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ABSTRACT

Privacy concerns of smart contracts are a major roadblock prevent-
ing their wider adoption. A promising approach to protect private
data is hiding it with cryptographic primitives and then enforcing
correctness of state updates by Non-Interactive Zero-Knowledge
(NIZK) proofs. Unfortunately, NIZK statements are less expressive
than smart contracts, forcing developers to keep some functionality
in the contract. This results in scattered logic, split across contract
code and NIZK statements, with unclear privacy guarantees.

To address these problems, we present the zkay language, which
introduces privacy types defining owners of private values. zkay
contracts are statically type checked to (i) ensure they are realizable
using NIZK proofs and (ii) prevent unintended information leaks.
Moreover, the logic of zkay contracts is easy to follow by just
ignoring privacy types. To enforce zkay contracts, we automatically
transform them into contracts equivalent in terms of privacy and
functionality, yet executable on public blockchains.

We evaluated our approach on a proof-of-concept implementa-
tion generating Solidity contracts and implemented 10 interesting
example contracts in zkay. Our results indicate that zkay is practical:
On-chain cost for executing the transformed contracts is around 1M
gas per transaction (~0.50US$) and off-chain cost is moderate.
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« Security and privacy — Cryptography; Privacy-preserving pro-
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1 INTRODUCTION

Smart contracts have gained significant popularity in recent years.
In a nutshell, they are programs deployed on top of blockchains,
such as Ethereum [53], that enable trusted execution without a
trusted third party. To benefit from trusted execution with no in-
termediary, many real-world processes (e.g., trading [1] or insur-
ance [45, 50]) are being ported to smart contracts.

When implementing applications in smart contracts, a major
concern is data privacy: Smart contract transactions (i.e., function
calls initiated by users) are processed by the blockchain’s nodes
(called miners), which requires the transaction’s operations and data
to be made available to all nodes. This is problematic for applications
that handle sensitive data such as voting schemes [46], the collection
of medical data [47], or power consumption measurements [41].

Approaches to Data Privacy in Smart Contracts. One approach
to address data privacy is to design new blockchain infrastructures
supporting private data. While several such platforms have been
proposed [18, 34, 35], they all trade privacy for additional trust
assumptions. For example, Hawk [35] and Arbitrum [34] rely on
trusted managers and Ekiden [18] leverages trusted hardware; we
present details on these trust assumptions in §10.

An alternative approach is leveraging cryptographic primitives
to both protect private data and enforce the correctness of com-
putations on blockchains like Ethereum—without undermining
their trust model. In particular, Non-Interactive Zero-Knowledge
(NIZK) proofs [12, 26] allow users to prove statements about pri-
vate data without leaking any information besides these state-
ments’ truth. Practical NIZK proof constructions have been pro-
posed [6, 11, 27, 42] and made available in Ethereum [16, 23].

The Promise of NIZK Proofs. Intuitively, NIZK proofs enable
data privacy by the following construction [15]: First, users encrypt
(or hash) their private data and store the resulting ciphertext on
the blockchain. Then, to execute a function f of a smart contract
modifying private data, the user provides the updated ciphertext
(i.e., the ciphertext obtained by encrypting the result of running f
on the plaintext private data) along with a NIZK proof certifying
that the encrypted values are correct with respect to f.

Limitations of NIZK Proofs. While this construction seems rel-
atively simple, instantiating it for real-world smart contracts is
non-trivial due to the following four fundamental challenges C1-4:

(C1) Incompleteness of NIZK Proofs: Real-world smart contracts are
implemented in high-level expressive languages (e.g., Solidity [24])
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supporting features—such as unbounded state and loops!—that
cannot be captured by NIZK statements. This is because existing
proof constructions reduce the proven statement to an arithmetic
circuit that cannot encode arbitrary functions or handle statements
of non-constant size. Because of this limitation, developers cannot
simply encode the entire function f in a NIZK proof but are forced
to use a hybrid solution, where private operations are proven correct
using NIZK proofs, but some public operations remain on-chain.

(C2) Knowledge Restrictions: Smart contracts have multiple users
with dedicated secrets (e.g., Alice does not know Bob’s secrets).
However, to invoke f, Alice must have access to all private data
used by f, otherwise she cannot produce a NIZK proof certifying
correctness. For example, Alice cannot increment a counter private
to Bob without knowing Bob’s secret key and the counter’s value.

NIZK Proofs Obfuscate Contracts. Especially due to C1, con-
tracts incorporating NIZK proofs are hard to understand, resulting
in two additional challenges. We show a typical example in Fig. 1b
(contract) and Fig. 1c (NIZK proof statement); its logic is hard to
follow and implementation mistakes are easy to make.

(C3) Obfuscated Logic: Smart contracts incorporating NIZK proofs
are obfuscated by logic scattered across off-chain and on-chain
computation, making it difficult to determine the intended behavior.
As a consequence, unaided development of such contracts is highly
error-prone, and the resulting contracts are not easily interpretable.

(C4) Obfuscated Leaks: Because NIZK proofs leak the validity of
statements about private values, they do leak information. For ex-
ample, Alice may encrypt a sum of secret values for Bob, proving
the ciphertext indeed holds the sum. Thus, we must distinguish
intended from unintended information leaks. However, unintended
leaks cannot be easily detected in the (already obfuscated) deployed
contract, because developers are not forced to make them explicit.

This Work. To address these challenges, we introduce zkay [zi:
ker], a language cleanly separating the task of (i) specifying logic
and ownership of private data from the task of (ii) realizing this
specification using NIZK proofs.

Specification. We show an example zkay contract in Fig. 1a. To
address the first task, zkay is carefully designed to support fine-
grained, expressive, and intuitive privacy specifications allowing
developers to specify data ownership by annotating variables as
private to particular accounts. Further, it features declassification
statements to force developers to explicitly specify what informa-
tion is revealed by the smart contract. We formally define the data
privacy semantics of zkay contracts to cleanly capture the notion
of privacy specified by developers.

Addressing the aforementioned challenges, zkay’s type system
incorporates privacy types to statically enforce important proper-
ties. First, the type system disallows unrealizable programs (C1),
ensuring that a well-typed zkay contract can be realized using NIZK
proofs. For example, it ensures that private operations of a function
only depend on a constant amount of private data. Second, it re-
stricts operations to be purely based on data available to the caller
(C2), ensuring contract functions can always be executed. Third,

!Relying on Ethereum’s block gas limit is not straightforward as this limit is dynamic
and the amount of gas required may vary with each loop iteration.

the logic of zkay programs is easy to follow by just ignoring privacy
types (C3). Finally, zkay prevents implicit information leaks, e.g., by
disallowing writes of private data to public storage without explicit
declassification (C4).

Realization. To realize zkay contracts, we present a fully auto-
mated transformation of zkay contracts to equivalent fully public
contracts deployable on public blockchains such as Ethereum. The
transformed contracts leverage encryption for privacy and NIZK
proofs for correctness. Since not all operations can be done privately
in proof statements (C1), our transformation produces hybrid con-
tracts performing some public operations on-chain.

As our transformation is provably correct, users can directly
work with the original zkay contract to understand its logic, instead
of reading the obscure, transformed contract (C3). Further, assuming
a Dolev-Yao-style model of NIZK proof and encryption security,
transformed contracts are provably private, i.e., equivalent to the
original zkay contracts where information leaks are explicit (C4).

System and Experiments. We instantiate our approach by imple-
menting a proof-of-concept system type-checking zkay contracts
and transforming them to Solidity contracts [24] executable on
Ethereum. We evaluate our approach on 10 example zkay contracts
covering a variety of domains. Our results indicate that (i) zkay
can express interesting real-world contracts, (ii) programming in
zkay offers significant advantages over using NIZK proofs directly,
and that (iii) on-chain and off-chain costs of using our transformed
contracts are moderate (on-chain costs are roughly 10° gas per
transaction, corresponding to around 0.50 US$ at time of writing).

Main Contributions. To summarize, our main contributions are:

A language (§3), called zkay, for writing smart contracts

using private data and its formal semantics (§4).

e A privacy-preserving transformation of zkay contracts into
equivalent, fully public zkay contracts (§5).

o A formal definition of privacy for zkay contracts along with a
proof that each transformed contract is private with respect
to its specification contract (§6).

e An implementation and evaluation of our approach instanti-

ated for transforming zkay to Solidity contracts (§8).

Finally, we remark that zkay is not limited to our realization
approach, but is also compatible with homomorphic encryption,
trusted hardware, or NIZK proofs on hashed states (§9).

2 OVERVIEW

In this section, we use a motivating example to illustrate how one
leverages zkay to specify privacy constraints and how these speci-
fications are transformed into a contract using NIZK proofs for en-
forcement. For readers unfamiliar with blockchains or NIZK proofs,
we summarize terminology important for this paper in App. A.

Example: Medical Statistics. ContractMedStats inFig. 1a allows
a hospital to collect statistics on blood donors. To this end, the hos-
pital can record every donor’s information using function record.
As arguments, the hospital passes the donor’s address and whether
that person belongs to a risk group, e.g., due to travel history or
a recent illness. Ignoring the blue privacy annotations for now,
record (i) records the provided data in the risk mapping under the
donor’s key and (ii) increments count by one iff the donor belongs



1 contract MedStats { 1 ¢(r, v0, v1, v2, pKyon, PKpe,

t t MedStat 2 final address hospital; 2 sk, RO, R1) {
: co:i::t ad:res: ;oipital- o LELT GRS 3 Fdec = decyjnt(r, sk);
X . ! 4+  mapping(address => bin) risk; 4+ VO == enc(rg RO, Pkyon);
uint@hospital count; ecr ’ don/ 7
j ma ?n (Eddress'x => bool@x) risk; ° 5 countgec = decyint(v2, sk);
5 [, o ! s constructor(bin vO, bin proof) { §  vlgee = countgec + (rgec? 1 : 0);
hospital = me; == :
¢ constructor() { 7 P o 7 vl enc(vlgec, RL, pkpe);
h ital = . 8 count = vO; s }
’ e E GT 2% 9 verify, (proof, v0, pk(me));
’ } count = 0 10 } (c) Proof circuit ¢ for function record.
9

11 function record(address don, bool@me r) {

12 function record(address don, bin r, bin v0, bin v1, bin proof) {
13 require(hospital == me);

12 require(hospital == me); .
risk[don] = vO;

1 risk[don] = reveal(r, don); 1: " [Couit_
14 count = count + (r ? 1 : 0); !

16 count = vl;
1 ¥ 17 verifyy (proof, r, v0, vl, v2, pk(don), pk(me));
16 7
17 function check(bool@me r) { 12 }

. . 1

i: - require(reveal(r == risk[me], all)); w  function check(bin r, bool vO, bin proof) {

21 require(v0); verifyl/r/(proof, r, risk[me], vO);

(a) Specification contract MedStats in zkay 2 }}

(privacy annotations and reclassifications in blue).

(b) Transformed fully public contract MedStats in zkay.

Figure 1: Example illustrating the transformation of a zkay contract into an equivalent but fully public zkay contract.

to a risk group. To check the integrity of the collected statistics, the
donor can use the check function, which requires that risk[me]
stores the correct value r. Here, me refers to the caller (analogous to
msg.sender in Solidity). Observing many successful calls of check
by other donors, a donor can be confident that the statistics are
computed correctly. After recording the statistics of many donors,
the hospital may reveal the count, possibly protecting it, e.g., by a
differential privacy mechanism (not shown).

2.1 Privacy Specification

Whether a donor belongs to a risk group is sensitive information,
which can be protected using zkay’s type system as we show next.

Specifying Privacy. To protect the information about risk group
membership, MedStats specifies privacy constraints using privacy
annotations, enforcing that a value of type 7@« (consisting of data
type 7 and privacy type «) can only be read by its owner a. For
example, Line 3 specifies that count is private to its owner hospital,
meaning that only the hospital may read count. We note that, in
contrast to reads, writes are not restricted, and therefore anyone
may write to count. In contrast to count, hospital in Line 2 has
no privacy annotation, meaning that its value is public (i.e., any
account may read it). To emphasize that a type is public, we may
annotate it explicitly as @all.

For mappings, zkay supports fine-grained privacy specifications
where the owner of mapping entries can depend on the mapping
key. For example, Line 4 tags the key of mapping risk with name
x and refers to this name in its entry type bool@x. Consequently,
risk[don] in Line 13 is private to don. Explicitly tagging the map-
ping key is particularly useful for nested mappings. That is, for m of
type mapping(address!x => mapping(address => uint@x)), we
have that m[a][f] is private to a.

In general, a privacy annotation « can be (i) me, (ii) all, (iii) a state
variable (i.e., a contract field), or (iv) a mapping key tag. For case (iii),
zkay’s type system ensures the type of @ is address@all, meaning
that owners are (publicly known) addresses, and that « is declared
final (e.g., hospital in Line 2). zkay’s type system ensures that
final variables remain constant. This prevents ownership transfer,
which we disallow in zkay for simplicity. In §9, we discuss how
zkay can be extended to support ownership transfer for fields. For
example, modifying hospital would implicitly cause count to get
a new owner. We provide a more formal interpretation of privacy
types when we discuss the semantics of zkay (§4).

Type System Exemplified. We now discuss zkay’s type system
and illustrate how it checks function record, addressing challenges
C1-C4. We present core rules of zkay’s type system (illustrated
shortly) in Fig. 2; all rules and further details are given in App. B.

Require: In Line 12, expression hospital == me must be public,
as the outcome of require leaks its value (C4, obfuscated leaks).

Reads With Explicit Reclassification: In Line 13, the type system
prevents us from directly storing r into risk[don] to avoid im-
plicitly leaking r to the donor (C4, obfuscated leaks). Concretely,
the type rule for assignments L = e (Fig. 2) requires (i) typing
the target location L as 7@a, (ii) the expression e as r@c’, and
(ili) @« = a’ v @’ = all. Thus, typing risk[don]=r requires instan-
tiating this rule by L := risk[don], e := r, 7 := bool, « := don, and
a’ := me, which violates constraint (iii).

To avoid type errors, we must explicitly reclassify r for don us-
ing reveal, making the leak explicit (see Line 13). The type rule
for reveal (Fig. 2) only allows reclassifying expressions private
to the caller. This is because (i) expressions private to other ac-
counts cannot be read by the caller (C2, knowledge restriction), and
(ii) public expressions can be implicitly classified. For example, in
Line 8, the constant 0 of type uint@all is automatically classified



TFL:t@a Ttre:t@a’ (a=a Va =all)

r45
TlFL: 7t@a « provably evaluates to caller
T'rL: r@me

T're: T@me
T'F reveal(e, a): T@a

Figure 2: Selected typing rules: T + e: 7@« (resp. T IF L: 71@a)
denotes that expression e (resp. location L) is of type r@«a under

the typing contextI'. T L T7 denotes that statement P is well-typed
and transforms the typing context T to I'’.

for hospital. Such classifications can never leak information, but
improve the readability of zkay (C3, obfuscated logic).

Reads Without Explicit Reclassification: In order to evaluate the
right-hand side in Line 14, the caller must read count of type
uint@hospital and r of type bool@me. The type system allows
reading locations (i.e., variables and mapping entries) only if they
are (i) public, or (ii) private to me (C2, knowledge restriction). In
the case of count, this is non-obvious as syntactically, hospital is
not me. Still, we want to allow Line 14 without forcing an explicit
reclassification (C3, obfuscated logic). Thus, zkay employs static
analysis (more precisely, Abstract Interpretation [20]) to prove that
hospital equals me, which is possible due to the preceding require
statement in Line 12. To reflect this, the type rule for private lo-
cations (Fig. 2) requires that & provably evaluates to the caller. Of
course, our static analysis is necessarily incomplete, i.e., it may fail
to prove that an owner variable equals me. In this case, a program-
mer can manually encode additional knowledge using require
statements, thus helping our static analysis.

zkay only enforces privacy type o € {me, all} for expressions the
caller must read. In Line 13, the right-hand side is of type uint@don,
even though in general, don != me. zkay allows this, as the right-
hand side is directly assigned, without using it as a sub-expression.

In Line 14, the expression r ? 1 : 0 has both private (r) and
public (0, 1) sub-expressions. To prevent implicit information leaks
(C4), we type it as uint@me. Generally, we type native functions
(suchasa + b,r ? 1 : 0, etc.) conservatively, making them pri-
vate to me if any of their arguments is private to me.

Loops and Conditionals: For loops and if-then-else statements
(not used in MedStats), zkay enforces that the condition expression
is public, as control flow may implicitly leak the condition’s value
(C4, obfuscated leaks). Hence, if programmers want control flow to
depend on private values, they either need to explicitly declassify
these values using reveal, or re-write the code to make use of con-
ditional expressions e1? ey : e3 (where e can be private). Moreover,
zkay requires the body and condition of loops to be fully public
(i.e., to not involve any private variables). This is necessary since
NIZK proof constructions do not support unbounded loops in the
statement (C1, incompleteness). In our transformation, we employ
a hybrid construction where public loops are executed on-chain.

2.2 Enforcing the Privacy Specification

To enforce privacy specifications in contracts, we provide a transfor-
mation from an arbitrary well-typed zkay contract to a semantically
equivalent and privacy-preserving yet fully public contract (§5). A
contract is fully public if all its locations and expressions are public.

Main Ideas. The core ideas of the transformation are (i) to store
private values encrypted under the public key of their owner, and
(ii) to use NIZK proofs to ensure that state modifications are con-
sistent with the intended operations. In Fig. 1b, we show the trans-
formed version MedStats of the contract MedStats.

Our transformation ensures that at every execution step in
MedStats, the transformed contract holds an equivalent state where
all private values are encrypted under their owner’s public key. For
example, assume risk[0x01] holds the value true after Line 13 in
MedStats. Then, in MedStats, assuming proof verification (verify,
discussed below) in Line 17 succeeds, after Line 14 risk[0x01]
holds Enc(true, R, Pk(0x01)), where R is some randomness and
Pk(0x01) is the public key of the account with address 0x01.

We now discuss the transformation in more detail on the example
of function record. When transforming record, we first replace
the type of its parameter r by the ciphertext type bin@all, as r will
now hold encrypted values. Since Line 12 (Fig. 1a) is fully public,
we do not transform it (cp. Line 13, Fig. 1b).

Ciphertexts, Proofs, and Proof Circuit: To transform Line 13, we
must store into risk[don] the value of r, encrypted for don. Be-
cause we cannot compute this value on-chain without violating
privacy, the caller computes the ciphertext off-chain and provides
it as an additional argument v0. Then, we store v0 into risk[don]
(Line 14, Fig. 1b). To force the caller to provide the correct value
for vo, we collect a correctness constraint in ¢ (see Fig. 1c, this
represents the proof statement verified later). Concretely, Line 4 in
¢ checks that v0 is the result of encrypting rgec using randomness
RO and key pkgon, the public key of don. Here, we obtain rgec by
decrypting r in Line 3 using the caller’s secret key sk. The high-
lighted arguments R0 and sk of ¢ (called secret arguments) cannot
be provided on-chain because knowing R0 enables guessing attacks
on v@ and knowing sk allows decrypting r. Upon calling record,
the caller provides a NIZK proof proof certifying she knows these
secret values such that ¢ is satisfied together with the remaining
arguments provided on-chain (see next). This proof is verified in
Line 17 of Fig. 1b, where the arguments of verify serve as the
public arguments of ¢ (pk fetches public keys). Due to the nature of
NIZK proofs, verification does not leak any information about the
secret arguments besides their existence. Proof verification ve rifyg
can be realized on public blockchains using tools like ZoKrates [23].

Finally, we transform Line 14 (Fig. 1a) to Line 16 (Fig. 1b), replac-
ing the private expression count + (r ? 1 : 0) by an argument
v1. Again, ¢ checks the correctness of v1 (Lines 5-7). Note that to
read the original value of count in Line 5 of ¢, we must record it in
Line 15 of Fig. 1b, as we overwrite count in Line 16.

Hybrid Approach: Our approach is hybrid in the sense that some
operations are executed inside the contract, outside the proof circuit.
For instance, mapping entries are always resolved on-chain (e.g.,
risk[me] in Line 21 of Fig. 1b) so to avoid passing whole mappings
to the verifier (see C1 in §1). This requires us to disallow encrypting
whole mappings and force mapping keys to be public.

Transactions: To enable calling the transformed functions, we
also transform transactions. For example, we transform a transac-
tion record(0x01, false) to record(6x01,r,v0,vl,p), where r,
v0, v1 are computed off-chain in accordance with ¢ (e.g., v0 is the
encryption of false for 8x01), and p is an appropriate NIZK proof.



L == 1id | Lle] (Location) a == me |all |id (Privacy type)
e u=c|me|L|reveal(e,a) | Se|e  ®ex|e?ex:es|pkle)|:-- (Expression)
7 == bool | uint | address | bin | mapping(7; => 2@ ) | mapping(address'!id => T@a) (Data type)
P :=skip |7@aid | L=e | P;;P; | require(e) | if e {P;} else {P,} | while e {P} | verifyy (eo, €1, .. ., €n) (Statement)
F == function f (1@ idy, . .., Tn@ay id,) returns 7@a {P;return e;} (Function)
C == contract id{(final)? 1@ idy; ... (final)? r,@ayn idy; Fi...Fn} (Contract)

Figure 3: Syntax of zkay, where f and ‘id’ are identifiers, ¢ is a constant, and ¢ an arithmetic circuit. Native functions are highlighted .

Privacy. Note that it is not immediately clear what it means for
a contract to be private. Prohibiting any leak of information is
too restrictive: even the specification contract MedStats leaks some
information about its private data (e.g., due to the declassification in
Line 18), which is reflected also in its transformed variant MedStats.

In our work, we introduce a formal definition of privacy tak-
ing this subtlety into account. Privacy of a contract is always de-
fined with respect to a specification contract. We define contract
MedStats to be private w.r.t. contract MedStats iff any transaction
on MedStats does not leak more information than the analogous
transaction on MedStats executed in an ideal world where private
values are kept secret for the respective owner. We formalize this
notion by introducing traces leaked by transactions on zkay con-
tracts. We prove that our transformation respects privacy (§6) by
showing that any trace f of a transaction in MedStats can be sim-
ulated from the corresponding trace in MedStats by producing a
trace indistinguishable from .

3 THE ZKAY LANGUAGE

Fig. 3 shows the syntax of zkay. In order to focus on key insights,
zkay is deliberately kept simple.

zkay consists of (memory) locations, expressions, data and pri-
vacy types, statements, functions, and contracts. A type declaration
(r@a) in zkay consists of a data type (r), and a privacy type (@)
specifying the owner of a construct. Privacy types consist of me, a
pseudo-address indicating public accessibility (all), and identifiers
(covering state variables and mapping key tags). For readability, we
often omit all, writing 7 instead of r@all. Locations (L) consist
of contract field identifiers, function arguments and local variables
(‘id’, alphanumeric strings), and mapping entries (L[e]).

The only zkay-specific expressions are the runtime address of
the caller (me), and re-classification of information (reveal). The
highlighted expressions can be viewed as evaluations of so-called
native functions g(e1, . . ., en), including standard arithmetic and
boolean operators (captured by ©, ®). The expression pk(e) returns
the public key of the address expression e from a public key infras-
tructure. It is straightforward to extend zkay with additional native
functions (as indicated by *- - -” in Fig. 3). For simplicity, we don’t
discuss the handling of calls to functions of the same or other con-
tracts. zkay can, however, support such calls whenever the called
function bodies are statically known; we discuss this in §9.

In addition to well-known data types (bool and uint), zkay sup-
ports addresses indicating accounts (address), and binary data cap-
turing NIZK proofs, public keys and ciphertexts (bin). In addition,
types include mappings (mapping(7; => r2@a2)) and named map-
pings (mapping(address!id =>r@«), defining name ‘id’ for the key

of the map to be used in the key type r@a. It is straightforward to
extend zkay with additional types, such as floats, structs, and arrays
(conceptually, arrays are equivalent to mapping (uint => r@a)).

Statements (P) in zkay are mostly standard. To declare a local
variable, we write 7@« id. If e does not evaluate to true, require(e)
throws an exception. Finally, zkay supports NIZK proof verification
(verify). We only include this statement to express transformed
contracts and assume specification contracts never use verify. In
statement verify¢, (ep,e1,...,en), the proof circuit ¢ is an arith-
metic circuit (i.e., a loop-free mathematical function) taking n pub-
lic and m secret arguments, and returning a number in {0, 1}. The
verification statement verifies that e is a valid NIZK proof certi-
fying there exist m secret values vy, ..., v, such that ¢ returns 1
when given n public arguments ey, . .., e, and secret arguments
V1, .. ., Um. Proof verification does not leak any information about
the secret arguments of the circuit ¢ other than the fact that ¢ re-
turns 1. We could easily include cryptocurrency transfers (transfer
in Solidity) in zkay, but omit them for simplicity.

While we only discuss functions (F) which return a value, zkay
also allows constructors and functions without return values (e.g.,
see Fig. 1a). Contracts (C) consist of contract field declarations and
function declarations, where contract fields may be declared final.

4 SEMANTICS BY EXAMPLE

We now define how transactions update the contract state by eval-
uating zkay statements, expressions and locations, and how trans-
actions generate traces containing information about intermediate
execution steps, modeling leaked information.

4.1 Traces

Every execution in zkay (e.g., expression evaluation or statement
execution) produces a trace. Intuitively, the trace defines which
information is leaked during execution (including control flow,
reads, writes, and calculations) and to whom it is leaked. Traces are
essential to define zkay’s privacy notion (§6). Formally, a trace ¢t is
a sequence of entries v; @a; for values v; and privacy levels a;. The
latter is either (i) an address, indicating that v; is private to a; and
can only be seen by a;, or (ii) all, indicating that v; is public. For
brevity, we usually omit @all from traces.

: (a)
We write Tx C.f

calling function f of contract C with arguments v;.,. We write

(v1:n) to denote a transaction issued by address a,

t
(T,o)= (o', v) to denote that executing transaction T on state o
(introduced next) produces the trace t, updates the state to ¢’, and
returns the value v. If T throws an exception, we set v = fail.



1 contract C {

2 mapping(uint => uint) m;

3 function f(uint a, uint@me x, bin p) {
4 X = reveal(x + 1, all) x 2;

5 verify¢,(p, ml[a]);

6 }}

(a) Example contract C.

(b) Trace emitted by Line 4 of C.

x = reveal(x + 1, all) * 2;

verify¢(p, m[al);

(c) Trace emitted by Line 5 of C.

Figure 4: zkay semantics illustrated for an example transaction where address 0x1 calls (0, 2, Proofy, (R; 5;4)) on C, assuming m[0] = 5.

4.2 Example Transaction

We introduce key aspects of zkay’s semantics using an example
(formal semantics for zkay is provided in App. C). Consider the
contract in Fig. 4a consisting of a mapping field m and a function f.
In Line 5, ¢ is an arithmetic circuit defined as follows (v; is a public
and vy a secret argument of ¢):

o(v,v2) =1 & v1—-1=0,.
States and Values. The state o of a contract specifies the val-
ues of all fields. For our example, assuming that m[0] holds value
5, we write ¢ = {m — {0 — 5}}. We use symbolic represen-
tations for values of type bin (i.e., keys, ciphertexts and NIZK
proofs). Specifically, we write Enc(v, R,Pk(a)) to denote the en-
cryption of v using the public key of a and symbolic randomness
R. NIZK proofs are represented by Proofy (R; v1:n; v}, ), Where ¢
is the proof circuit, R is symbolic randomness used to generate
the proof, and vy := v1,..., v, (tesp. vy, ) are the public (resp.
secret) arguments for ¢ bound in the proof. A similar notation
is introduced in [3]. We say that Proofy (R; v1:n; v].,,,) is valid iff
$(v1n, v1,,,) = 1.

Assume a caller with address 0x1 starts a transaction calling f
with arguments (0, 2, Proofy, (R; 5;4)). Here, it is = ¢ (though in
general, we may have ¢ # ¢). Before Line 4 (Fig. 4a), the state is:

o’ ={m— {0~ 5},arm 0,x— 2,p+— Proofy, (R; 5; 4), me > 0x1}

Expressions and Assignments. We now describe how the assign-
ment in Line 4 is evaluated. Fig. 4b illustrates which trace entries
v;@a; are emitted by each evaluation step.

Evaluation of the right-hand side expression starts at the leafs.
Evaluating the constant 1 emits trace entry 1 with privacy level all
(omitted), because constants are public. The location x is private to
the caller, which has address 0x1. When reading x, two trace entries
are emitted. First, we emit x to indicate the accessed location. This
entry is public to model the fact that accessed memory locations
cannot be hidden. This is in contrast to the value of x, which is
added to the trace as 2@0x1 with privacy level 0x1. The expression
x + 1is private to the caller according to the type system, hence
its evaluation result 2 + 1 = 3 is added to the trace as 3@0x1. This
reflects that nobody except address 0x1 can see this result. The
reveal expression emits all (evaluating its second argument) and
reveals the value 3 of its first argument by emitting the public
trace entry 3. Note how the value 3 is now visible to everyone.
Multiplying it with the constant 2 emits public trace entries 2,6.

For the left-hand side of the assignment, the location x is added
to the trace as a public entry. Note how the right-hand side is
implicitly classified for 0x1: the public value is written to x, which
is private to the caller according to the type system. Hence, a final

entry 6@0x1 is added to the trace and the value of x in ¢’ is updated
to 6 (the value stored in the state has no privacy level attached).
In summary, the trace generated when executing Line 4 is

x, 2@0x1, 1, 3@0x1, all, 3, 2, 6, X, 6@0x1
and the new state is

{mH—> {0 5},a> 0,x—> 6,p+— Proofl/,(R;5,4),me - 0x1}.

Proof Verification. Next, we describe how the proof p is verified
in Line 5. Fig. 4c illustrates the emitted trace entries.

First, p is evaluated to the proof P := Proofw (R; 5;4), emitting
entries p,P. Then, m[a] is evaluated to 5, which emits entries a,0
(from evaluating a) followed by m[0],5. Note the entry m[0] in the
trace: in contrast to the (syntactic) location m[al, this so-called
runtime location specifies the key value.

Next, the proof P is verified. This includes checking that (i) the cir-
cuit bound in P (here: ) equals the target circuit of the verification
statement (here: ¢), (ii) the public value bound in P (here: 5) matches
the value of the second argument of verify (here: m[a] = 5), and
(iii) P is valid (i.e., checking that /(5,4) = 1). Because verification is
successful, the verify statement emits a public trace entry 1. Note
how no other trace entries are generated by verify, reflecting the
zero-knowledge nature of proof verification.

The transaction is finished successfully. The final contract state
only retains the values of contract fields and is hence equal to the
initial state o in our example (the value of m was not updated).

In case of verification failure (e.g., if ¢ # 1 in Line 5), an exception
would be thrown: execution is stopped immediately and the state
is rolled back to the state before the transaction. In this case, the
trace would still contain the previously collected information, but
end with a special entry “rollback”.

5 TRANSFORMATION

We now describe how to transform a zkay contract C to a fully public
zkay contract C (§5.1-§5.3) while preserving privacy (discussed
in §6). Because C has a different interface than C, we also discuss
how to transform transactions T on C to transactions T on C (§5.4).

Correctness. By construction, our transformation ensures correct-
ness, as formalized in Thm. 1.

Theorem 1 (Correctness). Given a contract C and its transformation
C, for any two equivalent states o and & and any transaction T,
running T on C, & either throws an exception or there exists a
transaction T for the same function and using the same public

— t = .t _, _
arguments as T such that: (T, 6) = (¢’,v)in Cand (T, o) = (5’,v)
in C for some ¢’,v equivalent to o’ ,0 and some traces t, f.



function f(..., F , bin proof) {

T(P)
function f(...) {
p. verify  (proof, P );
’ é
return e;
} return T.(e) ;

forg: (P, S)—{0,1)
(a) Transformation of a zkay function.
out(e, ) == v; (invariant: e@me or e@all)
F—F, v
P — P, v, pkla)
S« S, R;
¢« ¢; vi == enc( Ty(e) , Ri, pk(a)) ;

(b) Transformation out(e, ). If « = all,the highlighted partis omitted.

in(e, @) == dec;( v;, sk) (invariant: e@a, a € {me, all})
T a =all
addto T(P) : r’@all v; = Te(e); for ¢/ ==
bin «a # all
P P, (%3
S « S8, sk

(c) Transformation in(e, «). If & = all, the highlighted part is omitted.

T(Py; Pp) == T(P1); T(Pp) 1

T(L@a = e@a) == Ti,(L) = Tc(e) (weuse Ty, = Te)  (2)

T(L@a = e@all) == T (L) = out(e, @) (x#all) (3)

T(require(e)) ::= require(T.(e)) (4)

T(while e {P}) ::=while e {P} (P is fully public) (5)

T(if e {P1} else {Pp}) u=if Te(e) {T(P1, Te(e))} else {T(P,, Te(le))} (6)
(d) Transforming statements using T.

Te(c) ==c¢ const ¢ (7)

Te(id) == id var id (%) (8)

Te(L[e]) == TL(L)[Te(e)] mapping entry ©

Te((e1 + e2)@all) ::= Te(er) + Te(e2) native functions (10)

Te(reveal(e, ar)) == out(e, @) (invariant: e@me)  (11)

Te(e@a) ::= out(e, ) (invariant: e@me)  (12)

(e) Transforming expressions in zkay using Te. For private function arguments
id, * adds an additional correctness constraint to ¢.

Ty(c) n=c const ¢ (13)

Ty (L@a) == in(L, @) (invariant: @ € {all, me}) (14)

Ty (reveal(e, a)) == Ty(e) (15)
Ty(er + e2) := Ty(e1) + Ty(e2)  native functions (16)

(f) Transforming expressions in the proof circuit using T.

Figure 5: Overview of zkay transformations. We write e@u to indicate that e has privacy type a. The symbol v; denotes a fresh variable.

Formally, value v in C is equivalent to value v in C, if either v
is public and v = v’, or v is private to a and v’ = Enc(v, R, Pk(a))
for some randomness R. As a natural extension, state ¢ in C is
equivalent to state ¢’ in C if all values in ¢ and ¢’ are equivalent.

5.1 Transformation Overview

The general idea of transforming a contract C to C is to (i) replace
private expressions by encrypted arguments provided by the caller,
(ii) replace declassified expressions by cleartext arguments provided
by the caller, and (iii) require the caller to provide NIZK proofs
certifying correctness (i.e., equivalence) of these arguments w.r.t. C.

Fig. 5 shows an overview of our transformation. To avoid nota-
tional clutter, the figure does not describe how to transform the
types of private locations. Because these hold encrypted values in C,
our transformation changes their type to bin@all. An example is
count in Line 3 of Fig. 1a, transformed to Line 3 of Fig. 1b.

Transforming Functions. A well-typed zkay contract C is trans-
formed by transforming all its functions according to Fig. 5a. The
function body and returned expression are transformed using state-
ment transformation T (Fig. 5d) and expression transformation Te
(Fig. 5e), respectively. The function’s parameters are extended by
parameters ¥ and a NIZK proof. During transformation of the body
and return value, we collect correctness constraints on 7 in a proof
circuit ¢. The proof proof is verified w.r.t. ¢, public arguments P

and secret arguments S (bound to the proof during proof genera-
tion) at the end of the body. No verification statement is added if ¢
is empty (i.e, if no correctness constraints were collected).

Encoding Proof Circuits. Up until now, we have viewed proof
circuits ¢ as abstract mathematical functions. We will later use the
NIZK verifier generation tool ZoKrates [23] to instantiate verify
for a given ¢, hence the latter ultimately needs to be encoded in
ZoKrates’ DSL. To avoid introducing this DSL, from now on we en-
code ¢ using zkay assignments, variable declarations, and boolean
expression (e.g., equality) constraints. We augment expressions by
asymmetric encryption and decryption with standard semantics:
the expression enc(x, R, k) encrypts x using randomness R and
public key k to yield the (symbolic) value Enc(x, R, k) of data type
bin, while dec; (x, k) decrypts x of data type bin using the secret
key k and returns a value of data type 7. We define ¢ to return 1 iff
evaluating ¢ according to zkay semantics results in all constraints
being satisfied. Fig. 1c shows an example of a proof circuit encoding.

5.2 Transformation Example

We now provide an intuition of the transformation defined in Fig. 5
using a concrete example. Particularly, we discuss how the function
f shown in Fig. 6a is transformed step-by-step (Fig. 6b) to f.

Transforming Statements. We begin by transforming the body
of f using the statement transformation T formally defined in
Fig. 5d. Fig. 6b (left, first two lines) shows how we apply rule (2).



function f() { y = x + a; }

T(y = (x+a))

function f(vp,p) { Ti(y) = To(x + a)

bin vy = x; uint vy = a;

verify¢ (p,vo,v1,v2,pk(me));

}

(a) Transforming f to f.

steps for constructing f

y = out(x + a, me) by (8), (12)
by Fig. 5b

steps for constructing ¢

vy == enc(Ty(x + a), Ro, pk(me)) by Fig. 5b
by (2) vy == enc(Ty(x) + Ty (a), Ro, pk(me)) by (16)
vy == enc(in(x, me) + in(a, all), Ry, pk(me)) by (14)
vy == enc(dec (v1, sk) + vy, Ry, pk(me)) <+ by Fig. 5¢

(b) Step-by-step transformation of the assignment y@me = x@me + a@all (emitted parts are highlighted).

Figure 6: Transforming an example function f, where x and y are fields private to me and a is a public field. Data types are not shown.

In general, T ensures that intermediate states in C and C are
equivalent. More precisely, for any statement P, it ensures the
following invariant: Assuming the constraints expressed in ¢ hold at
the end of ¥, P is equivalent to T(P). Formally, statement P in C is
equivalent to statement P’ in Cif for any states o in C equivalent to
o’ in C, successfully running P in o and P’ in ¢” results in equivalent
states. Here, “successfully” means in absence of exceptions.

Transforming Expressions. Next, we transform the right-hand
side x + a using expression transformation T, (Fig. 5e). At a high-
level, T recursively transforms expressions while (i) leaving public
expressions unchanged, and (ii) substituting private expressions
by fresh function arguments v; whose correctness is enforced by
adding constraints to ¢. In our case, the argument x + a of T is
private to me and we hence apply rule (12). Because x + a cannot
be evaluated on-chain in f without violating privacy, we require
the caller to pass the encryption of x + a via a fresh function ar-
gument, and to prove its correctness. Conceptually, this amounts
to evaluating x + a in ¢, and making the result available within f
(i.e., moving x + a out of ¢). This is achieved using out(x + a, me),
discussed in the next paragraph.

We apply location transformation Ty, to the left-hand side y.
Because Ty, is equal to Te, except for % in Fig. 5e (discussed in §5.3),
we do not discuss it further. In our example, we apply rule (8).

In general, for any expression e, expression transformation T
ensures the following invariant : Assuming the constraints expressed
in ¢ hold at the end of f, e in C is equivalent to T(e) in C. Formally,
expression e in C is equivalent to e’ in C if for any states ¢ in C
equivalent to ¢’ in C, successfully evaluating e in o and e’ in ¢’
yields equivalent values. T, ensures that Ty (L) in C evaluates to the
same runtime location as L in C.

Moving Values out of the Proof Circuit. The transformation out
(Fig. 5b) ensures that the correct encryption of x + a is computed
in ¢ and “moved out” to . It performs two steps: First, it replaces
X + a by a fresh function argument v (see also Fig. 6a) and thereby
concludes the transformation in f (see in Fig. 6). Then,
it continues transformation inside the proof circuit ¢ (see right box
in Fig. 6b). It makes vy available in ¢ by adding vy to the public
arguments $, and adds a constraint to ¢ ensuring that vy is a proper
encryption of the correct cleartext value of x + a. This involves
adding the encryption key pk(me) to # and fresh randomness Ry

to the secret proof circuit arguments S. 2 Ro must be secret, as the
ciphertext would otherwise be vulnerable to guessing attacks.

Transforming Expressions in the Proof Circuit. To ensure cor-
rectness of the computation, we need to compute the cleartext value
of x+ain ¢ (note that this remains private), which is achieved using
the transformation Ty (Fig. 5f). Addition can directly be performed
in ¢ and we apply rule (16). Next, we apply rule (14) to make the
cleartext values of variables x and a accessible to ¢. This is, we
“move them into” ¢ using in (discussed next).

In general, for any expression e, T (e) ensures that successfully
evaluating e in C results in the same (unencrypted) value as evaluating
T4 (e) in ¢ during verification of ¢ in C.

Moving Values into the Proof Circuit. Note that because x is
private in f, it is encrypted in f. To make the cleartext value of
x available in ¢, in (Fig. 5c) performs the following steps. First, it
passes the current (encrypted) value of x from f to ¢ by (i) adding a
new public proof argument v to ¢, (ii) storing the current state of
x in a fresh local variable vy in T (see | highlighted in Fig. 6a, this
step is important as the value of x could in general change later),
and (iii) passing v; to ¢ at verify. As a result, v; in ¢ will contain
the current encrypted value of x. Second, in decrypts v1 using
the caller’s secret key sk, which is added as a private argument
to @. The cleartext value of a is similarly made available in ¢ via a
public proof circuit argument v,. Because a is public in f, a is not
encrypted in f and no decryption is required.

The resulting constraint in ¢ (see highlighted in Fig. 6b, right)
enforces that vy is a proper encryption of x + a, according to f,
under the caller’s public key.

Because our transformation invariants ensure that for in(e, ),
e is never private to somebody else than the caller, in never requires
somebody else’s private key (cp. C2, knowledge restrictions).

5.3 Additional Rules

We now describe some additional transformation rules.

Statements. Rule (3) handles implicit classifications by moving
the appropriately encrypted value out of the proof circuit. Our
type system enforces while loops to be fully public, meaning that
their termination conditions and bodies do not involve private
variables. Hence, they are left untransformed by T. We transform
if e {P;} else {P2} by individually transforming e, P; and P, (note

2To simplify notation, we directly refer to pk(me) inside ¢. In our implementation, we
actually introduce a fresh parameter to pass the public key (cp. pkye in Fig. 1c)



that e may include declassifications). Since transformation of P;
(resp. Py) may add constraints to ¢ which are only relevant if e
evaluates to true (resp. false), we extend the functions T and Te
to take a guard condition b as an optional second argument. All
constraints ¢ added to ¢ by T(P, b) or Te (P, b) are only enforced if
b is true by replacing them by !5 || c. To avoid clutter, we do not
incorporate guard conditions in Fig. 5.

Expressions. When being transformed with T, private function
parameters require adding a correctness constraint (not shown) to
¢ ensuring the argument is indeed a value encrypted for the correct
account (see * in rule (8)). This is not required for Ty..

Rules (10) and (11) together ensure that public expressions are
recursively transformed until a declassification is hit. For example,
Te transforms a@all + reveal (x@me + 1,all) to a@ + v;, where
the function argument v; containing the revealed cleartext has to
be provided by the caller.

5.4 Transforming Transactions

Transforming a transaction T for C to T for C is simple at a con-
ceptual level: the function arguments for T are constructed such
that proof verification in C succeeds. Function arguments public in
T can directly be used in T, while private function arguments are
encrypted under the caller’s public key in T. Additional function
arguments v; introduced by transformation are chosen in accor-
dance with the constraints generated when v; is introduced, see the
update of ¢ in Fig. 5b. We note that transforming T is only allowed
if it does not throw an exception on C for the current state.

To generate the proof, we must determine both public (£) and
secret (S) arguments to ¢. To determine $, we simulate the partial
transaction T (which does not yet include a proof) on C. For S, we
simply provide fresh randomness and the caller’s secret key.

6 PRIVACY MODEL FOR ZKAY

We now define privacy for zkay contracts and prove that any trans-
formed contract C is private with respect to its original contract C.
We first define a model of an attacker interacting with C in the real
world (§6.1), and how C is executed in an ideal world (§6.2). Finally,
we prove that an attacker can learn nothing more from transactions
on C in the real world than on C in the ideal world (§6.3).

6.1 Attacker Model

We consider an active attacker interacting with a public blockchain
as modeled by our semantics (§4). We model an attacker as the set A
of addresses she controls (i.e., the attacker knows the secret keys of
accounts in A) and call all other accounts honest. Let C be the result
of transforming a contract C. The attacker A can interact with the
fully public contract C in the following two ways. First, she can
observe all traces of any transaction on C, including transactions by
honest callers. This captures the behavior of public blockchains such
as Ethereum, where miners (including the attacker) run contracts
locally and thereby learn every intermediate execution step. Second,
the attacker can issue transactions on C on behalf of any account
in A, capturing potentially malicious calls by dishonest accounts.

We adopt a symbolic view in the standard Dolev-Yao model [22],
where cryptographic primitives are assumed to be perfect. As usual,

we use distinct sets R4y, and Ryop for randomness generated by
the attacker and, respectively, honest accounts (cp. [3]).

We define the attacker capabilities by which (symbolic) values
she can distinguish and which not (e.g., based on cryptographic
operations and comparisons). We assume a strong attacker who
can distinguish almost all inequal values, with few exceptions. 3

Value Indistinguishability. Formally, we define the capabili-
ties of A by a relation ~# on values, where v; ~# v2 means
that A cannot distinguish values v and v; in the symbolic model.
Specifically, we augment the set of values by fake proofs of the
form SimPr (R; v1:n) (introduced shortly) and define ~ # to be the
smallest relation satisfying:

(i) For any v (which may also be an encryption): v ~ 4 v

(ii) Forany m, m’,b ¢ A, and R # R’ with R,R’ € Rpon:

Enc(m, R, Pk(b)) ~# Enc(m’,R’, Pk(b))
(ili) For any m, a € A, and R, R’ € Rpop:
Enc(m, R, Pk(a)) ~# Enc(m,R’,Pk(a))

(iv) For any ¢, v1:n, U{:m such that giv(vlzn,zz{:m) =landR# R’

with R, R’ € Ry
Pr00f¢(R;01:n;v{:m) ~qA SimPr¢(R';vl;n)

Rule (i) simply models that A cannot distinguish identical values.
Rule (ii) models a randomized public key encryption scheme where
A can not distinguish encryptions under different honest random-
ness but identical public key of an honest account. * This rule
requires the encryption scheme to hide the length of the encrypted
plaintext, which can be achieved by an appropriate padding scheme.
Further, the rule implicitly assumes that A can never learn (a) any
private keys of honest accounts, and (b) any honest randomness
in Rpgn. This assumption is justified: because honest accounts re-
spect the transformation of §5, in any trace (a) no such private keys
appear, and (b) honest randomness only occurs in the position of
encryption or NIZK proof randomness. Rule (iii) states that the
adversary cannot distinguish two fresh encryptions of the same
message for the adversary by honest accounts.

The rule (iv) models the zero-knowledge property of NIZK proofs.
First, we introduce symbolic fake proofs of the form SimPr (R; v1:5)
for a proof circuit ¢, randomness R and public arguments v1.j.
Then, in rule (iv), we define valid proofs generated with honest
randomness to be indistinguishable from simulated proofs for the
same proof circuit and public arguments. > Intuitively, the exis-
tence of an indistinguishable fake proof SimPr¢ (R; v1:n), which is
independent of the private arguments v], , captures the fact that
Proof¢7 (R;v1:ns v{:m) does not leak any information about v{:m.

Trace Indistinguishability. Next, we define indistinguishability
for traces. Two public trace entries v;@all and vy@all are indis-
tinguishable for A, denoted v;@all ~g vo@all, if v1 ~g ;.
Two public traces t; and t; are indistinguishable if they (i) are
entry-wise indistinguishable, and (ii) have consistent repetition

30ur notion is stronger than standard Dolev-Yao-style knowledge deduction rules. For
example, in our model the attacker can distinguish encrypted values from randomness,
which is usually not possible in the latter model [5].

4This rule can be viewed as a symbolic model of the standard IND-CPA property of
(randomized) public key encryption schemes.

5This can be viewed as a symbolic model of the standard zero-knowledge property,
which is defined by the existence of a simulator generating such fake proofs [26].



patterns. To understand (ii), consider traces t; = a,a and t; = b, ¢
witha ~g band a ~ g c for b # c. Now, A can distinguish #; from
t2 by checking if the two entries of the trace are identical.

Formally, t; ~ 4 t iff (i) #1 and ¢ have equal length, and (ii) there
exists a bijection 7 on values such that Vi. ﬂ(ti) = tzi A ﬂ(ti) ~aq t
where t is the i-th entry of a trace t.

6.2 Observable Information in the Ideal World

We now describe which parts of traces of transactions on a contract
C an attacker A can read if C is executed in an ideal world. From
now on, we assume that A contains all, reflecting that the attacker
can always access public trace entries.

The observable trace describes what parts of a trace are leaked to
A in an ideal world. For a trace t and an attacker (A, the observable
trace of t, obs #(t), is obtained by (i) hiding all values in ¢t whose
privacy level is not in A using a placeholder [ ], and (ii) dropping
all privacy levels. For example, for t = 1@0x0, 2@0x1, 3 and A =
{all,0x0}, it is obs #(¢) = 1,[ ], 3.

6.3 Data Privacy

Let C be the transformation of a well-typed contract C. Intuitively,
C is private w.r.t. C iff transactions on C in the real world do not
leak more information than transactions on C in the ideal world.
Consider an arbitrary state ¢ originating from a sequence of trans-
actions on C and let ¢ be the equivalent state in C (o exists by
Thm. 1 and is unique). C is private w.r.t. C iff for any attacker A,
there exists a simulator Sim who can, for any transaction T’ on C
under 7 yielding trace ¢, produce a trace t; indistinguishable from
t. Sim only has access to o and information observed by A in the
ideal world. It has the same capabilities as A (e.g., it can encrypt
values under any public key, but cannot break honest encryption for
honest accounts), with two exceptions: it can generate fake proofs
(see the definition of ~ #) and fresh honest randomness r € Rpop. ©
The intuitive idea is that if such a simulator exists, then A could
have simulated  herself, without any knowledge of the private data
protected by C. Hence, this data is protected by C. We treat the
case of honest and dishonest callers separately, because in the latter
case, the transaction may not be the result of a transformation.

Honest Caller. If transaction T’ is issued by an honest caller
a ¢ A, then T’ is the transformation of a transaction T in C not
throwing an exception (honest callers adhere to §5.4). Assuming
the attacker already knows the current state &, Sim constructs f,
from o, the observable trace of T and the contract code C. This
expresses that the attacker learns nothing new from 7 than what
he can learn from the code in C and the observable trace of T.

Definition 1 (Privacy for Honest Callers). Contract C is private w.r.t.
C for honest callers iff for all attackers A, there exists a simulator
Sim such that for all o, ¢ as defined above the following holds: if

t — 7
(T,o)= {c’,v) foriome T,t,0’,v # fail,and (T, o) = (c’, ) for
some t,o’, 0, with T being the transformation of T, then t~qts
for z, = Sim(@, obs #(t), C).

°If Sim could only generate dishonest randomness, the attacker could always distin-
guish encryptions produced by the simulator from honest encryptions. Note that Sim’s
randomness is fresh, meaning that it is not used by any honest account.
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Figure 7: Overview of implementation.

Dishonest Caller. If the caller a is dishonest (ie, a € A), T’
might not be a transformed transaction. Therefore, the simulator
constructs f, only from &, T’ and the code in C. This expresses
that the attacker cannot learn any information by crafting arbitrary
transactions.

Definition 2 (Privacy for Dishonest Callers). C is private w.r.t. C for
dishonest callers iff for any attacker A, there exists a simulator Sim’
such that, if running a transaction T” generated by the attacker (i.e.,

7
using only private keys from accounts in A) yields (T”, 5y = (7', D),
then t ~ g 5 for t; = Sim’(c, T, C).

Privacy Theorem. Thm. 2 states that our transformation respects
privacy according to Def. 1 and Def. 2.

Theorem 2. The contract C transformed from a well-typed contract
C according to §5 is private w.r.t. C for honest and dishonest callers.

We provide a proof of Thm. 2 in App. D. It is based on the fact
that the simulator can follow the control flow (which is public) in
both C and C, and simulate encrypted values and NIZK proofs by
indistinguishable ciphertexts and fake proofs, respectively.

7 IMPLEMENTATION

We have instantiated our approach for transforming zkay to Solidity
contracts in a proof-of-concept implementation using roughly 3 500
lines of Python code. 7 As shown in Fig. 7, our tool type-checks
and transforms zkay contracts to Solidity contracts executable on
Ethereum, compiling the proof circuits using ZoKrates (discussed
shortly). Further, it transforms zkay transactions specified in Python
and produces JavaScript code executing the transformed transac-
tions using the web3.js API [25]. In the following, we discuss how
to instantiate our approach for Solidity.

NIZK Proofs. We use ZoKrates [23] (commit 224a7e6 with prov-
ing scheme GM17 [30]) to generate Solidity code verifying NIZK
proofs. ZoKrates allows representing a proof circuit ¢ in its custom
circuit language and generates a verification contract for ¢. We
instantiate ve rify¢ statements as calls to such contracts, and use
ZoKrates to generate proofs during transformation of transactions.
Some operations (e.g., integer division) are currently not supported
by ZoKrates. We reflect these restrictions in zkay’s type system
by disallowing such operations for private values. We still support
them for public values by modifying Ty (Fig. 5f) to use in for such

"The code is available on GitHub: https://github.com/eth-sri/zkay
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Contract Domain Short description #fns (priv)  #loc  #loc transf (sol+zok)  #crossings  scenario #tx (priv)
Exam Teaching Record and grade exam answers 4(3) 37 194 (99 + 95) 15 7 (6)
Income Welfare Decide eligibility for welfare programs 4(3) 23 162 (75 + 87) 8 5 (4)
Insurance Insurance Insure secret items at secret amounts 8(6) 79 341 (159 + 182) 24 9(7)
Lottery Gambling Place bets and claim winnings 4(4) 37 200 (88 + 112) 7 5(5)
MedStats Healthcare  Record medical statistics on patients (Fig. 1) 3(3) 22 174 (82 + 92) 13 5(5)
PowerGrid  Energy Track consumed energy 4(3) 23 159 (71 + 88) 7 4(3)
Receipts Retail Track and audit cash receipts 4(4) 28 206 (89 + 117) 11 7(7)
Reviews Academia Blind paper reviews and acceptance decisions 4(3) 39 198 (104 + 94) 17 6 (5)
SumRing Security Simple multi-party computation 3(3) 23 160 (74 + 86) 8 5(5)
Token Finance Buy and transfer secret amount of tokens 5(4) 37 234 (112 + 122) 17 6 (5)

Table 1: Evaluated contracts and scenarios. The table specifies for each contract: number of (private) functions, lines of code (loc), lines of
code of the transformation result (split into actual contract and ZoKrates proof circuit), number of calls to in and out during transformation
(crossings), and number of (private) transactions in the evaluated scenario.

expressions and computing them outside the proof circuit. For ex-
ample, the public division x@all/2 is computed in the contract and
its result passed as an argument to the proof circuit ¢.

Mapping zkay Types to ZoKrates Types. ZoKrates only supports
computations on integers in [0, p — 1] for a large prime p. By di-
rectly mapping the zkay uint type to ZoKrates integers, we retain
correctness in absence of over- and underflows. We encode boolean
values false and true consistently as numbers 0 and 1, respec-
tively. Encryptions (type bin, see next) are encoded as integers. Our
implementation currently does not support other primitive types
within proof circuits.

Encryption. While ZoKrates is considering adding support for
asymmetric encryption, its current version does not yet support it. 8
Therefore, we currently use the (insecure) surrogate functions for
encryption (Enc(v, R, k) = v+k) and decryption (Dec(c, k) = c—k).

We note that our results will not significantly change once
ZoKrates supports asymmetric encryption, because the verification
gas cost is essentially independent of the encryption function, and
the off-chain cost for proof generation can only grow moderately
(we provide a quantitative estimate in §8). This is because our im-
plementation applies a standard reduction [27] to the construction
used by ZoKrates, allowing linear-time proof generation (in the size
of the circuit), and constant-cost verification (after much cheaper
hashing of public circuit arguments).

Because Ethereum does not provide a built-in public key infras-
tructure (PKI), we implemented a simple PKI contract Cpy; contain-
ing a public key storage and providing setter (and getter) functions
to announce (resp. retrieve) public keys. ?

8 EVALUATION

In the following, we demonstrate that our approach is feasible and
practical. Specifically, we address the following research questions:
Q1 Can zkay express interesting real-world contacts?
Q2 What is the development complexity reduction when using
zkay compared to using NIZK proofs directly?
Q3 What are the (gas) costs for executing transformed contracts
on Ethereum?
Q4 What are the off-chain costs for transforming contracts and
transactions?

8https://github.com/Zokrates/ZoKrates/issues/276
“https://github.com/eth-sri/zkay/tree/ccs2019/src/compiler/privacy/pki.sol

Q1: Expressivity of zkay. To showcase the expressivity of zkay,
we implemented 10 example contracts, described in Tab. 1 (our
implementation contains the full contracts'®). Our contracts span a
wide range of domains such as healthcare, energy, and gambling.
While there is active interest in developing blockchain contracts
for these domains [33, 41], privacy concerns are a key roadblock
preventing their adoption [47].

When implementing the contracts in Tab. 1, zkay helped us
to cleanly capture our privacy intents. In our experience, zkay’s
privacy annotations are a natural way of expressing privacy con-
straints. Further, zkay’s type system is essential: for instance, while
developing our examples, we occasionally had to add non-obvious
declassifications. Our design choice of explicit declassification and
implicit classification is reasonable: while forcing developers to
think about leaks, it does not restrict development in the absence
of leaks.

Overall, we conclude that zkay is expressive enough to capture a
rich class of applications and that programming in zkay is natural.

Q2: Complexity Reduction. We now demonstrate that zkay sig-
nificantly reduces development complexity compared to using cryp-
tographic primitives directly. To this end, we transform all example
contracts and compare the number of lines of the originals with the
transformed versions (consisting of Solidity and ZoKrates code).
Tab. 1 shows that the number of lines increases significantly, on
average by a factor of more than 6. We provide the full output for
MedStats (Fig. 1a) with our implementation. !

Note that because our implementation is not optimized and in-
troduces boiler-plate code, the number of generated code lines can
be misleading. Hence, we also evaluate a more specific complexity
metric. This is, we investigate the number of times our transfor-
mation crosses the boundary between contract code and proof
circuit. These crossings happen whenever transformation calls in
or out, or processes a private argument. The number of crossings
is critical for development complexity: crossing the boundary is
highly error-prone due to the logic being scattered over the contract,
proof circuit, and off-chain computation. In particular, crossing the
boundary generally requires non-local modifications such as adding
statements and arguments to both the function and the proof circuit
(as performed by in and out in Fig. 5). We note that it is possible

Ohttps://github.com/eth-sri/zkay/tree/ccs2019/eval-ccs2019/examples
Uhttps://github.com/eth-sri/zkay/tree/ccs2019/eval-ccs2019/examples/med-
stats/reference-compilation
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Figure 8: On-chain cost for contract MedStats (Fig. 1).
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Figure 9: On-chain cost for transformed private transactions.

to reduce code complexity for some crossings. For example, if pri-
vate variable x is read twice and not modified between the reads,
we could pass it to the circuit only once. However, as such opti-
mizations require static insights, they cannot substantially reduce
development complexity.

Our results in Tab. 1 (column #crossings) indicate that even for
simple contracts such as MedStats (see Fig. 1a), many crossings
are performed by our tool. Hence, while programming in zkay is
deceptively easy, finding errors in transformed contracts is quite
hard. Overall, we observe almost 0.4 boundary crossings per line of
zkay code, even though many lines do not have functionality (due
to empty lines, etc.). We do not expect that the number of crossings
can be significantly reduced for our examples.

Q3: On-chain Cost of Privacy. In the following, we discuss the
on-chain cost for executing transformed contracts. This cost is
measured in terms of gas and is particularly relevant as it directly
corresponds to monetary costs paid by the sender of a transaction.

To evaluate this cost, we compile the transformed example con-
tracts, deploy them to a simulated Ethereum blockchain using the
truffle suite [19], and execute small transaction scenarios (last col-
umn in Tab. 1). 12 All experiments were run on a machine with
32GB RAM and 12 cores at 3.70GHz. We note that on-chain costs
only depend on the contract code, not on the simulating machine.

We first discuss the on-chain cost for the MedStats contract
(Fig. 1), depicted in Fig. 8. Later, we will show how our observations
generalize to the other examples. Fig. 8 distinguishes three phases.
The first phase () prepares infrastructure required by all contracts.
This includes deploying libraries required by ZoKrates (BN256Gz2,
Pairing), and our PKI (PKI, announcePk). Since this is a global
one-time task, its (moderate) cost is mostly irrelevant.

The second phase (¥4 ) deploys the contract itself (constr.) and a
verifier contract for every private function. This phase only occurs
once per deployed contract, and its cost is in the same order of
magnitude as the cost of transactions (a repeated cost, discussed

12We use version 0.5.0 of solc, 5.0.14 of Truffle, and 2.5.5 of Ganache.

shortly). Hence, compared to the cost of transactions, the cost of
contract deployment is negligible.

For the final phase (IY), we have implemented a specific scenario
where the hospital calls record for two different patients who later
call check. These transaction costs are most relevant, as they occur
many times. Fig. 8 shows that every transaction costs roughly 10°
gas. We believe this is a moderate cost for protecting critical data:
at the time of this writing, this corresponded to roughly 0.50 US$.
This cost is close to optimal, as it is dominated by the cost of proof
verification: Even the (trivial) verification that a private value x
equals 0 costs about 0.84 - 10° gas. We note that proof verification
costs may be reduced in the future (e.g., using more efficient proof
constructions, as discussed in [23]).

The above observations are general: Fig. 9 shows private transac-
tion costs of example scenarios for all contracts. Across all examples,
the cost is roughly 10° gas. Overall, we conclude that running trans-
actions on transformed contracts is feasible at a moderate cost.

0Q4: Off-chain Cost of Privacy. For all our examples, contract
transformation took less than 5 minutes, where more than 99% of
the total time is due to verifier generation in ZoKrates. Likewise,
transforming transactions for our example scenarios took less than
1 minute per transaction, and again, more than 99% of this time is
due to proof generation in ZoKrates.

We expect the off-chain computation overhead of real encryp-
tion over our surrogate encryption during proof generation to
be moderate for each transaction in our evaluation. To estimate
this overhead, we used Jsnark with proving scheme GM17 (as for
ZoKrates) to prove that RSA encryption of a message using a 2048-
bit key yields a given ciphertext. 13 Generating this proof took
roughly 13 seconds, and our generated circuits never used more
than 9 encryptions or decryptions.

9 DISCUSSION

In this section, we discuss possible extensions of zkay.

Ownership Transfer. zkay prevents ownership transfer by re-
quiring owner fields to be declared final. Allowing writing to
an owner field id outside the constructor would require statically
determining all locations owned by id and forcing the caller to
provide new encryptions (under the new owner’s public key) of
these locations at modification time, along with an appropriate
NIZK proof. Unfortunately, this is not possible if id owns entries of
dynamically growing mappings (e.g., in mapping(uint => uinteid))
since the set of locations owned by id cannot be determined at
compile time in this case. Still, zkay could be easily extended to
support mutability of fields not owning array entries.

Function Calls. Extending zkay to support calls to fully pub-
lic functions is straight-forward. Handling calls to non-recursive
private functions with statically known body is also possible, by
tunneling arguments induced by the transformation of the callee
(such as proofs) through the caller. We note that recursive functions
are rare in Solidity contracts, as they quickly exceed the gas limit.

Alternative Realizations. This work leverages encryptions and
NIZK proofs to realize zkay contracts. However, we stress that

BUsing PKCS#1 v2.2, following https://github.com/akosba/jsnark/blob/master/
JsnarkCircuitBuilder/src/examples/gadgets/rsa/RSAEncryptionOAEPGadget.java
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zkay’s interpretable syntax together with its intuitive enforced
privacy notion is largely independent of its realization. Thus, zkay
is not fundamentally restricted to NIZK proofs on encrypted states,
but could also leverage other building blocks, such as partially or
fully homomorphic encryption, trusted hardware, or NIZK proofs
on hashed states. Thus, zkay can be seen as part of a broader effort
to lift realizations using low-level building blocks to high-level
specifications.

Setup Phase. Current NIZK proof constructions compatible with
Ethereum [29, 30, 42] rely on a trusted setup phase (once per
circuit)—a known deployment issue [14]. However, secure multi-
party computation (SMC) can be used to reduce trust for this setup
phase [8], which is only required once per contract. Alternatively,
there exist recent proof constructions (e.g., zk-STARKSs [6]) without
a trusted setup phase.

Compatibility with Existing Analysis Tools. Various tools en-
able verification, testing, and other analysis of smart contracts [32,
48, 52]. Applying them to zkay is possible, as dropping privacy
annotations from a zkay specification contract (i.e., before trans-
formation) results in a fully public contract whose functionality
can be checked by existing tools. However, note that properties
affected by the transformation (e.g., gas cost) can only be verified
in the transformed contracts.

10 RELATED WORK

We now discuss the works that are most closely related to ours.

Blockchain Privacy. Many works bring privacy to payments and
transactions using NIZK proofs [38, 44], custom primitives [17],
or off-chain payment channels [28, 31]. In contrast to all these
approaches, we address data privacy for general smart contracts.

Like us, Hawk [35], Arbitrum [34], and Ekiden [18] provide data
privacy for general smart contracts without complicating contract
development. However, they all rely on trusted managers or hard-
ware. Concretely, Hawk and Arbitrum trust managers for privacy
(but not for correctness), meaning a compromised manager can
disclose users’ private data—a substantial risk, as data leaks are
hard to detect and even harder to prevent. We note that replac-
ing trusted managers by secure multi-party computation (SMC) or
trusted execution environments (TEEs) introduces scalability issues
for SMC (discussed shortly) and new attack vectors for TEEs (cp.
Ekiden). Ekiden leverages trusted hardware in the form of TEEs.
However, if an attacker can forge attestation reports for a small set
of K TEEs (a practical attack [49]), she can violate the correctness
of contracts computations. In contrast to these approaches, zkay
only relies on cryptographic primitives and thus provides stronger
security guarantees.

Zexe [14] introduces a decentralized private computation scheme.
Unfortunately, it uses non-standard function specification prim-
itives (so-called predicates) and does not discuss how these can
for example incorporate unbounded data structures or loops. In
contrast, our approach provides an explicit function encoding sup-
porting dynamic mappings and public loops.

Secure Multi-Party Computation. SMC hides the input of all
parties involved in a computation, providing data privacy by con-
struction. In practice however, SMC cannot scale to the number

of participants in public blockchains—recent SMC systems handle
only up to 150 parties [4, 51].

Still, zkay shares some aspects with high-level languages for
specifying SMC, such as restrictions on control flow and loops.
However, a key contribution of zkay is its compilation to NIZK
proofs (in contrast to SMC-based compilation).

Moreover, as we demonstrate in the following, while zkay’s type
system and privacy notion seem superficially similar to SMC-based
languages, they are technically different due to various blockchain-
specific challenges. First, SMCL [40], Wysteria [43], SecreC [13],
and ObliVM [36] distinguish public values (in cleartext) from pri-
vate values (readable by collaboration of multiple participants). In
contrast, while zkay also distinguishes public from private values,
the latter are private to their owner, the only participant who can
read them (a restriction reflected in zkay’s type system, see C2). We
note that SMCL and Wysteria support values stored at only one
participant, but subject to tampering. Second, SecreC and ABY [21]
annotate variables with privacy types indicating the protocol used
to represent and operate on this variable. In contrast, while zkay
also supports privacy types, they specify the variable’s owner. Third,
Fairplay [37], SecreC, and ObliVM do not support general loops
with private conditions. In contrast, zkay must additionally disallow
private computations in loop bodies. Fourth, like zkay, SMCL and
SecreC specify the expected leakage of computations by ideal-world
traces. However, zkay’s ideal-world traces are more fine-grained,
as they depend on the owner of variables.

Zero-Knowledge Statements as Programs. In TinyRAM [7, 9,
10], NP statements can be expressed as programs (instead of cir-
cuits) and efficiently verified in zero-knowledge. Compared to zkay,
TinyRAM also provides a form of data privacy (by hiding the NP
witness), but lacks a privacy type system and a blockchain-specific
privacy notion. While conceptually, zkay’s proof circuits could be
expressed as TinyRAM programs, there is currently no tool support
for their verification on Ethereum, confining us to using ZoKrates.

Privacy Policy Languages. JFlow [39] introduces information
flow annotations enforcing fine-grained and powerful access con-
trol. Jeeves [2, 55] and Jacqueline [54] are languages separating
core logic from non-interference policy specifications.

All three languages are substantially different from zkay as their
execution model assumes a trusted system enforcing these policies.

11 CONCLUSION

We presented zkay, a typed language using privacy types to specify
owners of private values. To enable running a zkay contract on
public blockchains, we transform it to a contract where values are
encrypted for their owner and correctness is enforced using NIZK
proofs, guaranteeing that transformed contracts preserve privacy
and functionality w.r.t. the specification contract. Solving four key
challenges when using NIZK proofs, our language disallows con-
tracts that cannot be realized (C1, C2), allows intuitively specifying
the contract’s logic (C3), and prevents implicit leaks (C4).

Our evaluation shows that transformed contracts are runnable on
the Ethereum blockchain at a moderate cost. Our approach demon-
strates that automatic compilation of high-level privacy specifica-
tions to low-level primitives for smart contracts is possible, setting
the stage for more research in this area.
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(External) Account Account owned by a human user

Address Value identifying an account

Caller Account calling a contract function
Transaction Contract function call by external account
Off-chain computation Locally on machine of caller

On-chain computation Publicly validated on blockchain

Secret arguments Values only known by the prover (see below)
Public arguments Public values parameterizing proof circuits
Proof statement/circuit Constraint on secret and public arguments
Proof Evidence that some secret args satisfy circuit
Zero-knowledge Only existence of secret arguments is leaked
Prover (Verifier) Algorithm generating (verifying) proofs

Figure 10: Brief summary of blockchain and NIZK terminology.

celrl T'te: T@me TIFL: r@all
T'tc:r@all Tt reveal(e, a): T@a TI'F L: T@all

T'lFL: 7@a « provably evaluates to caller
T'+rL: 7@me

priv-read

T'rte: @
Fg: [, i@a; — 1@a .
T'rtey: hn@ay

eval-native

Trg(er,...,en): T@a

Figure 11: Typing rules for expressions in zkay.

A BLOCKCHAIN AND NIZK TERMINOLOGY

Fig. 10 summarizes important terminology used in this work.

B TYPING RULES IN ZKAY

In this section, we discuss zkay’s type system. Because the typing
rules to derive data types are standard, we focus on privacy types.

B.1 Format of Typing Rules

We writeT'  e: t@a (resp. T |- L: 71@«) to indicate that expression
e (resp. location L) is of type 7@a under the typing context I'. We
write + g: H?:l 7i@a; — T@a to express that the jth argument
of a native function g is of type 7;@a;, and the return value is of
type t@a, where o, a1, . .., an € {me, all}. Allowing other privacy
types is not desirable, since functions should only be able to read
public arguments or arguments private to the caller, and the caller
should only be able to read public or self-owned return values.

We write I' % I” to indicate that statement P is well-typed and
transforms the typing context I to I/, capturing that P might declare
new variables and thereby modify the context.

B.2 Typing Rules

Expressions. In general, expressions can only be read if they are
public or private to the caller. We still allow expressions with pri-
vacy type a ¢ {me, all}, but our type system implicitly ensures that
such expressions can only be used as right-hand sides of assign-
ments (e.g., reveal (10, x) for x of type address@all).
Expression me has type address@all. The remaining typing
rules for expressions are shown in Fig. 11. The rule for constants ¢

indicates they are always public. Here, [ 7] denotes the set of values
with type 7. For example, [uint] denotes non-negative integers.
We provide the formal definition of [-] in §C.1.

The next rule describes how reveal (e, «) can be used to reveal
an expression e (private to the caller) to an arbitrary privacy type a.
This allows explicitly declassifying information to make it public
(by setting a = all), or reclassifying information for some other
owner o ¢ {me,all}. Note that in the latter case, the resulting
expression can only be used as a right-hand side of an assignment.

Though the privacy type of locations can be an arbitrary address,
when reading from a location L, it is crucial that L is readable for
the caller. In this case, we treat L as an expression and restrict its
privacy type to o € {me, all}.If the location is public, the expression
based on this location can be annotated as all. Otherwise, rule
priv-read enforces that the location is provably private to the
caller. We leverage Abstract Interpretation [20] to check whether a
can be proven to evaluate to the same value as me at runtime. If so,
the rule annotates the expression reading the location as me.

The rule eval-native for evaluating native functions is standard
(we discuss how to type native functions themselves shortly).

Privacy Types. A privacy type « is either an identifier id of type
address@all, me, or all. Although all is technically not an ex-
pression, we also assign it the type address@all for simplicity,
meaning that all privacy types are of type address@all.

Locations. Fig. 12 shows the typing rules for locations. The type
of identifiers is determined by the typing context.

For mappings, in order to avoid passing whole mappings to the
proof circuit later, we require mappings themselves and keys into
mappings to be public, and only allow individual mapping entries
to be private. For a general key type 7, each entry in the mapping
must be annotated with the same privacy type a, and reading the
entry at key e yields L[e] of privacy type a. For key type address,
we allow a to contain ‘id’, enabling the privacy types of the entries
of L to depend on the key. When reading L at key e, we syntactically
substitute ‘id’ by e in T@a. Because ‘id’ stands for a privacy type,
we require e to be either an identifier or me.

Statements. The rules for sequential composition and skip state-
ments are standard. A statement ‘t@ua id’ declares a variable of
type T@a, and its typing rule ensures that « in fact evaluates to a
public address:

Troa:address@all id¢T

id
r L8 T id: r@a

decl

We show typing rules for the additional statements in Fig. 12.
The typing rule for verifyy is included to express transformed
contracts and we assume that the original contracts never use a
verify, statement. The rule requires that the data types of the
provided arguments match the types of the first n arguments of ¢,
and that they are public. The proof circuit ¢ is a function taking
n + m arguments, the first n of which are publicly provided, and
the remaining m arguments are part of the proof eg. The data types
7j, 7] are restricted to primitive types (i.e., bool, uint, address, and
bin) to avoid passing whole mappings to verification.

The typing rule for assignments ensures that the data type of
the location L is consistent with the right-hand side expression e.



x:tT@a €T T Ik L: mapping(7 => 7’@a)@all T e: r@all

T I L: mapping(address!id => r@a ) @all id¢T

T+ e: address@all (e=id" V e =me)

Tl x: t@a T'lF Lle]: T’@a

T'lF Lle]: r@alid - e]

Figure 12: Typing rules for locations.

TFL:t@a Tre:t@a’ (x=a'Va =all)

T'F e: bool@all

L=e require(e)
AANAAAAANSS

r~~T T

¢: (T Leal X T172, [771) = {0, 1)
T+ ey: bin@all Tk e m@all

Ti, T]f primitive
T'ten: tpn@all

verify (eg,e1,....,en)

T

Figure 13: Typing rules for selected statements in zkay.

We allow the privacy type of L to be different from the privacy type
of e only if e is public. Hence, we allow implicit classification of a
public value for any owner, but forbid implicit de- or reclassification.
Assignments can be used in combination with reveal expressions
to write explicitly reclassified information.

Functions and Contracts. The return value of native functions
g(e1, ..., en) is conservatively typed private if at least one of the ar-
guments e; is private to the caller, and public otherwise. We provide
multiple signatures for different argument privacy types. The signa-
tures are of the form r1@a; X - - - X 1, @, — 7@ min(ay, . . ., an),
where min returns all if and only if all its arguments are all, and me
otherwise. For example, e1? ey : e3 takes a condition (bool) and two
numbers (uint), and returns a number (uint). Hence, the following
pattern captures all possible signatures of this native function:

bool@a; X uint@ay X uint@as — uint@ min(ay, az, as).

The data types of native functions are as follows. The public key
infrastructure pk takes an address (address) and returns the public
key of that address (bin). The rules for unary (6) and binary (&)
arithmetic and boolean expressions are standard.

A function defined in a contract is well-typed if its body P is
well-typed in a context including all contract fields and arguments.
Like for native functions, its arguments and return value must have
a privacy type in {all, me}.

A contract C is well-typed if all its functions are well-typed
(under the context induced by the fields of C), and all privacy anno-
tations of its fields are all or public addresses declared as final.

C FORMAL SEMANTICS

In this section, we provide formal semantics for zkay.

C.1 Semantics of Types

For each data type 7, we define the set [7] of values a variable of
type 7 may assume. For example, [uint] = [0, 232 — 1], [bool] =

{true, false}, and [address] = {0, 1}*. Further, [bin] consists of
symbolic representations for keys, ciphertexts, proofs and encryp-
tion randomness. Symbolic public and secret keys are of the form

Pk(a) and Sk(a), for an address a. The semantics of mapping (73 =>73)
is given by a partial function from [z;] to [72]l. For example, a

value of type mapping (uint => uint) is {1 — 4,2 > 4}. Reading a

mapping for an uninitialized key yields undefined behavior.

C.2 Semantics of Contexts

A typing context I' contains typed variables and contract fields. Its
semantics [T']] describes the set of all possible states with respect
to the typed variables and contract fields contained in it. For in-
stance, the context I’ = {x: mapping(uint => uint@all), y: uint}
contains the state 0 = {x — {1 — 2},y — 2} To update a state o,
we write o[l < v] for a runtime location [ and value v.

C.3 Semantics of Language Constructs

Fig. 14 summarizes notation
for the semantics of language
constructs. All executions
(i) start from a state o € [T],
where T is the typing con-
text at the beginning of the
execution, and (ii) produce a
trace t. Evaluating a location
L yields a runtime location .
Evaluating an expression e yields a value v. Evaluating a function
F requires a starting state o (providing values for contract fields)
and function arguments (v1, . .., vp). It results in an updated state
o’ and a return value v. Executing a statement returns a state o”’.
Finally, executing a transaction on state o (providing values for
contract fields) results in an updated state o’ (also providing values
for contract fields) and a return value v.

t
Locations (L,o) I 1

Expressions (e, o) AN v
(F. 0, v1n) 5 (0, 0)
(Po) s o

t
Transactions (T, ¢)= (o', v)

Functions

Statements

Figure 14: Notation for semantics.

Exceptions. Executions in zkay may throw exceptions, captured

by setting the right-hand side of the semantic rule to fail. For exam-

) L . 1,0, fail
ple, the semantics of a division-by-zero expression is (1/0, o) ———

fail. Analogously, we set [, v or ¢’ to fail to indicate exceptions
for other constructs. Thrown exceptions stop the execution of a
given transaction.

Locations. For location evaluation, the trace t ends with the run-
time location annotated with privacy level all, reflecting the fact
that the location of a write cannot be hidden. Identifiers need not

id@all
be evaluated further, hence their semantics is (id, o) |—> id.

Further, Fig. 15 provides semantics for mapping lookups.

Expressions. Our expressions do not support side-effects (allow-
ing them is straightforward, but would clutter our presentation).
In general, the trace t when evaluating expression e contains (as
its last entry) the value v resulting from evaluating e, with privacy



t ty n ty
(Lyoyl—1 (a,0)r>a (L,o)I> 1 (e,o)— v

o (me)@all I3t ty
(me, 0) ———— o (me) c@all (e, 0)— v (a,0)r>a
all@all (e, o) ¢
(all, o) — all

(reveal(e, ), o)

t, 13, v@a
—_

ty, 1y, l[v]@all
(L[e], o) ———"—> I[v]

t,t,0(l)@a

(L, o) ————— o (I)

Figure 15: Semantics for selected expressions and locations. For location reads, we assume that L is typed according to Fig. 11.

level a based on the privacy type of e. Assuming the privacy type
of e is &, we determine the privacy level a of v by evaluating a.

Fig. 15 provides semantics for selected expressions. While all is
not technically an expression, providing semantics for it enables us
to evaluate privacy types a. For location reads, the rule determines
the privacy level a of the value at location [ by evaluating .

Functions. The semantics of native functions g(e, . . . , ep) is stan-
dard (and thus omitted). The trace of the evaluation only consists
of the return value and the traces of evaluating the arguments.

Fig. 16 describes the semantics of contract functions. A function
specified in contract C (i) keeps only the contract fields and the caller
field me from the current state o (indicated by o[C]), (ii) extends the
resulting state o[C] with all arguments (indicated by idi.p, < v1.n),
(iii) runs the function body P, resulting in state ¢”, and (iv) evaluates
e, resulting in value v. Then, it (v) updates o with the contract fields
from ¢’ (indicated by ¢[C « ¢’[C]]) and (vi) returns v.

Statements. Fig. 17 shows the semantics of selected statements.
For verify, it checks whether p is a NIZK proof certifying that there
exist private values v such that ¢ evaluates to 1 when applied
to the values of the public expressions ej, . . ., e, and the private
values v}, . An analogous rule (not shown) throws an exception if
any of the preconditions does not hold.

The semantics for the remaining statements is mostly straight-
forward. Sequential composition propagates exceptions to the end
of the program. For example, if P; fails, we skip P,, and directly
return fail. For require(e), we leave the state unchanged if e
evaluates to true. Otherwise, we throw an exception.

Transactions. Ina transaction, an account a calls a function f ofa

contract C, using arguments vy, . . . , v, Written as Txg) (v1,...,0n).

Fig. 18 shows the semantics of transactions. The rule T- ok (i) looks
up f in C by C[f7], (ii) runs F on the current state (extended with
the caller address a stored under me) and the provided arguments,
resulting in a new state o’ and a return value v and (iii) returns
the result v and updates the state to ¢’[C], only keeping contract
fields in C. The resulting trace contains (i) C publicly, (ii) f pub-
licly, (iii) the caller address publicly, (iv) all public arguments, (v) all
private arguments, and (vi) the trace of running f (which includes
the final return value v). If F throws an exception, it triggers rule
T-fail, which rolls back the state to the o and returns fail.

D PRIVACY OF TRANSFORMATION

In this section, we prove Thm. 2. We consider privacy for honest
and dishonest callers separately. In both cases, the simulator has
access to the contract code C and hence to C (as the transforma-
tion is deterministic). To simplify the proof, we assume that the
specification contract C does not perform NIZK proof verification.

D.1 Privacy for Honest Callers

Let A be an arbitrary attacker. We now construct the simulator Sim
for honest caller transactions. Let ¢ be a state in C that is equivalent

_ t
to some o in C as defined in §6 and assume (T, c) = (¢’,v) for

N A - =
some T, t, o', v # fail and (T, o) = (c’,v) for some t, o', 0. We
show how Sim constructs a trace t indistinguishable from ?, given
o, 1" := obs #(t) and the contract code of C.

Simulating Encryptions and NIZK Proofs. We first describe
how Sim can simulate (meaning, produce values indistinguishable
from) NIZK proofs and encrypted values occurring in ¢ by providing
four simulation procedures (S1-54).

(S1) Encryptions created by honest for honest accounts. Sim simu-
lates encryptions of the form Enc(m, R, Pk(a)) for some m, R € Rpqp,
and a ¢ A by computing Enc(0, R’,Pk(a)) for some fresh honest
randomness R’ € Ry, and constant 0. Because R’ # R (since R’ is
fresh), the two values are indistinguishable by (ii) in §6.1.

(S2) Encryptions created by honest for dishonest accounts. Such
encryptions have the form Enc(m, R, Pk(a)) for some m, R € Rpgn
and a € A. If the simulator knows m, it can simulate the encryption
by creating Enc(m, R’, Pk(a)) for some fresh randomness R’ € Rop-
The two values are indistinguishable by (iii) in §6.1.

(53) Encryptions created by dishonest accounts. Such encryptions
have the form Enc(m, R, Pk(a)) for some m, R € R,4, and some
address a. Because the caller is honest, such encryptions cannot be
part of transaction parameters and only occur in 7 if they are part
of o. Hence, the simulator can simulate these values by copying
them from o. The copied values are indistinguishable by (i) in §6.1.

(54) NIZK proofs. Given v1.p, a valid proof Proof¢ (R; v1:m; v{:m)
can be simulated by constructing SimPr(R’; v1:) for fresh R €
Rhon- These proofs are indistinguishable by (iv) in §6.1.

Simulating the Real World Trace. Transforming C to C leads to
the following structural changes: (i) additional function arguments
are introduced, (ii) private composite and declassified expressions
are replaced by such function arguments, and (iii) NIZK proof
verifications are introduced at the end of each (private) function.

Because all control flow conditions in C are readily available in
t* (they are public), Sim can follow the control flow of transaction
T in C. Next, we will show how Sim can simultaneously track the
(identical) control flow in C and build 7, by respecting the three
changes (i-iii) described above and simulating encryptions and
NIZK proofs using S1-54.

Creating a trace indistinguishable from  requires consistently
reproducing repetitions of equal values (see the bijection 7 in the
definition of trace indistinguishability, §6.1). Sim can track the
runtime locations accessed in C because it knows the code of C and
all used mapping keys are available in t* (they are public by the
type system). Hence, in the following, Sim can produce consistent
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Figure 16: Semantics for contract functions.
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Figure 18: Semantics for transactions. Here, the privacy level ¢; is all if the i-th
Figure 17: Semantics for selected statements. aroyument is public, and a otherwise.

Typed by Fig. 12, where « is the privacy type of L.

repetitions by remembering previously simulated values for each
runtime location.

We now describe how Sim extends ; when following T in C step
by step. All entries in t are public and, to avoid notational clutter,
we will omit the privacy level @all from simulated trace entries
in the remainder of the proof.

Start (transaction): The start of t is simulated by copying the be-
ginning of t*, where arguments private to honest accounts (which
are hidden in t*) are replaced by simulations using S1, and argu-
ments private to dishonest accounts (whose plaintext is available
in t*) are replaced by simulations using S2. Transformation may
have introduced three kinds of additional function arguments in
C, which are simulated as follows. (i) Private arguments: Similarly
as the other private arguments, they are simulated using S1 and
S2. (ii) Public arguments: Such an argument may only have been
introduced by transformation as a result of transforming a declas-
sification (see Fig. 5e). Hence, its plaintext is always contained in
trace t*, namely in the part where the declassification is evaluated,
and can be copied by Sim. (iii) NIZK proof: Since the caller is honest,
the proof is valid. The public arguments of the proof are available
at the end of * where the arguments for verify (which are public
by the type system) are evaluated. Knowing the public arguments,
Sim uses S4 to simulate the NIZK proof.

Variable declarations, skip statements: Trivial to simulate.

Private Expressions: Private composite expressions are substi-
tuted by encrypted function arguments v; during transformation. If
the expression is private to an honest account in C, accessing v; in
C is simulated by S1. Otherwise, its plaintext value is available in t*
and accessing v; can be simulated by S2. The only non-composite
private expressions are private locations. Reading from these is sim-
ulated analogously, however, they may also contain encryptions
generated by dishonest accounts, which are simulated by S3. Fur-
ther, reading mapping entries involves resolving (public) mapping
keys, which is simulated as described next.

Public Expressions: Evaluation of public expressions is simulated
by copying the corresponding parts of * and simulating evaluation

of any (potentially private, due to declassification) subexpressions.
Resolving any mapping keys is simulated recursively.

Assignments: First, evaluating the runtime location of the assign-
ment’s left-hand side is simulated by copying the respective parts
from t* (runtime locations are always public in C due to the type
system) and simulating evaluations of any mapping keys using
expression simulation described before. Then, evaluation of the
right-hand side expression is simulated as described before.

Require: The evaluation of the condition expression is simulated
as described before. Because T is assumed to not throw an exception,
it passes all require statements.

While: Since while-loops are enforced to be fully public by the
type system, the corresponding part in t* does not contain any
hidden values. Transformation does not change loops and Sim
simulates them by copying the corresponding parts in ¢*.

If-then-else: The evaluation of the condition is simulated as de-
scribed before. Because the condition is enforced to be public by the
type system, we can determine the branch which is being executed
by inspecting t* and simulate that branch as described above.

End (proof verification): The transaction T ends with verifying
the NIZK proof. The trace of evaluating the proof and all other
arguments to verifyy is simulated by the expression simulation
described above. Further, Sim emits the trace entry 1@all to signify
successful verification (because the caller is honest, the verify,
statement is guaranteed to not throw an exception in T). Note that
no trace needs to be simulated for evaluating the proof circuit ¢
during verification in T (see Fig. 17).

D.2 Privacy for Dishonest Callers.

Let A be an arbitrary attacker and consider an arbitrary transaction

T’ issued on C by the attacker such that (T”, 5) =t> (c’,v) for some
t,0’, 0. The trace t can easily be simulated by the attacker by locally
running the execution steps of T’ on C and initial state 7, because
no additional input by any honest account is required.
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