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ABSTRACT
Privacy concerns prevent the adoption of smart contracts in sensi-
tive domains incompatible with the public nature of shared ledgers.

We present Zapper, a privacy-focused smart contract system
allowing developers to express contracts in an intuitive frontend.
Zapper hides not only the identity of its users but also the ob-
jects they access—the latter is critical to prevent deanonymization
attacks. Specifically, Zapper compiles contracts to an assembly lan-
guage executed by a non-interactive zero-knowledge processor and
hides accessed objects by an oblivious Merkle tree construction.

We implemented Zapper on an idealized ledger and evaluated
it on realistic applications, showing that it allows generating new
transactions within 22 s and verifying them within 0.03 s (excluding
the time for consensus). This performance is in line with the smart
contract system ZEXE (Bowe et al., 2020), which offers analogous
data and identity privacy guarantees but suffers from multiple
shortcomings affecting security and usability.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; Cryptogra-
phy; Pseudonymity, anonymity and untraceability; • Software and
its engineering→ Domain specific languages.
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1 INTRODUCTION
Smart contracts allow modifying the state maintained by a shared
ledger according to well-defined logic. The most widely used ledgers
are permissionless (i.e., open to anyone) and hence allow anyone to
observe the state and all state changes. This lack of privacy prevents
the deployment of smart contracts in potentially sensitive domains
such as payments, voting, and medicine.
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Privacy for Cryptocurrencies Privacy issues of shared ledgers
are particularly well explored in the context of cryptocurrencies. Bit-
coin is notoriously vulnerable to deanonymization attacks, which
identify the sender of individual transactions by tracing coins [47].
Even privacy-focused cryptocurrencies like Monero [45] are vul-
nerable to coin tracing attacks [34, 44].

To prevent privacy leaks, Zerocash [48] (commercially deployed
as Zcash [33]) cryptographically shields all sensitive aspects of
its transactions. Specifically, it leverages an oblivious Merkle tree
construction to hide the sender and receiver of a coin, as well as
which coin was transferred.

Privacy for Smart Contracts While Zerocash provides strong
privacy guarantees, it is not programmable. In contrast, almost
all programmable ledgers expose their users to deanonymization
attacks or require strong trust assumptions (see §12). The only
exception is ZEXE [14], which reliably prevents deanonymization
attacks. Conceptually, ZEXE extends Zerocash to programmable
records (units of data generalizing the concept of a coin) produced
and consumed by transactions. ZEXE inherits the strong privacy
guarantees of Zerocash, protecting not only the sender’s identity,
but also the involved records, their data, and the logic itself.

Shortcomings of ZEXE Unfortunately, ZEXE suffers from mul-
tiple shortcomings (see §11 for details). First, its applications are
prone to vulnerabilities, to the point where even the original au-
thors missed two attacks (presented in §11) on their motivating
example. Further, the prevention of one attack as recommended
by the authors requires the smart contract programmer to be in-
timately familiar with the combination of zero-knowledge proofs
and key-private public-key cryptography. Second, ZEXE obstructs
modular development of applications, as cooperating contracts
must typically be aware of each other to prevent future, malicious
contracts from bypassing the logic of existing contracts. Third, de-
ploying a new application on ZEXE requires a setup performed by
a trusted party to ensure the contract logic cannot be bypassed.
Finally, ZEXE relies on a non-standard and low-level programming
model in terms of predicates, which is unfamiliar to most developers.

This Work: Privacy-preserving Smart Contracts We present
Zapper, a novel privacy-focused smart contract system. Zapper
allows developers to implement smart contracts in an intuitive,
Python-embedded frontend with a standard programming model
similar to Ethereum. It provides data and identity privacy by hid-
ing the involved parties, the data, and the objects accessed in a
transaction. Additionally, Zapper achieves correctness (transac-
tions respect the contract logic), access control (malicious contracts
cannot bypass the logic of other contracts), integrity (transactions
cannot be tampered with or replayed), and availability (valid trans-
actions are not rejected), thus preventing the vulnerabilities found
in ZEXE applications.

https://doi.org/10.1145/3548606.3560622
https://doi.org/10.1145/3548606.3560622
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Approach Our key technical insight is to leverage a novel combi-
nation of an oblivious Merkle tree construction and a non-interactive
zero-knowledge (NIZK) processor. Our oblivious Merkle tree con-
struction hides the accessed objects and relies on techniques from
Zerocash [33, 48] and ZEXE [14], adapted to our context and avoid-
ing the vulnerabilities of ZEXE applications.

Our NIZK processor performs provably correct state updates
without revealing private information, and is inspired by a separate
line of work [7–9]. In contrast to ZEXE, using a NIZK processor
avoids requiring a trusted party for deploying new contracts. To
execute contracts on this processor, Zapper compiles them to a
custom assembly format. Importantly, it sandboxes contracts by
limiting their interactions to function calls. This access control
facilitates modular development of contracts.

We note that selecting and combining these techniques to form a
private, efficient, and secure smart contract system is a challenging
task, as evidenced by the shortcomings of ZEXE (see also §11).
Contributions To summarize, our main contributions are:
• Zapper, a system to express private smart contracts (§2),
• a compilation to our custom assembly language (§3),
• a cryptographic construction to maintain and efficiently update

the Zapper system state (§4–§6 and Fig. 3) while satisfying key
security properties (§7),
• an end-to-end implementation1 of Zapper (§8), and
• a thorough evaluation demonstrating that Zapper is efficient (§9).

2 OVERVIEW
In this section, we provide an overview of Zapper.

2.1 Running Examples: Coin and Exchange
Fig. 1 shows implementations of a coin (Fig. 1a) and a decentralized
coin exchange (DEX; Fig. 1b) in our Python-embedded frontend.
Coin A coin consists of an amount (Lin. 2), a currency (Lin. 3),
and an owner identified by an address (Lin. 4, discussed shortly).

Users can issue a transaction to call a function of the coin. For
example, the transfer function (Lin. 17) transfers the coin to a
new owner by overwriting the owner field (Lin. 19). Here, Lin. 18
rejects (i.e., aborts and reverts) the transaction unless the sender
(the address of the account used to create the transaction) is the
coin’s owner. The expression self indicates the receiver object of
the transaction, while self.me holds the address of the sender.

Function split (Lin. 21) splits the coin into two coins while pre-
serving the total amount. The function merge (omitted) merges two
coins. Here, Lin. 24 decreases the amount of the original coin by a,
while Lin. 25 creates a new coin with amount a via the constructor
create. To prevent users from creating coins “out of thin air,” the
create function is marked as internal (Lin. 7), meaning that it can
only be called from within the Coin class. The only non-internal
constructor is mint (Lin. 13), which creates a new currency with
a fixed total amount. This function leverages the built-in fresh()

expression (Lin. 14) to obtain a fresh currency identifier. This iden-
tifier is guaranteed (with overwhelming probability) to be unique,
preventing the minting of pre-existing currencies.

1The source code is publicly available at https://github.com/eth-sri/zapper.

Ownership To ensure that Zapper objects are private, Zapper en-
crypts them under the public key of their owner, which is stored in
a dedicated owner field implicitly available in every class (see Lin. 4).
Specifically, owner holds the public key pkα (serving as the address)
of an account α . Only users with access to the corresponding secret
key skα can read the contents of the object or interact with it.

DexOffer and Object Ownership Class DexOffer allows a maker

to offer an exchange of a given coin (Lin. 29) for another coin of a
specific amount and currency (Lin. 30).

Fig. 1c visualizes an example usage of DexOffer. Initially, Alice ( )
and Bob ( ) own one dollar (1$) and one euro (1€) coin, respectively.
To offer a coin exchange, Alice first creates a shared user account ( )
and distributes its key pair (skshared, pkshared) to anyone she is
willing to trade with, including Bob. Then, she creates a DexOffer

object dex by calling create (Lin. 34), using her own account as the
sender and passing (i) the public key of the shared account, (ii) her
coin, and (iii) the expected amount of 1€ to be received in return.

To ensure that Alice cannot spend her coin while the offer still
stands, Lin. 40 changes the coin’s owner to dex by calling transfer.
To this end, DexOffer is annotated as @has_address, which indicates
that its instances are assigned their own object account and can
therefore own other objects. Specifically, the address of dex is avail-
able via self.address (see Lin. 40). Note that two public keys are
relevant to dex: while dex is owned by pkshared , the 1$ coin is
transferred to dex using dex’s own key pkdex (middle of Fig. 1c).

As transfer updates the owner of the 1$ coin to dex, Alice can
no longer use her own account to spend it. However, the secret key
skdex of dex is stored as part of dex, allowing Alice and Bob (who
know skshared) to access it. To prevent both users from spending
the coin, Zapper prohibits object accounts to be used as sender
accounts for a transaction. Thus, once the coin is transferred to dex,
the require statements in Lin. 18 and Lin. 22 of Coin prevent Alice
and Bob from interacting with the coin directly, even though they
know the secret key skdex of the coin’s owner. Instead, Alice and
Bob must interact with the coin via dex as follows.

To accept the offer, Bob calls accept, using his own account as
the sender and passing his 1€ coin (checked in Lin. 44–45). The
function transfers the 1$ coin to Bob (Lin. 47) and Bob’s 1€ coin to
Alice (Lin. 51). By default, the sender address self.me is inherited
in a nested function call: in Lin. 51, the call to transfer uses Bob
as the sender. However, because the 1$ coin is owned by dex, the
call in Lin. 47 sets the sender_is_self flag (a reserved argument
implicitly defined for any function), which sets the sender address
inside transfer to dex. Finally, Lin. 52 in accept destroys dex and
makes it inaccessible to future transactions.

If Bob refuses to accept the offer, Alice can reclaim her 1$ coin
owned by dex by calling abort (omitted). Further, to prevent unex-
pected privacy leaks, the owner of an object with its own address
(@has_address) cannot be modified after construction (see §7).

Discussion The decentralized exchange application implemented
in Fig. 1 is inspired by [14, §V] and captures an important practical
use case. In particular, DexOffer allows exchanging coins without
handing over custody of coins to trusted centralized exchanges,
which are notoriously vulnerable to attacks [46, 56]. Further, its pri-
vacy properties (discussed shortly) hide the most sensitive aspects of
trading patterns (most importantly, the user identity and involved

https://github.com/eth-sri/zapper
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1 class Coin(Contract):
2 amount: Uint
3 currency: Long
4 # owner: Address (declared implicitly)
5

6 @constructor
7 @internal
8 def create(self, amt: Uint, c: Long, o: Address):
9 self.amount = amt; self.currency = c

10 self.owner = o
11

12 @constructor
13 def mint(self, amt: Uint):
14 self.amount = amt; self.currency = self.fresh()
15 self.owner = self.me
16

17 def transfer(self, recipient: Address):
18 self.require(self.owner == self.me)
19 self.owner = recipient
20

21 def split(self, amt: Uint) -> Coin:
22 self.require(self.owner == self.me)
23 self.require(self.amount >= amt)
24 self.amount -= amt
25 return self.new_obj(Coin.create, amt,
26 self.currency, self.me)

(a) Coin class
27 @has_address
28 class DexOffer(Contract):
29 maker: Address; coin: Coin
30 for_amount: Uint; for_currency: Long
31 # owner: Address (declared implicitly)
32

33 @constructor
34 def create(self, shared: Address,
35 coin: Coin, a: Uint, c: Long):
36 self.maker = self.me; self.coin = coin
37 self.for_amount = a
38 self.for_currency = c
39 self.owner = shared
40 coin.transfer(self.address)
41

42 def accept(self, other: Coin):
43 self.require(
44 other.amount == self.for_amount and
45 other.currency == self.for_currency
46 )
47 self.coin.transfer(
48 self.me,
49 sender_is_self=True
50 )
51 other.transfer(self.maker)
52 self.kill()

(b) DexOffer class (c) Example usage

Figure 1: Zapper classes modeling a coin (a) and a decentralized exchange (b), inspired by [14, §V], including an example usage (c).

amounts), thus preventing attackers from exploiting these [24].
See [14] for a more elaborate discussion.

While in our example, the maker shares the offer details with
all potential traders, the application can also be instantiated dif-
ferently to provide more privacy. For example, the maker could
share skshared only with a centralized order book service which
then connects potential trading partners. Further, the maker can
remain anonymous by first creating an ephemeral user account and
then transferring the offered coin to this account before creating
dex. Once dex is accepted, the maker can privately transfer the
received coin back to its original account.

2.2 Security Properties Guaranteed by Zapper
We now discuss the security properties ensured by Zapper.

Privacy Zapper ensures identity privacy: For every transaction,
it hides the sender address (i.e., the value of self.me). This avoids
revealing the Coin owner and hides the trading patterns of users.

Zapper also ensures data privacy: First, the values of all object
fields are only visible to users knowing the owner’s secret key. For
example, only these users can see a coin’s amount, and only users
with access to skshared can see the details of dex. Second, function
arguments and return values of a transaction are only visible to the
user creating the transaction. Importantly, this includes the identity
of the receiver object (i.e., the value of the self argument). In our
example, this ensures that coins cannot be tracked: it is hidden
which of the coins in the system is modified by a transfer transac-
tion. This is critical because revealing the receiver object enables
tracing attacks which can compromise the sender’s identity [44].

Correctness Zapper ensures that the logic defined in function
bodies cannot be violated at runtime. Combined with access control

(discussed next), this ensures that the behavior of a coin is com-
pletely defined by its implementation, even if used by untrusted
users or code. For example, Coin ensures that the total amount of
all coins of a specific currency remains constant after minting.
Access Control Zapper classes are subject to access control, which
ensures that correctness cannot be violated by other, potentially
malicious, classes. First, as discussed in §2.1, calls to internal func-
tions are only permitted from within the same class. Second, the
fields of an object can only be written from within a function of
the same class, forcing any state changes to be performed via the
function interface. For example, DexOffer cannot directly update
the owner of a coin but must use the transfer function instead.
Integrity and Availability Finally, Zapper ensures that trans-
actions cannot be tampered with or replayed (integrity), and that
valid transactions are not rejected (availability). In our example,
availability ensures that the recipient of a coin is guaranteed to
have access to it after transfer has been executed.

2.3 Zapper Components
We now discuss the two main components of Zapper. The Zapper
client allows users to create classes and transactions. The Zapper
executor stores classes and objects, and executes transactions.
Ledger While users run the Zapper client on their local machine,
the Zapper executor runs on top of a shared ledger, whose consensus
mechanism maintains a globally consistent view of the system state.
The realization of such a ledger is out of the scope of this work—
Zapper is ledger-agnostic and could for instance be deployed on an
extension of the Zcash [33] ledger, which maintains data structures
similar to Zapper.
Assembly Code Before submitting a new Zapper class to the Zap-
per executor, the Zapper client compiles it to a custom Zapper
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1 class Coin:
2 amount: Uint
3 currency: Long
4

5 def transfer(self, arg: Address) -> None

6 CID tmp0 self # tmp0 ← class id of self

7 EQ tmp1 tmp0 ’Coin’ # tmp1 ← tmp0 == 'Coin'

8 REQ tmp1 # reject unless tmp1 == 1

9 LOAD tmp2 self ’owner’ # tmp2 ← self.owner

10 EQ tmp3 tmp2 me # tmp3 ← tmp2 == me

11 REQ tmp3 # reject unless tmp3 == 1

12 STORE arg self ’owner’ # self.owner ← arg

13

14 ... # other functions

17 def transfer(self, recipient: Address):

18 self.require(self.owner == self.me)

19 self.owner = recipient

Figure 2:Zasm representation of Coin, using named registers for the
sender (me), receiver (self), temporaries (tmpx ), and arguments (arg).

Figure 3: State maintained by the Zapper executor. New transac-
tions insert the darker rectangles and update the rounded circles.

assembly language (Zasm) format. Zasm code consists of instruc-
tions for a (virtual) processor ran when executing a transaction.

For example, Fig. 2 shows the Zasm code of Coin, focusing on
function transfer. Lin. 6–8 perform a type check of self. This step is
necessary to prevent malicious users or code from passing a receiver
of non-Coin type to transfer and thereby bypassing Zapper’s access
control. Here, CID loads the class id (a number identifying the class)
of self into a temporary register tmp0. The EQ instruction stores 1
into tmp1 if and only if the two arguments are equal (0 otherwise),
where 'Coin' represents the class id of Coin in a readable fashion.
Next, Lin. 9–11 ensure that only the coin owner can transfer coins
(see Lin. 18 in Fig. 1a), where 'owner' represents the numerical offset
of field owner in Coin. Finally, Lin. 12 updates the coin’s owner.
Assembly Storage The Zapper executor stores Zasm code in an
assembly storage. It enforces access control by inferring the type of
registers in Zasm code and then checking whether the code respects
the relevant access control policies. For instance, Zapper checks
that internal functions are only called from within the same class
and that only fields of the same class as self are written by STORE.

In order to verify whether potentially untrusted Zasm code
matches a trusted Zapper Python class, users can separately com-
pile the class and check equality of Zasm code (analogously to how
EVM bytecode is checked to match Solidity code in Ethereum).
System State Fig. 3a visualizes the system state maintained by
the Zapper executor. In particular, objects are stored in an object

tree T . More precisely, the data of an object is encrypted under the
owner’s public key to obtain a record. The records representing the
current and past states of any object in the system are stored as
leaves in T , which is an append-only Merkle hash tree [41] whose
root β is a cryptographic summary of the object states.

Zapper further maintains two auxiliary data structures. First,
to invalidate records accessed by transactions (see shortly), Zap-
per uses an append-only list of unique serial numbers. Second, an
append-only list of unique seeds allows various components of Zap-
per to produce provably unique values. For instance, these seeds
are used to compute values returned by fresh() (Lin. 14 in Fig. 1a).
Transactions The Zapper client allows users to execute a func-
tion f of a previously registered Zasm classC by sending a transac-
tion to the Zapper executor (see Fig. 3b). Conceptually, this transac-
tion executes the Zasm instructions ofC . f on the Zapper processor
and updates the state of the involved objects by inserting new
records into the object tree. To invalidate the previous state of the
objects accessed (by reads or writes) in the transaction, the transac-
tion includes a list of serial numbers which uniquely but privately
indicate the accessed records. Enforcing the uniqueness of serial
numbers then ensures that each record is accessed at most once.
Similarly, a unique seed is produced uniformly at random.

Importantly, the unique seed, serial numbers, and new records do
not leak any information about the data, objects, or users involved
in the transaction, thus maintaining both data and identity privacy.
Ensuring Correctness The user also includes a NIZK proof Π in
the transaction to certify that the new records and serial numbers
were computed correctly. This proof is verified by the Zapper ex-
ecutor, which upon success inserts the records, serial numbers, and
unique seed into the object tree, serial number list, and unique seed
list, respectively (Fig. 3).

3 ASSEMBLY CODE
Next, we provide details on the Zasm code generated by the Zapper
client (§3.1). Then, we discuss how this code is processed by the
Zapper executor before storing it in the assembly storage (§3.2).

Overall, Zasm allows to enforce access control via type checking
and is designed to enable efficient execution on a NIZK processor.

3.1 Assembly Code in Client
The Zapper client compiles classes expressed in Zapper’s Python
frontend to Zasm code. As this step is conceptually straightforward,
we only discuss the resulting Zasm code.
Types and Values Zasm code contains type information. Sup-
ported types include unsigned integers (Uint), addresses (Address),
and pointers to objects. For technical reasons (see Footnote 2 in §6),
values produced by fresh() are of the special large unsigned integer
type Long precluded from arithmetic operations.

All values are elements of a prime field Fq = {0, . . . ,q − 1} for a
large prime number q, allowing for efficient correctness checks of
processor execution (see §8). Pointers to an object hold the object’s
object id—a unique identifier in Fq assigned to each object.
Classes and Instructions The Zasm code of a class defines its
fields and functions, including the types of fields, function argu-
ments, and return values (see Fig. 2). Further, function bodies are
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Table 1: Zapper-specific Zasm instructions.

REQ c Aborts transaction if reg[c], 1
LOAD d oid i Loads i-th field of object with id oid into reg[d]
STORE s oid i Stores reg[s] into the i-th field of object with id oid
CID d oid Writes the class id of object with id oid to reg[d]
PK d oid Writes the public key of object with id oid to reg[d]
NEW d cid Creates a new object with class id cid and writes its

object id to reg[d]
KILL oid Destroys the object with id oid
FRESH d Writes a unique secret value to reg[d]
NOW d Writes the current timestamp to reg[d]

represented by a sequence of Zasm instructions. In Tab. 1, we list
the key Zasm instructions—due to lack of space, the table omits
standard generic instructions (see App. A.1 for the full instruction
set). The instruction set has been specifically designed to allow for
efficient generation of NIZK correctness proofs (see §6).
Registers Zasm code operates on named registers reg, each hold-
ing a value in Fq . The sender address (self.me in Zapper’s frontend),
and function arguments are available in dedicated registers.
Basic Operations Zasm supports standard arithmetic (+,−, ·),
comparison (<,=), and conditional assignment operations (assign-
ing some value to a register iff a condition is true). Comparison
operations return a value 0 or 1 interpreted as false or true, re-
spectively. Zapper can express boolean operations by arithmetic
operations (e.g., a && b = a · b). Operation REQ enforces assertions.
Loading and Storing Object Data Zasm provides object-aware
memory instructions to access objects by their object id. While this
prohibits advanced techniques such as pointer arithmetic, it enables
efficient access of object data within NIZK proof circuits (see §6).

For instance, the LOAD instruction first finds the object with object
id oid and then loads the i-th field into the target register reg[d]

(during compilation, each field of a class is assigned a numerical
offset). The STORE instruction works analogously. Zasm further al-
lows accessing object metadata. First, the CID instruction gets the
class id of an object. This is useful to realize runtime type checks:
for example, Lin. 6–8 in Fig. 2 ensure that self is a Coin. Second, PK
returns the object’s own address (public key) if it has one.
Creating and Destroying Objects The NEW instruction stores the
object id of a new object of a given class into a target register.
Subsequent STORE instructions can then be used to populate the
fields of the new object. Conversely, the KILL instruction destroys a
given object, making it inaccessible for future instructions.
Fresh Values and Timestamps The FRESH instruction creates
and stores a unique secret value into a target register (see fresh()).

The Zapper executor maintains a clock at coarse granularity. The
NOW instruction stores the current timestamp into a target register.
Function Calls Function calls are represented by a special CALL
instruction indicating (i) the called function, (ii) the sender_is_self

flag determining whether the sender is set to self.address or inher-
ited, and (iii) the arguments, including the receiver object id.
Control Flow To allow for efficient generation of NIZK correct-
ness proofs (§6), Zasm code does not support control flow, jumps,
loops, or operations modifying Zasm instructions at runtime (i.e.,

we assume a Harvard architecture). In particular, Zasm instructions
are always executed in the given order.

However, by representing if-then-else using conditional assign-
ments and statically unrolling loops up to an upper bound, most
smart contracts can be expressed in Zasm.

3.2 Assembly Code in Executor
When the Zapper client registers a new Zasm class at the Zapper
executor, the latter ensures it does not violate access policies and
prepares it for execution on the Zapper processor.
Malicious Code Zasm code received at the Zapper executor can-
not be trusted, since an attacker could try to craft malicious Zasm
code bypassing the logic specified in existing Zasm classes. For
instance, an attacker could use STORE to increase the amount of a
Coin object from a different class. To prevent such attacks, Zapper
enforces multiple access policies, as discussed next.
Access Control Zapper enforces several access policies by default.
First, STORE instructions within a class C can only target objects
of type C , ensuring that fields of other classes cannot be written
directly. Similarly, to prevent the destruction of unrelated objects,
KILL may only destroy objects of type C . Further, NEW may only
create objects of typeC (objects of different typeC ′ must be created
via a CALL to a constructor of C ′). Also, STORE cannot be used to
update the owner field of classes annotated as @has_address outside
constructors (we discuss the necessity of this rule in §7). Finally,
the dedicated register holding the sender address (authenticated by
Zapper) must not be overwritten by any instruction.

We note that by design, Zapper ensures that the user creating a
transaction knows the secret key of the owner of any accessed object
(by LOAD, STORE, CID, PK, or KILL), as their records must be decrypted.
This is not equivalent to self.require(self.owner == self.me): a
user can only use one sender account (which must be a user ac-
count) but may have access to the secret keys of many accounts
(including object accounts). For example, in the second transaction
of Fig. 1c, Bob uses skshared, skdex , and skBob to decrypt the inputs,
but pkBob as the sender address.

In addition to the default access policies, Zapper allows speci-
fying custom policies for functions. In particular, the annotation
@only(C) declares a function internal to a class C , making it inac-
cessible to any class C ′ , C . Zapper also provides an annotation
@internal as a shorthand for @only(C), where C is the current class.
Static Checks To enforce the above policies, the Zapper executor
performs a static type analysis on the received Zasm code. First, it
checks whether all fields of new objects are initialized (uninitialized
objects can violate type safety). Second, it checks whether the code
is well-typed (e.g., arithmetic operations are only performed on Uint

values, the types of arguments in CALL match the target’s function
signature, etc.) and determines the target class of each LOAD, STORE,
and CALL instruction. Next, Zapper checks whether the code satisfies
all default and custom access policies described above. If any of
these checks fail, the Zasm code is rejected.
Runtime Checks The types of any pointer arguments cannot be
checked statically as their value is selected by a potentially mali-
cious user at runtime. Hence, the Zapper executor inserts dynamic
type checks for these arguments, relying on the CID instruction.
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For example, consider the transfer function of Coin (Fig. 1a). To
ensure that the first argument self is of the expected type Coin,
Zapper inserts Lin. 6–8 in Fig. 2.
Inlining Calls The Zapper processor does not natively support
CALL instructions. Instead, the Zapper executor inlines the function
body of any called function. Here, the sender address register of
the called function is correctly inherited or initialized with the
caller address, depending on the sender_is_self flag. For inlining
to succeed, Zapper disallows (mutually) recursive function calls.
Allocating Registers The Zapper processor only supports a fixed
number Nregs of registers reg[0], . . . , reg[Nregs − 1] for a system pa-
rameter Nregs. Hence, in a final step, the Zapper executor allocates
all named registers to these indexed registers. Then, the Zasm code
is stored in the assembly storage, ready to be used by transactions.

4 CRYPTOGRAPHIC COMPONENTS
We next discuss the cryptographic components used in Zapper.
Encryption To encrypt records, Zapper uses a key-private [6]
asymmetric encryption scheme. This ensures that attackers cannot
determine which public key was used to produce a given ciphertext,
thus hiding the identity of an encrypted record’s owner. We write
Enc(p, pkα ,R) to denote the encryption of plaintext p under key
pkα with encryption randomness R.
Merkle Tree Zapper relies on a Merkle hash tree [41], which uses
a collision-resistant hash function H to derive a root hash β of all
records stored as leaves in the object tree T . This allows proving
that a given record r̂ is in T with root β using a Merkle certificate
π [39, §2.1.1], and updating β upon insertion of new records.
Hash Functions Zapper relies on a family of cryptographic hash
functions Hi : {0, 1}∗ → {0, 1}Ω(λ) with security parameter λ and
the following properties: (i)Hi is collision-resistant, and (ii) function
f : {0, 1}∗ × {0, 1}Ω(λ) → {0, 1}Ω(λ) defined as f (x,k) := Hi (x ∥ k)
is a pseudorandom function (i.e., for uniformly random k , the func-
tion f ( · ,k) is indistinguishable from a random function).

Various components of Zapper rely on Hi to derive a unique
secret value z using the following generic construction, inspired by
ZEXE [14] and Zcash [33]. For unique U and private R,

z = Hi (U ∥ R). (1)

Computed as in Eq. (1), z has two key properties:
• Secrecy: For uniformly random R, any user not knowing R cannot

distinguish z from a uniformly random value. This follows from
pseudorandomness.
• Uniqueness: with overwhelming probability, z is unique, even for

adversarially chosen R. This follows from collision-resistance.
NIZKProofs For a predicateϕ and public input x , a NIZK proof [12,
26] allows a prover to demonstrate that it knows a private input w
s.t. ϕ(x ;w) holds, without leaking any information about w beyond
the fact that ϕ holds. In this work, x includes the executed function
body and information on the state before and after execution, while
w includes private information known to the sender (e.g., secret
keys), allowing ϕ to check that the function was executed correctly.

Zero-knowledge succinct non-interactive arguments of knowl-
edge (zk-SNARKs) [11, 29] are NIZK proof constructions allowing
efficient proof generation and verification for any arithmetic proof

Figure 4:Visualization of a transaction for DexOffer.accept (Fig. 1c).

circuit ϕ. To ensure correctness, Zapper relies on an SE-SNARK [29]:
a zk-SNARK satisfying perfect zero-knowledge, perfect complete-
ness, and simulation-extractability [29].

5 TRANSACTIONS
We now discuss how the Zapper system state is represented and
updated by transactions. Most importantly, our approach hides the
accessed objects by an oblivious Merkle tree construction. To this
end, we rely on techniques from Zerocash [33, 48] and ZEXE [14]
but adapt them to our context and avoid the vulnerabilities of ZEXE.

5.1 Example Transaction
To provide some intuition, we first discuss an example transaction
calling the accept function of DexOffer (Fig. 1b).
InputRecords The accept function accesses several objects: (i) the
DexOffer object self, (ii) the coin other transferred to the maker; and
(iii) the coin coin transferred to the transaction sender.

Fig. 4 shows how accept modifies these objects when called by
Bob (sender pkBob) with arguments args = (593...4, 300...7) indicat-
ing the object ids of self and other (see the second transaction in
Fig. 1c). At a high level, Zapper first loads the encrypted records
r̂ in
0 , . . . , r̂

in
2 of the accessed objects, which includes r̂ in

2 containing
the state of coin, from the object tree (we discuss r̂ in

3 shortly). Next,
these are decrypted to obtain plain records r in

i .
Plain Records Specifically, the plain record of an object is a tuple

r = (cid, oid, skself , pkself , pkowner , payload),
where cid and oid are the class id and object id, respectively, pkowner
is the public key of the owner, and payload holds the values of the
remaining fields. Further, (skself , pkself ) is the key pair of the object
account. For simplicity, we also assign an account to objects not
annotated as @has_address, however, this account is never used.
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Note that in general, pkself (belonging to the object) and pkowner
(belonging to the object’s owner) are keys of different accounts.
Encrypted Records Before encryption, a plain record r is ex-
tended by a secret serial nonce ρ (a globally unique number later
used to invalidate outdated records). Then, it is encrypted under
the public key of the object’s owner to yield the encrypted record

r̂ = Enc((r , ρ), r .pkowner ,R),
where R is some encryption randomness. Note that in contrast
to ZEXE, Zapper relies on encryption instead of commitments,
preventing the denial-of-funds attack in ZEXE (see §11).
Processor After decryption, the plain records are fed to the Zapper
processor, which executes the Zasm code of accept to produce the
plain output records rout

i (Fig. 4 highlights changed entries).
Output Records Finally, the plain records rout

i are extended by
fresh serial nonces ρi and encrypted under the owners’ public keys
to obtain r̂out

i . These records will be published to the ledger and
inserted into the object tree once the transaction is accepted.
Dead Records When an object is destroyed by KILL, the processor
sets the object id oid of the corresponding record to the reserved
value 0, indicating that this record is dead. Further, pkowner of the
record is set to the sender’s public key such that the resulting record
is hidden from other users. This is important as dead records may
include stale data of the previously represented object.

In Fig. 4, the DexOffer object r̂ in
0 is destroyed, hence oid of rout

0 is
set to 0 and pkowner is set to pkBob. The payload component of rout

0
still contains private data (e.g., the value of the for_amount field),
but as it will be encrypted for Bob, no other user learns this.

The processor accepts exactly Nobj plain records as inputs, for a
system parameter Nobj. The inputs are appropriately padded using
artificial dead records. Similarly, the processor returns Nobj output
records. In Fig. 4, it is Nobj = 4 and r̂ in

3 is used as a padding record.
Transaction Contents Importantly, the steps visualized in Fig. 4
are hidden from the Zapper executor to maintain data and identity
privacy (see the indicated privacy barrier). The data published by
the Zapper client only consists of the encrypted output records
[r̂out] (bottom row in Fig. 4; we use the notation [·] to indicate a
list) and some bookkeeping data (see also Fig. 3b).

Formally, a transaction tx = (C . f , β, [sn], [r̂out],u,Π) consists of
the fully qualified function name C . f of the called function, the
current root hash β ofT , the serial numbers [sn] of accessed records,
a list [r̂out] of new records, a unique seed u, and a NIZK proof Π
certifying correctness. §5.2–§5.3 explain the purpose of these items.

5.2 Creating Transactions
Next, we describe how the Zapper client creates a transaction tx
for a user who wishes to call a function C . f with arguments args.
Simulation The Zapper client first loads the Zasm code zasm
for C . f from the assembly storage. It then locally simulates the
execution of zasm with arguments args. During simulation, the
most recent records of any pre-existing objects accessed by zasm
(due to LOAD, STORE, CID, PK, or KILL) are fetched from a local copy
of the object tree, collected in a list [r̂ in], and decrypted using the
owners’ secret keys. As a result, Zapper obtains (i) the return value
of C . f , which is returned to the user; and (ii) the list [rout] of plain

Algorithm 1 The main NIZK proof circuit ϕ.
1: Public inputs:
2: C .f , β , [sn], [r̂ out], u as in Fig. 3b, timestamp t , code zasm
3: Private inputs:
4: C′.f ′: called class and func. id [r out]: plain output records
5: skme , pkme : key pair of sender [π ]: input record Merkle certificates
6: args: arguments for call [skα ]: input record secret keys
7: [r̂ in]: encrypted input records [R], [Rpr]: randomness

8: Auth. sender: pkme
!
= derivePk(skme) and isUser(pkme)

!
= true

9: Check function: C .f !
= C′.f ′

10: for i ∈ {0, . . . , Nobj − 1} do
11: Decrypt record: (r in

i , ρ in
i ) ← Dec(r̂ in

i , skαi )
12: if r in

i .oid , 0 then
13: Check that r̂ in

i is in Merkle tree with root β (using πi )
14: else
15: Check serial nonce: ρ in

i
!
= H2(i + Nobj ∥ u ∥ Ri+Nobj )

16: Check serial number: sni
!
= H1(ρ in

i ∥ skαi )
17: Run processor (Alg. 2) for zasm, u , t , pkme , args, [r in], [r out], [Rpr]
18: for i ∈ {0, . . . , Nobj − 1} do
19: Compute serial nonce: ρout

i ← H2(i ∥ u ∥ Ri )
20: Check encryption: r̂ out

i
!
= Enc((r out

i , ρout
i ), r out

i .pkowner , Ri+2Nobj )

output records, which represent the updated states of the objects
in [r̂ in] and any new objects. The list [r̂ in] is then padded by an
appropriate number of dead records.
Correctness Proof Circuit To prove that C . f was executed cor-
rectly, the Zapper client creates a NIZK proof Π.

Alg. 1 shows the proof circuit ϕ for Π. Conceptually, the public
inputs of ϕ (Lin. 1–2) are provided by the Zapper executor when
verifying Π. In contrast, the private inputs of ϕ (Lin. 3–7) are pro-
vided by the Zapper client when creating Π. These inputs include
private information such as the keys (skme, pkme) of the sender.
Sender Authentication To ensure that the sender cannot be im-
personated by an unauthorized user, we check that the user creat-
ing Π knows the secret key of the sender account. More precisely,
Lin. 8 uses derivePk to check whether skme corresponds to pkme .
Checking the Function Both the public and private inputs of ϕ
include identifiers of the called classC and function f . By checking
that these match (Lin. 9), the proof Π acts as a signature on C . f ,
ensuring that C . f cannot be changed once the proof is generated.
Enforcing Object Ownership Zapper objects can be owned by
other objects. For instance, during the lifetime of dex in Fig. 1, the
coin coin is owned by dex. The self.require(self.owner == self.me)

statements in Coin ensure that only dex can call its functions. Un-
fortunately, reflecting these requirements in ϕ by checking that
pkme equals the coin’s owner address is not sufficient to prevent
users from directly calling the functions of a coin owned by dex:
the secret key skdex is stored as part of dex’s record and users with
access to dex could hence use (skdex, pkdex ) as sender account keys.

To prevent such object impersonation attacks, the public keys in
the system are partitioned into keys of user and object accounts.
Lin. 8 explicitly checks that pkme belongs to a user account. In our
implementation (§8), isUser returns the key’s least significant bit.
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Accessing Objects Lin. 11–13 access the input records [r̂ in]while
hiding their location inT . First, Lin. 11 checks that [r̂ in] are correctly
decrypted, yielding both serial numbers [ρin] (discussed shortly)
and plain records [r̂ in]. Next, for each non-dead record r̂ in

i , Lin. 13
verifies a Merkle certificate πi (passed as a private input to ϕ) show-
ing that r̂ in

i is a leaf of the current object tree with root β .
Preventing Access of Outdated State Recall that new records
are appended to the object tree without replacing their original
version (note that replacement would leak the accessed object).
Hence, the construction presented so far only ensures that the
accessed records represent some previous state of the respective
objects, but not necessarily the most recent one. Therefore, we
need to privately invalidate outdated records. To this end, Zapper
relies on a technique introduced in Zerocash [48], which uses serial
numbers to privately identify and invalidate accessed records.

In particular, to invalidate the accessed records r̂ in
i , Zapper de-

rives and publishes a unique serial number for each r̂ in
i as

sni = H1(ρin
i ∥ skαi ). (2)

Here, ρin
i is the serial nonce contained in r̂ in

i and skαi is the owner’s
secret key used to decrypt r̂ in

i . Eq. (2) is checked in Lin. 16.
Because the computation of the serial number (Lin. 16) follows

the generic construction in Eq. (1), assuming the serial nonces ρin
i

are globally unique (discussed shortly), serial numbers of different
records cannot collide (uniqueness). Further, the serial number sni
is indistinguishable from a uniformly random value for any user
not knowing skαi (secrecy). This is important to ensure privacy:
otherwise, a malicious user Eve who created r̂ in

i for owner Alice
could tell when Alice accesses it by watching for sni .

Overall, the Zapper client computes the serial numbers [sn] and
includes them in tx. The Zapper executor will ensure that these are
globally unique, enforcing that any record can be accessed at most
once. As this also applies to records whose state is not changed but
only read (e.g., by LOAD), the Zapper processor output includes plain
records of objects which were only read. This ensures that a fresh
record representing these objects is re-inserted into the object tree.
Processor Execution Lin. 17 ensures that running the program
zasm with arguments args and current timestamp t on inputs [r in]
results in the plain output records [rout]. As this step is more in-
volved, we discuss it separately in §6.
Deriving New Serial Nonces Before encrypting rout

i , Zapper de-
rives a new serial nonce ρout

i for rout
i as in Lin. 19, repeated here:

ρout
i = H2(i ∥ u ∥ Ri ). (3)

Here, u is a public and globally unique seed, and Ri is fresh ran-
domness. Similarly, the serial nonce ρin

i of any dead input padding
record is computed as in Lin. 15, repeated here:

ρin
i = H2(i + Nobj ∥ u ∥ Ri+Nobj ). (4)

The seed u is selected uniformly at random by the Zapper client
and included in the transaction tx. Like the serial numbers, u is
enforced to be globally unique by the Zapper executor (note that
for a large seed space, the selected u is unique with overwhelming
probability). As we will see in §6, the seed u is also used by the
processor to derive other unique values. Due to the uniqueness

property of the construction in Eq. (1), the nonces computed by
Eqs. (3)–(4) are globally unique with overwhelming probability.

In ZEXE, the serial numbers of dead inputs (called “dummy”
by the authors) are selected freely by the user, allowing a “lock-
out” attack on applications with shared keys (see §11). In contrast,
Zapper prevents this attack using the construction in Eq. (4).
Encryption and Proof Generation Finally, Zapper encrypts the
plain records [rout] along with their serial nonces using the respec-
tive owners’ public keys to obtain the output records [r̂out] (see
Lin. 20). To complete the data in tx, the Zapper client generates a
NIZK proof Π for ϕ. The transaction tx is then sent to the ledger.

5.3 Processing Transactions
We next describe how the Zapper executor processes transactions.
Validity Checks When the Zapper executor receives a transac-
tion tx = (C . f , β, [sn], [r̂out],u,Π), it first looks up the assembly
code zasm for the called function C . f in the assembly storage and
prepares the public inputsC . f , β, [sn], [r̂out],u, t, zasm for the proof
circuit ϕ, where t is the current timestamp. Then, the ledger

(i) checks the validity of the proof Π;
(ii) checks if β is a valid previous root hash of T ;

(iii) checks if the serial numbers in [sn] are unique and do not
already occur in the serial number list; and

(iv) checks if u does not already occur in the unique seed list.

State Updates If any of the validity checks fail, the transaction is
rejected. Otherwise, the system state is updated as follows:

(1) For all sni ∈ [sn], insert sni into the serial number list.
(2) Insert u into the unique seed list.
(3) For all r̂out

i ∈ [r̂out], insert r̂out
i into the object tree T .

Concurrent Transactions Note that another transaction tx ′may
have been accepted since the Zapper client started creating tx. For
this reason, in the validity check (ii) above, β is not required to be
the most recent root hash of T , but may be any previous root hash.
As long as the unique seed and records accessed in tx are distinct
from the unique seed and records accessed in any previous tx ′,
their ordering does not matter and tx remains valid. In other words,
concurrent transactions accessing distinct objects will not affect
each other. Importantly, a third party which does not have access to
(i.e., does not know the owner secret keys of) any object involved
in another transaction tx cannot perform a front-running attack
and block tx by trying to consume the same object(s).

If two concurrent transactions access the same records (i.e., read
or write the same object), the ledger rejects the transaction tx it
receives last. Assuming all assertions still hold and the involved
objects still exist, the user creating tx can always re-create it.

We assume that the granularity of timestamps is coarse enough
(e.g., in the order of hours) to account for the delay between trans-
action generation and verification. In case the current timestamp
changes in-between, the user must re-create the transaction.

6 PROVING PROCESSOR EXECUTION
We now discuss our zero-knowledge processor, which allows the
Zapper client to provably execute Zasm code. Our processor is
inspired by previous work [7, 8], but adapted to reduce the cost of
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Algorithm 2 The sub-circuit checking Zasm code execution.
1: Inputs: zasm, u , t , pkme , args, [r in], [r out], [Rpr] as in Alg. 1

2: for i ∈ {0, . . . , Nfresh − 1} do
3: oidi ← H3(i ∥ u ∥ Rpr

3i ); fi ← H5(i ∥ u ∥ Rpr
3i+2)

4: ski ← H4(i ∥ u ∥ Rpr
3i+1); assert ¬isUser(derivePk(ski ))

5: state0 ← ([r in], (pkme , args, 0, . . . , 0), [oid], [sk], [f ])
6: for i ∈ {0, . . . , Ncycles − 1} do
7: statei+1 ← evalInst(zasmi , statei )
8: check output state: stateNcycles

!
= ([r out], ·, ·, ·, ·)

the most expensive operations: we prefetch all accessed objects (see
also §5) and precompute the result of cryptographic operations.

6.1 Emulating the Processor
In Alg. 2, we show the sub-circuit checking correct execution of
the provided Zasm code. This sub-circuit is part of the main proof
circuit ϕ (Alg. 1) and emulates the cycles of the Zapper processor.
Precomputation Lin. 2–4 precompute values useful during the
execution of the processor and will be discussed later.
State The processor state state = ([r ], regs, [oid], [sk], [f ]) con-
sists of the current plain records [r ] of the Nobj involved objects
(some of which may be dead), the array regs of Nregs register values,
and three lists [oid], [sk], [f ] of precomputed values. Lin. 5 initial-
izes this state, where the sender address pkme is (by convention)
placed in the first register, followed by args and zero padding.
Cycles Lin. 7 uses the sub-circuit evalInst(zasmi , statei ) to capture
how the processor executes a single instruction zasmi on input
state statei . Similar to [7], as proof circuits do not allow for control
flow, evalInst evaluates the result of each possible instruction in
parallel and then selects the correct result to update statei according
to the instruction zasmi using a multiplexer. To reduce the proof
circuit size, many parts of the computation (e.g., register and object
accesses; see shortly) are shared amongst instructions.

Analogously to [7], Alg. 2 unrolls the processor cycles by chain-
ing Ncycles copies of evalInst for a system parameter Ncycles, sup-
porting any Zasm program with at most Ncycles instructions (pro-
grams with less than Ncycles instructions are padded with no-op
instructions). As a consequence, any function of a Zapper class
may consist of at most Ncycles instructions. However, we note that
such limits on the execution length are already commonly used in
existing smart contract systems (e.g., Ethereum’s block gas limit).
Final State Finally, Lin. 8 checks whether the plain records in the
final state stateNcycles match the expected plain records [rout].

6.2 Evaluating Instructions
We next discuss how evalInst evaluates a single processor cycle.
Register Access To load values from or store values to a register,
we use a linear loop to select the target register based on its index.
As Nregs is small in practice, this step is relatively efficient.
Basic Operations Arithmetic operations work on the regs list
and mostly correspond to the native field operations of the proof
circuit. However, we impose additional checks to prevent unin-
tended over- or underflows of field elements where necessary. For

example, native addition or subtraction inside the proof circuit
wraps at the field prime (≈ 2255 in our implementation, see §8),
which may be unexpected. We hence restrict values of type Uint to
be in [0, 2120) and reject any operation leading to a result outside
this range. Values of type Long are not restricted, but cannot (by the
type system) be used in arithmetic operations. 2

Loading and Storing Object Data To implement LOAD, we per-
form a linear lookup over the plain records [r ] to find the targeted
object id and field. We proceed analogously for STORE, CID, and PK.

Smart contracts typically only access few objects in a transaction.
Therefore, the number of objects Nobj in [r ] can be set to a small
constant in practice, making the above lookup relatively efficient.

As in [8], the memory of the Zapper processor is stored in a
Merkle tree. However, by prefetching the memory of few input ob-
jects in advance (Alg. 1), Zapper induces significantly less overhead
than checking a Merkle tree memory access in each processor cycle.
Destroying Objects For the KILL instruction, the circuit simply
marks the targeted record as dead by setting its oid component to 0
and its owner public key pkowner to pkme . Analogously to STORE,
the targeted record is found using a linear lookup.
Creating Objects The NEW instruction creates an object by initial-
izing a dead record with a new object id and secret key. Following
the generic construction in Eq. (1), the object id oidi of the i-th
new object created in zasm is derived as shown in Lin. 3. Here,
u is the unique seed for the current transaction, and R is a value
chosen uniformly at random and provided to ϕ as a private input.
Lin. 3 ensures that oidi is globally unique, even if R is selected by a
malicious user (uniqueness). This is important, as creating a new
object o whose object id matches a pre-existing object o′ would
allow hijacking o′ and violate correctness. Further, oid is hidden
from all other users (secrecy), thereby ensuring data privacy.

Analogously, the secret key ski of the i-th new object is derived
as shown in Lin. 4. Here, to ensure that ski indeed corresponds to
an object account, the Zapper client repeatedly samples uniform
randomness Rpr

3i+1 until the assertion in Lin. 4 holds.
Fresh Values The FRESH instruction computes a secret and unique
value f . The i-th such unique value fi is computed as shown in
Lin. 4 (following Eq. (1)), for unique seedu and uniformly random R.
Precomputation The computations of oidi , ski , and fi are based
on cryptographic hash functions Hi , which are relatively expensive
to evaluate within the proof circuit. Hence, instead of computing
these in each processor cycle, we precompute a fixed number Nfresh
of these values in advance (see Lin. 2–4 in Alg. 2). Whenever such a
value is required in zasm, we select the next unused value, assuming
a Zapper function requires at most Nfresh such values.
Discussion: Universality Generally, zk-SNARKs require a trusted
setup, which either depends on the proof circuit (non-universal
schemes) or not (universal schemes). By emulating processor exe-
cution, Zapper can use the same proof circuit to verify execution of
arbitrary Zasm programs (respecting the relevant bounds such as
Ncycles). This allows Zapper to be instantiated with an efficient non-
universal SE-SNARK scheme such as GM17 [29] (see §8), without
requiring a trusted setup per program.

2The 120 bits of a Uint value are not sufficient to provide collision-resistance of values
produced by FRESH. Hence, we use a separate data type Long for these values
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An alternative design could use a universal scheme such as Mar-
lin [18] to dynamically build a separate proof circuit per Zasm
program, again avoiding a trusted setup per program. Unfortu-
nately, Marlin is significantly more expensive than GM17: proof
generation for a circuit of the same size (2 million R1CS constraints,
see §9.3) takes 17.1 s using GM17 and 116.7 s using Marlin. While
using Marlin would avoid processor emulation overhead, we expect
this does not compensate for its higher cost: Zapper’s proof circuit
size is dominated by cryptographic operations, most of which can-
not be significantly reduced (see Fig. 5a and §9.2). Still, instantiating
Zapper with a universal zk-SNARK presents an interesting trade-
off: Despite lower performance, such a system should allow easier
extension to more complex Zasm instructions without requiring a
new trusted setup for every extension.

7 SECURITY PROPERTIES
In this section, we discuss the privacy, correctness, integrity, and
availability properties ensured by Zapper. We note that by construc-
tion, Zapper also ensures access control as defined in §3.2.
Attacker Model We consider an active adversary which statically
corrupts a set of users and can intercept transactions by honest
users. It can craft arbitrary transactions from scratch or by modify-
ing intercepted transactions. See App. A.2 for a formal definition.

7.1 Privacy
Zapper achieves both data and identity privacy. In particular, only
users with access to the secret key of an object’s owner can observe
when and how the object is created, read, modified, or destroyed.
Ideal World To formalize our notion of privacy, we introduce an
ideal world specifying the information available to each user. We
sketch this ideal world below (see App. A.2 for a formal definition).

The ideal world maintains the plaintext state of all objects and
allows users to make function calls, which are executed according
to the semantics of Zasm. When a user executes a functionC . f with
arguments args, other users of the system only learn the following:
• Any user learns that C . f is called and that the conditions of all

REQ instructions are satisfied.
• All users who can access (see below) an object involved in a

LOAD, STORE, KILL, NEW, CID, or PK operation learn the object id and
the loaded (for LOAD) or stored (for STORE) value.

In particular, reading and writing fields is possible without re-
vealing the target object’s identity to any users without access to
the object. Further, the arguments args, the return value, and the
identity of the sender account are not visible, unless these are ex-
plicitly revealed to some other user by STORE. The same applies to
any intermediate results of arithmetic operations.
Accessible Objects We say that user U can access object o if U
knows the secret key of o’s owner. In particular,U knows not only its
own or shared user secret keys, but also the secret keys of objects o
if (i) U knows the secret key of o’s owner, or (ii) U created o (and
thereby, its secret key) but is not necessarily its current owner. For
example, in Fig. 1c, Bob knows skBob, skshared, and skdex and can
hence access dex and both coins (1€ and 1$). See App. A.2 for details.

Recall that Zapper prohibits changing the owner of objects with
an address (see @has_address) at runtime. This prevents unexpected

privacy leaks: if U owns o which in turn owns o′, then changing
the owner of o would not invalidate U ’s access to o′, as U would
still know the secret key of o.
Privacy Thm. 7.1 informally states our privacy notion.

Theorem 7.1 (Privacy, informal). From transactions created by
honest users, the adversary cannot learn more than in the ideal world.

In App. A.4, we formalize and prove Thm. 7.1. At a high level, pri-
vacy is ensured by the zero-knowledge property of the SE-SNARK,
the key-privacy of the encryption scheme, and the pseudorandom-
ness of Hi (see §4).
Practical Considerations The location or IP address from which
a transaction is submitted may leak the identity of the sender in
practice. Hence, as in similar systems [48], users may want to submit
transactions via an anonymous overlay network such as Tor [22].

7.2 Correctness, Integrity, Availability
We now informally present the remaining security properties (as
introduced in §2), which we formalize in App. A.2–A.3.

Theorem 7.2 (Correctness, informal). The adversary cannot
violate the logic specified in contracts registered at the Zapper executor.

Theorem 7.3 (Integrity, informal). Valid transactions cannot
be modified “in flight” or replayed by the adversary.

Theorem 7.4 (Availability, informal). Honest users can realize
valid transactions unless the adversary actively interferes.

At a high level, correctness is enforced by the construction of ϕ
and the soundness property of the SE-SNARK. Further, the non-
malleability of SE-SNARKs prevents transactions from being tam-
pered with, and checking the uniqueness of serial numbers prevents
replay attacks. Note that since our attacker model allows the adver-
sary to intercept every transaction, it can always block the current
transaction. However, if the adversary does not interfere with a
transaction, Thm. 7.4 states that it will always be accepted. In par-
ticular, the adversary cannot “lock” an object owned by an honest
user by publishing a colliding serial number or refusing to share
the decryption key. This prevents the “Faerie Gold” attack of Ze-
rocash (allowing attackers to permanently block coins of honest
owners) [33] and two attacks on ZEXE (discussed in §11).

8 IMPLEMENTATION
We implemented Zapper in an end-to-end system consisting of
a Python frontend (3k LoC) exposed to application developers,
and a Rust backend (4k LoC) performing cryptographic tasks and
relying on the efficient arkworks libraries [1]. Our implementation
includes an idealized centralized ledger, which can be replaced by a
shared ledger in an actual deployment. Below, we describe how the
cryptographic primitives are instantiated in our implementation.
All these primitives have been used in existing systems.
Proving Scheme and Elliptic Curves We use the simulation-
extractable GM17 [29] zk-SNARKs over the pairing-friendly Barreto-
Lynn-Scott [5] curve BLS12-381 introduced in Zcash [33]. The con-
straints of the proof circuit ϕ are then expressed in the scalar field
Fq of BLS12-381, where q ≈ 2255. To allow for efficiently emulating
the Zapper processor in ϕ, Zasm code operates on values in Fq .
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Table 2: Evaluated example Zapper applications and classes. We
indicate the number of functions (#fun), and the min/max number
of Zasm instructions in the functions of each class (inst).

App Description Classes #fun (inst)

Auction A private decentralized coin auction. Auction$ 3 (33–48)

Coin A private untraceable coin. Coin (Fig. 1) 5 (6–29)

Exchange A private decentralized coin exchange. DexOffer$ (Fig. 1) 3 (18–36)

Heritage A heritable coin wallet with anonymous
heirs and private shares.

Share 2 (7–8)
Wallet$ 7 (9–80)

Reviews A double-blind peer-review system for
academic papers.

Review 3 (8–25)
Result 3 (10–11)
Paper 4 (17–32)

Tickets A public transport ticketing system with
untraceable multi-journey tickets.

TicketProof 1 (7)
Ticket$ 4 (10–25)

WorkLog A system for aggregate working hours
reports hiding check-in/-out times.

Aggregated 1 (7)
WorkLog 4 (9–23)

$ makes use of the Coin class

Like Zcash, we rely on curve embedding to efficiently evaluate
cryptographic primitives (see below) within ϕ. In particular, our
primitives use the Jubjub [13] twisted Edwards curve, whose base
field matches the scalar field Fq of BLS12-381. This allows us to
natively evaluate Jubjub curve operations in ϕ.
Hash Functions Like ZEXE [14], we rely on Pedersen and Blake2s
hashes. In particular, we instantiate the hash function H for the
object tree by the Pedersen hash [33, §5.4.1.7] with 4-bit windows
over Jubjub. H is collision-resistant assuming it is hard to compute
discrete logarithms in Jubjub [42]. As Pedersen hashes do not pro-
vide pseudo-randomness, we use the pseudo-random Blake2s hash
function [2] to instantiate Hi (x) := Blake2s(i ∥ x) as per §4.
Encryption Like the Dusk Network [40], we use a hybrid encryp-
tion scheme based on Poseidon [28] and ElGamal [23]. In particular,
to encrypt a plain record r , we first select a random curve point
k on Jubjub and encrypt r with key k using Poseidon [28] in the
DuplexSponge framework [10, 37]. Then, we encrypt k using ElGa-
mal [23] over Jubjub with the owner’s public key. As ElGamal en-
cryption is key-private [6], this hybrid scheme is also key-private.

9 EVALUATION
We now evaluate our implementation of Zapper (§8), demonstrating
that it is highly efficient. All our experiments are conducted on a
desktop machine with 32 GB RAM and 12 CPU threads at 3.70 GHz.

9.1 Example Applications
To demonstrate the expressiveness of Zapper, we implemented the
7 applications described in Tab. 2 in Zapper’s Python frontend using
a total of 12 classes. The applications span a variety of domains
and correspond to realistic use cases. The Coin and Exchange apps
(see Fig. 1) closely follow the “user-defined asset” and “intent-based
DEX” examples of ZEXE [14]. In contrast to ZEXE, where these
apps are implemented as low-level predicates, they are naturally
expressed in Zapper’s frontend. The other apps are our creations.
Being a core component, the Coin class is used across multiple apps.

Table 3: Evaluation parameters and runtimes.

(a) Values for parameters.

Tree height Nheight 32
Objects in tx Nobj 4
Fresh values Nfresh 4
Processor cycles Ncycles 100
Registers Nregs 10
Object fields Nfields 9

(b) Runtimes for example scenarios.

Step Time (std. dev.)

one-time setup 37.207 s

per app compile 0.007 s (±0.003 s)

per tx create 21.639 s (±0.152 s)
verify 0.027 s (±0.003 s)

In all applications, Zapper’s data and identity privacy properties
are key. For example, “Ticket” allows travelers to punch multi-
journey tickets valid for a specific duration after punching, while
preventing ticket holders to be traced across journeys.

9.2 Performance
We now evaluate the performance of Zapper.
Parameters For the following experiment, we instantiate the pa-
rameters of Zapper as shown in Tab. 3a. Here, Nfields is the max-
imum number of fields per object, excluding owner. The Merkle
tree height Nheight is sufficiently large for a real-world deployment
and matches the height in Zcash [33]. The other parameters were
chosen to support the apps in Tab. 2 with a comfortable margin.

The choice of parameters is subject to a trade-off: larger values
enable more complex applications but induce more overhead. In
practice, Zapper can support multiple combinations of parameters
and prepare a separate proof circuit for each combination, enabling
Zapper to select the smallest parameters sufficient to enable any
given application. However, it is not obvious how to allow setting
Nheight dynamically, as all applications must operate on the same
Merkle tree. To help predict the performance of future applications,
§9.3 discusses the effect of individual parameters on performance.
Scenarios For each application in Tab. 2, we create a scenario
consisting of multiple transactions interacting with the application.
For example, for Exchange we first mint two coins and then run
create and accept transactions as visualized in Fig. 1c.
Runtimes Tab. 3b summarizes the performance of Zapper for our
scenarios, showing that Zapper transactions are very efficient.

Before executing any transactions, we first initialize a new Zap-
per ledger (“setup” in Tab. 3b). This global one-time step includes a
trusted setup phase for the GM17 [29] zk-SNARKs, which is rela-
tively expensive and dominates the runtime of the step (99.87%).

Next, we compile all applications in Tab. 2 to Zasm code and
register this code at the Zapper assembly storage. As shown in
Tab. 3b (“compile”), compiling and registering a single application
is very efficient as it does not involve any cryptographic operations.

Finally, we execute the scenarios on the Zapper ledger. Executing
a transaction consists of two steps. First, the Zapper client locally
creates the transaction (§5.2, “create”). The runtime of this step is
dominated by zk-SNARK generation (99.97% on avg.). Second, the
Zapper executor processes this transaction (§5.3, “verify”), which
is dominated by zk-SNARK verification (59.1%) and Merkle tree
updates (40.6%). While the first step is more expensive, it is only
executed by the client. In contrast, the second step is significantly
cheaper. This is important, as it will be replicated across many
machines when deploying Zapper to a shared ledger.
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Figure 5:Number of R1CS constraints in the proof circuitϕ (Alg. 1).

Runtime Discussion As shown by the low standard deviations
in Tab. 3b, the runtimes for creating and verifying transactions are
very consistent across all scenarios: because the proof circuit for
the zk-SNARK in a transaction is independent of the application,
the dominating proof generation times are nearly identical.

Our transaction runtimes are in line with ZEXE [14]. The authors
report that transactions require 52.5 s to generate and 0.046 s to
verify on a similar machine (3.00 GHz, 24 threads). While we used
Nobj = 4 and the logic of contracts in Tab. 2, the ZEXE evaluation
assumed 2 inputs and 2 outputs, and empty predicates.
Transaction Size Zapper transactions are small, consisting of
only 3312 bytes regardless of the called function. This is comparable
to ZEXE, whose transactions consist of 968 bytes.

9.3 Proof Circuit Size
The runtimes for zk-SNARK setup and proof generation, which are
the dominating parts of “setup” and “create” in Tab. 3b, are linear
in the size of the proof circuit. We next analyze this size, measured
in the number of rank-1 constraint system (R1CS) constraints.
Size of Individual Components For the parameters in Tab. 3a,
the proof circuit (Alg. 1) consists of 2.02·106 constraints (regardless
of the application). In Fig. 5a, we show the sizes of the individ-
ual components. The largest two components are the checks of
Merkle tree certificates (Lin. 13 in Alg. 1) and preparation of pre-
computed values (Lin. 2–4 in Alg. 2), as they involve the evaluation
of expensive cryptographic hash functions. This is followed by the
emulation of processor cycles (Lin. 5–7 in Alg. 2), the derivations
of serial numbers sn, nonces ρin, and nonces ρout (Alg. 1).
Effect of Parameters We next measure the size of the proof cir-
cuit for different parameters. This allows gauging the performance
of Zapper when parameters are selected dynamically from a set of
prepared parameters. In each of the subplots in Fig. 5b, we show
the number of constraints when varying a single parameter while
setting all other parameters to the values in Tab. 3a. Fig. 5b indicates

that Nobj has the biggest impact, while Nregs and Nfields have neg-
ligible effects. Overall, the main proof circuit has asymptotic size:

O ( Nobj(Nheight + Nfields)︸                       ︷︷                       ︸
Lin. 8–16 & 18–20 in Alg. 1

+ Nfresh︸︷︷︸
Lin. 2–4
in Alg. 2

+Ncycles(NobjNfields + Nregs + Nfresh)︸                                          ︷︷                                          ︸
Lin. 5–8 in Alg. 2

)
.

To predict the performance of Zapper for given parameters,
we have further estimated the constants hidden in the above for-
mulas using an empirical least-square fit. We find that the num-
ber of R1CS constraints in the proof circuit can be predicted as:

3 400 + Nobj
(
160 000 + 3 300Nheight + 1 900Nfields

)
+ 130 000Nfresh (5)

+ Ncycles
(
1 600 + 26Nobj Nfields + 24Nregs + 120Nfresh + 76Nobj

)
.

As indicated in Fig. 5b, this prediction is very accurate.

10 LIMITATIONS
We now discuss limitations of Zapper.

First, Zapper only supports Zasm programs respecting its pa-
rameters Ncycles, Nobj, Nfresh, Nfields, and Nregs. If these parameters
limit expressivity, developers can increase them (see §9.2).

As discussed in §3.1, Zapper does not natively support control
flow, but if-then-else branches can always be rewritten as con-
ditional assignments, and bounded loops can be unrolled. While
unbounded loops are not supported, these are already discouraged
in non-private smart contracts [19] and can instead be split into
individual, bounded-length transactions. Further, Zapper disallows
pointer arithmetic and self-modifying code, which are however un-
common in smart contracts. Also, Zasm programs with recursion
are disallowed and must be restructured. We expect this is often
feasible, e.g. by rewriting tail recursion into loops or by splitting
recursive calls into individual non-recursive transactions.

A fundamental limitation of Zapper is that it only allows users
to create transactions for which the data of all accessed objects
is known. In particular, contracts cannot privately communicate
“amongst each other” while keeping the communicated data hidden
from all users. To enable this, Zapper would need to leverage addi-
tional cryptographic primitives such as homomorphic encryption.

Finally, some applications such as private machine learning are
not suitable for Zapper, but can be realized using secure multi-
party computation (MPC) or fully homomorphic encryption (FHE).
However, these techniques are generally less scalable in terms of
the number of involved parties, communication, or computation.

11 COMPARISON TO ZEXE
We now elaborate on the shortcomings of ZEXE [14] compared to
Zapper (see also §1). ZEXE specifies smart contracts using records
and predicates. It provides strong data, identity, and function pri-
vacy based on nested zk-SNARKs and ideas from Zerocash [48].
Application Vulnerabilities We have discovered two vulnera-
bilities in ZEXE’s motivating example of a DEX [14, §I-A], which
allow an attacker to lock a coin belonging to another user. Both
attacks have been confirmed by the authors of ZEXE ([15, Acknowl-
edgments] and private correspondence). Note that our notion of
availability (§7) prevents such attacks by design.
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First, as ZEXE only stores commitments of data, transferring
data to another user requires out-of-band communication. As this
can be denied by a malicious user, DEX is subject to a “denial-of-
funds” attack, where the attacker accepts an offer but refuses to
share the information required to receive the attacker’s coin. To
prevent this attack, the ZEXE authors recommended adapting DEX
to store the encrypted output record in a public memorandum field
and extending the predicates to check for correct encryption [15,
Remark 6.1]. However, only developers intimately familiar with key-
private and NIZK-friendly encryption can implement this securely
and efficiently. Even if cryptographic experts provide according
cryptographic primitives, developers still need to decide whether
to use these, depending on the application (note that the attack
does not exist for the coin itself, but only when the coin is used in a
DEX). In contrast, Zapper by design uses an appropriate encryption
scheme instead of commitments (see §8).

Second, we have identified a “lock-out” attack on the DEX ap-
plication. Like Zapper, ZEXE pads input records by dead records.
However, unlike Zapper, ZEXE does not enforce that their serial
nonces ρin are globally unique (see Lin. 15 in Alg. 1). Thus, an
attacker knowing the shared address secret key of a DEX record
can block access to the record by consuming a dead record with a
conflicting serial nonce and serial number, thus blocking the coin to
be traded by the DEX indefinitely. We expect that our attack can be
prevented in ZEXE by constraining serial nonces of dead records.
Lack of Modularity ZEXE obstructs modular development, as
cooperating applications must typically be mutually aware of each
other to ensure that their logic cannot be violated in the future.

For example, ZEXE’s motivating example of a DEX [14, §I-A]
introduces a tight coupling between DexOffer and Coin. Specif-
ically, to prevent adversaries from creating coins out of thin air,
their birth predicate (which must be satisfied when creating a new
coin) ensures that coins can only be created in exchange for exist-
ing coins (identified by their birth predicate). However, because a
DexOffer record cannot “own” a coin record (ZEXE has no concept
of ownership), a newly created DexOffer consumes the coin to be
traded. In turn, accepting a DexOffer hence re-creates the previ-
ously consumed coin, which requires the DexOffer to have the same
birth predicate as coin (see above), thus essentially merging both
applications. Note that adapting the Coin birth predicate to allow
consuming non-merged DexOffer objects would require trusting
that DexOffer does not create coins out of thin air.

Following the above pattern, all potential applications using
coins must be anticipated and implemented in advance—a severe
limitation in practice.

In contrast, Zapper’s object ownership feature and access control
policies allow classes to be developed independently and modularly.
Trusted Setup and Usability ZEXE requires a separate trusted
setup for each application, which when performed by dishonest
parties allows violating correctness. 3 In contrast, Zapper only
requires a single trusted setup for its application-agnostic proof
circuit ϕ. Also, ZEXE relies on a non-standard programming model
in terms of predicates, while the programming model of Zapper is
closer to the most widely used smart contract language Ethereum.

3This problem can be partially mitigated by an expensive multi-party computation
(MPC), assuming trustworthy participants can be found for every new application.

Function Privacy Unlike Zapper, ZEXE hides the function being
executed in a transaction. However, this is often not required in
practice (see Tab. 2). Still, future work could extend Zapper to func-
tion privacy by providing Zasm instructions as private inputs to the
proof circuit and performing class registrations in zero-knowledge.

12 RELATEDWORK
Private Cryptocurrencies A long line of work proposes anony-
mous payment systems, where the participants involved in a trans-
action are hidden [16, 21, 25, 30, 33, 43, 45, 48]. In contrast to Zapper,
these systems focus on payments only and do not support general
smart contracts. However, Zapper does rely on the techniques of
Zerocash [33, 48] to hide the objects accessed in a transaction.

Private Smart Contracts Various works bring privacy to smart
contracts. Hawk [38], Arbitrum [35], Ekiden [17], and FastKit-
ten [20] assume a strong trust model by relying on trusted managers
or hardware. In contrast, Zapper only relies on a single trusted
zk-SNARK setup. While zkHawk [3] and V-zkHawk [4] weaken
the trust assumption of Hawk, they require interactive parties.
SmartFHE [49], zkay [53], and ZeeStar [52] provide data privacy
for smart contracts with weak trust assumptions, but do not target
identity privacy and leak the accessed memory locations. We have
already discussed ZEXE [14] separately in §11.

Zero-knowledge Rollups Complementary to Zapper, ZK rollups
such as StarkNet [51], zkSync [58], and Aztec [54] combine multiple
smart contract transactions into a single one using NIZK proofs.
However, to date, StarkNet and zkSync do not provide privacy [50,
57]. While the announced Aztec “ZK-ZK-Rollup” system [55] aims
to achieve private rollups, it has not yet been released.

Zero-knowledge Processors The idea of executing a processor in
zero-knowledge has been thoroughly studied before Zapper. For
instance, BubbleRAM [31], BubbleCache [32], and ZKarray [27]
present zero-knowledge processors with efficient RAM. However,
unlike Zapper, they target an interactive setting.

Similar to Zapper, the TinyRAM line of work [7–9] emulates a
processor inside (non-interactive) zk-SNARKs. As discussed in §6,
the Zapper processor applies techniques introduced by these works.
Zapper could potentially be extended, e.g., to target a von Neumann
architecture, allowing powerful techniques such as self-modifying
code [9]. However, as we demonstrate in §9, the Zapper processor
already supports realistic applications.

13 CONCLUSION
We have presented Zapper, a privacy-focused smart contract system
that allows developers to express smart contracts in an intuitive
frontend. Zapper is highly efficient and achieves data and identity
privacy, correctness, access control, integrity, and availability.
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Algorithm 3 Ideal-world protocol I.
1: function Init(C, A, Pk)
2: Remember C
3: Initialize empty Gkey and σ̃
4: pkA ← {Pk[α ] | α ∈ A} ▷ Public keys of dishonest users
5:
6: function Run(txideal, T, pkacc, dryrun)
7: if txideal = ⊥ ∨ ¬isUser(txideal .pkme) then return ⊥
8: if values in T not unique then return ⊥
9: C .f , args, pkme ← txideal

10: run C .f in C with arguments args and sender address pkme

11:

- use input state σ̃ and create output state σ̃ ′
- for NEW, read new object id and object account secret key from T
- for FRESH, read fresh value from T
- collect sets in, out and new containing object ids of objects
which are (i) accessed but not newly created, (ii) accessed but
not destroyed, and (iii) newly created, resp., by C .f

12: for oid ∈ in do
13: if ¬canAccessGkey (pkacc, σ̃ [oid]) then
14: return ⊥
15: infoideal ← GetInfo(C .f , pkA ,Gkey, σ̃ , σ̃ ′, in, out) ▷ Alg. 5
16: if ¬dryrun then
17: for each oid ∈ new do
18: s ← σ̃ ′[oid]
19: Add edge (pkme , s .pkself ) to Gkey
20: Add edge (s .pkowner , s .pkself ) to Gkey

21: σ̃ ← σ̃ ′

22: return infoideal

Table 4: Instruction set of the Zapper processor. Arguments marked
as ⟨x⟩ may be both constants or references to a register. We use
val(x) for the value of the constant or register indicated by ⟨x⟩.

NOOP No operation
MOV d ⟨s ⟩ Writes val(s) to reg[d]
CMOV d ⟨c ⟩ ⟨s ⟩ Writes val(s) to reg[d] if val(c) = 1
ADD d ⟨s1 ⟩ ⟨s2 ⟩ Writes val(s1) + val(s2) to reg[d]
SUB d ⟨s1 ⟩ ⟨s2 ⟩ Writes val(s1) − val(s2) to reg[d]
MUL d ⟨s1 ⟩ ⟨s2 ⟩ Writes val(s1) · val(s2) to reg[d]
EQ d ⟨s1 ⟩ ⟨s2 ⟩ Writes 1 to reg[d] if val(s1) = val(s2), 0 otherwise
LT d ⟨s1 ⟩ ⟨s2 ⟩ Writes 1 to reg[d] if val(s1) < val(s2), 0 otherwise
REQ ⟨c ⟩ Aborts transaction if val(c) , 1
LOAD d ⟨oid ⟩ i Loads i-th field of object with id val(oid) into reg[d]
STORE s ⟨oid ⟩ i Stores reg[s] into the i-th field of object with id

val(oid)
CID d ⟨oid ⟩ Writes the class id of object with id oid to reg[d]
PK d ⟨oid ⟩ Writes the public key of object with id oid to reg[d]
NEW d cid Creates a new object with class id cid and writes its

object id to reg[d]
KILL ⟨oid ⟩ Destroys the object with id val(oid)
FRESH d Writes a unique secret value to reg[d]
NOW d Writes the current timestamp to reg[d]

A APPENDIX
A.1 Processor Details
In Tab. 4, we provide and describe the full instruction set of the
Zapper processor.

A.2 Correctness
A.2.1 NIZK Proofs. In the following, we assume that Zapper is in-
stantiated with a simulation-extractable zk-SNARK (SE-SNARK [29]).
This scheme satisfies perfect completeness [29, Def. 2.7], perfect
zero-knowledge [29, Def. 2.8], and is simulation-extractable [29,
Def. 2.10].

A.2.2 Attacker Model. LetU be the set of users in the system. In
the following, we consider an active probabilistic polynomial-time
(PPT) adversary E which statically corrupts a subset A ⊆ U of
users, can create arbitrary transactions, and can observe and mod-
ify all transactions sent to the Zapper executor (formally defined
shortly).

A.2.3 Ideal World. In Alg. 3, we define a protocol I modeling the
ideal world. This protocol maintains the current plaintext data of
all objects in a plain state σ̃ mapping object ids to plain records.
Additionally, it maintains a graph Gkey, discussed next.
Accessible Objects A user u can access an object o if it knows the
secret key of its owner. We use the directed graph Gkey to formally
specify the keys known by a given user. Specifically, the vertices
in Gkey represent public keys, and its edges connect (pkα , pkα ′)
if a user knowing skα also knows skα ′ . Keys of (human) users
represent the initial knowledge of the user and therefore have no
incoming edges. Keys of objects o can be learned in two ways and
therefore have two incoming edges. First, the user who created
o also created its secret key, and therefore knows it, as indicated
by edge (pkme, s .pkself ) in Lin. 19. Second, any user knowing the
secret key of the owner of o can decrypt o to learn its secret key, as
indicated by edge (s .pkowner , s .pkself ) in Lin. 20.

Overall, let pkU denote the set of keys known by user u. Then,
u can access object o, denoted by canAccessGkey (pkU,o) if Gkey
admits a path from a key in pkU to the key of the owner of o. In
this case, u can observe and interact with o in the ideal world.
Initialization In Alg. 3, the function I.Init accepts a set C of
Zapper contracts, the identity of the dishonest users A, and a map
Pk mapping each user u ∈ U to its public key. It creates an empty
plain state and key graph.
Running Transactions The function I.Run accepts an ideal
transaction txideal, a tape T of unique values, a set pkacc of public
keys, and a boolean flag dryrun. Here, txideal specifies the called
functionC . f , the function arguments args and the public key pkme
of the sender account used for the transaction (see Lin. 9). The
tape T contains unique values to be used for the object ids and
secret keys of new objects, and fresh values generated by FRESH.
The set pkacc is used for access checks: it contains the public keys
corresponding to the secret keys known to the sender. Finally, the
flag dryrun determines whether the txideal should update the state.
I.Run executes txideal on the current plain state σ̃ using the

values in T while keeping track of the current key graph Gkey.
For simplicity, we do not consider timestamps in the ideal world
(Lin. 10–11). Importantly, Lin. 7–8 and Lin. 12–14 abort by returning
⊥ if the transaction is invalid (e.g., if pkacc cannot access an input
object). For the moment, the reader can ignore Lin. 15, which returns
information visible to the adversary and will only be relevant for
the privacy definition (App. A.4). Finally, Lin. 16–21 update the
state and Gkey (discussed before).
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Algorithm 4 RealEA (C, [txideal]) and SimE,SA (C, [txideal])
1: Trusted setup for zk-SNARK: (Σ, τ ) ← Setup()
2: Register Zasm classes C at assembly storage
3: For all α ∈ U, generate key pair (skα , pkα ) and set Pk[α ] ← pkα
4: Initialize empty Zapper system state σ
5: I .Init(C, A, Pk)
6: P .Init(C, pk, {skα }α<A , Σ) S .Init(C, pk, Σ, τ , {skα }α ∈A )
7: E .Init(C, pk, {skα }α ∈A , Σ)
8: for txideal in [txideal] do
9: tx ← ⊥

10: if txideal .pkme ∈ {pkα }α<A then
11: infoideal ← I .Run(txideal, Rand(), {txideal .pkme }, true)
12: tx ← P .Create(txideal, σ ) tx ← S .Create(infoideal, σ )
13: tx′ ← E .Create(σ , tx)
14: S .Update(tx′, E)
15: tx′ideal, T′, pkacc ← Extract(tx′, σ , Σ)
16: I .Run(tx′ideal, T′, pkacc, false)
17: Verify and execute tx′ on the current state σ
18: return E .Decide()

A.2.4 Real World. The algorithm RealEA (Alg. 4, ignoring blue
instructions) models the real world when executing a list [txideal]
of transactions on Zapper classes C. The reader can ignore Lin. 18
and all instructions highlighted in blue for the moment—they will
be relevant later to formalize our notion of privacy.
Assumptions Without loss of generality, we assume that all clas-
ses in C are registered at the assembly storage before the first
transaction is submitted to the Zapper executor, and that user
accounts are not shared. 4 Further, for simplicity we assume that the
Zapper executor runs on an idealized ledger, ignore the timestamp
mechanism of Zapper, and assume that transactions of honest users
are always created based on the latest object tree root hash β .
Modeling Users In RealEA , the steps of honest users are modeled
by a protocol P which gets access to the honest users’ secret keys
(Lin. 6), where Lin. 12 creates transactions tx according to §5. The
steps of the attacker are modeled by a PPT protocol E, which gets
access to the dishonest users’ secret keys (Lin. 7) and can craft
arbitrary transactions (Lin. 13). Importantly, the adversary gets
access to transactions created by honest users in Lin. 13, allowing
the adversary to observe and modify transactions before they are
received at the Zapper executor.
Tracking the IdealWorld In order to define correctness, we inte-
grate the ideal-world protocol I in RealEA (see highlighted ). The
ideal world is initialized in Lin. 5. In Lin. 11, ideal-world transactions
txideal of honest users are executed in dry-run mode in order to
determine whether txideal is valid and to obtain information visible
to the adversary (relevant for privacy). Here, the new object ids,
object secret keys, and fresh values in T are selected uniformly at
random by Rand.
4Sharing an account between two users u1 , u2 is equivalent to introducing a new user
u3 with its own account, where u3 is part of A iff u1 or u2 are in A.

The ideal-world state is updated in Lin. 16. Here, an ideal-world
transaction tx ′ideal, tape T ′ and keys pkacc corresponding to the
real-world transaction tx ′ are created in the Extract function as
follows (Lin. 15): First, it is checked whether tx ′ is valid (i.e., whether
according to σ , the proof Π is valid, the serial numbers are unique,
and the unique seed is unique). If not, then Extract returns (⊥,⊥,⊥).
Otherwise, the witness extractorX of the SE-SNARK [29, Def. 2.10]
is used to extract the private inputs C ′. f ′, args, pkme , [skα ] and
[Rpr] for ϕ from Π and (i) assemble the ideal-world transaction
tx ′ideal = (C ′. f ′, args, pkme); (ii) compute T ′ from [Rpr] by Lin. 2–4
in Alg. 2; and (iii) derive pkacc = {derivePk(skα ) | skα ∈ [skα ]}.
A.2.5 Correctness Definition. In order to define correctness, we
finally introduce a function GetPlain(σ , {skα }α ∈U ), which com-
putes an ideal-world plain state σ̃ corresponding to a real-world
state σ as follows. First, it decrypts all records in the object tree of σ
using the provided secret keys to obtain a set R of plain records.
Next, it derives all serial numbers for all records in R and removes
any records from R whose serial number appears in the serial num-
ber list of σ . The resulting plain records R are stored in a map σ̃
mapping object ids to plain records.

Theorem A.1 (Correctness). Assume Zapper is instantiated
with an SE-SNARK [29]. Let A be any set of users, C a set of Zapper
classes, [txideal] a list of n ideal-world transactions, where n is poly-
nomial in the security parameter, and E a PPT protocol. Further, let
σ be the state right after Lin. 17 during some iteration of the loop in
RealEA , and σ̃ the ideal-world state held in I at this point. Then, with
overwhelming probability, it is

GetPlain(σ , {skα }α ∈U ) = σ̃ .

Intuitively, Thm. A.1 captures the fact that for any transaction
accepted in the real world, there exists a corresponding transac-
tion accepted in the ideal world. In particular, transactions created
or modified by the adversary must adhere to the Zasm code of
registered classes.

Note that the ideal world only enforces new object ids, keys and
fresh values to be unique (Lin. 8 in Alg. 3). While honest users
would compute these according to Lin. 2–4 in Alg. 2 for uniform
randomness, dishonest users may use non-random values for [Rpr].
A.2.6 Correctness Proof. At a high level, Thm. A.1 follows from
the simulation-extractability of the SE-SNARK and the construction
of ϕ.

If tx ′ is rejected in the real world in Lin. 17, Extract returns
tx ′ideal = ⊥, which will also be rejected in the ideal world.

Otherwise, the proof Π in tx ′ is valid and Extract returns an
ideal-world transaction tx ′ideal = (C . f , args, pkme), tape T ′, and
keys pkacc.

First, we argue that I.Run successfully updates its state and does
not return ⊥ when receiving tx ′ideal,T ′, pkacc. By the simulation-
extractability of the SE-SNARK, all constraints inϕ are satisfied with
overwhelming probability. The check in Lin. 7 of Alg. 3 succeeds as
ϕ includes a corresponding constraint (Lin. 8 in Alg. 1). The check
in Lin. 8 of Alg. 3 succeeds with overwhelming probability by the
fact that the entries in T ′ were computed according to Lin. 2–4 in
Alg. 2 and the collision-resistance of Hi (u in tx ′ is unique). Further,
the keys pkacc by construction allow to access all objects involved
in the transaction, so the checks in Lin. 13 of Alg. 3 succeed.
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Second, we argue that the state update performed in I.Run is
reflected in the real world. By construction, the proof circuit ϕ
ensures that the output records [r̂out] included in tx ′ have been
computed according toC . f , args, pkme based on some previous state
of the involved objects. As the serial numbers in tx ′ are unique, the
most recent state of all involved objects has been used. Therefore,
with overwhelming probability, the plain records underlying [r̂out]
are equal to the corresponding records in the ideal-world state σ̃ .

A.3 Availability and Integrity
In order to prove availability and integrity, we first formulate and
prove some helper lemmas.

Lemma A.2 (Creation Success). If infoideal , ⊥, thenP succeeds
to create a transaction tx , ⊥ with valid proof Π in Lin. 12 of RealEA .

Proof. By following §5, P succeeds to create a transaction with
valid proof, provided P has access to (i) the sender’s secret key
skme , and (ii) the secret keys skα required to decrypt the input
records.

For (i), P has learned skme in Lin. 6. For (ii), as infoideal , ⊥,
Lin. 13 in Alg. 3 has confirmed that the user knowing pkme can
access all input objects. □

Lemma A.3 (Serial Nonce Uniqeness). The serial nonces con-
tained in any encrypted record stored in σ in Lin. 17 of RealEA are
globally unique with overwhelming probability.

Proof. Transactions are only accepted in the real world if the
unique seedu is globally unique. By the simulation-extractability of
SE-SNARK, the serial nonces ρout

i contained in encrypted records
of accepted transactions must have been computed according to
Lin. 19 in Alg. 1 with overwhelming probability. The lemma thus
follows from the collision-resistance of H2. □

Lemma A.4 (Serial Number Uniqeness). Assume infoideal , ⊥
in RealEA . Then, the serial numbers in tx computed in Lin. 12 cannot
collide with any serial numbers inσ , except with negligible probability.

Proof. By Lem. A.2, P successfully created tx, including a valid
proof Π. Likewise, any transaction accepted in the real world in-
cluded a valid proof. By the simulation-extractability of the SE-
SNARK, any serial number sni in tx or σ has been computed ac-
cording to Lin. 16 in Alg. 1. The corresponding serial nonce ρin

i
either originates from (i) a non-dead input record or (ii) a dead
input record introduced for padding. For case (i), ρin

i is unique with
overwhelming probability by Lem. A.3. For case (ii), ρin

i is com-
puted according to Lin. 15 in Alg. 1. By the uniqueness property of
the construction Eq. (1) used in Eq. (4), it follows that ρin

i must be
unique with overwhelming probability. The uniqueness of sni then
follows from the collision-resistance of H1 in Lin. 16 in Alg. 1. □

Theorem A.5 (Availability). Assume Zapper is instantiated with
an SE-SNARK [29] and letA, C, [txideal], E as in Thm. A.1. In Lin. 17
of RealEA , the following holds with overwhelming probability:

infoideal , ⊥ ∧ tx = tx ′ =⇒ txideal = tx ′ideal

Intuitively, Thm. A.5 ensures that if the adversary does not in-
terfere and txideal is valid in the ideal world, then tx ′ corresponds

to txideal. In particular, previous transactions of the adversary can-
not prevent honest users from realizing any successful ideal-world
transaction in the real world, thereby defeating the “Faerie Gold”
attack [33].

Proof of Thm. A.5. Assume infoideal , ⊥ and tx = tx ′. In this
case, txideal is valid in the ideal world and the adversary E did not
modify the transaction tx originally created by P.

First, we show that tx is accepted in the real world with over-
whelming probability. By Lem. A.2, the proof in tx is valid. Further,
the unique seed u in tx is indeed unique as it was selected by P.
Further, by Lem. A.4, all serial numbers in tx are unique with over-
whelming probability.

Second, by the simulation-extractability of the SE-SNARK, the
function Extract with overwhelming probability returns tx ′ideal =
txideal, as tx ′ideal is extracted from tx ′ = tx, where tx was created
from txideal. □

Theorem A.6 (Integrity). Assume Zapper is instantiated with
an SE-SNARK [29] and letA, C, [txideal], E as in Thm. A.1. Consider
Lin. 17 of RealEA in any iteration. Let O be the set of objects accessed
by tx ′ideal, and let Tx be the set of transactions tx created by P in
Lin. 12 so far. The following holds with overwhelming probability:

tx ′ < Tx ∧ tx ′ideal , ⊥
=⇒ (6)

tx ′ideal.pkme ∈ pkA ∧ ∀o ∈ O. canAccessGkey (pkA,o).
Further, let Tx ′ be the set of transactions tx ′ created by E in Lin. 13
in any previous iteration. Then:

tx ′ ∈ Tx ′ =⇒ tx ′ideal = ⊥. (7)

Intuitively, Eq. (6) captures the fact that the adversary can block
or delay transactions by honest users, but cannot modify such
transactions “in flight” such that they are still accepted, except if the
resulting transactions could have been generated by the adversary
from scratch. This for instance prevent attacks that change the
arguments to a function call by an honest user in the attacker’s
favour. Further, Eq. (7) prevents replay attacks.

Proof of Thm. A.6. To prove Eq. (6), we assume tx ′ < Tx and
tx ′ideal , ⊥.

As tx ′ideal , ⊥, tx ′.Π is valid. Consider any tx ′′ ∈ Tx. As tx ′ < Tx,
either tx ′′.Π , tx ′.Π or any of the public arguments used to gen-
erate tx ′′.Π or tx ′.Π, respectively, are different (all components
C . f , β, [sn], [r̂out],u of a transaction are public inputs of the proof
circuit). Therefore, E has created a proof for a public input not seen
previously, or a different proof for public inputs seen previously.
By the simulation-extractability of the SE-SNARK, we can hence
extract from E the private inputs skme and [skα ] used to generate
tx ′.Π with overwhelming probability. As E only has access to the
secret keys corresponding to pk∗A , the theorem follows.

To prove Eq. (7), we observe that the serial numbers included in
tx ′ are checked to be unique. Thus, repeated submissions of tx ′ are
rejected. □

A.4 Privacy
A.4.1 Privacy Definition. We next formalize Zapper’s privacy no-
tion using a simulation-based definition.
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Algorithm 5 Information visible to adversary in ideal world.
1: function GetInfo(C .f , pkA ,Gkey, σ̃ , σ̃ ′, in, out)
2: infoideal ← {f: C .f , in: [], out: []}
3: for each oid ∈ in do
4: if canAccessGkey (pkA , σ̃ [oid]) then
5: infoideal .in.append(oid)
6: else infoideal .in.append(0)
7: pad infoideal .in by 0 to length Nobj
8: for each oid ∈ out do
9: if canAccessGkey (pkA , σ̃ [oid]) then

10: infoideal .out.append(σ̃ ′[oid])
11: else infoideal .out.append(0)
12: pad infoideal .out by 0 to length Nobj
13: return infoideal

Simulated Real World The algorithm SimE,SA (Alg. 4, after re-

placing orange instructions by blue instructions) simulates the
real world using a simulator protocolS. In SimE,SA , the steps of hon-
est users are replaced by a simulator S, which does not get access
to the secret keys of honest users, but is provided the zk-SNARK
simulation trapdoor τ and the secret keys of dishonest users (Lin. 6).
Further, S gets access to the transactions crafted by the adversary
as well as the internal state of E (Lin. 14). Transactions created
by honest users are simulated by S.Create based on information
infoideal obtained from I (Lin. 12) as discussed next.
Ideal-world Information Alg. 5 shows how the information
infoideal visible to the users A in an ideal world is created as part
of running an ideal-world transaction txideal in Alg. 3. The infor-
mation infoideal includes (i) the name of the called function (see
Lin. 2 in Alg. 5); (ii) the object ids of all input objects the adversary
can access (Lin. 5); and (iii) the plain state of all output objects the
adversary can access (Lin. 10).
Privacy The goal of E is to decide whether it is interacting with
the real world (Alg. 4, orange ) or a simulation thereof (Alg. 4,
blue ) using the E .Decide() function (Lin. 18 in Alg. 4). If E cannot

distinguish these two worlds except with negligible probability,
then Zapper is private. We formalize this in Thm. A.8.

Definition A.7 (Advantage). Let D0, D1 be two distributions and
E a PPT algorithm. We define the advantage as follows:

AdvE (D0,D1) :=
��Pr[E(x) = 1 : x sampled from D0]
− Pr[E(x) = 1 : x sampled from D1]

��
Theorem A.8 (Privacy). Assume Zapper is instantiated with an

SE-SNARK [29] and a key-private IK-CPA [6] and CPA-secure [36,
Def. 3.22] encryption scheme. LetA, C, [txideal] as in Thm. A.1. There
exists a PPT protocol S⋆ such that for any PPT adversaries E, E ′ the
following is negligible:

AdvE
′ (

RealEA (C, [txideal]), SimE,S
⋆

A (C, [txideal])
)

A.4.2 Privacy Proof. In the following, let C, A and [txideal] as
in Thm. A.8. We prove Thm. A.8 using a hybrid argument, by
constructing a sequence PPT of simulators S0, . . . ,S6 and defining
S⋆ := S6. Thm. A.8 follows from Lemmas A.9–A.15 introduced
below and the triangle inequality.

Simulator S0 We define Sim+E,SA to be SimE,SA with the follow-
ing modifications. First, S.Init is additionally passed the secret keys
of honest users {skα }α<A in Lin. 6. Second,S.Create is additionally
passed txideal in Lin. 12.

Next, we define S0 to forward the arguments received at Init
and Create to the honest protocol P while ignoring the arguments
τ , {skα }α ∈A and infoideal. S0.Update does nothing.

Lemma A.9. For any PPT protocols E, E ′, the following advantage

is zero: AdvE′
(
RealEA (C, [txideal]), Sim+E,S0

A (C, [txideal])
)
.

Proof. By construction. □

SimulatorS1 S1 is the same asS0, but if infoideal = ⊥,S1.Create
does not forward txideal to P but instead directly returns ⊥. Oth-
erwise, S1.Create ignores the zk-SNARK Π in the transaction re-
turned by P and instead uses the proof simulator ZSimProve of
the SE-SNARK [29, Def. 2.8] to create a simulated proof based on Σ
and τ .

Lemma A.10. For any PPT protocols E, E ′, the following advantage

is zero: AdvE′
(
Sim+E,S0

A (C, [txideal]), Sim+E,S1
A (C, [txideal])

)
.

Proof. Follows from the perfect zero-knowledge property. □

Simulator S2 S2 is the same as S1, but S2.Create ignores the
function nameC . f and root hash β in the transaction returned byP.
Instead, S2 reads C . f from the ideal-world information infoideal
and β from the current state σ .

Lemma A.11. For any PPT protocols E, E ′, the following advantage

is zero: AdvE′
(
Sim+E,S1

A (C, [txideal]), Sim+E,S2
A (C, [txideal])

)
.

Proof. By construction, the replaced values are equal. □

Simulator S3 S3 is the same as S2, but S3.Create ignores the
unique seed u in the transaction returned by P and instead selects
a seed u uniformly at random.

Lemma A.12. For any PPT protocols E, E ′, the following advantage

is zero: AdvE′
(
Sim+E,S2

A (C, [txideal]), Sim+E,S3
A (C, [txideal])

)
.

Proof. Both P and S3 sample u from the same distribution. □

Simulator S4 S4 simulates serial numbers. To this end, it keeps
track of information known to the adversary. In particular, S4 is
S3 with the following modifications.

First, S4 maintains a set keys and a map data. The set keys con-
tains all secret keys known to E. It consists of the secret keys
{skα }α ∈A of dishonest accounts and the secret keys of new ob-
jects created in transactions by E. The map data maps object ids
to a pair of serial nonce and secret key. In particular, data contains
an entry for oid iff the most recent record of the object with id
oid (i) was created by E, and (ii) is encrypted under a public key
pkowner whose corresponding secret key skowner is known by E. In
this case, data[oid] contains a pair (ρ, skowner ) containing the serial
nonce ρ and owner account secret key skowner for the indicated
object.

Next, to keep track of keys and data, S4.Update(tx ′, E) performs
the following steps. First, if tx ′ has been previously simulated by
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S.Create, the function returns. Otherwise, it verifies whether the
zk-SNARK Π contained in tx ′ is valid. If no, the function returns.
Otherwise, it uses the witness extractorX of the SE-SNARK [29, Def.
2.10] to extract from Π the secret keys of any newly created objects
as part of tx and adds these to keys. Next, S4 uses the internal state
of E to extracts from Π: the owner public key pkiowner , object id
oidi , and serial nonce ρout

i of all non-dead output records rout
i . For

each i , if the secret key skiowner corresponding to pkiowner is in keys,
it updates data[oidi ] ← (ρout

i , skiowner ).
Finally, S4.Create ignores the serial numbers [sn] in the transac-

tion returned by P and instead simulates the i-th serial number by
sn′i as follows.

Case (i): If oid := infoideal.in[i] , 0 and data contains an entry
for oid, then S4 looks up (ρ, skowner ) ← data[oid] and computes
the serial number sn′i ← H1(ρ ∥ skowner ). Additionally, it deletes
the entry data[oid].

Case (ii): Otherwise, S4 selects sn′i uniformly at random.

Lemma A.13. For any PPT protocols E, E ′, the advantage is negli-

gible: AdvE′
(
Sim+E,S3

A (C, [txideal]), Sim+E,S4
A (C, [txideal])

)
.

Proof. By construction, keys contains all secret keys known to
the adversary E. Because the owner of objects which have their
own account cannot be changed, for every account α the adversary
E either learns skα immediately or never.

For case (i), the serial number sn′i is by construction identical to
sni computed by P.

For case (ii), the adversary by construction does not know ei-
ther the secret key skowner or the nonce ρin

i used to derive sni in
P, or both. If the adversary does not know skowner , then sn′i is
indistinguishable from sni by the pseudorandomness property of
H1. Otherwise (i.e., the adversary does not know ρin

i ), ρin
i must

originate from P, where we again distinguish two cases. (a) If the
i-th input record is dead, then P has computed ρin

i according to
Lin. 15 in Alg. 1 using fresh randomness. (b) Otherwise, ρin

i has
been computed by P in a previous transaction according to Lin. 19
in Alg. 1 using fresh randomness.

In both cases (a) and (b), by the pseudorandomness property of
H2, sni is indistinguishable from a uniform random value. □

Simulator S5 S5 simulates encrypted records. In particular, S5
is the same as S4, but all calls to P are removed and infoideal is used
to simulate the i-th output record r̂out

i by r̂ ′i as follows.
Case (i): If infoideal.out[i] , 0, S5 creates an encrypted record as

follows. First, it selects a uniformly random serial nonce ρ ′. Then, it
selects uniform randomnessR and creates r̂ ′i = Enc((ρ ′, s), s .pkowner ,R),
where s = infoideal.out[i].

Case (ii): Otherwise, S5 creates a fresh key pair (sk′, pk′) and
creates r̂ ′i = Enc((0, 0), pk′,R) for uniform randomness R.

Lemma A.14. For any PPT protocols E, E ′, the advantage is negli-

gible: AdvE′
(
Sim+E,S4

A (C, [txideal]), Sim+E,S5
A (C, [txideal])

)
.

Proof. The transactions returned by P .Create are completely
ignored in S5, hence removing P does not change the distribution.

For case (i), the plaintext (ρ ′, s) encrypted by S5 is indistinguish-
able from the plaintext (ρ, r in

i ) in r̂out
i , except with negligible advan-

tage: First, the nonce ρ has been derived by P according to Lin. 19
in Alg. 1 using fresh randomness, and the pseudorandomness of
Hi ensures that ρ is indistinguishable from ρ ′. Second, the values
on the tape used in Lin. 11 are indistinguishable from the values
created by P according to Lin. 2–4 in Alg. 2 due to the pseudoran-
domness of Hi . Hence, by Thm. A.1, s is equal to r in

i except with
negligible probability.

For case (ii), E does not know the secret key which could be
used to decrypt r̂out

i produced by P (note that any dead records
are encrypted using the dishonest sender account’s key). By the
IK-CPA property and CPA-security of the encryption scheme, r̂ ′i is
indistinguishable from r̂out

i except with negligible advantage. □

Simulator S6 We define S6 as follows:
S6.Init(C, . . . , {skα }α ∈A ) := S5.Init(C, . . . , {skα }α ∈A, ∅)
S6.Create(infoideal,σ ) := S5.Create(infoideal,σ , ∅)

Lemma A.15. For any PPT protocols E, E ′, the following advantage

is zero: AdvE′
(
Sim+E,S5

A (C, [txideal]), Sim+E,S6
A (C, [txideal])

)
.

Proof. S5 no longer accesses {skα }α<A or txideal, hence the
simulators S6 and S5 output same distribution. □
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