used, they are computationally

expensive. Approximating the quantities using random sampling

may also incur high costs if the number of required samples is too

high.

The second challenge is to efficiently search the space of triples

so to find one with a large privacy violation – because the solution

space is sparse, random search is inherently ineffective.

Our Approach. We address these challenges in two steps. First,

since the probabilities Pr [F (x) ∈ Φ] and Pr [F (x ′) ∈ Φ] are hard to

compute, we replace them by an estimate based on sampling. We

address the crucial decision of how many samples to use during the

sampling by computing (heuristic) confidence intervals on our esti-

mates, and increasing the number of samples until the confidence

intervals are sufficiently small.

Second, since the resulting optimization goal is not differentiable,

we replace it with a differentiable function. This allows us to search

for triples with large privacy violations by maximizing the resulting

differentiable function using off-the-shelf numerical optimizers.

While the differentiable maximization goal is (naturally) not

equivalent to the original maximization goal, in our evaluation, we

show that optimizing the differentiable maximization goal produces

triples with high privacy violations in practice.

Flow. We now demonstrate our end-to-end approach on an ex-

ample. Fig. 5 exemplifies the flow of DP-Finder on the randomized

algorithm AT. DP-Finder takes as input a randomized algorithm F
(e.g., AT) and runs N iterations of the pipeline. In each iteration,

DP-Finder performs a local search, resulting in a triple (x ,x ′,Φ)
with two neighboring inputs x ,x ′ and a set of outputs Φ. Eventually,
the triple with the highest associated privacy violation is returned.

At the start of each iteration, DP-Finder randomly picks a triple

of x , x ′, and Φ (e.g., x = [7.4, 4.7], x ′ = [8.1, 4.6], and Φ = {[0, 0]}
in Fig. 5). Based on the type of Φ, DP-Finder then generates the

def check1
AT, {[0,0]}

(x):

ρ = 7.5

ν[1] = -23.3

if x[1]+ν[1] ≥ T+ρ:
y[1] = 1

else

y[1] = 0

ν[2] = 24.3

if x[2]+ν[2] ≥ T+ρ:
y[2] = 1

else

y[2] = 0

return y[1] == 0 &&

y[2] == 0

def check2
AT, {[0,0]}

(x):

ρ = 38.3

ν[1] = 35.5

if x[1]+ν[1] ≥ T+ρ:
y[1] = 1

else

y[1] = 0

ν[2] = -14.0

if x[2]+ν[2] ≥ T+ρ:
y[2] = 1

else

y[2] = 0

return y[1] == 0 &&

y[2] == 0

Figure 4: Samples derived from checkAT, {[0,0]} .

corresponding program checkF ,Φ (x).
3
Then, it constructs a dif-

ferentiable function producing estimates for the privacy violation

ϵ (x ,x ′,Φ) using the two steps already mentioned, which we further

elaborate on next.

Step 1: Estimating Probabilities by Sampling. DP-Finder

constructs estimates for the probabilities Pr [F (x) ∈ Φ] and

Pr [F (x ′) ∈ Φ]. It estimates them using n deterministic programs,

denoted check1F ,Φ (x), . . ., check
n
F ,Φ (x), corresponding to random

samples derived from the randomized program checkF ,Φ (x). With

these deterministic programs, DP-Finder computes an estimate of

the privacy violation ϵ for a triple (x ,x ′,Φ) by:

ϵ̂ (x ,x ′,Φ) = log

1

n
∑n
i=1 check

i
F ,Φ (x)

1

n
∑n
i=1 check

i
F ,Φ (x

′)
. (5)

Each deterministic program checkiF ,Φ (x) is obtained by unrolling

loops in checkF ,Φ and fixing the values of the random variables

within the randomized program checkF ,Φ (x) (i.e., the random vari-

ables that appear in the randomized algorithm F), by sampling

from their respective distributions. The value of check
i
F ,Φ (x) is the

outcome of the attacker’s check (for any given input x). That is, it
is 1 if F (x) produces an output in Φ using the particular random-

ness encoded in check
i
F ,Φ (x); otherwise, it is 0. Fig. 4 shows two

deterministic programs derived from checkAT, {[0,0]} (x).
Note that the construction of the deterministic programs is inde-

pendent of the input. In particular, we assume that the noise distri-

butions do not depend on the input and that loops are bounded. In

Sec. 8, we discuss how to extend DP-Finder to algorithms whose

noise depends on the input. This allows us to correlate the noise terms
between the samples of Pr [F (x) ∈ Φ] and Pr [F (x ′) ∈ Φ]. Namely,

the programs check
i
F ,Φ (x) and check

i
F ,Φ (x

′) use the same random-

ness. This helps to reduce the number of samples n needed to obtain

a good estimate. Note, however, that, for i , j, checkiF ,Φ (x) and

check
j
F ,Φ (x) use independent randomness.

3
Currently, Φ can be either a singleton set or a box (i.e., an interval generalized to

multiple dimensions), but DP-Finder can be easily extended to other kinds of sets.

DP-Finder

def AT(x):

ρ = Lap(20)

for i = 1 to k:

ν[i] = Lap(20)

if x[i]+ν[i]≥T+ρ:
y[i] = 1

else

y[i] = 0

return y

Input algorithm

Pick

x, x ′, Φ

§4

Goal: construct samples and

determine n for Eq. (5)

Sample n′ times:

checkAT, {[0,0]}([7.4,4.7])
checkAT, {[0,0]}([8.1,4.6])

Confidence interval

Interval too large?

Goal: make Eq. (5) differentiable

§5

Rules:

E == 0 { e−c
2 ·E2

E1&&E2 { E1 · E2
. . .

Maximize ϵ̂d (x, x ′, Φ)

Update best counterexample

if violation is higher

#iterations < N ?

Compute ϵ̂ or ϵ of best

counterexample

Counterexample: x = [49.4, 49.4], x ′ = [50.4, 50.4], Φ = {[0, 0]}

Computed violation: ϵ = 0.05

x=[49.4,49.4],x ′=[50.4,50.4],Φ={[0,0]}

ϵ̂d (x,x ′,Φ)=log
1

n
∑n
i=1 e

−c2 ·ỹ[1]2 ·e−c
2 ·ỹ[2]2

1

n
∑n
i=1 e

−c2 ·ỹ′[1]2 ·e−c
2 ·ỹ′[2]2

no

i
n
c
r
e
a
s
e
n
′

yes

x=[7.4,4.7]
x ′=[8.1,4.6]
Φ={[0,0]}

no: n := n′

ϵ̂ (x, x ′, Φ) = log

1

n
∑n
i=1 check

i
AT,Φ

(x)
1

n
∑n
i=1 check

i
AT,Φ

(x ′)

yes

Figure 5: DP-Finder takes an algorithm and iteratively samples a triple, transforms its privacy violation to a differentiable
function, which is then optimized to find a counterexample with a higher privacy violation than the sampled triple. Finally,
it returns the counterexample with the highest privacy violation found.

Given this construction, it remains to pick a suitable number of

samples n, which is small enough to avoid costly computations, yet

sufficiently large to provide a good estimate for ϵ (x ,x ′,Φ). For our
purposes, n is sufficiently large if, for the initial triple (x ,x ′,Φ), it
results in an estimate with a small confidence interval (e.g., smaller

than 2·10−3). To find such ann, DP-Finder starts from a smalln′ and
gradually draws more samples. Occasionally, DP-Finder estimates

a (heuristic) confidence interval, and only continues sampling if it

is still too large. In our example, DP-Finder computes correlated

samples for checkAT, {[0,0]} ([7.4, 4.7]) and checkAT, {[0,0]} ([8.1, 4.6]).
To obtain a confidence interval, we use a heuristic based on the

(multivariate) central limit theorem (CLT) and prior work on the

ratio of two correlated Gaussian random variables [19]. Note that

correlating the random noise is necessary in order to reduce the

number of samples. We provide details in Sec. 4.

Step 2: Make the Estimate Differentiable. In the second step,

DP-Finder translates ϵ̂ from Eq. (5) into a differentiable version

ϵ̂d (x ,x ′,Φ). To this end, it translates the deterministic programs

check
i
F ,Φ (x) to differentiable programs using a set of a rewrite rules

on its statements. As Boolean expressions and conditionals are the

only source of non-differentiability, we transform them to differen-

tiable functions. Our rules have the property that, if the Boolean

expression is true, the corresponding differentiable program evalu-

ates to a value close to 1, otherwise it evaluates to a value close to

0. For example, we transform the constraint x = 0 to the function

exp(−c2 · x2), which for large enough c (we use 50) is very steep.

Similarly, we rewrite logical and (&&) to multiplication. Using these

and additional rules, DP-Finder generates a differentiable program.

For example, translating check1
AT, {[0,0]}

(x) from Fig. 4 results in

the differentiable program:

return exp(−c2 · ỹ[1]2)︸ ︷︷ ︸
y[1]==0

·︸︷︷︸
&&

exp(−c2 · ỹ[2]2)︸ ︷︷ ︸
y[2]==0

,

where ỹ[1] and ỹ[2] are the differentiable functions corresponding
to y[1] and y[2] (omitted here for simplicity). We provide details in

Sec. 5.

Finally, DP-Finder feeds the resulting expression ϵ̂d (x ,x ′,Φ) to
a numerical optimizer, which solves the problem

argmaxx,x ′,Φ ϵ̂d (x ,x ′,Φ).
s.t. (x ,x ′) ∈ Neigh

For our example, DP-Finder finds the triple with x = [49.4, 49.4],

x ′ = [50.4, 50.4] and Φ = {[0, 0]}, with an estimated violation of

0.05 (whose violation is larger than the violation for the initial

triple). If this triple has higher privacy violation than the recorded

one, DP-Finder updates it.

Final Step: Computing thePrivacyViolation of theReturned
Triple. After completing all of its N iterations, DP-Finder returns

the triple that induced the highest (estimated) privacy violation.

However, it is possible that the estimated privacy violation for

that triple is not accurate, due to the approximations (sampling,

differentiable estimate) DP-Finder applies.

To mitigate this, DP-Finder computes the exact privacy violation

ϵ using an exact solver (PSI [16]) with the triple (x ,x ′,Φ) returned
by the optimizer. Note that in this case, we run the solver with

concrete inputs, not symbolic ones. If the solver does not complete

within a given timeout, DP-Finder estimates the privacy violation

using Eq. (5), with a high number of samples, yielding a guaran-

teed confidence interval. Then, it returns this triple, along with its

(estimated) privacy violation. In our evaluation, PSI never times

out.

Applications of DP-Finder. DP-Finder is a complementary ap-

proach to prior works that prove ϵ-DP of particular algorithms.

With DP-Finder, one can prove, using explicit counterexamples,

that the proved ϵ is the smallest possible. Alternatively, if DP-Finder

cannot find a triple whose violation is close to the proven bound,

this suggests that it may be possible to tighten the bound.

Another application is to use DP-Finder to find errors in ϵ-DP
proofs. For example, the generalized private threshold testing algo-

rithmwas believed to be private, but follow-up work disproved it us-

ing counterexamples [9]. With DP-Finder, it is possible to come up

with new counterexamples, thereby providing a best-effort valida-

tion to new upper bounds. In fact, even without proofs, DP-Finder

can be useful for studying the privacy of algorithms. For example,

consider a (non-expert) user that tweaks a privacy algorithm and

wants to test whether the changes made have significantly affected

privacy. While DP-Finder provides no guarantees that the privacy

violation found is really the largest possible, it is the only existing

general framework that can test algorithms for differential privacy.

We also believe that DP-Finder can be used by attackers, de-

pending on the attacker model. In particular, an attacker can use

DP-Finder to find input pairs which leak a lot of information. Given

enough power, the attacker may stir the inputs towards those

that leak information. We leave the study of attacks that can use

DP-Finder to future work.

4 ESTIMATION OF PRIVACY VIOLATION
WITH CONFIDENCE

In this section, we present our approach for estimating the pri-

vacy violation ϵ (x ,x ′,Φ) for a given triple (x ,x ′,Φ). We begin by

explaining our sampling approach. Then, we explain how to deter-

mine a confidence interval for our estimate and how to reduce the

sampling effort.

4.1 Estimation of Privacy Violations
We now explain how we estimate ϵ (x ,x ′,Φ) as a closed-form func-

tion of (x ,x ′,Φ).
Recall that in Eq. (2) we defined:

ϵ (x ,x ′,Φ) := log

Pr [F (x) ∈ Φ]

Pr [F (x ′) ∈ Φ]
.

We want to estimate the probabilities Pr [F (x) ∈ Φ] and

Pr [F (x ′) ∈ Φ] using sampling, yielding an estimate ϵ̂ (x ,x ′,Φ) of
ϵ (x ,x ′,Φ).

Estimating Probabilities. To estimate Pr [F (x) ∈ Φ], we sample

from a random variable S ∈ {0, 1} defined by S := checkF ,Φ (x),
meaning that S is 1 if F (x) ∈ Φ, and 0 otherwise. Because S follows

a Bernoulli distribution, its expectation is the probability we want

to estimate:

E [S] = Pr [S = 1] = Pr [F (x) ∈ Φ] .

Denoting the samples of S by S1, . . . , Sn , we estimate

Pr [F (x) ∈ Φ] by:

Pr [F (x) ∈ Φ] ≈ P̂r [F (x) ∈ Φ] = 1

n
∑n
i=1 Si .

Correlating Random Choices. Instead of directly sampling S ,
we first randomly sample deterministic programs check

i
F ,Φ for

i = 1, . . . ,n. The programs are defined by randomly sampling

values for the random variables within F from their respective

distributions. The random variables are then replaced by fixed

values to obtain each of the programs check
i
F ,Φ. The output of

check
i
F ,Φ (x) is 1 or 0 depending on whether F (x) produces an

output in Φ, using the particular fixed randomness encoded into

check
i
F ,Φ.

This allows us to correlate the outputs of checkF ,Φ (x) and

checkF ,Φ (x
′), by running the latter using the same fixed ran-

domness as the former, i.e., by estimating Pr [F (x ′) ∈ Φ] using

check
i
F ,Φ (x

′):

Pr [F (x ′) ∈ Φ] ≈ P̂r [F (x ′) ∈ Φ] = 1

n
∑n
i=1 check

i
F ,Φ (x

′).

In Sec. 4.5, we show how to leverage this correlation to reduce the

number of samples.

Estimating ϵ (x ,x ′,Φ). Overall, we compute the estimate

ϵ̂ (x ,x ′,Φ) as follows:

ϵ̂ (x ,x ′,Φ) = log

P̂r [F (x) ∈ Φ]

P̂r [F (x ′) ∈ Φ]
= log

1

n
∑n
i=1 check

i
F ,Φ (x)

1

n
∑n
i=1 check

i
F ,Φ (x

′)
. (6)

In the following, we often denote check
i
F ,Φ (x) by Si , and

check
i
F ,Φ (x

′) by S ′i .

4.2 Challenge: Determining Sampling Effort
To obtain a good estimate for the privacy violation ϵ (x ,x ′,Φ), it is
crucial to select a suitable number of samples n. Clearly, we can ob-

tain estimates with better probabilistic guarantees by increasing the

number of samples. However, this induces a higher computational

cost in the optimization step, increasing DP-Finder’s running time.

Accordingly, we want to pick the smallest number of samples n,
for which the error

��ϵ (x ,x ′,Φ) − ϵ̂ (x ,x ′,Φ)�� is small enough. Given

a target error bound ∆ϵ that should hold with high probability, we

therefore want to select n as small as possible.

Computing Confidence Intervals for ϵ (x ,x ′,Φ). While com-

puting a number of samples n that achieves a specific target error

bound directly is non-trivial, it is easier to compute the error bound

∆ϵ that results from picking a specific n. Assuming we can solve the

latter, we can find an appropriate n by gradually drawing samples,

checking the resulting error bound, and increasing n (e.g., using

exponential search) while the error is too large.

In the following sections, we show three approaches to comput-

ing an error bound based on a given n. We express this bound in

terms of a confidence interval for ϵ (x ,x ′,Φ): we want to find ∆ϵ
such that

ϵ (x ,x ′,Φ) ∈ [ϵ̂ (x ,x ′,Φ) − ∆ϵ , ϵ̂ (x ,x
′,Φ) + ∆ϵ]

with probability at least 1 − α , where α is a small constant. The

constant 1 − α is also called the confidence.

Overview of Approaches. We first show how to derive confi-

dence intervals with strong probabilistic guarantees using Hoeffd-

ing’s inequality (Sec. 4.3). This is the only approach providing

probabilistic guarantees, however, it results in confidence intervals

that are empirically larger than necessary. As a consequence, ap-

plying Hoeffding’s inequality results in a large number of samples,

especially for small probabilities, as demonstrated by Fig. 6.

To reduce the required number of samples, we trade the guaran-

tees of the former approach against more efficiency, by estimating

the confidence interval using a heuristic inspired by the central limit

theorem (CLT, Sec. 4.4). While this already reduces the required

number of samples, it sets the stage for a drastic reduction that

we achieve by taking into account the correlation of the random

samples check
i
F ,Φ (x) and check

i
F ,Φ (x

′) using the multidimensional

CLT (M-CLT, Sec. 4.5).

Fig. 6 shows the number of samples required to achieve a fixed

absolute error of ∆ϵ = 2 · 10−3 with (approximate) confidence

90%, as a function of the probability being estimated (which is the

most relevant factor influencing the required number of samples),

with each of the three presented approaches. For example, the fig-

ure shows that estimating ϵ (x ,x ′,Φ) to a precision of 2 · 10−3, for

Pr [F (x) ∈ Φ] = 0.1 (i.e., 10%) and Pr [F (x ′) ∈ Φ] ≈ Pr [F (x) ∈ Φ],
requires almost 10

8
samples with the CLT approach. Fig. 6 demon-

strates that the M-CLT approach consistently outperforms the other

two approaches, regardless of the probability being estimated.

Combining Approaches. DP-Finder uses the approach in

Sec. 4.5 to estimate the confidence interval, because this is the

most efficient approach. Recall that to mitigate possible impreci-

sions of ϵ̂ (x ,x ′,Φ), DP-Finder recomputes the privacy violation

of the returned triple with a exact solver (PSI). If PSI times out,

DP-Finder can combine Sec. 4.5 with the approach in Sec. 4.3 to

get the best of both worlds: It can first use DP-Finder to search

for a triple (x ,x ′,Φ), using the heuristic confidence interval during
the search (empirically, this works well). To estimate the obtained

ϵ (x ,x ′,Φ) with strong guarantees, it can then use a higher number

of samples, such that a small confidence interval can be derived

using Hoeffding’s inequality.

4.3 Approach 1: Guaranteed Confidence
Intervals based on Hoeffding’s inequality

We can use Hoeffding’s inequality to estimate a confidence inter-

val for Pr [F (x) ∈ Φ] and Pr [F (x ′) ∈ Φ], which in turn gives us a

confidence interval for:

ϵ (x ,x ′,Φ) = log

Pr [F (x) ∈ Φ]

Pr [F (x ′) ∈ Φ]
.

Concretely, recall S := checkF ,Φ (x) and its expectation E [S] =
Pr [F (x) ∈ Φ], and the samples S1, . . . , Sn are from S .

10−3 10−2 10−1 100

Pr[F (x) ∈ Φ]

104

106

108

1010

1012

sampling
effort

(§4.3) - Hoeffding

(§4.4) - CLT

(§4.5) - M-CLT

Figure 6: Number of samples needed to estimate ϵ (x ,x ′,Φ)
up to an error of 2 · 10−3 with empirical confidence of
90% as a function of Pr [F (x) ∈ Φ]. Here, we assume that
Pr [F (x) ∈ Φ] ≈ Pr [F (x ′) ∈ Φ] and that the correlation coef-
ficient of checkF ,Φ (x) and checkF ,Φ (x ′) is ρ = 0.999.

Intuitively, Hoeffding’s inequality states that the probability that

the two values
1

n
∑n
i=1 Si and E [S] are further apart than a constant

factor is exponentially small in the number of samples n.

Theorem 4.1 (Hoeffding’s ineqality [20]). Let S be a
Bernoulli distribution, and S1, . . . , Sn ∈ {0, 1} be independent samples
from S . Let p = E [S] ∈ [0, 1] and ∆ > 0. Then,

Pr



����p −
1

n

n∑
i=1

Si
���� ≥ ∆


≤2 exp

(
− 2n∆2

)
.

Required Confidence. To compute an interval for ϵ with confi-

dence 1 − α , we apply Hoeffding’s inequality for Pr [F (x) ∈ Φ] and
Pr [F (x ′) ∈ Φ] (separately) to compute intervals with confidence

1 − α/2 for each.
Using a confidence of 1 − α/2 for both intervals allows us to

conclude that individually, each confidence interval fails to con-

tain its value (Pr [F (x) ∈ Φ] and Pr [F (x ′) ∈ Φ], respectively) with
a probability of α/2. According to the union bound, the probability

that either interval fails to contain its value is α/2 + α/2, resulting
in a confidence of 1 − α that both intervals contain their respective

value simultaneously.

Applying Hoeffding’s Inequality. To obtain an interval

[P̂r [F (x) ∈ Φ]− ∆, P̂r [F (x) ∈ Φ]+ ∆] for Pr [F (x) ∈ Φ] with confi-

dence 1 − α/2, we define ∆ as:

∆ :=

√
log(α/4)

−2n

For this choice of∆, according to Hoeffding’s inequality, the prob-
ability that the confidence interval does not contain Pr [F (x) ∈ Φ]

is at most 2 exp

(
−2n∆2

)
= α/2.

We compute the confidence interval for Pr [F (x ′) ∈ Φ] analo-
gously.

Bounds on ϵ (x ,x ′,Φ). Assuming the probabilities Pr [F (x) ∈ Φ]
and Pr [F (x ′) ∈ Φ] lie in their respective intervals (which simulta-

neously happens with confidence 1−α), we can use these intervals

to derive a lower and an upper bound on ϵ (x ,x ′,Φ):

log

P̂r [F (x) ∈ Φ] − ∆

P̂r [F (x ′) ∈ Φ] + ∆︸ ︷︷ ︸
l

≤ ϵ (x ,x ′,Φ) ≤ log

P̂r [F (x) ∈ Φ] + ∆

P̂r [F (x ′) ∈ Φ] − ∆︸ ︷︷ ︸
u

.

To get an interval [ϵ̂ (x ,x ′,Φ) − ∆ϵ , ϵ̂ (x ,x
′,Φ) + ∆ϵ] for ϵ (x ,x

′,Φ)
with confidence 1 − α , we need to ensure that ϵ̂ (x ,x ′,Φ) − ∆ϵ ≤ l
and ϵ̂ (x ,x ′,Φ)+∆ϵ ≤ u. A conservative choice for ∆ϵ that satisfies

these constraints is ∆ϵ = u − l .
We note that in general, ∆ϵ (the width of the confidence interval

for ϵ (x ,x ′,Φ)) is not the same as ∆ (the width of the confidence

interval for Pr [F (x) ∈ Φ]).

Example. We next illustrate this computation, using n = 10
7
sam-

ples to estimate the probabilities Pr [F (x) ∈ Φ] and Pr [F (x ′) ∈ Φ],
targeting a confidence of 1 − α = 1 − 0.1% for ϵ (x ,x ′,Φ).

We can compute ∆ =

√
log(α /4)
−2·n ≈ 0.06%, without any in-

formation about the algorithm or the distribution of the sam-

ples S1, . . . , Sn . Now, assume that for our (x ,x ′,Φ), we get

P̂r [F (x) ∈ Φ] ≈ 3.24% and P̂r [F (x ′) ∈ Φ] ≈ 3.04%. By Hoeffding’s

inequality, Pr [F (x) ∈ Φ] ∈ [3.24%−∆, 3.24%+∆] with a confidence
of 0.05%. Analogously, Pr [F (x ′) ∈ Φ] ∈ [3.04%−∆, 3.04%+∆] with
the same confidence.

Now that we have computed confidence intervals for both proba-

bilities, we want to compute a confidence interval for ϵ (x ,x ′,Φ). By
the union bound, we knowwith a confidence of 1−α that simultane-

ously, Pr [F (x) ∈ Φ] ∈ [3.24% − ∆, 3.24% + ∆] and Pr [F (x ′) ∈ Φ] ∈
[3.04% − ∆, 3.04% + ∆]. Based on this, we derive that:

log

3.24% − 0.06%

3.04% + 0.06%︸ ︷︷ ︸
≈0.024

≤ ϵ (x ,x ′,Φ) ≤ log

3.24% + 0.06%

3.04% − 0.06%︸ ︷︷ ︸
≈0.103

Hence, ∆ϵ = 0.103 − 0.024 = 0.079, meaning that with confidence

1 − 0.1%, ϵ (x ,x ′,Φ) ∈ [ϵ̂ (x ,x ′,Φ) − 0.079, ϵ̂ (x ,x ′,Φ) + 0.079], for
ϵ̂ (x ,x ′,Φ) ≈ log

3.24%
3.04% ≈ 6.4%.

Discussion. Recall that ultimately, we want to find the smallest n
that guarantees a given error bound ∆ϵ on ϵ (x ,x ′,Φ). To achieve

this goal, we could alternatively derive a closed-form solution for

the required number of samples n to achieve a given error ∆ϵ with

confidence 1 − α using Hoeffding’s inequality directly (instead of

gradually increasing the number of samples n). However, since
DP-Finder applies the approach described in Sec. 4.5, for which

we do not have such a closed-form solution, we do not further

elaborate on this possibility.

We note that the confidence intervals on the probabilities

Pr [F (x) ∈ Φ] and Pr [F (x ′) ∈ Φ] provided by Hoeffding’s inequal-

ity are agnostic of the algorithm under consideration, and of the

samples produced from the algorithm. While this is desirable to

achieve strong guarantees, it means that this approach cannot profit

from additional information on the variance or correlation of the

samples S1, . . . , Sn and S ′
1
, . . . , S ′n , ultimately resulting in a conser-

vatively high number of samples n.

4.4 Approach 2: Heuristic Confidence Intervals
based on Central Limit Theorem

The approach based on Hoeffding’s inequality provides guaranteed

confidence intervals, but the width of the intervals is pessimistically

large. In this section, we show how to apply a heuristic inspired

by the central limit theorem to obtain an approximate confidence

interval which is slightly more narrow. Ultimately, this means that

we can achieve an (approximate) confidence interval of a certain

width with fewer samples. This first heuristic approach sets the

stage for our second, dramatically improved heuristic, which also

takes into account that our probability estimates are correlated.

Central Limit Theorem. Intuitively, the central limit theorem

states that for large n, P̂r [F (x) ∈ Φ] := 1

n
∑n
i=1 check

i
F ,Φ (x) is ap-

proximately distributed according to a Gaussian distribution, with

mean E
[
checkF ,Φ

]
and variance

1

nVar
[
checkF ,Φ (x)

]
. Note that

because E
[
checkF ,Φ (x)

]
= Pr [F (x) ∈ Φ], we have in particular

that as n → ∞, 1

n
∑n
i=1 check

i
F ,Φ (x) → Pr [F (x) ∈ Φ]. We next

state the CLT.

Theorem 4.2 (Central limit theorem, Prop. 2.18 from [34]).

Let S1, . . . , Sn be independent samples from a distribution S over R.
Let E [S] ∈ R be the expectation of S , and Var [S] ∈ R the variance
of S . Then, as n → ∞ the distribution of 1

n
∑n
i=1 Si converges to a

Gaussian distribution with mean E [S] and variance 1

nVar [S]:

1

n

n∑
i=1

Si
d
−−−−−→
n→∞

N
(
E [S] ,

1

n
Var [S]

)
. (7)

We note that our version of the CLT deviates from the standard

presentation to simplify its application in our case. First, the most

common version of the CLT (e.g., [34], Prop. 2.18) states that

√
n *

,

1

n

n∑
i=1

Si − E [S]+
-

d
−−−−−→
n→∞

N (0,Var [S]) .

Instead, we abuse notation by using n within the limiting distribu-

tion N
(
E [S] , 1nVar [S]

)
. Second, {S1, . . . , Sn } is often referred to

as a single sample, with sample size n. Instead, we refer to each

individual Si as a sample, and say {S1, . . . , Sn } consists of n samples.

Heuristic Inspired by the CLT. In the following, we (heuristi-

cally) assume that the average
1

n
∑n
i=1 Si follows the limiting dis-

tribution N
(
E [S] , 1nVar [S]

)
, even for n < ∞.

Of course, this assumption does not hold strictly mathematically

speaking (e.g., for n = 1, it states that S follows a Gaussian instead

of a Bernoulli distribution). However, for large n (e.g., n = 10
3
),

1

n
∑n
i=1 Si follows N

(
E [S] , 1nVar [S]

)
almost exactly. Empirically,

this assumption only introduces negligible imprecisions, enabling

us to produce tight confidence intervals in practice.

If we assume that the distribution of P̂r [F (x) ∈ Φ] =
1

n
∑n
i=1 check

i
F ,Φ (x) has converged to its limiting distribution ac-

cording to the CLT, we obtain

P̂r [F (x) ∈ Φ]︸ ︷︷ ︸
1

n
∑n
i=1 check

i
F ,Φ (x)

∼ N
(
Pr [F (x) ∈ Φ]︸ ︷︷ ︸
E[checkF ,Φ (x)]

,
1

n
Var

[
checkF ,Φ (x)

])
.

Φ

x

x ′

checkF ,Φ (·)

S1, . . . , Sn ∼ checkF ,Φ (x)
S = 1

n
∑n
i=1 Si

S ′
1
, . . . , S ′n ∼ checkF ,Φ (x ′)

S ′ = 1

n
∑n
i=1 S

′
i

(correlated)

sampling

Pr[P (x) ∈ Φ] Pr[P
(x
′) ∈

Φ]
lik

el
ih

oo
d

Approximate joint like-

lihood on Pr [F (x) ∈ Φ]
and Pr [F (x ′) ∈ Φ]

M-CLT-based

heuristic

ε̂
ε

Approximate likeli-

hood of ϵ (x, x ′, Φ)

ratio of

Gaussians

ε̂−∆ε ε̂ ε̂+∆ε

ε

Approximate confidence

interval for ϵ (x, x ′, Φ)

interval

search

Figure 7: Steps for deriving a heuristic confidence interval for violations based on samples S1, . . . , Sn and S ′
1
, . . . , S ′n .

Computing the Likelihood of Pr [F (x) ∈ Φ]. Based on

the distribution of P̂r [F (x) ∈ Φ], we conclude that observing

P̂r [F (x) ∈ Φ] induces a likelihood on Pr [F (x) ∈ Φ] given by

Pr [F (x) ∈ Φ] ∼ N
(
P̂r [F (x) ∈ Φ] ,

1

n
Var

[
checkF ,Φ (x)

])
. (8)

For details on the derivation of this likelihood, see App. A. We

note that while mathematically, Pr [F (x) ∈ Φ] is a constant, after

observing the estimate P̂r [F (x) ∈ Φ], some values of Pr [F (x) ∈ Φ]
are more likely than others, thus inducing a distribution on

Pr [F (x) ∈ Φ], which we call the likelihood of Pr [F (x) ∈ Φ].

Computing the Confidence Interval. From Eq. (8), we can de-

rive an interval for Pr [F (x) ∈ Φ] with confidence 1 − α/2. The

confidence interval is [P̂r [F (x) ∈ Φ] − ∆, P̂r [F (x) ∈ Φ] + ∆], for

∆ := −σ · Φ−1
(α /2

2

)
. Here, Φ−1 is the inverse of the cumulative

distribution function of a Gaussian distribution with mean 0 and

standard deviation 1, and σ is the standard deviation of the Gaussian

distribution in Eq. (8). At runtime, DP-Finder does not have access

to the standard deviation σ :=

√
1

nVar
[
checkF ,Φ (x)

]
. Instead, it

estimates σ empirically, computing ∆ according to

∆ := −

√
1

n
V̂ar

[
checkF ,Φ (x)

]
· Φ−1

(
α/2

2

)
,

where V̂ar

[
checkF ,Φ (x)

]
is the empirical variance of checkF ,Φ (x)

(the definition of empirical variance is given in App. B).

Bounds on ϵ (x ,x ′,Φ). As in Sec. 4.3, we compute confidence

intervals for Pr [F (x) ∈ Φ] and Pr [F (x ′) ∈ Φ], which jointly hold

with confidence 1 − α (again due to the union bound). Then, we

can derive bounds on ϵ (x ,x ′,Φ), also as in Sec. 4.3.

Example. We illustrate how to use this approach when estimating

ϵ (x ,x ′,Φ) for some (x ,x ′,Φ). We note that unlike for Hoeffding’s

inequality, ∆ depends on the empirical variance of checkF ,Φ (x),
and hence on the samples S1, . . . , Sn . Thus, we cannot compute ∆
before sampling from checkF ,Φ (x).

Assume that for our (x ,x ′,Φ), we get P̂r [F (x) ∈ Φ] ≈ 3.24%

and P̂r [F (x ′) ∈ Φ] ≈ 3.04%. In addition, the empirical vari-

ance of checkF ,Φ (x) is V̂ar
[
checkF ,Φ (x)

]
≈ 3.13% and likewise,

V̂ar

[
checkF ,Φ (x

′)
]
≈ 2.95% (computed according to App. B).

Based on Eq. (8), we derive an approximate likelihood for

Pr [F (x) ∈ Φ], given by Pr [F (x) ∈ Φ] ∼ N
(
3.24%, 1n 3.13%

)
. Tar-

geting an overall confidence of 1 − α = 1 − 0.1% for ϵ (x ,x ′,Φ), we
derive an interval [3.24%−∆, 3.24%+∆] for Pr [F (x) ∈ Φ] with con-

fidence 1−α/2, by computing ∆ = −
√

1

n 3.13% ·Φ
−1

(α /2
2

)
≈ 0.02%.

An analogous computation yields an interval for Pr [F (x ′) ∈ Φ]
with confidence 1−α/2, given by [3.04%− 0.019%, 3.04%+ 0.019%].

Exactly as in Sec. 4.3, using both confidence intervals, we derive

(with confidence 1 − α), that

log

3.24% − 0.02%

3.04% + 0.019%︸ ︷︷ ︸
≈0.051

≤ ϵ (x ,x ′,Φ) ≤ log

3.24% + 0.02%

3.04% − 0.019%︸ ︷︷ ︸
≈0.076

.

Hence, ∆ϵ = 0.076 − 0.051 = 0.025, meaning that with confidence

1 − 0.1%, ϵ (x ,x ′,Φ) ∈ [ϵ̂ (x ,x ′,Φ) − 0.025, ϵ̂ (x ,x ′,Φ) + 0.025], for
ϵ̂ (x ,x ′,Φ) ≈ log

3.24%
3.04% ≈ 6.4%.

4.5 Approach 3: Heuristic Confidence Intervals
based on Multidimensional CLT

We next explain how to improve the previous approach, which

computed the two confidence intervals separately. Now, we show

how to reduce the number of required samples, by leveraging

that Si = check
i
F ,Φ (x) and S ′i = check

i
F ,Φ (x

′) are correlated

(i.e., derived from a joint distribution).

We recall that DP-Finder generates check
i
F ,Φ (x) and

check
i
F ,Φ (x

′) based on the same randomness, resulting in

high correlation between the samples. We empirically observed

correlations as high as ρ = 0.999. This can drastically decrease the

required number of samples, as illustrated in Fig. 6.

Fig. 7 provides an overview of this approach. On a high level,

the samples (Si , S
′
i) =

(
check

i
F ,Φ (x), check

i
F ,Φ (x

′)
)
originate from

a joint distribution SSS over R2, which has (component-wise) mean

E [SSS] ∈ R2 given by E [SSS] =
(
Pr [F (x) ∈ Φ] , Pr [F (x ′) ∈ Φ]

)
.

Observing the estimates

(
P̂r [F (x) ∈ Φ] , P̂r [F (x ′) ∈ Φ]

)
com-

puted according to

(
1

n
∑n
i=1 Si ,

1

n
∑n
i=1 S

′
i

)
induces a likelihood on(

Pr [F (x) ∈ Φ] , Pr [F (x ′) ∈ Φ]
)
(depicted as a multivariate Gauss-

ian distribution in Fig. 7). From this, we can derive a likelihood on

ϵ (x ,x ′,Φ) (see Fig. 7), and finally compute a confidence interval for

ϵ (x ,x ′,Φ) (depicted as the shaded area in Fig. 7).

Multidimensional Central Limit Theorem (M-CLT). To ana-

lyze the effect of correlation on the size of the confidence interval,

we consider the central limit theorem for multivariate distributions:

Theorem 4.3 (Multidimensional central limit theorem,

Prop. 2.18 from [34]). Let S1S1S1, . . . ,SnSnSn ∈ Rk be independent samples
from a distribution SSS over vectors. Let E [SSS] ∈ Rk be the (component-
wise) expectation of SSS , and Cov [SSS] ∈ Rk×k the covariance matrix of
SSS . Then, as n → ∞ the distribution of 1

n
∑n
i=1 SSSi converges to a mul-

tivariate Gaussian distribution with mean E [SSS] ∈ Rk and covariance
matrix 1

nCov [SSS]:

1

n

n∑
i=1

SiSiSi
d
−−−−−→
n→∞

N
(
E [SSS] ,

1

n
Cov [SSS]

)
.

As in the previous section, our version of the CLT deviates from

the standard presentation, by (i) using n within the limiting dis-

tribution and (ii) referring to each individual vector SiSiSi ∈ R
k
as a

sample.

Heuristic Inspired by the M-CLT. Analogously to the previous

section, we apply a heuristic inspired by theM-CLT (k = 2), treating

the joint distribution of P̂r [F (x) ∈ Φ] and P̂r [F (x ′) ∈ Φ] as having
converged to the limiting distribution:(

P̂r [F (x) ∈ Φ]

P̂r [F (x ′) ∈ Φ]

)
∼ N

((
Pr [F (x) ∈ Φ]
Pr [F (x ′) ∈ Φ]

)
,
1

n
C

)
. (9)

where C is the covariance matrix of the two-dimensional distribu-

tion (S, S ′) =
(
checkF ,Φ (x), checkF ,Φ (x

′)
)
, defined by:

C :=

(
Var [S] Cov [S, S ′]

Cov [S, S ′] Var [S ′]

)
.

Computing the Joint Likelihood. Like in Sec. 4.4, after observ-

ing

(
P̂r [F (x) ∈ Φ] , P̂r [F (x ′) ∈ Φ]

)
, Eq. (9) induces a likelihood on

the probabilities Pr [F (x) ∈ Φ] and Pr [F (x ′) ∈ Φ]:(
Pr [F (x) ∈ Φ]
Pr [F (x ′) ∈ Φ]

)
∼ N

((
P̂r [F (x) ∈ Φ]

P̂r [F (x ′) ∈ Φ]

)
,
1

n
C

)
. (10)

Estimating the covariance matrix C by the empirical variance

and covariance of S and S ′ (see App. B) gives us an approximate

joint likelihood on Pr [F (x) ∈ Φ] and Pr [F (x ′) ∈ Φ].

Ratio of GaussianRandomVariables. We use this approximate

joint likelihood of Pr [F (x) ∈ Φ] and Pr [F (x ′) ∈ Φ] to compute an

approximate cumulative distribution function (CDF) of ϵ (x ,x ′,Φ)
based on known work (Thm. 4.4).

The key insight is to view ϵ (x ,x ′,Φ) as the logarithm of a ratio

of Gaussian random variables, which allows us to apply Thm. 4.4,

yielding an approximate CDF for ϵ (x ,x ′,Φ), which in turn allows

us to compute the approximate probability that ϵ (x ,x ′,Φ) lies in
the interval [ϵ̂ (x ,x ′,Φ) − ∆ϵ , ϵ̂ (x ,x

′,Φ) + ∆ϵ], for some ∆ϵ .

Theorem 4.4 (Ratio of normal distributions [19]). Let
(X ,X ′) be two random variables that are normally distributed ac-
cording to: (

X
X ′

)
∼ N

((
µ
µ ′

)
,

(
σ 2 ρσσ ′

ρσσ ′ (σ ′)2

))
.

where σ and σ ′ are the standard deviations of X and X ′ respectively,
and ρ is the correlation of X and X ′.

Then, the cumulative distribution function (CDF) of the ratioX/X ′

is given by:

Pr

[X
X ′
≤ w

]
=L

(
µ − µ ′w

σσ ′a(w)
,−

µ ′

σ ′
;

σ ′w − ρσ

σσ ′a(w)

)
+

L

(
µ ′w − µ

σσ ′a(w)
,
µ ′

σ ′
;

σ ′w − ρσ

σσ ′a(w)

)
.

where a(w) =
√

w2

σ 2
−

2ρw
σσ ′ +

1

(σ ′)2 and L(h,k ;γ) is the standard
bivariate normal integral (see App. C).

We apply Thm. 4.4 for X = Pr [F (x) ∈ Φ] and X ′ = Pr [F (x ′) ∈ Φ].
Instantiating the parameters of Thm. 4.4 according to Eq. (10) yields

µ = P̂r [F (x) ∈ Φ], µ ′ = P̂r [F (x ′) ∈ Φ] and

(
σ 2 ρσσ ′

ρσσ ′ (σ ′)2

)
= 1

nC .

To compute an approximate CDF on ϵ (x ,x ′,Φ), we set w to

exp(u), which yields

Pr

[
log

Pr [F (x) ∈ Φ]

Pr [F (x ′) ∈ Φ]︸ ︷︷ ︸
ϵ (x,x ′,Φ)

≤ u

]
= Pr

[
Pr [F (x) ∈ Φ]

Pr [F (x ′) ∈ Φ]
≤ exp(u)︸ ︷︷ ︸

w

]
.

From this approximate CDF of ϵ (x ,x ′,Φ), we want to determine

an approximate interval for ϵ (x ,x ′,Φ) with confidence 1 − α . For-
mally, this means we want to select the smallest ∆ϵ such that

Pr

[
ϵ̂ (x ,x ′,Φ) − ∆ϵ ≤ ϵ (x ,x ′,Φ) ≤ ϵ̂ (x ,x ′,Φ) + ∆ϵ

]

︸ ︷︷ ︸
=Pr[ϵ (x,x ′,Φ)≤ϵ̂ (x,x ′,Φ)+∆ϵ]−Pr[ϵ (x,x ′,Φ)≤ϵ̂ (x,x ′,Φ)−∆ϵ]

≥ 1 − α .

Because finding an analytic solution for this equation is hard, we

apply binary search to find the smallest ∆ϵ that satisfies it.

Example. We show how to use the improved approach

to estimate ϵ (x ,x ′,Φ) on some (x ,x ′,Φ). Assume that we

have obtained n = 10
7
samples check

1

F ,Φ (x), . . . , check
n
F ,Φ (x)

with mean
1

n
∑n
i=1 check

i
F ,Φ (x) ≈ 3.24% and empirical vari-

ance V̂ar

[
checkF ,Φ (x)

]
≈ 3.13% (computed according to

App. B). Analogously, we have also obtained n samples with

mean
1

n
∑n
i=1 check

i
F ,Φ (x

′) ≈ 3.04% and empirical variance

V̂ar

[
checkF ,Φ (x

′)
]
≈ 2.95%. In addition, the empirical correlation

between check
i
F ,Φ (x) and check

i
F ,Φ (x

′) is ρ = 0.97. Based on the

samples, we compute ϵ̂ (x ,x ′,Φ) ≈ log
3.24%
3.04% ≈ 6.4%.

We then derive a joint likelihood for Pr [F (x) ∈ Φ] and

Pr [F (x ′) ∈ Φ] according to Eq. (10):

N

((
3.04%

3.24%

)
,
1

n

(
(3.13%)2 0.97 · 3.13% · 2.95%

0.97 · 3.13% · 2.95% (2.95%)2

))
.

Using Thm. 4.4 with lower bound l = 6.4%−∆ϵ and upper bound
u = 6.4% + ∆ϵ for ∆ϵ = 0.02% allows us to derive that:

Pr

[
6.4% − ∆ϵ ≤ ϵ (x ,x ′,Φ) ≤ 6.4% + ∆ϵ

]
=

Pr

[
ϵ (x ,x ′,Φ) ≤ 6.4% + ∆ϵ

]
− Pr

[
ϵ (x ,x ′,Φ) ≤ 6.4% − ∆ϵ

]
≥ 99%

By adapting ∆ϵ , we can search for any desired confidence 1 − α ,
e.g., for α = 0.1%.

Discussion. Recall that in Sec. 4.4, we first estimated confidence

intervals for Pr [F (x) ∈ Φ] and Pr [F (x ′) ∈ Φ] separately to then

combine them using the union bound. In contract, we now first

combine the joint distribution of Pr [F (x) ∈ Φ] and Pr [F (x ′) ∈ Φ]
to a distribution of ϵ (x ,x ′,Φ), and only then derive a confidence

interval. Even if ρ = 0 (i.e., without correlation), the approach in

this section yields slightly better results, because it takes into ac-

count that it is unlikely that both P̂r [F (x) ∈ Φ] and P̂r [F (x ′) ∈ Φ]
are inaccurate estimates simultaneously.

Correlating random choices is a known technique, see e.g., [23].

However, this technique is usually applied for the difference of

random variables, while we apply it for their ratio. In addition, this

technique is particularly suitable for applications in the context of

algorithms that make random choices.

5 A SEARCH FOR LARGE VIOLATIONS
In the previous section, for a given triple (x ,x ′,Φ), we showed how
to replace ϵ (x ,x ′,Φ) by an estimate ϵ̂ (x ,x ′,Φ), where our goal was
to construct it with as few samples as possible, while still estimating

a tight confidence interval, with high probability. In this section, we

address the challenge of finding inputs that induce a large privacy

violation. To this end, show how to transform ϵ̂ (x ,x ′,Φ) to a dif-
ferentiable function ϵ̂d (x ,x ′,Φ). Using ϵ̂d (x ,x ′,Φ), we can define

a surrogate optimization problem

argmaxx,x ′,Φ ϵ̂d (x ,x ′,Φ),
s.t. (x ,x ′) ∈ Neigh

which is differentiable, and can thus be solved with off-the-shelf

numerical optimizers.

We begin this section by explaining how to transform ϵ̂ (x ,x ′,Φ)

to ϵ̂d (x ,x ′,Φ) (Sec. 5.1) and then present the surrogate optimization

problem and the search for violations (Sec. 5.2).

5.1 From ϵ̂ (x ,x ′,Φ) to ϵ̂d (x ,x ′,Φ)

To obtain ϵ̂d (x ,x ′,Φ) from ϵ̂ (x ,x ′,Φ), we merely need to translate

the (deterministic) programs check
i
F ,Φ to differentiable programs.

To understand why, recall the definition of ϵ̂ (x ,x ′,Φ):

ϵ̂ (x ,x ′,Φ) = log

1

n
∑n
i=1 check

i
F ,Φ (x)

1

n
∑n
i=1 check

i
F ,Φ (x

′)
. (11)

In ϵ̂ (x ,x ′,Φ), n is a constant, and the checkiF ,Φ (x
′) programs have

constants instead of each random choice (e.g., as in Fig. 4). Thus, the

sources of non-differentiability are restricted to the statements in

check
i
F ,Φ. While translating arbitrary statements to differentiable

functions is not trivial, we identify a class of programs, for which

the translation (1) captures nicely the statements’ semantics and

(2) can be done systematically. Given the translation, we transform

each checkiF ,Φ (x) to a differentiable program dcheckiF ,Φ (x), which

results in a differentiable estimate of ϵ̂ (x ,x ′,Φ), given by:

ϵ̂d (x ,x ′,Φ) = log

1

n
∑n
i=1 dcheck

i
F ,Φ (x)

1

n
∑n
i=1 dcheck

i
F ,Φ (x)

≈ ϵ̂ (x ,x ′,Φ).

We note that because the translation from checkiF ,Φ (x) to the

differentiable dcheckiF ,Φ (x) does not preserve semantics, while

¬B { 1 − B

E1 == E2 { e−c
2 ·(E1−E2)2

E1 ≤ E2 {
(
1 + e−c2 ·(E2−E1)

)−1
B1 && B2 { B1 · B2
B1 | | B2 { B1 + B2 − B1 · B2

if (B) : {x = E1} { x = B · E1 + (1 − B) · x
if (B) : {x = E1} else: {x = E2} { x = B · E1 + (1 − B) · E2

Figure 8: Transformation rules to make programs differen-
tiable:v is a constant value, x a variable, B,B1,B2 Boolean ex-
pressions, and E1,E2 differentiable arithmetic expressions.

ϵ̂d (x ,x ′,Φ) is approximately equal to ϵ̂ (x ,x ′,Φ) in practice, the

two are not the same in general.

We next describe the class of programs that DP-Finder can trans-

late to differentiable programs, and then describe the translation.

We note that DP-Finder can also handle programs which are not

part of this class by replacing the search through optimization with

random sampling. However, as we show in Sec. 6, this results in

triples with lower privacy violation.

Supported Programs. We focus on a class of programs in which

the sources of non-differentiability are conditional statements and

Boolean expressions. Concretely, we focus on programs consist-

ing of variables, constants, assignments, differentiable arithmetic

expressions (e.g., x+4), Boolean expressions (e.g., x+4≥0 || x<1)

and conditional statements whose branches consist of a single as-

signment statement. Although loops are not supported in general,

if their number of iterations is known at compile-time, they can

be unrolled, resulting in a sequential composition of statements

(which is supported).

Making Programs Differentiable. Given a check
i
F ,Φ in the

aforementioned class, we translate it to a differentiable program.

To this end, we define rules, which are applied to each statement

separately. The idea is to transform the conditions to functions

which have a value close to 1 if their arguments satisfy the original

conditions, or a value close to 0 otherwise.

TransformationRules. Fig. 8 shows our transformation rules for

operations that need to be translated. Constants, variables, assign-

ments, and sequential composition remain the same. A negation ¬B
is transformed to 1 − B, and B is then recursively transformed to a

differentiable function with our rules. Equality comparison of two

arithmetic expressions E1 == E2 is transformed to an exponential

function in E1 − E2, which is close to 1 if E1 == E2, and rapidly

drops to 0 otherwise. The rule is parametrized by a large constant c
(e.g., c = 50), which controls how close the transformed program is

to the original expression: c = ∞ yields the semantics of E1 == E2.
Inequality comparison of two arithmetic expressions E1 ≤ E2 is
transformed to a sigmoid function on the (scaled) expression E2−E1,
which is 1 if E1 ≪ E2, and 0 if E1 ≫ E2. This rule is parametrized

by two large constants c1 and c2, which have the same effect as c
in the previous rule. A logical and expression B1 && B2 is trans-
formed to B1 · B2, which is close to 0 if either expression is close to

0, and close to 1 if both expressions are close to 1. The conditions B1

and B2 are then recursively transformed to differentiable functions.

Similarly, logical or B1 | | B2 could be transformed using the same

transformation as for ¬(¬B1&&¬B2) { 1 − ((1 − B1) · (1 − B2)),
but we rewrite it to the (slightly more compact) B1 + B2 − B1 · B2.
The if-else statement is transformed to a linear combination of both

branches based on the condition B. If there is no else branch, we

treat the (missing) else branch as if it were present and contained

the assignment x = x .

Example. Fig. 9 shows the check1
AT, {[0,0]}

from Fig. 4 and its trans-

formed, differentiable program. For clarity, we extract the condi-

tions of the if-else statements into separate variables, B1 and B2. The
transformation uses the rules for ==, ≤, | |, and an if-else statement.

We assume c = 50 for the rules transforming == and ≤.

5.2 Differentiable Optimization
Having defined ϵ̂d (x ,x ′,Φ), we can now phrase a surrogate opti-

mization problem for the optimization problem defined in (3):

argmaxx,x ′ ϵ̂d (x ,x ′,Φ)
s.t. (x ,x ′) ∈ Neigh

(12)

Since the objective is differentiable (except for a few edge cases,

which we shortly discuss), this problem can be solved with gradient

methods. In particular, DP-Finder uses the Sequential Least Squares

Programming (SLSQP) optimizer that also allows to express the

constraint (x ,x ′) ∈ Neigh as-is. We note that the objective function,

ϵ̂d (x ,x ′,Φ), is not necessarily convex (consider e.g., the statement

y = x · x · x), and thus gradient methods may not converge to a

global maximum. Nevertheless, similar to many common problems

(e.g., training machine learning models), gradient methods may

still converge to values close to the optimum. We next discuss edge

cases, in which we do not optimize, and the sources of imprecision

that arise when considering the surrogate optimization problem

(instead of the original one).

Edge Cases. Due to the structure of ϵ̂d (x ,x ′,Φ), defined by

log(f1/f2) for differentiable functions f1 ≈ Pr [F (x) ∈ Φ] and

f2 ≈ Pr [F (x ′) ∈ Φ], if the denominator f2 is zero, the function

ϵ̂d (x ,x ′,Φ) is not defined, and thus cannot be optimized. Thus, be-

fore running the optimizer on ϵ̂d (x ,x ′,Φ), DP-Finder checks if this
is the case. This can happen if the probabilities that are sampled are

too small, and for the specific samples picked, the condition [· ∈ Φ]
is never satisfied.

If only the denominator f2 is 0 and the nominator f1 is not, then
by the definition of DP, we have

0 < Pr [F (x) ∈ Φ]︸ ︷︷ ︸
≈f1

≤ exp(ϵ) Pr
[
F (x ′) ∈ Φ

]︸ ︷︷ ︸
≈f2

= 0,

which implies that DP does not hold for any ϵ . This situation is

sometimes referred to as ∞-DP. In this case, there is actually no

need to run optimization, and DP-Finder reports the current triple

(x ,x ′,Φ) as the optimal triple.

If both nominator and denominator are 0, then by the definition

of DP, we have 0 = Pr [F (x) ∈ Φ] ≤ exp(ϵ) Pr [F (x ′) ∈ Φ] = 0.

Hence, no matter what ϵ we pick, ϵ-DP will never be violated.

In this case, DP-Finder skips the current triple and continues to

the next iteration, where a new triple is randomly picked. In any

def check1
AT, {[0,0]}

(x):

ρ = 7.5

ν[1] = -23.3

if x[1]+ν[1] ≥ T+ρ:
y[1] = 1

else

y[1] = 0

ν[2] = 24.3

if x[2]+ν[2] ≥ T+ρ:
y[2] = 1

else

y[2] = 0

return y[1] == 0 &&

y[2] == 0

def dcheck1
AT, {[0,0]}

(x):

ρ = 7.5

ν[1] = -23.3

B1 = (1 + e−50·(x [1]+ν [1]−T−ρ))−1

y[1] = B1 · 1 + (1 − B1) · 0

ν[2] = 24.3

B2 = (1 + e−50·(x [2]+ν [2]−T−ρ))−1

y[2] = B2 · 1 + (1 − B2) · 0

return e−50
2 ·(y[1]−0)2 ·

e−50
2 ·(y[2]−0)2

Figure 9: check1
AT, {[0,0]}

(Fig. 4) and its corresponding differ-
entiable program.

other case, that is, when the denominator is not 0, DP-Finder runs

optimization.

Sources of Imprecision. The surrogate optimization problem

induces two sources of imprecision, which may prevent us from

reaching an optimal solution for the original optimization in Eq. (3).

The sources of imprecision are: (i) the maximum of ϵ̂d (x ,x ′,Φ) may

be different from ϵ (x ,x ′,Φ), and (ii) the optimizer may overfit to

the random choices fixed in the dcheckiF ,Φ (x) programs. In Sec. 6,

we show empirically that the values for ϵ̂d (x ,x ′,Φ) we find for the

transformed programs are close to the true values of ϵ (x ,x ′,Φ).
Thus, we view this transformation as a heuristic that allows us to

apply off-the-shelf optimization techniques to a surrogate prob-

lem. To verify the obtained solution, at the end of the execution,

DP-Finder uses a symbolic solver (PSI [16]), or may estimate the

privacy violation with ϵ̂ (x ,x ′,Φ) if the symbolic solver times out.

6 EVALUATION
We now present a detailed evaluation of our approach.

6.1 Implementation
We implemented a prototype of DP-Finder in Python, using the

Sequential Least Squares Programming optimizer (SLSQP) from

TensorFlow [1] for the optimization task. Our prototype supports

algorithms from Rn to Rn or to Dn
, for a finite set D. Given an al-

gorithm
4
, DP-Finder randomly picks a triple and draws n′ = 2000

samples. Then, DP-Finder doubles n′ until the confidence inter-

val’s diameter drops below 4 · 10−3 (which implies that the error

∆ϵ is at most 2 · 10−3). Then, it synthesizes a new counterexample

(x ,x ′,Φ) by maximizing the violation ϵ̂d (x ,x ′,Φ), using SLSQP,

while satisfying two constraints: (i) x and x ′ are neighbors, and

(ii) P̂r [F (x) ∈ Φ] ≥ 10
−2
. The second constraint directs the search

towards counterexamples whose probability is easier to estimate. If

4
Our prototype currently does not support an automated synthesis of dcheckF ,Φ ;

instead it assumes to be given dcheckF ,Φ as input (in which case the sampling effort is

estimated directly on ϵ̂d (x, x ′, Φ)). We note that implementing this is not a technical

challenge, and simply requires to parse the algorithm and apply our rules.

the optimization returns an invalid triple (this can happen, e.g., if

P̂r [F (x) ∈ Φ] = 0, in which case SLSQP fails to enforce constraint

(ii)), DP-Finder returns the randomly picked counterexample. Fi-

nally, DP-Finder returns the new counterexample (x ,x ′,Φ) and

its estimated violation ϵ̂d (x ,x ′,Φ), and continues to the next iter-

ation. In our experiments, we set the number of iterations to 50

(i.e., DP-Finder computes 50 counterexamples for each evaluated

algorithm, and finally returns the one with the highest privacy

violation).

6.2 Evaluated Algorithms
We evaluated DP-Finder on 9 algorithms from the DP literature,

described next (full implementation is given in App. D).

Above Threshold and Variants. We evaluate DP-Finder on

AboveThreshold (denoted AT), as defined in Fig. 2, and variants

of it. The variants are algorithms 1–5 from [26], which we denote

by AT1–AT5. The variations of AboveThreshold are interesting be-

cause (i) some of them turned out not to be differentially private

and (ii) they obfuscate their input in a non-trivial fashion by adding

noise to multiple variables, making them hard to analyze. In the

experiments, we fix the size of the input array to 4.

We next describe the variants. Unlike AT, which returns all in-

dices above the threshold, AT1–AT4 only report the first c indices
above the threshold, for somemeta-parameter c . In our experiments,

we set c = 1 (we could also use other values of c). Additionally,
compared to AT, AT1 uses a different scale for the noise added to the

inputs. Compared to AT1, the main difference of AT2 is resampling

the threshold noise whenever an input is above the threshold. We

note that DP-Finder suggests that this does not increase the pri-

vacy of the algorithm, a hypothesis supported by the known upper

bounds. Compared to AT1, the main difference of AT3 is that it re-

turns the (noisy) entries that are above the threshold (see Fig. 10a).

Hence, AT3 is an algorithm from Rk to Rk (while the rest are algo-

rithms to Boolean arrays, i.e., {0, 1}k). Compared to AT1, AT4 uses

different scales for both the threshold and input noise. Lastly, com-

pared to AT, AT5 does not add noise to the input. This leads to a

non-private algorithm (DP-Finder correctly detects this).

For all these algorithms, two array inputs x and x ′ are neighbors
if they differ element-wise by at most one (i.e., Neigh≤1): ∀i ∈
{0, ...,k − 1}. |xi − x

′
i | ≤ 1.

The known upper bounds on the differential privacy of these

algorithms are: AT is 0.45-DP, AT1 and AT2 are 0.1-DP, AT3 is 0.2-DP,

AT4 is 0.175-DP, and AT5 is∞-DP. The latter means that there are

two neighboring inputs and an output set which can be returned

for one of the inputs but not for the other. In all our result graphs,

we show these upper bounds in a blue line (to put in context the

lower bound results).

To select Φ, in all algorithms except AT3, DP-Finder sam-

ples a single output y, uniformly at random, from all possi-

ble outputs of these algorithms, and sets Φ := {y}. For AT3,

this is not possible, because its output is continuous, and thus

Pr [F (x) ∈ {y}] = 0, for any y. Instead, DP-Finder picks Φ to

be the box Φ := {y ∈ Rn | ∀i ∈ {0, ...,k − 1}. ai ≤ yi ≤ bi }. To sam-

ple (ai ,bi), it first picks an array of indicators Ii , such that Ii = 1

indicates that the ith value lies above the threshold, uniformly at ran-

dom from all possibilities. Then, it sets (ai ,bi) = (−10− 3,−10+ 3)

def AT3(x):

ρ = Lap(20)

for i = 1 to k:

ν[i] = Lap(20)

if x[i]+ν[i]≥T+ρ:
y[i] = x[i]+ν[i]

else

y[i] = -10

return y

(a) Variant of AT

def noisyMax(x):

best = 0

r = 0

for i = 1 to k:

d = x[i]+Lap(20)

if d>best or i==0:

r = i

best = d

return r

(b) NoisyMax

Figure 10: Two representative algorithms used for evalua-
tion.

if Ii = 0 (note that −10 is the value returned for entries which are

not above the threshold), and (ai ,bi) = (xi − 3,xi + 3), otherwise.

Noisy Maximum. We also evaluate on two algorithms taken

from [3]. The first is noisyMax (Fig. 10b), which is a noisy imple-

mentation of a function returning the index of the largest element

in an array. Here, the noise is drawn from a Laplace distribution.

The second algorithm is expMech, which is identical to noisyMax

but draws the noise from an exponential distribution. Both algo-

rithms are known to be 0.1-DP. Just as for AT, DP-Finder uses the

neighboring notion of Neigh≤1 and picks Φ := {y}, for y picked

uniformly at random from all possible outputs.

Sum. To illustrate a different notion of neighboring inputs, we

also evaluate on sum [12], which takes an array x , whose entries
are between −1 and 1, and returns its noisy sum. Here, two arrays

x and x ′ are neighbors if x ′ is x extended with an additional entry.

In this benchmark, we consider a single Φ := {x ∈ R | a ≤ x ≤ b},

where a =
∑k
i=1 xi − 3 and b =

∑k
i=1 xi + 3.

6.3 Evaluation Results
Our evaluation results answer the following questions:

Q1 How precise are the estimated violations ϵ̂d (x ,x ′,Φ), com-

pared to ϵ (x ,x ′,Φ)?
Q2 How efficient is DP-Finder in finding violations compared

to random search?

Q3 How efficient is DP-Finder in terms of runtime?

We ran all experiments on a machine with 500GB RAM and 128

cores at 1.2GHz, running Ubuntu 16.04.3 LTS with Tensorflow 1.9.0

and Python 3.5.2.

Q1: Precision of estimated violations. To evaluate the preci-

sion of the estimated violations, we compare the estimated violation

ϵ̂d (x ,x ′,Φ) with the actual violation ϵ (x ,x ′,Φ), as computed by

the exact solver PSI [16]. Fig. 11 shows the boxplots of the estimated

violation ϵ̂d (x ,x ′,Φ) and the actual violation ϵ (x ,x ′,Φ), obtained
from the 50 counterexamples generated by DP-Finder for each

algorithm. The figure shows that our estimation is very precise,

expect in a few cases (e.g., for AT5). We recall that the imprecision

of ϵ̂d (x ,x ′,Φ) is due to (i) the finite sampling of the randomized

programs checkF ,Φ (x) (presented in Sec. 4) and (ii) the transforma-

tion of the individual samples checkiF ,Φ (x) to differential functions

0.5
1.0
1.5

ε̂d ε

AT1

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

ε̂d ε

AT2

ε̂d ε

AT3

ε̂d ε

AT4

ε̂d ε

AT5

ε̂d ε

AT

ε̂d ε

expMech

ε̂d ε

noisy
Max

ε̂d ε

sum

Figure 11: Boxplot comparing the estimated violation
ϵ̂d (x ,x ′,Φ) to the true violation ϵ (x ,x ′,Φ). The solid blue
lines show known upper bounds of these algorithms. We
omit one counterexample with a violation of∞ for AT5.

0.5
1.0
1.5

ra
n

d

op
t

AT1

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

ra
n

d

op
t

AT2

ra
n

d

op
t

AT3

ra
n

d

op
t

AT4

ra
n

d

op
t

AT5

ra
n

d

op
t

AT

ra
n

d

op
t

expMech

ra
n

d

op
t

noisy
Max

ra
n

d

op
t

sum

Figure 12: Boxplot of the true violation ϵ (x ,x ′,Φ) found by
randomly picking a triple vs. our search. The solid blue lines
show known upper bounds of these algorithms. We omit
one counterexample with a violation of∞ (for both the ran-
domly picked and the optimized counterexamples) on AT5.

(presented in Sec. 5). In particular, Fig. 11 demonstrates that both

steps do not significantly reduce the quality of the estimates. As the

differentiable estimate ϵ̂d (x ,x ′,Φ) is more imprecise compared to

the estimate ϵ̂ (x ,x ′,Φ) based on sampling, Fig. 11 also demonstrates

the effectiveness of our estimation method (Sec. 4).

Q2: Efficiency of Violation Search. Next, we compare the ef-

ficiency of DP-Finder in finding counterexamples with large vio-

lations compared to random search (where we randomly sample

triples). For each algorithm, we computed the exact violation of the

AT1
AT2

AT3
AT4

AT5 AT

expMech

noisy
Max

sum
101

102

ti
m

e
[s

]
(l

og
sc

al
e)

Sampling

Optimization (SLSQP)

Confirmation (PSI)

Figure 13: Execution times of DP-Finder for sampling and
finding counterexamples using SLSQP.

ra
n

d

op
t

AT1

1.0 · 104

1.0 · 105

10.0 · 105

1.0 · 107

n
u

m
b

er
of

sa
m

p
le

s
(l

og
sc

al
e)

ra
n

d

op
t

AT2

ra
n

d

op
t

AT3

ra
n

d

op
t

AT4

ra
n

d

op
t

AT5

ra
n

d

op
t

AT

ra
n

d

op
t

expMech

ra
n

d

op
t

noisy
Max

ra
n

d

op
t

sum

Figure 14: Numbers of samples used by DP-Finder, for ran-
dom triples (rand) and optimized triples (opt).

50 counterexamples produced by DP-Finder, and compared this to

the exact violation of 50 counterexamples obtained by random sam-

pling. Fig. 12 shows the results. Left bars show the privacy violations

of the randomly generated counterexamples, while right show those

produced by DP-Finder. Results indicate that DP-Finder outper-

forms the random approach. Comparing the medians of found viola-

tions for 50 runs, we get an improvement of a factor of 2 (for AT4) to

33 (for sum), depending on the algorithm. Furthermore, DP-Finder

returns counterexamples whose violations are often close to the

known upper bounds. In particular, for expMech, DP-Finder found,

in all iterations, a counterexample whose violation was very close

to the known upper bound. This demonstrates that these are tight

bounds. For the other algorithms, it is unclear which of the bounds

can be tightened (perhaps both).

Q3: Runtime. Finally, we study the runtime of DP-Finder. Fig. 13

displays DP-Finder’s execution times for the 9 algorithms. We split

the runtime into the two steps of DP-Finder: sampling and numeri-

cal optimization. In addition, we report the time spent on confirming

the estimated violations (using PSI).

The results indicate that DP-Finder spends most of its time on

the optimization problem, which is inherently hard. For every algo-

rithm, each iteration of DP-Finder completes within 5 minutes on

average, demonstrating that DP-Finder is efficient in practice.

Fig. 14 shows the number of samples that DP-Finder selected,

according to the process described in Sec. 4.5. It demonstrates that

the required number of samples varies greatly across algorithms,

and even for a given algorithm. This suggests to adaptively select

the number of samples, which is what DP-Finder does (see Sec. 4.5).

7 RELATEDWORK
In this section, we discuss the work closely related to ours.

Proving Differential Privacy. DP-Finder computes counterex-

amples to differential privacy (DP), thereby providing lower bounds

to DP. A complementary problem to this is finding upper bounds,

thereby proving DP. Many works have studied verification of DP.

Some works present languages that, at compile time, determine

the privacy or sensitivity of algorithms (queries) [6, 15, 32, 35]. A

different approach translates probabilistic algorithms to formulas

in Hoare logic to verify privacy [5]. Recently, proofs by couplings

have been shown successful for verifying privacy [3, 4].

Proving Sensitivity. Dwork et al. [12] defined the (global) sen-
sitivity of a function f as the maximum amount that any input to

f can change the output. While determining this sensitivity can

be done analytically for some functions (e.g., noisy sum), in others,

this task is more complex. In Nissim et al. [28], the authors define

the smooth sensitivity of a function for a given database, to avoid

the pessimistic worst-case bound of sensitivity. They also present a

sampling approach to approximate the smooth sensitivity. In Ru-

binstein and Aldà [33], the authors present a sampling approach to

approximate the (global) sensitivity.

Lower Bounds. The study of lower bounds on privacy started

with the work of Dinur and Nissim [11]. While they do not define

privacy in this work, they show how much noise needs to be added

to prevent a gross privacy violation. Since then, differential privacy

has been formally defined in [12] as (ϵ, 0)- and (ϵ,δ)-privacy, with
which lower bounds were proven for certain algorithms. Hardt and

Talwar [18] provide lower bounds on different noise mechanism

using ideas from convex geometry. [10] improve some of their

lower bounds and study additional settings (e.g., the one of [11]).

[25] study lower bounds in the context of how big a database has

to be to guarantee privacy.

Making Algorithms Differentiable. Priya Inala et al. [30] syn-

thesize unknowns in an algorithm that involves discrete and floating

point computation. To search for the unknowns, they make the algo-

rithm differentiable by techniques similar to ours, e.g, they use the

same construction to make the if-then-else primitive differentiable.

8 FUTUREWORK
In this section, we discuss possible future work items.

Extending DP-Finder to Real-world Algorithms. An impor-

tant topic of future research is extending DP-Finder to real-world

algorithms, like [8, 14, 29]. The main gap is that DP-Finder, in its

current form, does not scale to such complex algorithms. We see

several ways to mitigate this issue: (i) exploiting properties of the

search space, e.g., if dense, randomly sampling triples may perform

comparably to optimizing them, (ii) employing other optimization

algorithms (e.g., MCMC), which may lead to speed-ups, or (iii) de-

creasing the confidence, which will reduce the number of required

samples, and hence result in a smaller term to optimize.

Extending DP-Finder to Noise Depending on Inputs. In its

current form, DP-Finder exploits that the noise terms do not depend

on the input by (i) using the same noise for both inputs during the

sampling and (i) changing only the inputs, but not the noise during

the search.

To analyze algorithms whose noise terms depend on the inputs,

we can address (i) by changing the sampling method, e.g., to Sec. 4.3

or Sec. 4.4. We note that this will result in a performance decrease.

However, when using the fixed noise for values slightly different

from x (in particular during optimization), the noise comes from

a slightly different distribution (sampled based on the original x).
To compensate this slight error, we can adapt DP-Finder to use

importance sampling, i.e., introduce larger weights for randomness

which does not get sampled often enough.

Expectation-preserving Program Transformations. We also

experimented with expectation-preserving program transforma-

tions for checkF ,Φ, i.e., we modified the program, resulting in a

program which (i) exhibits the same expectation E
[
checkF ,Φ (x)

]

and (ii) allows for more efficient sampling.

We found that expectation-preserving code transformations can

improve the results of DP-Finder, i.e., they can (i) reduce the num-

ber of samples required to get a small confidence interval and (ii)

improve the quality of the violations found by the search.

However, the expectation-preserving transformationswe applied

were manual, and often required knowledge about the program

under investigation. A principled approach that can detect and

apply a large set of expectation-preserving transformations could

improve the performance of DP-Finder further.

9 CONCLUSION
We presented a new approach and a corresponding system, called

DP-Finder, that finds privacy violations in randomized algorithms.

These violations establish lower bounds on the differential privacy

enforced by these algorithms. This is useful as it allows one to

establish tightness of existing upper bounds or find violations for

incorrect upper bounds.

DP-Finder finds large privacy violations by leveraging two tech-

nical insights. First, we defined an estimate of the privacy violation

through correlated sampling. We use a carefully-designed heuristic

to determine the sampling effort necessary to use as few samples

as possible, while still estimating a tight confidence interval for

the estimated violation. Second, we introduced rewrite rules that

transform the estimated (non-differentiable) violation into a differ-

entiable function, which can then be given to numerical optimizers

to search for large privacy violations.

We evaluated DP-Finder on a number of randomized algorithms

from the DP literature. Our results show that DP-Finder finds large

privacy violations, often close to the known upper bounds, demon-

strating its practical promise.

ACKNOWLEDGMENTS
The research leading to these results was partially supported by an

ERC Starting Grant 680358.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-

junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,

Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan

Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-scale Machine

Learning. In Proc. Operating Systems Design and Implementation (OSDI). 265–283.
http://dl.acm.org/citation.cfm?id=3026877.3026899

[2] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy.

In Proc. Conference on Computer and Communications Security (CCS). 308–318.
https://doi.org/10.1145/2976749.2978318

[3] Aws Albarghouthi and Justin Hsu. 2017. Synthesizing Coupling Proofs of Differ-

ential Privacy. Proc. ACM Program. Lang. 2, POPL, Article 58 (2017), 30 pages.
https://doi.org/10.1145/3158146

[4] Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves

Strub. 2017. Proving uniformity and independence by self-composition and cou-

pling. In International Conferences on Logic for Programming, Artificial Intelligence
and Reasoning (LPAR). 19. https://hal.sorbonne-universite.fr/hal-01541198

[5] Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, César

Kunz, and Pierre-Yves Strub. 2014. Proving Differential Privacy in Hoare Logic.

In Proc. Computer Security Foundations Symposium (CSF). 411–424. https://doi.

org/10.1109/CSF.2014.36

[6] Gilles Barthe, Marco Gaboardi, Justin Hsu, and Benjamin Pierce. 2016. Program-

ming Language Techniques for Differential Privacy. ACM SIGLOG News 3, 1
(2016), 34–53. https://doi.org/10.1145/2893582.2893591

[7] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-

nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard

Seefeld. 2017. Prochlo: Strong Privacy for Analytics in the Crowd. In Proc. Sym-
posium on Operating Systems Principles (SOSP). 441–459. https://doi.org/10.1145/

3132747.3132769

[8] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. 2005. Practical

Privacy: The SuLQ Framework. In Proc. Principles of Database Systems (PODS).
128–138. https://doi.org/10.1145/1065167.1065184

[9] Y. Chen and A. Machanavajjhala. 2015. On the Privacy Properties of Variants on

the Sparse Vector Technique. (2015). arXiv:cs.DB/1508.07306

[10] Anindya De. 2012. Lower Bounds in Differential Privacy. In Proc. Theory of Cryp-
tography Conference (TCC). 321–338. https://doi.org/10.1007/978-3-642-28914-9_

18

[11] Irit Dinur and Kobbi Nissim. 2003. Revealing Information While Preserving

Privacy. In Proc. Principles of Database Systems (PODS). 202–210. https://doi.org/

10.1145/773153.773173

[12] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrat-

ing Noise to Sensitivity in Private Data Analysis. In Proc. Theory of Cryptography
Conference (TCC). 265–284. https://doi.org/10.1007/11681878_14

[13] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Dif-

ferential Privacy. Found. Trends Theor. Comput. Sci. 9 (2014), 211–407. https:

//doi.org/10.1561/0400000042

[14] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR: Ran-

domized Aggregatable Privacy-Preserving Ordinal Response. In Proc. Confer-
ence on Computer and Communications Security (CCS). 1054–1067. https:

//doi.org/10.1145/2660267.2660348

[15] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C.

Pierce. 2013. Linear Dependent Types for Differential Privacy. In Proc. Principles
of Programming Languages (POPL). 357–370. https://doi.org/10.1145/2429069.

2429113

[16] Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. PSI: Exact Symbolic

Inference for Probabilistic Programs. In Computer Aided Verification (CAV).
Vol. 9779. 62–83. https://doi.org/10.1007/978-3-319-41528-4_4

[17] Anupam Gupta, Aaron Roth, and Jonathan Ullman. 2012. Iterative Constructions

and Private Data Release. In Proc. Theory of Cryptography Conference (TCC).
339–356. https://doi.org/10.1007/978-3-642-28914-9_19

[18] Moritz Hardt and Kunal Talwar. 2010. On the Geometry of Differential Privacy.

In Proc. Symposium on Theory of Computing (STOC). 705–714. https://doi.org/10.

1145/1806689.1806786

[19] D. V. Hinkley. 1969. On the Ratio of Two Correlated Normal Random Variables.

Biometrika 56, 3 (1969), 635–639. http://www.jstor.org/stable/2334671

[20] Wassily Hoeffding. 1963. Probability Inequalities for Sums of Bounded Random

Variables. J. Amer. Statist. Assoc. 58, 301 (1963), 13–30. https://doi.org/10.1080/

01621459.1963.10500830

[21] Z. Ji, Z. C. Lipton, and C. Elkan. 2014. Differential Privacy and Machine Learning:

a Survey and Review. (2014). arXiv:1412.7584

[22] Noah Johnson, Joseph P. Near, and Dawn Song. 2018. Towards Practical Dif-

ferential Privacy for SQL Queries. Proc. VLDB Endow. 11, 5 (2018), 526–539.

https://doi.org/10.1145/3177732.3177733

[23] H. Kahn and A. W. Marshall. 1953. Methods of Reducing Sample Size in Monte

Carlo Computations. Journal of the Operations Research Society of America 1, 5
(1953), 263–278. http://www.jstor.org/stable/166789

[24] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam

Smith. 2013. Analyzing Graphs with Node Differential Privacy. In Theory of Cryp-
tography Conference (TCC). 457–476. https://doi.org/10.1007/978-3-642-36594-2_

26

[25] Assimakis Kattis and Aleksandar Nikolov. 2017. Lower Bounds for Differential

Privacy from Gaussian Width. In Int. Symposium on Computational Geometry
(SoCG). 45:1–45:16. https://doi.org/10.4230/LIPIcs.SoCG.2017.45

[26] Min Lyu, Dong Su, and Ninghui Li. 2017. Understanding the Sparse Vector

Technique for Differential Privacy. Proc. VLDB Endow. 10, 6 (2017), 637–648.

https://doi.org/10.14778/3055330.3055331

[27] Frank D. McSherry. 2009. Privacy Integrated Queries: An Extensible Platform for

Privacy-preserving Data Analysis. In Proc. SIGMOD International Conference on
Management of Data. 19–30. https://doi.org/10.1145/1559845.1559850

[28] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. 2007. Smooth Sensitiv-

ity and Sampling in Private Data Analysis. In Proc. Symposium on Theory of
Computing (STOC). 75–84. https://doi.org/10.1145/1250790.1250803

[29] N. Papernot, M. Abadi, Ú. Erlingsson, I. Goodfellow, and K. Talwar. 2016. Semi-

supervised Knowledge Transfer for Deep Learning from Private Training Data.

(2016). arXiv:stat.ML/1610.05755

[30] J. Priya Inala, S. Gao, S. Kong, and A. Solar-Lezama. 2018. REAS: Combining

Numerical Optimization with SAT Solving. (2018). arXiv:cs.PL/1802.04408

[31] Davide Proserpio, Sharon Goldberg, and Frank McSherry. 2014. Calibrating Data

to Sensitivity in Private Data Analysis. Proc. VLDB Endow. 7, 8 (2014), 637–648.
[32] Jason Reed and Benjamin C. Pierce. 2010. Distance Makes the Types Grow

Stronger: A Calculus for Differential Privacy. In Proc. International Conference
on Functional Programming (ICFP). 157–168. https://doi.org/10.1145/1863543.

1863568

[33] Benjamin I. P. Rubinstein and Francesco Aldà. 2017. Pain-Free Random Differ-

ential Privacy with Sensitivity Sampling. In Proc. International Conference on
Machine Learning, (ICML). 2950–2959.

[34] A. W. van der Vaart. 1998. Asymptotic Statistics. https://doi.org/10.1017/

CBO9780511802256

[35] Daniel Winograd-Cort, Andreas Haeberlen, Aaron Roth, and Benjamin C. Pierce.

2017. A Framework for Adaptive Differential Privacy. Proc. ACM Program. Lang.
1, ICFP, Article 10 (2017), 29 pages. https://doi.org/10.1145/3110254

http://dl.acm.org/citation.cfm?id=3026877.3026899
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/3158146
https://hal.sorbonne-universite.fr/hal-01541198
https://doi.org/10.1109/CSF.2014.36
https://doi.org/10.1109/CSF.2014.36
https://doi.org/10.1145/2893582.2893591
https://doi.org/10.1145/3132747.3132769
https://doi.org/10.1145/3132747.3132769
https://doi.org/10.1145/1065167.1065184
http://arxiv.org/abs/cs.DB/1508.07306
https://doi.org/10.1007/978-3-642-28914-9_18
https://doi.org/10.1007/978-3-642-28914-9_18
https://doi.org/10.1145/773153.773173
https://doi.org/10.1145/773153.773173
https://doi.org/10.1007/11681878_14
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1007/978-3-642-28914-9_19
https://doi.org/10.1145/1806689.1806786
https://doi.org/10.1145/1806689.1806786
http://www.jstor.org/stable/2334671
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1080/01621459.1963.10500830
http://arxiv.org/abs/1412.7584
https://doi.org/10.1145/3177732.3177733
http://www.jstor.org/stable/166789
https://doi.org/10.1007/978-3-642-36594-2_26
https://doi.org/10.1007/978-3-642-36594-2_26
https://doi.org/10.4230/LIPIcs.SoCG.2017.45
https://doi.org/10.14778/3055330.3055331
https://doi.org/10.1145/1559845.1559850
https://doi.org/10.1145/1250790.1250803
http://arxiv.org/abs/stat.ML/1610.05755
http://arxiv.org/abs/cs.PL/1802.04408
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.1017/CBO9780511802256
https://doi.org/10.1017/CBO9780511802256
https://doi.org/10.1145/3110254

A LIKELIHOOD INDUCED BY GAUSSIAN DISTRIBUTION
Let X ∈ R be a constant, Y ∈ R be a random variable, and σ 2 ∈ R be a constant. We write Y = N

(
X ,σ 2

)
to indicate that Y is sampled from a

Gaussian distribution with mean X and variance σ 2
.

Then, observing Y induces a likelihood on X , where X is distributed according to a Gaussian distribution. Formally, this means that we

can switch X and Y , resulting in X = N
(
Y ,σ 2

)
. We can derivate this as follows:

Y = N
(
X ,σ 2

)
⇐⇒ Y = X + N

(
0,σ 2

)
separate out mean

⇐⇒ X = Y − N
(
0,σ 2

)
subtract N

(
0,σ 2

)
⇐⇒ X = Y + N

(
0,σ 2

)
Gaussian distribution is symmetric around 0

⇐⇒ X = N
(
Y ,σ 2

)
combine with mean

B SAMPLE VARIANCE AND COVARIANCE
For a random variable S over R and independent samples S1, . . . , Sn from S , the sample variance V̂ar [S] estimates the variance of S :

V̂ar [S] :=

∑n
i=1 S

2

i − (
∑n
i=1 Si)

2/n

n − 1
≈ Var [S]

Likewise, for two jointly-distributed random variables S and S ′ over R and independent samples (S1, S
′
1
), . . . , (Sn , S

′
n) from (S, S ′), the sample

covariance Ĉov [S, S ′] estimates the covariance of S and S ′:

Ĉov

[
S, S ′

]
:=

∑n
i=1 SiS

′
i − (

∑n
i=1 Si) (

∑n
i=1 S

′
i)/n

n − 1
≈ Cov

[
S, S ′

]
For large n, the sample variance and covariance are close to the true variance and covariance. In this work, we use n ≥ 10

3
and work with

V̂ar [S] instead of the true variance Var [S] and likewise for Ĉov [S, S ′].

C BIVARIATE NORMAL INTEGRAL
Let Y1 and Y2 be variables drawn from a normal distribution with correlation coefficient γ :(

Y1
Y2

)
∼ N

((
0

0

)
,

(
1 γ
γ 1

))
Then, L(h,k,γ) is the standard bivariate normal integral computing Pr [Y1 ≤ h,Y2 ≤ k]:

L(h,k,γ) =
1

2π
√
1 − γ 2

∫ ∞

h

∫ ∞

k
exp

(
−
x2 − 2γxy + y2

2(1 − γ 2)

)
dxdy

D CODE
We provide implementations

5
of checkF ,Φ for all algorithms F from Sec. 6. The implementations are in PSI, and have a placeholder for the

input x (denoted by [$A]) and for the check Φ (denoted by [$O]). Some algorithms have an additional meta-parameter, denoted by $C.

If F (x) < Φ, checkF ,Φ should return 0, but instead our implementation throws an assertion failure (this is slightly easier to encode in PSI).

If F (x) ∈ Φ, the implementation returns 1, as expected.

In addition, the implementations conflate the computation of the output F (x) with the check F (x) ∈ Φ, which allows slightly more efficient

analysis with PSI.

5
https://github.com/eth-sri/dp-finder/tree/initial-release/dpfinder/algorithms/psi_implementations

https://github.com/eth-sri/dp-finder/tree/initial-release/dpfinder/algorithms/psi_implementations

	Abstract
	1 Introduction
	2 Problem Statement
	3 Overview
	4 Estimation of Privacy Violation with Confidence
	4.1 Estimation of Privacy Violations
	4.2 Challenge: Determining Sampling Effort
	4.3 Approach 1: Guaranteed Confidence Intervals based on Hoeffding's inequality
	4.4 Approach 2: Heuristic Confidence Intervals based on Central Limit Theorem
	4.5 Approach 3: Heuristic Confidence Intervals based on Multidimensional CLT

	5 A Search for Large Violations
	5.1 From (x,x',) to d(x,x',)
	5.2 Differentiable Optimization

	6 Evaluation
	6.1 Implementation
	6.2 Evaluated Algorithms
	6.3 Evaluation Results

	7 Related Work
	8 Future Work
	9 Conclusion
	References
	A Likelihood Induced By Gaussian Distribution
	B Sample variance and covariance
	C Bivariate normal integral
	D Code

