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ABSTRACT
(𝜖, 𝛿) differential privacy has seen increased adoption recently, es-

pecially in private machine learning applications. While this pri-

vacy definition allows provably limiting the amount of information

leaked by an algorithm, practical implementations of differentially

private algorithms often contain subtle vulnerabilities. This moti-

vates the need for effective tools that can audit (𝜖, 𝛿) differential
privacy algorithms before deploying them in the real world. How-

ever, existing state-of-the-art-tools for auditing (𝜖, 𝛿) differential
privacy directly extend the tools for 𝜖-differential privacy by fixing

either 𝜖 or 𝛿 in the violation search, inherently restricting their

ability to efficiently discover violations of (𝜖, 𝛿) differential privacy.
We present a novel method to efficiently discover (𝜖, 𝛿) differ-

ential privacy violations based on the key insight that many (𝜖, 𝛿)
pairs can be grouped as they result in the same algorithm. Cru-

cially, our method is orthogonal to existing approaches and, when

combined, results in a faster and more precise violation search.

We implemented our approach in a tool called Delta-Siege and

demonstrated its effectiveness by discovering vulnerabilities in

most of the evaluated frameworks, several of which were previously

unknown. Further, in 84% of cases, Delta-Siege outperforms existing

state-of-the-art auditing tools. Finally, we show how Delta-Siege

outputs can be used to find the precise root cause of vulnerabilities,

an option no other differential privacy testing tool currently offers.

CCS CONCEPTS
• Security and privacy → Privacy-preserving protocols; •
Mathematics of computing→ Statistical software.
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Table 1: State-of-the-art algorithms where Delta-Siege found
a privacy violation. Violations of MST, AIM, and Google’s DP
Gaussian were previously unknown, Meta’s and Diffprivlib’s
were found recently by [26].

Library DP Mechanism Differential privacy def.

IBM’s Diffprivlib [28] Laplace 𝜖

FloatGauss (𝜖, 𝛿 )
Analytic FloatGauss (𝜖, 𝛿 )

Google’s DP Library [25] Gauss
𝑎 (𝜖, 𝛿 )

Meta’s Opacus [51] Gauss (𝜖, 𝛿 )
MST [40] (𝜖, 𝛿 )𝑏
AIM [41] (𝜖, 𝛿 )𝑏

𝑎
For Google’s DP library, we used the Python bindings from PyDP [45] as of

January 10th 2023.

𝑏
These mechanisms rely on the privacy of intermediate results to ensure the

privacy of the end-to-endmechanism.We showed that the intermediate results

are not private, thus invalidating the privacy guarantees of the mechanisms.

1 INTRODUCTION
The proliferation of data and applications built on top of it, from

healthcare to traffic prediction, has only increased interest in data-

driven algorithms. However, the necessary data is often sensitive;

both medical records and localization data contain personal infor-

mation. When using data containing sensitive information, one

must respect an individual’s right to privacy, both from an ethical

and legal perspective [13, 20, 24]. To design algorithms respecting

privacy, the golden standard is differential privacy: a framework

enabling the exact quantification of the amount of private infor-

mation leaked by an algorithm. Since its introduction, differential

privacy [21] has been widely adopted bymajor tech companies such

as Google [25], Meta [51], and IBM [28], alongside governmental

institutions such as the US Census Bureau[19].

Flawed Implementations. However, there is as often a gap be-

tween theory and practice. Multiple works have identified and

exploited vulnerabilities in implementations, showing how slight

deviations from the theoretical algorithms can be enough to com-

promise differential privacy guarantees. Those vulnerabilities can

completely invalidate any guarantees. For instance, [31, 26, 42]

showed that common implementations of the Laplacian and Gauss-

ian mechanisms are vulnerable to attacks exploiting the last few

bits of their floating point representation, allowing an attacker to

completely recover the original data.

https://doi.org/10.1145/3576915.3616607
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Need for Automated Auditing. As shown by the existence of

these attacks, if differential privacy is ever going to live up to its

promise, privacy-preserving algorithms’ implementations must be

thoroughly vetted before deployment. This has led to substantial

research interest in tools [44, 9, 36] designed to automatically and

efficiently audit state-of-the-art 𝜖-differentially private algorithms.

(𝜖, 𝛿) differential privacy. However, most recent differentially

private algorithms use a more permissive definition of differential

privacy: (𝜖, 𝛿) differential privacy. This definition is harder to au-

dit efficiently as the privacy parameter space is larger, and many

privacy parameters now become incomparable; (𝜖, 𝛿) is a stronger
parameter than (𝜖′, 𝛿 ′) only if both 𝜖 < 𝜖′ and 𝛿 < 𝛿 ′. Violations are
hence harder to find and characterize, which in turn makes a direct

extension of the auditing tools mentioned above slow and ineffi-

cient. For instance, a common extension strategy is to fix multiple

values of 𝛿 and run the complete 𝜖 auditing process for each, which

is not only slow but can easily miss some violations. This motivates

the need for an effective method that can efficiently explore the

space of (𝜖, 𝛿) potential violations.

This Work. In this work, we present a novel method to efficiently

explore potential violations of (𝜖, 𝛿) differential privacy. The key
technical insight of our work is that many (𝜖, 𝛿) differentially pri-

vate algorithms combine 𝜖 and 𝛿 into a single privacy parameter

𝜌 . This means that multiple values of (𝜖, 𝛿) may lead to the exact

same algorithm, as the value of 𝜌 entirely determines the algorithm.

Therefore, such an algorithm must satisfy (𝜖, 𝛿) differential privacy
for an entire set of (𝜖, 𝛿) values. By using 𝜌 directly, we can hence

audit multiple privacy claims at the same time. Importantly, our

method is orthogonal to many of the existing auditing tools and can

be used to amplify their auditing power; it can also be leveraged to

audit 𝜖 differential privacy.

We implemented our method within the state-of-the-art auditing

framework DP-Opt [44], resulting in our new tool Delta-Siege. As

shown in Table 1, Delta-Siege detected violations in most audited

algorithms, including ones thought to be correctly implemented.

Further, we found that 84% of the time, Delta-Siege outperforms

other state-of-the-art auditing tools, finding violations up to 16

times more severe. Finally, we demonstrate how Delta-Siege can

be leveraged to provide practical counter-examples when viola-

tions are found, enabling users to understand the source of the

vulnerabilities in audited mechanisms.

Main Contributions. Our main contributions are:

• A characterization of differential privacy algorithms that

combines 𝜖 and 𝛿 into a single privacy parameter 𝜌 that

efficiently describes the space of (𝜖, 𝛿) differential privacy
violations.

• A method to efficiently search for (𝜖, 𝛿) differential privacy
violations for such algorithms.

• An end-to-end implementation of this method extending

DP-Opt [44] in our tool Delta-Siege.

• A thorough evaluation against state-of-the-art differentially

private algorithms showing that Delta-Siege drastically out-

performs related works in almost all tested scenarios.

• A new method to identify the root causes of violations dis-

covered using the DP-Opt framework.

2 BACKGROUND
We now provide the background needed to understand our con-

tributions. Intuitively, a randomized algorithm 𝑀 : A → B is

differentially private if for any neighboring inputs 𝑎, 𝑎′, the out-
put of𝑀 (𝑎) and𝑀 (𝑎′) are indistinguishable with high probability.

Therefore, when observing the output of𝑀 , an adversary cannot

confidently know whether the original input was 𝑎 or 𝑎′.
To formalize this definition, we first define for some 𝑎 in A its

set of neighbors as N(𝑎). This set of neighbors depends on the

algorithm at hand; if 𝑎 is a database,N(𝑎) is often defined as the set

of all databases where a row of 𝑎 was either dropped or added. If 𝑎 is

a vector,N(𝑎) can be the set of all vectors 𝑎′ such that | |𝑎−𝑎′ | | ≤ 1

for some norm | | · | |.
We formalize the “indistinguishable with high probability” no-

tion using the standard definition of (𝜖, 𝛿) differential privacy:

Definition 1. For any 𝜖 ≥ 0 and 𝛿 in [0, 1], we say a randomized
algorithm𝑀 : A→ B is (𝜖, 𝛿)-differentially private if and only if

∀𝑎 ∈ A,∀𝑎′ ∈ N (𝑎),∀𝑆 ⊆ B :

P [𝑀 (𝑎) ∈ 𝑆] − 𝛿
P [𝑀 (𝑎′) ∈ 𝑆] ≤ exp(𝜖) (1)

We denote P = R≥0 × [0, 1] the set of valid (𝜖, 𝛿) parameter

pairs.

Auditing through attacks. In this work, we focus on auditing

differentially private algorithms. Given an algorithm𝑀 claimed to

be (𝜖, 𝛿) differentially private, we look for an attack (𝑎, 𝑎′, 𝑆) that
would invalidate this claim. Such an attack is a violation if:

P [𝑀 (𝑎) ∈ 𝑆] − 𝛿
P [𝑀 (𝑎′) ∈ 𝑆] > exp(𝜖)

Aviolation here indicates a vulnerability in the algorithm, namely

that the claimed differential privacy does not hold.

3 OVERVIEW
We illustrate in this section the key technical insight of our work

on a running example, namely how to amplify the effectiveness of

existing attacks on differential privacy by considering not only a

single (𝜖, 𝛿) pair but an equivalence class of these.

Our running example will be the Gaussian mechanism, intro-

duced in Section 3.1. Then, in Section 3.2, we illustrate how we can

group multiple privacy claims for this example.

3.1 Gaussian Mechanism
Algorithm 1 shows a differentially private mechanism𝑀 based on

Gaussian noise.

Choosing 𝜎 . The function BuildsM builds for given parameters

𝜖, 𝛿 a mechanism 𝑀 that is (𝜖, 𝛿) differentially private. To do so,

it first computes in Line 2 which amount of noise should be used,

quantified by the standard deviation 𝜎 = 1

𝜖

√︃
2 log

1.25
𝛿

. Using this

value, it then builds the instantiation𝑀𝜎 of the mechanism. This

instantiation computes some function 𝑓 from its input 𝑎. This result,

stored in 𝑠 in Line 5, may leak private information from 𝑎 and should

be protected. To do so, instead of returning the result directly, some
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(a) Low 𝜎 : low privacy and high
𝜖, 𝛿 .

(b) High 𝜎 : high privacy and low
𝜖, 𝛿 .

Figure 1: Probability distribution of the output of𝑀𝜎 (𝑎) (blue)
and 𝑀𝜎 (𝑎′) (orange) for different values of 𝜎 . We assume
𝑓 (𝑎) = −0.5 and 𝑓 (𝑎′) = 0.5.

Algorithm 1 Building a differentially private𝑀

1: func BuildsM(𝜖, 𝛿)

2: 𝜎 ← 1

𝜖

√︃
2 log

1.25
𝛿

3: return𝑀𝜎 (·)
4: func𝑀𝜎 (𝑎)

5: 𝑠 ← 𝑓 (𝑎)
6: Sample 𝑍 ∼ N(0, 𝜎2)
7: return 𝑠 + 𝑍

Gaussian noise 𝑍 with standard deviation 𝜎 is added to it. It has

been shown in [22] that𝑀𝜎 is (𝜖, 𝛿) differentially private
1
.

Privacy Intuition and 𝜎 . From the formula defining 𝜎 in Line 2, it

is clear that for lower values of 𝜖 or 𝛿 , meaning higher privacy, we

will end up with higher values for the standard deviation. We show

this visually in Fig. 1. Here, suppose 𝑓 (𝑎) = −0.5 and 𝑓 (𝑎′) = 0.5.

We then show in blue the probability distribution of𝑀𝜎 (𝑎) and in

orange that of𝑀𝜎 (𝑎′). For smaller values of 𝜎 , shown in Fig. 1a, we

can deduce from the output of 𝑀 its input with high probability;

if it is close to −0.5, it is almost certain that the input was 𝑎; a

consequence of the blue probability being very high and the orange

very low. That is, a smaller standard deviation 𝜎 corresponds to

having low privacy guarantees, implying high values of 𝜖, 𝛿 . On

the other hand, if 𝜎 is high as in Fig. 1b, we cannot deduce with

confidence the input to 𝑀𝜎 from its output, as the distributions

overlap substantially. Thus, we obtain stronger privacy guarantees,

meaning smaller values for 𝜖, 𝛿 .

3.2 Grouping Privacy Claims
We now show how we can use the standard deviation 𝜎 to charac-

terize more potential violations of claimed (𝜖, 𝛿) differential privacy
and audit multiple privacy claims at once.

Auditing a differentially-private mechanism. In the auditing con-

text, we are given an instance 𝑀𝜎0 of the Gaussian mechanism

described above, with 𝜎0 = 𝜎 (𝜖0, 𝛿0). Our goal is to find, if it exists,

1
Here we assume that the function 𝑓 has outputs in R and has 𝐿2 sensitivity Δ ≤ 1,

that is to say for any neighboring inputs 𝑎, 𝑎′ , | 𝑓 (𝑎) − 𝑓 (𝑎′ ) | ≤ 1.

a counter-example (𝑎, 𝑎′, 𝑆) showing that𝑀𝜎0 is not (𝜖0, 𝛿0) differ-
entially private as claimed. Suppose we discovered some inputs

𝑎, 𝑎′, output set 𝑆 and values 𝜖0, ˆ𝛿0 such that:

P
[
𝑀𝜎0 (𝑎) ∈ 𝑆

]
− ˆ𝛿0

P
[
𝑀𝜎0 (𝑎′) ∈ 𝑆

] > exp(𝜖0) (2)

We want to characterize whether this example is a violation of the

(𝜖, 𝛿) differential privacy claim about𝑀( ·) .

Clear (𝜖, 𝛿) Violations. If both 𝜖0 ≥ 𝜖0 and ˆ𝛿0 ≥ 𝛿0, Eq. (2) trans-

lates directly into a violation of (𝜖0, 𝛿0) differential privacy for𝑀𝜎0 :

P
[
𝑀𝜎0 (𝑎) ∈ 𝑆

]
− 𝛿0

P
[
𝑀𝜎0 (𝑎′) ∈ 𝑆

] ≥
P

[
𝑀𝜎0 (𝑎) ∈ 𝑆

]
− ˆ𝛿0

P
[
𝑀𝜎0 (𝑎′) ∈ 𝑆

] > exp(𝜖0) ≥ exp (𝜖0)

We visualize this set of clear violations in red in Fig. 2a. On the

other hand, if both 𝜖0 < 𝜖0 and ˆ𝛿0 < 𝛿0, Eq. (2) is not a violation

of the claimed (𝜖0, 𝛿0) differential privacy, as (𝜖0, ˆ𝛿0) is a strictly
tighter privacy condition than (𝜖0, 𝛿0). Further, if𝑀𝜎0 is precisely

(𝜖0, 𝛿0) differentially private, that is, it is not differentially private

for any (𝜖 < 𝜖0, 𝛿 < 𝛿0), we expect that𝑀𝜎0 is not (𝜖0, ˆ𝛿0) differen-
tially private and that there exist some (𝑎, 𝑎′, 𝑆) such that Eq. (2)

holds. In Fig. 2a, we show in green this set of strictly tighter condi-

tions, for which finding a violation as in Eq. (2) does not invalidate

the privacy claim of𝑀𝜎0 .

However, this still leaves a significant portion of the space white;

if (𝜖0, ˆ𝛿0) belongs to that white space (shown as in Fig. 2a), we

cannot immediately conclude anything from this fact. We will now

show how by using𝜎 level sets, we can figure out whether violates

the differential privacy claims about𝑀( ·) .

Using 𝜎 to extend the violation set. The key insight in our work is

that multiple values of (𝜖, 𝛿) may yield the same value of 𝜎 . Using

this, we would like to choose (𝜖1, 𝛿1) such that 𝜎1 = 𝜎 (𝜖1, 𝛿1) = 𝜎0
and is in the clear violation set (red quadrant) for (𝜖1, 𝛿1). To do

so, we plot in Fig. 2b the level set {(𝜖, 𝛿) | 𝜎 (𝜖, 𝛿) = 𝜎0}. We can now

simply pick (𝜖1, 𝛿1) in this set as shown by . Eq. (2) is now a clear

(𝜖1, 𝛿1) differential privacy violation for 𝑀𝜎1=𝜎0 as both 𝜖0 ≥ 𝜖1

and
ˆ𝛿0 ≥ 𝛿1. We have hence shown that the general differential

privacy mechanism𝑀(.) described by BuildsM in Algorithm 1 is

not differentially private as claimed. If it were,𝑀𝜎1=𝜎0 would have

been (𝜖1, 𝛿1) differentially private, and we have just shown this to

be false using Eq. (2).

𝜎 Violations. The procedure we used above to translate Eq. (2)

into a clear differential privacy violation for 𝑀𝜎1=𝜎0 can be used

for any (𝜖, 𝛿) that is above the level set in Fig. 2b, that is, where

𝜎 (𝜖, 𝛿) < 𝜎0. We can hence define those as the new violation set,

shown in red in Fig. 2c. Symmetrically, any (𝜖, 𝛿) such that 𝜎 (𝜖, 𝛿) >
𝜎0 can be translated to a tighter condition which we expect𝑀𝜎0 to

violate. Again, we show those in green.
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(a) (𝜖0, 𝛿0 ) differential privacy violation set. (b) Moving the violation set. (c) 𝜎0 differential privacy violation set.

Figure 2: Extending the set of identified differential privacy violations using 𝜎 . Here is (𝜖0, 𝛿0), (𝜖0, ˆ𝛿0) and (𝜖1, 𝛿1)

Auditing multiple privacy claims at once. We leveraged the in-

sight that because𝑀( ·) is defined entirely through 𝜎 (and does not

use (𝜖, 𝛿) directly), many values of (𝜖, 𝛿) yield the same mechanism

𝑀𝜎0 . Hence, any instantiation𝑀𝜎0 should be (𝜖, 𝛿) differentially pri-
vate for all (𝜖, 𝛿) in the level set {(𝜖, 𝛿) | 𝜎 (𝜖, 𝛿) = 𝜎0}. Therefore,
when given an instantiation𝑀𝜎0 of a privacy mechanism𝑀( ·) , we
can audit all those privacy claims simultaneously, and any violation

will be enough to show that𝑀( ·) is not actually private.

3.3 Using Delta-Siege in practice
We implemented the grouping approach explained above in our

tool Delta-Siege, which we present in more detail in Section 5. We

now showcase how we can use this tool not only to audit but also

to debug implementations of differential privacy mechanisms.

Continuous integration. Delta-Siege is fully automated and takes

between 30s and 5 minutes to audit most differentially private

mechanisms. It can therefore be run directly as part of a continuous

integration pipeline. OpenDP [45] has already expressed interest.

Finding Usable Counter-Examples. While finding violations, and

therefore avoiding incorrectly implemented differentially private

mechanisms, is an important security goal from a user perspective,

allowing programmers to find the root cause of such violations

is equally important from a programmer perspective. Therefore,

Delta-Siege provides for each found violation the precise (𝜖1, 𝛿1)
( in Fig. 2b) with which to instantiate the differentially private

mechanism 𝑀( ·) , and the found violation (𝜖0, ˆ𝛿0) ( in Fig. 2b).

Further, Delta-Siege provides the set 𝑆 for which Eq. (2) was ver-

ified, allowing programmers to inspect it in detail. We will show

in Section 6 how we can reconstruct attacks against the mecha-

nism using this set 𝑆 and therefore understand the source of the

vulnerabilities.

4 CHARACTERIZING PRIVACY VIOLATIONS
We showed in Section 3 that using the standard deviation 𝜎 di-

rectly, instead of (𝜖, 𝛿), made finding privacy violations for im-

plementations of the Gaussian mechanism easier. In this section,

we generalize this insight by defining 𝜌-ordered differentially pri-
vate mechanisms and use it to construct a criterion for discovering

privacy violations.

4.1 𝜌-ordered Differentially Private
Mechanisms

A necessary characteristic of the standard deviation 𝜎 in Section 3

was that it was non-increasing in both parameters. Formally, for

a function 𝜌 : P −→ R, we say 𝜌 is non-increasing in both pa-

rameters if and only if for any 𝜖0, 𝛿0 both 𝜌𝜖0 : 𝛿 ↦→ 𝜌 (𝜖0, 𝛿) and
𝜌𝛿0 : 𝜖 ↦→ 𝜌 (𝜖, 𝛿0) are non-increasing.

Upwards-invertibility. Another crucial property of 𝜎 was that

from a potential violation (𝜖0, ˆ𝛿0) of (𝜖0, 𝛿0) differential privacy
such that:

𝜎̂0 = 𝜎 (𝜖0, ˆ𝛿0) < 𝜎0 = 𝜎 (𝜖0, 𝛿0)
we could build a clear violation (𝜖1, 𝛿1) such that 𝜖1 ≤ 𝜖0, 𝛿1 ≤ ˆ𝛿0
and 𝜎 (𝜖1, 𝛿1) = 𝜎0. We call this property upwards-invertibility and

define it as follows:

Definition 2. Let 𝜌 : P −→ R be non-increasing in both pa-
rameters. 𝜌 is upwards-invertible if for any (𝜖0, 𝛿0) and (𝜖0, ˆ𝛿0) in
P such that 𝜌 (𝜖0, ˆ𝛿0) ≤ 𝜌 (𝜖0, 𝛿0) there exists some 𝜖1, 𝛿1 such that
ˆ𝛿0 ≥ 𝛿1 ≥ 0, 𝜖0 ≥ 𝜖1 ≥ 0 and 𝜌 (𝜖1, 𝛿1) = 𝜌 (𝜖0, 𝛿0).

All continuous non-increasing functions enjoy the following

property:

Lemma 1. If 𝜌 : P −→ R is continuous and non-increasing in
both parameters, then it is upwards-invertible.

Proof. For given 𝜖0, 𝜖0, 𝛿0, ˆ𝛿0 as in Definition 2, we can define

𝑓 : [0, 1] → R, which maps 𝜆 to 𝜌 (𝜆𝜖0, 𝜆𝛿0). We then have that

𝑓 (0) = 𝜌 (0, 0) ≥ 𝜌 (𝜖0, ˆ𝛿0) ≥ 𝑓 (1). Using the continuity of 𝑓 , we



Group and Attack: Auditing Differential Privacy CCS ’23, November 26–30, 2023, Copenhagen, Denmark

can define 𝜆 in [0, 1] such that 𝑓 (𝜆) = 𝜌 (𝜖0, ˆ𝛿0). Finally, 𝜖1 = 𝜆𝜖0
and 𝛿1 = 𝜆𝛿0 are as needed. □

Using the above definition, we can finally define a 𝜌-ordered

differentially private mechanism:

Definition 3. Let 𝜌 : P −→ R be upwards invertible and non-
increasing in both parameters. A parameterized randomized mecha-
nism𝑀( ·) : A→ B is 𝜌-ordered differentially private if and only if
for any (𝜖, 𝛿) ∈ P

∀𝑟 ≥ 𝜌 (𝜖, 𝛿) : 𝑀𝑟 is (𝜖, 𝛿) differentially private (3)

A widely applicable definition. This definition directly applies

to the Gaussian mechanism; for instance by choosing 𝜌 (𝜖, 𝛿) =
𝜎 (𝜖, 𝛿) = 1

𝜖

√︃
2 log

1.25
𝛿

. This function is non-increasing in both pa-

rameters and continuous; therefore, also upwards invertible, using

Lemma 1. Note that many other definitions of 𝜌 would also be pos-

sible; for instance, using the variance 𝜎2 would also work. We show

in Section 7.4 that most investigated (𝜖, 𝛿) differentially private

mechanisms are 𝜌-ordered differentially private.

A more widely applicable method. While we build our approach

with 𝜌-ordered differentially private mechanisms in mind, we will

show in Section 4.3 that we can apply it more generally and that

it performs well in those cases too. Further, our results are always

sound, regardless of the audited mechanism properties: any re-

ported violation was statistically checked. Our method can there-

fore be applied directly to any mechanism defined using a 𝜌 privacy

parameter, without any preliminary proof-work.

4.2 Violation Criterion
We now define a violation criterion to prove that some mechanism

𝑀 is not (𝜖, 𝛿) differentially private. To do so, we first define for

any probabilities 𝑝, 𝑝′ in [0, 1] the worst violated 𝜌 and denote it by

V(𝜌, 𝑝, 𝑝′):

V(𝜌, 𝑝, 𝑝′) = min

{
𝜌 (𝜖, 𝛿)

���(𝜖, 𝛿) ∈ P and
𝑝−𝛿
𝑝′ ≥ exp(𝜖)

}
(4)

To gain intuition, consider for a given attack (𝑎, 𝑎′, 𝑆) the value

V(𝜌, P [𝑀 (𝑎) ∈ 𝑆] , P [𝑀 (𝑎′) ∈ 𝑆]). It is the minimum of 𝜌 over all

(𝜖, 𝛿) for which 𝑎, 𝑎′ and 𝑆 are a counter-example showing that𝑀

is not (𝜖, 𝛿) differentially private. Now, using Eq. (4), we can derive

the following property:

Lemma 2. Let 𝜌 : P −→ R be non-increasing in both parameters
and upwards-invertible and 𝑀( ·) : A→ B be a 𝜌-ordered differen-
tially private mechanism. Then we have that for any (𝜖0, 𝛿0) in P,
𝑎, 𝑎′ in A and 𝑆 subset of B,

V(𝜌, P
[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎) ∈ 𝑆

]
, P

[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎

′) ∈ 𝑆
]
) ≥ 𝜌 (𝜖0, 𝛿0)

This lemma states that for any (𝜖, 𝛿) where (𝑎, 𝑎′, 𝑆) shows
that𝑀𝜌 (𝜖0,𝛿0 ) is not (𝜖, 𝛿) differentially private, we have 𝜌 (𝜖, 𝛿) ≥
𝜌 (𝜖0, 𝛿0). This fits our intuition. Suppose𝑀 is the Gaussian mech-

anism, and 𝜎0 is the variance needed to ensure𝑀𝜎0 is (𝜖0, 𝛿0) dif-
ferentially private. Then for any (𝜖, 𝛿) such that 𝑀𝜎0 is not (𝜖, 𝛿)

differentially private, a greater standard deviation 𝜎 (𝜖, 𝛿) ≥ 𝜎0
would be needed to ensure (𝜖, 𝛿) differential privacy. We now pro-

vide a proof of this lemma.

Proof. Have 𝜌,𝑀, 𝜖0, 𝛿0, 𝑎, 𝑎
′
and 𝑆 as in the lemma. We show

this by contraposition. Suppose that

V(𝜌, P
[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎) ∈ 𝑆

]
, P

[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎

′) ∈ 𝑆
]
) < 𝜌 (𝜖0, 𝛿0)

Then there exists some (𝜖, 𝛿) such that both

P
[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎) ∈ 𝑆

]
− 𝛿

P
[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎′) ∈ 𝑆

] ≥ exp(𝜖)

and 𝜌 (𝜖, 𝛿) < 𝜌 (𝜖0, 𝛿0). Using the upwards invertibility of 𝜌 , we

can define 𝛿 ≥ 𝛿 ′ ≥ 0 and 𝜖 ≥ 𝜖′ ≥ 0 such that 𝜌 (𝜖′, 𝛿 ′) = 𝜌 (𝜖0, 𝛿0).
Putting it all together, we finally get that

P
[
𝑀𝜌 (𝜖 ′,𝛿 ′ ) (𝑎) ∈ 𝑆

]
− 𝛿 ′

P
[
𝑀𝜌 (𝜖 ′,𝛿 ′ ) (𝑎′) ∈ 𝑆

] (1)
≥
P

[
𝑀𝜌 (𝜖 ′,𝛿 ′ ) (𝑎) ∈ 𝑆

]
− 𝛿

P
[
𝑀𝜌 (𝜖 ′,𝛿 ′ ) (𝑎′) ∈ 𝑆

]
=
P

[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎) ∈ 𝑆

]
− 𝛿

P
[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎′) ∈ 𝑆

]
≥ exp (𝜖)
(2)
≥ exp (𝜖′)

Further, as 𝜌 (𝜖, 𝛿) < 𝜌 (𝜖′, 𝛿 ′) either 𝛿 ′ < 𝛿 or 𝜖′ < 𝜖 , so either

(1) or (2) is strict, resulting in

P
[
𝑀𝜌 (𝜖 ′,𝛿 ′ ) (𝑎) ∈ 𝑆

]
− 𝛿 ′

P
[
𝑀𝜌 (𝜖 ′,𝛿 ′ ) (𝑎′) ∈ 𝑆

] > exp (𝜖′)

That is, 𝑀𝜌 (𝜖 ′,𝛿 ′ ) is not (𝜖′, 𝛿 ′) differentially private. This is

a contradiction as we assumed 𝑀 to be 𝜌-ordered differentially

private, and hence𝑀𝜌 (𝜖 ′,𝛿 ′ ) to be (𝜖′, 𝛿 ′) differentially private. □

Using Lemma 2, we can finally define our violation criterion,

which is simply its negation:

Criterion 3. Let 𝜌 : P −→ R be non-increasing in both param-
eters and upwards-invertible. To show that a 𝜌-ordered randomized
mechanism𝑀( ·) : A→ B is not 𝜌-parameter differentially private,
it is enough to find (𝜖0, 𝛿0) ∈ P, 𝑎, 𝑎′ in 𝐴 and 𝑆 subset of 𝐵, such
that:

V(𝜌, P
[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎) ∈ 𝑆

]
, P

[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎

′) ∈ 𝑆
]
) < 𝜌 (𝜖0, 𝛿0) (5)

Attack Strength. Besides the criterion above, it is often interesting
to estimate the violation magnitude of a given attack: is the attack

barely violating the claimed privacy or completely invalidating it?

For an algorithm claiming 𝜖0 differential privacy, this would simply

be the ratio
𝜖𝑚
𝜖0

where 𝜖𝑚 is the maximum value such that:

P [𝑀0 (𝑎) ∈ 𝑆]
P [𝑀0 (𝑎′) ∈ 𝑆]

≥ exp (𝜖𝑚)
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However, for (𝜖, 𝛿) differential privacy, this cannot be directly trans-
lated, as there is no clear partial order on P. We first need to define

the worst violated 𝜌𝑚 as:

𝜌𝑚 = V(𝜌, P
[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎) ∈ 𝑆

]
, P

[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎

′) ∈ 𝑆
]
)

We can then define the magnitude 𝜇 of an attack on an algorithm

claiming (𝜖0, 𝛿0) differential privacy as 𝜇 =
𝜌 (𝜖0,𝛿0 )

𝜌𝑚
: the greater the

magnitude is, the greater the violation is. Note that the numerator

and denominator are switched compared to the definition of attack

magnitude for 𝜖-differential privacy. This is because high 𝜌 means

high privacy, whereas high 𝜖 means low privacy.

4.3 Beyond 𝜌-ordered Mechanisms
As shown above, we developed our method for 𝜌-ordered differen-

tially private mechanisms. We now show how it can be applied to

more general mechanisms, while still ensuring sound results.

No upwards-invertibility. Let us first study the case of a differ-

entially private mechanism 𝑀𝜌 ( ·,· ) where 𝜌 is non-increasing in

both parameters but not upwards-invertible. Suppose we have now

found a potential violation, that is 𝑎, 𝑎′, 𝑆, 𝜖0 and 𝛿0 such that:

V(𝜌, P
[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎) ∈ 𝑆

]
, P

[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎

′) ∈ 𝑆
]
) < 𝜌 (𝜖0, 𝛿0) (6)

As 𝜌 is not upwards-invertible, we cannot simply use Criterion 3

to prove that the mechanism is not differentially private. Instead,

we must explicitly find this violation. To do so, we want to define

(𝜖0, ˆ𝛿0) such that:

𝜌 (𝜖0, ˆ𝛿0) = V(𝜌, P
[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎) ∈ 𝑆

]
, P

[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎

′) ∈ 𝑆
]
)

In practice, we estimate the value ofV(𝜌, ·, ·) by evaluating on

𝜌 on witnesses (see Section 4.4), and therefore always have access

to (𝜖0, ˆ𝛿0) for the minimum value of 𝜌 on those witnesses.

We are now exactly in the case shown in Fig. 2b: we have a

candidate violation (𝜖0, ˆ𝛿0), and need to find (𝜖1, 𝛿1) such that

𝜌 (𝜖1, 𝛿1) = 𝜌 (𝜖0, 𝛿0) and (𝜖0, ˆ𝛿0) is a clear violation of (𝜖1, 𝛿1) pri-
vacy, that is, 𝜖1 < 𝜖0 and 𝛿1 < ˆ𝛿0. To find such (𝜖1, 𝛿1), we can

now simply use a binary search, as 𝜌 is non-increasing in both

parameters. This search may fail, but if it succeeds, the violation is

confirmed.

Further generalizability. In the above, we used 𝜌 monotonicity

to search for values. If 𝜌 is not non-decreasing, our search strategy

may not be efficient. However, any found result will still be cor-

rect. Our method can hence be applied to any differentially private

mechanism𝑀𝜌 ( ·,· ) , and its results are always statistically verified,

whether or not 𝜌 satisfies the properties outlined above.

Sensitivity. Finally, our approach does not rely on any assump-

tions on the neighborhood definition or sensitivity of the audited

mechanism𝑀 . We simply take as given 𝑎, 𝑎′ neighbors, and work

with the output values of 𝑀 for those inputs. Therefore, our ap-

proach can be used for any norm and value of sensitivity. For in-

stance, we will show in Section 7 that we can use our method

for both 𝐿2 norm (for Gaussian and Laplacian mechanisms) and

symmetric distance (for MST and AIM).

4.4 EstimatingV
We now introduce the methods we need to apply the definitions

above in practice.

Upper-bound onV . Criterion 3 uses the value of

V(𝜌, P
[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎) ∈ 𝑆

]
, P

[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎

′) ∈ 𝑆
]
)

However, we often cannot compute this value directly as we do not

know the values of either probabilities. Luckily, to demonstrate a

violation of privacy claims using Eq. (5), an upper bound on this

value of V is enough. Further, based on the definition of V in

Eq. (4), it is clear that for any 0 ≤ 𝑝 ≤ P
[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎) ∈ 𝑆

]
and

1 ≥ 𝑝 ≥ P
[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎′) ∈ 𝑆

]
, it holds that:

V(𝜌, P
[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎) ∈ 𝑆

]
, P

[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎

′) ∈ 𝑆
]
) ≤ V(𝜌, 𝑝, 𝑝)

Our method can hence be easily integrated into any tool that pro-

vides a lower bound 𝑝 of P
[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎) ∈ 𝑆

]
and an upper bound

𝑝 of P
[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎) ∈ 𝑆

]
.

Computing V . Even for given 𝑝, 𝑝 , computing V(𝜌, 𝑝, 𝑝) may

not be trivial as it requires minimizing 𝜌 over the set{
𝜌 (𝜖, 𝛿)

���(𝜖, 𝛿) ∈ P and

𝑝−𝛿
𝑝
≥ exp(𝜖)

}
To do so in practice, we first use that 𝜌 is non-increasing in both

parameters to perform the following rewrite
2
:

min

(𝜖,𝛿 ) ∈R
𝜌 (𝜖, 𝛿) = min

𝛿≤𝑝
𝜌

(
log

(
𝑝 − 𝛿
𝑝

)
, 𝛿

)
This reduces the search to a one-dimensional search over the in-

terval [0, 𝑝]. We then use the following approximation strategy,

applicable for any function 𝜌 . We log-uniformly discretize the sub-

set [10−9 ·𝑝, 𝑝] with 900 sampling points, compute 𝜌 values at each

point and use as an approximation the minimum over all test points.

We have found in practice that this simple method performs well.

More precise strategies could be developed for a given 𝜌 .

5 DELTA-SIEGE: AMPLIFYING DP-OPT
So far we defined 𝜌-ordered differentially private algorithms and

a criterion to discover more (𝜖, 𝛿) violations. We now show we

can easily integrate this criterion in DP-Opt [44] to augment its

auditing power. We first recall the key ideas of DP-Opt.

High-level idea. To audit a given𝑀𝜌 (𝜖0,𝛿0 ) with𝑀 a 𝜌-ordered

differentially private algorithm, DP-Opt first picks 𝑎, 𝑎′ in A. It
then builds a set 𝑆 ⊆ B that maximizes P

[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎) ∈ 𝑆

]
and

minimizes P
[
𝑀𝜌 (𝜖0,𝛿0 ) (𝑎′) ∈ 𝑆

]
. Finally, it verifies the attack sta-

tistically. In the following, we use𝑀0 to denote𝑀𝜌 (𝜖0,𝛿0 ) .

Reducing the Search Space. Searching through every possible

attack set 𝑆 ⊆ B is in general intractable. DP-Opt therefore fol-

lows DP-Sniper [9] and uses the posterior probability 𝑝 (·|·) to build
threshold attacks 𝑆𝑡 . 𝑝 (𝑎 |𝑏) is defined as P [𝐴 = 𝑎 | 𝐵 = 𝑏] where
the random variables 𝐴 and 𝐵 are built using the following proce-

dure: first set the random variable𝐴 to 𝑎 or 𝑎′ with equal probability
0.5, then compute 𝐵 = 𝑀0 (𝐴). Intuitively, if 𝑝 (𝑎 |𝑏) is high for some

2
If 𝜌 is not non-increasing, the rewrite holds with ≤. Hence, our estimate of V is

greater than its actual values, and the results are still sound.
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Algorithm 2 Delta-Siege

1: func Delta-Siege(𝜌, 𝑎, 𝑎′, 𝜖0, 𝛿0, 𝛼, 𝑁train, 𝑁attack
, 𝑁

bound
)

2: 𝑀0 ← 𝑀𝜌 (𝜖0,𝛿0 )
3: 𝑝 ← LearnP(𝑁train, 𝑀0, 𝑎, 𝑎

′)
4: 𝑡best, 𝑆best ← PickAttack(𝑝, 𝑁

attack
, 𝛼, 𝜌, 𝑀0, 𝑎, 𝑎

′)
5: 𝜖∗, 𝛿∗, 𝜌∗ ← EvalAttack(𝑆best, 𝑁

bound
, 𝛼, 𝜌, 𝑀0, 𝑎, 𝑎

′)
6: return 𝜖∗, 𝛿∗, 𝜌∗

7: func PickAttack(𝑝, 𝑁 , 𝛼, 𝜌,𝑀0, 𝑎, 𝑎
′
)

8: for 𝑡 in [0, 1] do
9: 𝑆𝑡 ← {𝑏 ∈ B | 𝑝 (𝑎 |𝑏) ≥ 𝑡}
10: 𝑝 (𝑡) ← LowerBound

(
P

[
𝑀0 (𝑎) ∈ 𝑆𝑡

]
, 𝑁 , 𝛼/2

)
11: 𝑝 (𝑡) ← UpperBound

(
P

[
𝑀0 (𝑎′) ∈ 𝑆𝑡

]
, 𝑁 , 𝛼/2

)
12: 𝜖∗ (𝑡), 𝛿∗ (𝑡), 𝜌∗ (𝑡) ← V(𝜌, 𝑝 (𝑡), 𝑝 (𝑡))
13: 𝑡best ← argmin𝑡 ∈[0,1]𝜌

∗ (𝑡)
14: 𝑆best ← {𝑏 ∈ B | 𝑝 (𝑎 |𝑏) ≥ 𝑡best}
15: return 𝑡best, 𝑆best

16: func EvalAttack(𝑆, 𝑁 , 𝛼, 𝜌,𝑀0, 𝑎, 𝑎
′
)

17: 𝑝 ← LowerBound (P [𝑀0 (𝑎) ∈ 𝑆] , 𝑁 , 𝛼/2)
18: 𝑝 ← UpperBound (P [𝑀0 (𝑎′) ∈ 𝑆] , 𝑁 , 𝛼/2)
19: returnV(𝜌, 𝑝, 𝑝)
20: funcV(𝜌, 𝑝, 𝑝)

21: 𝛿∗ ← argmin𝛿∈[0,𝑝 ] 𝜌
(
log

(
𝑝−𝛿
𝑝

)
, 𝛿

)
22: 𝜖∗ ← log

(
𝑝−𝛿∗

𝑝

)
23: 𝜌∗ ← 𝜌 (𝜖∗, 𝛿∗)
24: return 𝜖∗, 𝛿∗, 𝜌∗

𝑏, then when the algorithm𝑀0 outputs 𝑏, it is highly likely that the

input to 𝑀0 was 𝑎 and not 𝑎′. Finally, for any 𝑡 in [0, 1], DP-Opt
defines 𝑆𝑡 = {𝑏 ∈ B | 𝑝 (𝑎 |𝑏) ≥ 𝑡}.

5.1 Overview
We now describe Delta-Siege, that is, the DP-Opt algorithm after

applying our method. The complete algorithm is shown in Algo-

rithm 2 and we highlight in red the changes from the original

DP-Opt approach. Note that only three such changes were enough

to apply our method.

Picking 𝑎, 𝑎′. We found in practice that when using Delta-Siege,

simple choices of neighboring inputs 𝑎, 𝑎′ were enough to find

violations inmost audited algorithms. For instance, for the synthetic

data generation algorithms, we use for 𝑎 and 𝑎′ databases made of a

few entries, as detailed in Section 7.2. We also noted that sometimes

swapping 𝑎 and 𝑎′ could yield better results. Therefore, we always

run lines Lines 3 to 4 twice: once for the original 𝑎, 𝑎′ and once with
their values swapped. Finally, we pick the attack with the highest

magnitude before proceeding to Line 5.

Building the Attack Set 𝑆 . Lines 3 to 4 build the attack set 𝑆 . As

mentioned above, DP-Opt builds attack sets of the shape 𝑆𝑡 = {𝑏 ∈
B | 𝑝 (𝑎 |𝑏) ≥ 𝑡}. As we do not have access to 𝑝 (𝑎 |𝑏) directly, we
train in Line 3 a classifier to learn an approximation 𝑝 using a fixed

number of samples 𝑁train. We describe our training procedure in

more detail in Section 5.2. Delta-Siege then uses this approximation

to pick the best threshold 𝑡best using the function PickAttack

(Line 4). To do so, for any 𝑡 in [0, 1] the attack set 𝑆𝑡 = {𝑏 ∈ B |
𝑝 (𝑎 |𝑏) ≥ 𝑡} is constructed. The optimal threshold 𝑡best is then

selected to minimize the quantity

V(𝜌, P
[
𝑀0 (𝑎) ∈ 𝑆𝑡

]
, P

[
𝑀0 (𝑎′) ∈ 𝑆𝑡

]
).

As this quantity cannot be exactly computed, DP-Opt computes

for all 𝑡 a lower bound 𝑝 (𝑡) on P
[
𝑀0 (𝑎) ∈ 𝑆𝑡

]
and an upper bound

𝑝 (𝑡) on P
[
𝑀0 (𝑎′) ∈ 𝑆𝑡

]
(both with confidence 1 − 𝛼/2, in Lines 10

to 11), and optimizesV(𝜌, 𝑝, 𝑝) (Line 12) instead. Finally, the attack
set 𝑆best is constructed from the optimal threshold 𝑡best (Line 14).

Validating the Attack. After building the attack as above, DP-Opt
validates it in Line 5. It simply computes its magnitude again, using

fresh samples, and gets an upper bound 𝜌∗ on

V(𝜌, P
[
𝑀0 (𝑎) ∈ 𝑆𝑡

]
, P

[
𝑀0 (𝑎′) ∈ 𝑆𝑡

]
)

that holds with confidence 1 − 𝛼 . If this upper bound is strictly

less than 𝜌 (𝜖0, 𝛿0), we can use Criterion 3 and conclude that the

mechanism𝑀( ·) violates its privacy claims, with confidence 1 − 𝛼 .

Generating (𝜖, 𝛿) Counter Examples. Finally, we describe how

Delta-Siege builds (𝜖, 𝛿) counter-examples for found vulnerabili-

ties, allowing further investigation of the discovered issues. Using

the notations from Fig. 2, such a counter example consists of a

violated (𝜖1, 𝛿1) and (𝜖0, ˆ𝛿0) which is a clear violation. More for-

mally, those values should be such that 𝜖1 ≤ 𝜖0, 𝛿1 ≤ ˆ𝛿0 with

one of the two inequalities strict and 𝜌 (𝜖0, 𝛿0) = 𝜌 (𝜖1, 𝛿1). Find-
ing (𝜖0, ˆ𝛿0) is rather straightforward. As described in Section 4.4,

when computing 𝜌∗, we transformed the problem into optimization

over 𝛿 , which we solved by computing 𝜌 on 900 log-uniform sam-

ples of 𝛿 . We can hence simply use for 𝜖0, ˆ𝛿0 the values 𝜖
∗
(Line 22)

and 𝛿∗(Line 21) corresponding to the optimal choice for 𝜌 . Then,

for (𝜖1, 𝛿1), we define 𝛿1 = ˆ𝛿0, and use binary search to find

𝜖1 = max {𝜖 | 𝜌 (𝜖, 𝛿1) = 𝜌 (𝜖0, 𝛿0)}. If 𝜖1 < 𝜖0, we have found a

clear violation. If this is not the case, Delta-Siege reports no viola-

tion, as the violation could not be confirmed.

5.2 LearnP
As described in Section 5.1, we do not know the true probability

distribution 𝑝 (𝑎 |𝑏), and rely on samples to train a machine learning

model 𝑝 (𝑎 |𝑏) that approximates this distribution. We collect 𝑁train

samples each from both 𝑀0 (𝑎) and 𝑀0 (𝑎′), resulting in a dataset

𝐷 . We use 𝐷 to train a logistic regression model that takes as input

the individual bits of the floating point representation of 𝑏 and

outputs the probability distribution 𝑝 (𝐴 = 𝑎 |𝑏). In practice, a simple

logistic regression model outperformed more complex models and

also has the side benefit of being easily interpretable. We train the

model using Adam [33] with learning rate of 0.1 and ℓ1 weight

regularisation with strength 10
−4
.
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6 ROOT CAUSE ANALYSIS OF DP VIOLATIONS
As discussed in the previous section, Delta-Siege can provide ex-

plicit (𝜖, 𝛿) counter-examples for all uncovered violations. In this

section, we demonstrate that Delta-Siege outputs can further be

used to identify the root cause of a violation. We exemplify this

procedure for the inversion Laplace mechanism, the textbook im-

plementation of Laplace sampling
3
.

Root Cause Discovery. We audited the inversion Laplace mecha-

nism𝑀 for 𝜖 = 1.0, with inputs 𝑎 = 0.0 and 𝑎′ = 1.0. This resulted

in a violated 𝜖′ = 9.74, using the learned logistic regression 𝑝 (𝑎 |𝑏)
and a threshold 𝑡 . This means that Delta-Siege found that (with

confidence 0.95)

P(𝑀 (𝑎) ∈ 𝑆) > 𝑒𝜖
′
P(𝑀 (𝑎′) ∈ 𝑆)

where 𝑆 is defined by 𝑝 and 𝑡 as 𝑆 = {𝑏 | 𝑝 (𝑎 |𝑏) > 𝑡}.
To better understand this attack, we analyzed the weights𝑊 of

the learned logistic regression classifier 𝑝 . We took the three largest

in absolute value weights𝑊𝑖 from𝑊 , corresponding to the three

most important inputs. We recall that each input is an individual bit

in the floating point representation of some mechanism output 𝑏.

The three most important weights corresponded to the sign bit, the

highest precision bit from the exponent, and the lowest precision

mantissa bit. By looking at the signs of the weights𝑊𝑖 , we further

determined that 𝑝 (𝑎 |𝑏) reached high values when the sign and

mantissa bits of the output are set to 1, while the exponent bit is

set to 0. Visually, this means most of the set 𝑆 consists of floating

point numbers whose bit representation is

1
sign

0xxxxxxxxxx
exponent

xxx...xxxxx1
mantissa

(7)

where x can be 0 or 1. To validate this hypothesis, we created 𝑝𝑏
the perfect classifier for floating point numbers with the above

representation and its set 𝑆𝑏 (as defined by 𝑝𝑏 and 𝑡 ). Then, we

measured its overlap to the set 𝑆 found by Delta-Siege. We defined

the overlap as
|𝑆∩𝑆𝑏 |
|𝑆 | and approximated it by sampling𝑁test floating

point numbers and counting how many of them were in 𝑆 ∩ 𝑆𝑏 and

𝑆 . We obtained a score of
49707

51135
≈ 0.972, confirming our hypothesis.

Understanding The Root Cause. We nowmanually investigate the

root cause identified above. We would like to show that for input

𝑎′ = 1.0 and any noise 𝑧, we always have that 𝑎′ + 𝑧 cannot be of
the shape described in Eq. (7), while for input 𝑎 = 0.0, there exists

(many) noise values 𝑧 such that 𝑎 +𝑧 is like Eq. (7). Let us first show
this on an example by taking some noise 𝑧 of the shape:

1
sign

01111111111
exponent

11x...xxxxx1
mantissa

If we now compute 𝑎 + 𝑧 = 𝑧, we see that 𝑎 + 𝑧 satisfies Eq. (7). In
contrast, 𝑎′ + 𝑧 gives:

0 01111111111 000...000000

+ 1 01111111111 11x...xxxxx1 (8)

= 1 01111111110 1xx...xxxx10

where the resulting mantissa in Eq. (8) was bit-shifted to ensure that

its leading zero was removed, and the exponent was decremented

3
We here use the implementation from DP-Sniper[9].

accordingly. This readjustment introduces a 0 on the least bit of the

mantissa. While we show this here only for one example, this is

more generally the case: for input 𝑎′ = 1.0, there is no noise value 𝑧

such that 𝑎′ +𝑧 has its sign bit set to 1 and highest exponent bit to 0

and least bit of mantissa 1. We pose this as the following theorem:

Theorem 4. Any mechanism that is based on IEEE754 floating
point addition, denoted ⊕, of some randomly generated noise 𝑍 with
the result of some computation 𝑓 (𝑎) on the private input 𝑎 is not
(𝜖, 𝛿) differentially private if:
• 𝑓 can attain the values 0.0 and 1.0 for some neighbouring
input values 𝑎 and 𝑎′ ∈ N (𝑎)
• floating point values for 𝑍 with the property that they have
negative sign bit, their mantissa has its highest precision bit set
to 1, and their exponent has its lowest precision bit set to 0 can
be generated by the noise-generation part of the mechanism
with probability larger than 𝛿 .

We point out that while the attack was derived automatically

from the classifier 𝑝 (𝑎 |𝑏), we have manually proven its validity

(see Section B). Further, this attack is a variant of the floating point

issue first described in Section 2 of [26] for the Laplace mechanism.

General Root Cause Discovery. While the example abovewas done

on a single instantiation of the Laplace mechanism, we believe this

procedure is widely applicable. To confirm this, we repeated it for

the Opacus’ Float Gauss, where we uncovered the same vulnera-

bility, demonstrating that the procedure works for auditing (𝜖, 𝛿)
differentially private algorithms as well. Further, while in the exam-

ple above, we chose to use the top three weights of our classifier to

simplify the classifier decision, we can treat this as a hyperparame-

ter of our simplification procedure. One way to set it is based on the

desired level of overlap of the sets 𝑆 and 𝑆𝑏 . Finally, we point out

that Delta-Siege can be used with any classifier type. In this paper,

we focused on using logistic regression for 𝑝 (𝑎 |𝑏) as it performs

well on all experiments in our evaluation. However, other classifier

types whose decisions are easier to interpret, such as decision trees,

could be used instead, further simplifying the root cause analysis.

7 EVALUATION
In this section, we conduct an extensive evaluation of Delta-Siege

on multiple state-of-the-art differentially private algorithms. We

structure this evaluation along the following research questions:

Q1 Can Delta-Siege accurately audit state-of-the-art differentially
private algorithms? We show that Delta-Siege can be used to audit

recent and complex differentially private algorithms, such as syn-

thetic data generation. Further, Delta-Siege identified violations in

many of the audited algorithms, several of which were previously

unknown.

Q2 How much does grouping help to find violations? We show

through an ablation study that using 𝜌 to group mechanisms allows

finding more violations and finding them faster. Further, we show

that all but two of our benchmarks are 𝜌-ordered.

Q3 How does Delta-Siege compare to other automated differential
privacy auditing methods? We demonstrate that Delta-Siege almost

always finds stronger violations than existing methods, both for 𝜖

and for (𝜖, 𝛿) differential privacy.
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Table 2: Benchmarks from [23, 28, 45, 51]

Mechanisms

Library Laplace Float Gauss Discrete Gauss

OpenDP [23] ✓ ✓
IBM’s Diffprivlib [28] ✓ ✓✓ 𝑎 ✓
PyDP [45] ✓ ✓
Opacus [51] ✓

𝑎
Diffprivlib offers a second more precise method to compute the

standard deviation required for privacy when using Gaussian noise,

based on [3]. We refer to this more precise method as Analytic Float

Gauss.

7.1 Benchmarks
To answer the research questions above, we evaluate Delta-Siege

on differentially private algorithms gathered from three different

sources: differential privacy libraries, NIST competitions, and re-

lated work evaluation sections.

Libraries. Differential privacy algorithms have been implemented

in multiple libraries. We follow [16]
4
and focus on four main ones:

Google’s differential privacy library [25], OpenDP [23], IBM’s Diff-

privlib [28] andMeta’s Opacus [51]. As Google’s differential privacy

library does not offer a Python implementation, we use PyDP [45]

the Python bindings for it implemented by OpenMinded. Note that

those bindings are slightly outdated, so vulnerabilities found here

could have since been fixed in the current version of the Google

library.

Investigated algorithms. In each of those four libraries, we exam-

ine the Laplacian and Gaussian mechanisms. As those methods are

the basis of multiple other algorithms, any vulnerability found in

either is likely to propagate to many other algorithms in the same

framework. Further, note that some libraries do not offer those

mechanisms as part of their API, but instead use them as part of a

more complex system. In those cases, we identify the relevant code

and run it directly. We further ensure that doing so does not remove

crucial privacy-preserving steps. For instance, in the Opacus library,

we audit directly the function _generate_noise, which is used to

generate Gaussian noise.

We show precisely which algorithms were available in each

library in Table 2, and provide links to each algorithm implementa-

tion in the Appendix in Table 7. All four libraries offer a floating

point Gaussian mechanism, and Diffprivlib offers two, the second

with (in theory) tighter privacy guarantees. Diffprivlib further of-

fers a discrete Gaussian mechanism. Finally, all libraries but Opacus

offer a Laplacian mechanism.

Synthetic Data Generation Algorithms. We now add to our bench-

marks more complex algorithms: theMST algorithm [40] (first place

in the 2018 NIST Differential Privacy Synthetic Data Challenge
5
)

and the AIM algorithm [41] (the latest synthetic data generation

method from the same authors). Both of these mechanisms are

graphical models for creating synthetic data based on marginal

queries. Both first privately measure marginals on the original

4
Note that we do not evaluate on the Chorus library [32] as doing so would have

required porting the library from Scala to Python.

5
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-

challenges/2018-differential-privacy-synthetic

Table 3: Parameters used by Delta-Siege to audit the differen-
tially private mechanisms in our benchmark.

Mechanism 𝜖0 𝛿0 Input

Gaussian Mechanism1 {0.1, 1.0} {10−6, 10−3, 10−1 } {0, 1}
Gaussian Mechanism2 {0.1, 1.0, 3.0, 10.0} {10−6, 10−3, 10−1 } {0, 1}
Laplacian Mechanism {0.1, 1.0, 3.0, 10.0} {0} {0, 1}
MST {3.0} {10−6, 10−1 } Drop last

row or not

AIM {3.0} {10−6, 10−1 } Drop last

row or not

dataset, then build a synthetic dataset built on those noisymarginals.

As the privacy proof of this process relies exclusively on the privacy

of the noisy marginals, we directly use those measured marginals

as input when auditing those mechanisms.

Algorithms from Related Works. To compare Delta-Siege’s per-

formance against existing auditing tools for 𝜖 differential privacy,

we use benchmarks from the evaluation sections of these tools.

In particular, we use the Laplacian mechanism implementation

used by DP-Sniper, which we refer to as Laplacian Inversion. As

this implementation is known to be vulnerable to floating point

attacks [42], we also investigate the fixed implementation from

OpenDP.

To compare Delta-Siege to the handcrafted attacks demonstrated

in [27, 31], we further extend our benchmarks to include Gaussian

mechanism implementations they have shown to be vulnerable.

Those are the Box-Muller [10], Polar [38] and Ziguart [39] meth-

ods. Finally, we extend our benchmarks with the Opacus Gaussian

mechanism implementation of Gaussian noise, which implements

the fix recommended by [27].

Responsible Disclosure. After the submission of this paper, we

notified all authors of the found vulnerabilities and offered to share

the paper. We further informed them that we would wait three

months before making the paper publicly available.

7.2 Experimental Set-up
Picking 𝜖 and 𝛿 . Delta-Siege audits a specific instantiation of

a differentially private algorithm, for given (𝜖, 𝛿) values. To an-

alyze the quality of the auditing in different scenarios, we run

Delta-Siege for several choices of (𝜖, 𝛿) for each of the benchmarks

described above, as shown in Table 3. The Laplace mechanism is

𝜖-differentially private, so we only use 𝛿 = 0 in this case, and four

values of 𝜖 . For all the Gaussian mechanisms, some only accept

limited values of 𝜖 . For those, we investigate two values for 𝜖 and

three for 𝛿 , shown as Gaussian Mechanism 1 in Table 3. For others,

we investigate all four values for 𝜖 and three for 𝛿 . Finally, as MST

and AIM are computationally very intensive, we limit the number

of investigated values to one for 𝜖 and two for 𝛿 .

Choosing inputs 𝑎, 𝑎′. As mentioned in Section 5, we pick naive

input values 𝑎, 𝑎′. We will show in the remainder of this section

that those are enough to find violations in almost all evaluated

algorithms. For the Laplace and Gaussian mechanisms, we use

𝑎 = 0 and 𝑎′ = 1. Note that this results in a trivial sensitivity

of Δ = 1. Hence, any found violations are unlikely to be due to

sensitivity miscalculations (a known flaw of multiple differentially

https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges/2018-differential-privacy-synthetic
https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges/2018-differential-privacy-synthetic
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Table 4: Results of our auditing with Delta-Siege of the libraries [45, 51, 28, 23]. We report for each mechanism if a vulnerability
was found, and if the mechanism was known to be vulnerable (to the best of our knowledge). For all mechanisms where we
found violations, we give an example of a clear violation, described by the expected (𝜖, 𝛿) privacy ( in Fig. 2) and a violated
(𝜖, 𝛿) ( in Fig. 2). For mechanisms where we did not find violations, we report the closest violated (𝜖, 𝛿) we could find.

Violations

Library Mechanism Found? Known? Expected (𝜖, 𝛿 ) Violated (𝜖, 𝛿 ) 𝜇

OpenDP [23] Laplace ✗ (1.000, 0.000) (0.993, 0.000) 0.993

Float Gauss ✗ (0.172, 0.056) (0.069, 0.056) 0.680

Diffprivlib [28] Laplace ✓ ✓ [26] (1.000, 0.000) (5.784, 0.000) 5.784

Float Gauss ✓ ✓ [26] (0.722, 0.001) (5.877, 0.001) 8.013

Analytic Float Gauss ✓ ✓ [26] (0.424, 0.004) (7.153, 0.004) 8.967

Discrete Gauss ✗ (0.138, 0.043) (0.131, 0.043) 0.979

PyDP [45] Laplace ✗ (1.000, 0.000) (0.990, 0.000) 0.990

Gauss ✓ ✗ (0.501, 0.002) (2.192, 0.002) 3.338

Opacus [51] Gauss ✓ ✗ (0.818, 0.0001) (4.890, 0.0001) 5.976

MST [40] ✓𝑎 ✗ (1.875, 0.001) (3.665, 0.001) 3.029

AIM [41] ✓𝑎 ✗ (2.036, 0.001) (2.609, 0.001) 1.405

𝑎
As mentioned in Table 1, we found violation in intermediate results, invalidating the proof of privacy of those

algorithms.

private algorithms [16]). For the MST and AIM algorithms, we use

a simple database consisting of ten columns as follows:

𝑎 =

[
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

]
and 𝑎′ =

[
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

]
We use here databases with really few entries, as the noise used

for both MST and AIM does not depend on the number of entries

and more entries significantly slow down the mechanisms (and

therefore also slows down Delta-Siege as it runs those mechanisms).

Number of samples. Building an attack for a differentially pri-

vate algorithm𝑀 requires sampling multiple times from𝑀 (𝑎) and
𝑀 (𝑎′) and more samples make building an accurate attack eas-

ier. As the Laplace and Gaussian mechanisms are fast to run, we

use 10
6
unique samples each for training the classifier, finding the

threshold parameter, selecting the optimal attack, and estimating

the empirical privacy guarantees; so a total of 4 · 106 samples for

the auditing framework. In contrast, for the more computation-

ally intensive synthetic data generation mechanisms the number

of samples is limited due to computational constraints. Creating

one data point takes on average just over 1.9 seconds for MST and

1.7 seconds for AIM; in comparison, the Laplace mechanism uses

only 2 · 10−6 seconds to generate a sample. Therefore, we restrict

the number of samples used for those to at most 25’000, unless

mentioned otherwise.

Implementation and Hardware. Our implementation is publicly

available
6
. All experiments were conducted using less than 1GB of

RAM on a single core from AMD EPYC 7742 CPU, with clock speed

2250MHz and a total of 64 cores.

7.3 Q1: Finding new vulnerabilities
As mentioned in Section 1 and shown in more detail in Table 4,

we detect several severe violations in a wide range of real-world

implementations of privacy-preserving algorithms, each claiming

to provide (𝜖, 𝛿) differential privacy. We show the results of our

auditing in Table 4.

6
https://github.com/eth-sri/Delta-Siege

Flawed Implementations. As teased in Table 1, we find violations

in seven of the twelve audited mechanisms. Out of those, four were

previously undocumented, to the best of our knowledge. We are

the first to find vulnerabilities in the two synthetic data generation

mechanismsMST andAIM.While we do not discover vulnerabilities

in the final output of those mechanisms (the synthetic dataset), we

find that themarginals they are built on are not differentially private

as expected. This invalidates the privacy proof of those mechanisms,

as they rely entirely on the privacy of those marginals.

Tighter Bounds. For implementations where we find no viola-

tions, Delta-Siege can give a sense of how tight the privacy bounds

are. For instance, we find an attack strength 𝜇 greater than 0.99 for

both OpenDP and PyDP Laplacian mechanisms. It is hence likely

that the privacy bounds of both of those are tight. In contrast, for

OpenDP Float Gauss, we can only achieve 𝜇 = 0.680. There is hence

a chance that its privacy bounds could be refined, allowing for more

precision.

Confirming violations with library developers. We reported all

found violations to the respective library owners. Diffprivlib ac-

knowledged our bug reports. Further, as mentioned in Table 4, the

vulnerabilities had already been identified in [26]. PyDP library

owners did not reply, but after inspecting their code we believe the

vulnerability is again due to floating point addition. For Opacus,

library owners also acknowledged the bug, and we were also able to

identify its root cause, see Section 6. Finally, the authors of MST and

AIM acknowledged the bug. After inspecting their implementation,

we believe the vulnerabilities’ root cause is a similar floating point

vulnerability to the one described in Section 6.

7.4 Q2: Using the 𝜌-ordered definition
We now evaluate in more detail the applicability and effect of our

definition of 𝜌-ordered.

A Widely Applicable Definition. We show in Table 5 the 𝜌 func-

tion that can be used for each of the investigated algorithms. Note

that multiple such definitions are often possible, we here only show-

case one per algorithm. For the Laplace and floating point Gaussian

https://github.com/eth-sri/Delta-Siege
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Table 5: Definition of 𝜌 for all investigated algorithms. Δ
denotes the sensitivity.

Method 𝜌 (𝜖, 𝛿 ) Decreasing and

Upwards Invertible

Laplacian Mechanism Δ/𝜖 ✓

Gaussian Mechanism 2Δ2
log (1.25/𝛿 ) /𝜖2 ✓

Analytic Gaussian Mechanism see [3] ✗
Discrete Gaussian Mechanism see [14] ✗
MST see Eq. (9) ✓
AIM see Eq. (9) ✓

mechanisms, we can define 𝜌 to be the variance of each algorithm.

For both, 𝜌 is continuous and decreasing in both parameters, which

is enough to satisfy our definition, using Lemma 1. The proof of

privacy for both MST and AIM relies on a conversion between (𝜖, 𝛿)
differential privacy and 𝛾-zero-concentrated differential privacy

[12, 43]. We use 𝜌 (𝜖, 𝛿) = 1/𝛾 where 𝛾 > 0 is the smallest values

such that 𝛾-zero-concentrated differential privacy implies (𝜖, 𝛿)
differential privacy. The exact formula is given below and we show

in Section A that 𝜌 is upwards invertible and non-increasing.

𝜌 (𝜖, 𝛿 ) =

max

{
1

𝛾
> 0 | ∃𝛼 > 1 :

exp ( (𝛼 − 1) (𝛼𝛾 − 𝜖 ) )
𝛼 − 1

(
1 − 1

𝛼

)𝛼
≥ 𝛿

}
(9)

Therefore, for all those mechanisms, any 𝜌-violation can always

be transformed into a clear (𝜖, 𝛿) violation. In contrast, the dis-

crete and analytic Gauss mechanisms of the DiffPrivlib library use

standard deviation functions 𝜎 that combine both 𝜖 and 𝛿 into a

single parameter, which we were not able to prove were upwards

invertible. Note that as explained in Section 4.3, we can still use

Delta-Siege to audit this mechanism, but there is no guarantee that

found 𝜌-violation will translate to clear (𝜖, 𝛿) violations.

Evaluating 𝜌 . We use an ablation study to quantify the impact of

the extended violation set permitted by 𝜌 (visualized in Fig. 2c). To

explore the smaller set of clear violations of (𝜖, 𝛿) privacy (shown

in Fig. 2a), we design two strategies based on related work:

(1) 𝜖-Maximization (based on [15]): we set ˆ𝛿0 to a predetermined

set of values and optimize for 𝜖0. This corresponds to opti-

mizing along the orange lines in Fig. 3a.

(2) 𝛿-Maximization (based on Eureka [37]): we set 𝜖0 to a prede-

termined set of values and optimize for
ˆ𝛿0. This corresponds

to optimizing along the purple lines in Fig. 3b.

We implemented both strategies based on DP-Opt, as we did for

Delta-Siege.

Finding More Violations. We first evaluated all three violation-

finding strategies on the Diffprivlib implementation of the Analytic

Gauss mechanism, for 𝜖0 = 10 and 𝛿0 = 0.1. We show the results

in Fig. 4. Here we ran each strategy ten times and plotted for each

run the (𝜖, 𝛿) pair such that:

P [𝑀0 (𝑎) ∈ 𝑆] − 𝛿
P [𝑀0 (𝑎′) ∈ 𝑆]

≥ exp(𝜖)

and 𝜌 (𝜖, 𝛿) is minimum. Both the 𝜖 maximization and the 𝛿 maxi-

mization strategies failed to find any violation, whereas half of the

runs using 𝜌 were able to find one. Further, none of the violations

(a) 𝜖-Maximization (b) 𝛿-maximization

Figure 3: Two search strategies to find violations of (𝜖, 𝛿)
differential privacy

Figure 4: Worst violated (𝜖, 𝛿) found for the Opacus imple-
mentation of the Gauss mechanism. ( ) are found by-𝜖 max-
imization, ( ) by 𝛿-maximization, and ( ) using 𝜌-ordering

found with 𝜌 were in the clear violation set (upper right quadrant

in Fig. 2a): our extended definition was needed to characterize such

violations.

Finding Violations Faster. We now evaluate the three strategies in

a more computationally intensive setting; auditing MST algorithm,

with 𝜖0 = 3.0 and 𝛿0 = 10
−6
. To compare the violations found by

each optimization strategy, we use the magnitude 𝜇 as defined in

Section 4.2. We then show in Fig. 5 the maximum magnitude of the

discovered violations as a function of the number of samples used.

From the plot it is clear that Delta-Siege always requires less sam-

ples to find the same violation magnitude as the other mechanisms,

and hence less computational resources to discover violations. Run-

ning Delta-Siege with 12’500 samples is enough to conclude that

the implementation is flawed. On the other hand, 𝛿-Maximization

must be run with 25’000 samples to reach the same conclusion and

𝜖-Maximization never detects any violations at all. As the sample

complexity completely dominates the runtime of the complete au-

dit, employing 𝜌-ordering allows us to reduce the computational

cost of auditing by a factor of 2.

7.5 Q3: Comparison to state of the art
We now compare Delta-Siege to other state-of-the-art differential

privacy algorithms auditing tools.

Baselines. We consider here only two baselines: DP-Sniper [9]

and DP-Opt [44]. We will discuss other related works in Section 8.
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Figure 5: Comparison of 𝜖-maximization, 𝛿-minimization and our strategy. We show the magnitude of the violations found for
the MST mechanism with 𝛿0 = 10

−6 and 𝜖0 = 3.0, for varying number of samples. We use ten batches of samples and report the
median.

The two selected methods both search for a threshold attack 𝑆𝑡

based on a classifier trained from samples as described in Section 5.

As both works are focused on 𝜖 differential privacy only, we ex-

tend them to handle (𝜖, 𝛿) privacy by fixing some values of 𝛿 and

running each tool for these fixed values; this corresponds to the

𝜖-maximization strategy as shown in Fig. 3a. We use the same

samples and approximation of the posterior probability 𝑝 when

evaluating the different baselines. Further, when working on the

implementation of Delta-Siege, we found a bug in the DP-Sniper

implementation
7
, which lowered the accuracy of the learned classi-

fier. This bug also affected DP-Opt, which builds on DP-Sniper. We

run for both their fixed version, where we patch this bug.

We now briefly describe each work. DP-Sniper searches for viola-

tions of 𝜖 differential privacy. Importantly, Bichsel et al. assume that

one cannot confidently estimate probabilities below a threshold 𝑐 .

Under this assumption, the authors show that it is optimal to choose

𝑡 to be the 𝑐-quantile when sampling from 𝑝 (𝑎 | 𝑏), described in

Section 5.

DP-Opt [44] is another auditing framework based on the ideas

from DP-Sniper. The main difference to the previous baseline is

that instead of setting the threshold 𝑡 to a specific quantile, DP-Opt

optimizes it in order to maximize 𝜖0.

More Violations Found. We show in Table 6 a summary of the

comparison the algorithms from our benchmark. Complete numeri-

cal results can be found in Appendix Section D.We first focus on the

reported number of violations. We audit multiple versions of each

evaluated algorithm𝑀 , for the values of 𝜖0 and 𝛿0 shown in Table 3.

We report the number of instantiations where we found violations

of the claimed privacy guarantees. Delta-Siege consistently finds

more violations than the other tools. For almost all algorithms in

Table 6 that are found to be vulnerable in at least one instantiation,

Delta-Siege finds violations in at least 75% of the instantiations,

which is more consistent than both DP-Sniper and DP-Opt. We

found that the missed violations are often for high values of 𝜖0
and 𝛿0 for all three tools. Further for Box Muller, Polar and Ziggart

7
We confirmed this with the DP-Sniper developers.

Gaussian mechanisms, both DP-Sniper and DP-Opt fail to find any

violation when the mechanisms are instantiated with 𝜖 = 0.1 and

𝛿 = 0.1 (see Table 11 in Appendix). In contrast, Delta-Siege is able

to consistently find 𝜌-violations and convert them to violations for

a high 𝜖 and a low 𝛿 < 0.1. This illustrates again the case shown in

Fig. 4.

Bigger Violations. We also report in Table 6 the maximum mag-

nitude of the violated (𝜖0, ˆ𝛿0), as defined in Section 7.4. For clarity,

here we only report values for privacy parameters 𝜖0 = 1.0, 𝛿0 =

10
−6

for the Laplacian and Gaussian mechanisms as those are close

to values used in practical applications of (𝜖, 𝛿) differential pri-
vacy [18]. We find that Delta-Siege finds violations for every mech-

anism except the OpenDP Laplacianmechanism.When looking into

the extended results, we see that Delta-Siege finds larger or equal

violations than both other tools for more than 80% of all evaluated
instances.

This shows that using 𝜌-ordering allows us to audit differen-

tially private algorithms significantly more accurately and is often

necessary to detect violations in state-of-the-art methods.

8 RELATEDWORK
We now discuss related differential privacy tools. We first discuss

the strategies other tools use to explore the space of (𝜖, 𝛿) potential
violations, then the methods they use to find attacks.

Exploring (𝜖, 𝛿). Multiple auditing methods [44, 9] focus exclu-

sively on 𝜖 differential privacy. Others [36] set 𝛿 to 0 (which gives

an infinite variance for the Gaussian mechanism). We also men-

tioned in Section 7.4 the 𝛿 maximization strategy used by [37] and

the 𝜖 maximization strategy used by [15, 30]. As demonstrated in

Section 7.4, all the above strategies miss violations that our method

can find using 𝜌-ordering. Finally, [34] directly audits Rényi differ-

ential privacy, but, as we will show below, inherently cannot derive

confident bounds on the found violations.

Building and Evaluating Attacks. We now describe different au-

diting frameworks from prior work. Note that our method could

easily be implemented for most of them, making their auditing
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Table 6: Comparison to DP-Sniper and DP-Opt on all instantiations (with privacy parameters as defined in Table 3) of each
benchmark. We report for each mechanism the number of violations across 10 runs of each of its instantiations. We also report
the median of the magnitude 𝜇 of violations over ten runs for parameters 𝜖 = 1.0, 𝛿 = 10

−6.

Delta-Siege DP-Sniper DP-Opt

Method [Implementation] # violations 𝜇Delta-Siege # violations

𝜇
Delta-Siege

𝜇
DP-Sniper

# violations

𝜇
Delta-Siege

𝜇
DP-Opt

Laplacian Mechanism [Inversion] 30 / 40 9.009 27 / 40 1.115≥ 1 30 / 40 1≥ 1
Laplacian Mechanism [OpenDP] 0 / 40 0.993 5 / 40 1.054≥ 1 0 / 40 1.001≥ 1
Gaussian Mechanism [Box Muller] 59 / 60 10.615 37 / 60 1.508≥ 1 48 / 60 1.398≥ 1
Gaussian Mechanism [Polar] 58 / 60 9.140 36 / 60 1.935≥ 1 46 / 60 1.322≥ 1
Gaussian Mechanism [Zigguart] 60 / 60 9.664 34 / 60 1.551≥ 1 47 / 60 1.336≥ 1
Gaussian Mechanism [Opacus] 24 / 60 5.976 21 / 60 3.657≥ 1 23 / 60 1.228≥ 1

faster and more precise. [9, 44] train a classifier to distinguish be-

tween the outputs of𝑀 (𝑎) and𝑀 (𝑎′) and create an attack based

on this classifier. Further, both works provide statistical guarantees

on the found attack but focus exclusively on 𝜖 differential privacy.

[36] is also based on [9] and uses approximate bounds (the Katz-log

confidence interval) to find more powerful attacks. However, as the

same approximate bounds are used for evaluation, the found at-

tacks cannot be statistically confirmed. The Eureka framework [37]

again uses attacks based on classifiers to audit (𝜖, 𝛿) differentially
private algorithms. They derive guarantees on the performance of

the attack by conditioning on the excess risk of the trained classifier

compared to the Bayes optimal classifier. [35] is limited to finite

output spaces and shows that its approach is optimal in a minimax

setting. However, it does not present confidence intervals for the

produced results.

Another line of work tries to estimate the output distributions

P [𝑀 (𝑎)] and P [𝑀 (𝑎′)] directly through kernel density methods.

This approach has been implemented for both 𝜖 differential pri-

vacy [2] and Rényi differential privacy [34]. Neither work could

derive confident estimates in this setting; therefore, both works

only present asymptotic bounds on their estimates.

Membership Inference Attacks. A common use case for differen-

tial privacy is protecting against membership inference attacks [29].

In this scenario, an upper bound on the true positive and false posi-

tive rates of such attacks can be derived from the differential privacy

claim. [15, 48, 30] explicitly implemented this, and could all be ex-

tended with our method as mentioned above. Other works [17, 46]

also find such attacks but do not show how they could be converted

to proven (𝜖, 𝛿) violations.

Verifying Differential Privacy. Many works aim at verifying dif-

ferential privacy claims. For instance, ChekDP [49] and DiPC [4]

can not only detect violations of privacy claims but also be used

for explicit verification. Some other works include [52, 7] based

on a relational type system, [47, 8, 5, 6, 1] based on approximate

couplings, or [50] based on shadow execution. However, the proofs

in those works rely on the assumption that pre-implemented meth-

ods, such as the Laplacian or Gaussian mechanisms, are correct,

which we have shown to be sometimes false.

To the best of our knowledge, only OpenDP has endeavored

to verify actual implementations of differential privacy8. However,
such an undertaking requires a lot of expert work, and may often be

8
See https://opendp.org/blog/introducing-opendp-library-v06.

frustrated when the proofs identify implementation vulnerabilities.

Fixing those vulnerabilities often implies heavy changes to the

implementation and therefore restarting the proof process anew.

For instance, [16] is a result of this proof effort: when trying to

prove a mechanism correct, they found a vulnerability that stopped

the proof work. We believe using Delta-Siege would be a great

complement to this proof effort, as it may weed out many erroneous

implementations before the proof process is even started, therefore

allowing this costly effort to focus only on the most promising

implementations.

9 CONCLUSION
We presented a new method for characterizing (𝜖, 𝛿) differential
privacy violations. Our method can be easily implemented for ex-

isting differential privacy auditing tools, as we demonstrated by

implementing it for DP-Opt, resulting in Delta-Siege.

Delta-Siege found multiple severe violations of differential pri-

vacy in state-of-the-art algorithms, many of which were previously

unknown. It also consistently outperforms other auditing tools for

differential privacy.
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Appendices

A 𝜌-ORDERING FOR MST & AIM
We see in Section A of [40] and Section 4 of [41] that the proof of

(𝜖, 𝛿) differential privacy in MST and AIM relies on the conversion

between (𝜖, 𝛿) differential privacy and zero-Concentrated Differen-

tial Privacy (𝛾-zero-Concentrated Differential Privacy is equivalent

to (𝛼,𝛾𝛼) Rényi differential privacy holding for all 𝛼 > 1). As

noted in Proposition 4 in Section 2.2 of [41], (𝛼,𝛾𝛼) Rényi differ-
ential privacy implies

(
𝜖,

exp( (𝛼−1) (𝛼𝛾−𝜖 ) )
𝛼−1

(
1 − 1

𝛼

)𝛼 )
differential

privacy. The authors state that they use the minimal 𝛾 so that 𝛾-

zero-Concentrated Differential Privacy implies (𝜖, 𝛿) differential
privacy according to the aforementioned proposition. We, therefore,

define the privacy parameter for MST as:

𝜌 (𝜖, 𝛿 ) =

max

{
1

𝛾
> 0 | ∃𝛼 > 1 :

exp ( (𝛼 − 1) (𝛼𝛾 − 𝜖 ) )
𝛼 − 1

(
1 − 1

𝛼

)𝛼
≥ 𝛿

}
(10)

From communication with the authors, we have learned that MST

relies on the same conversion from 𝛾-zero-concentrated differen-

tial privacy to (𝜖, 𝛿) differential privacy; this conversion is slightly

different than the one described in the original paper [40]. Fur-

thermore, inspecting the code from both algorithms confirms that

they use the exactly same script to perfom this conversion
9
. 𝜌

as in Eq. (10) therefore exactly parameterizes the AIM and MST

algorithms.

Non-increasing. We first notice that we can rewrite Eq. (10) as

𝜌 (𝜖, 𝛿) = max Γ𝜖,𝛿 with

Γ𝜖,𝛿 =

{
1

𝛾
> 0 | ∃𝛼 > 1 : 𝐹 (𝛾, 𝛼, 𝜖, 𝛿) ≥ 0

}
using 𝐹 (𝛾, 𝛼, 𝜖, 𝛿) = exp( (𝛼−1) (𝛼𝛾−𝜖 ) )

𝛼−1

(
1 − 1

𝛼

)𝛼
− 𝛿 .

Have 𝜖′ ≤ 𝜖 and 𝛿 ′ ≤ 𝛿 . We have that for any 1/𝛾 ∈ Γ𝜖,𝛿 we

can pick 𝛼 > 1 such that 𝐹 (𝛾, 𝛼, 𝜖, 𝛿) ≥ 0. As 𝐹 is non indreas-

ing, we then have that 𝐹 (𝛾, 𝛼, 𝜖′, 𝛿 ′) ≥ 𝐹 (𝛾, 𝛼, 𝜖, 𝛿) ≥ 0, meaning

that 1/𝛾 ∈ Γ𝜖 ′,𝛿 ′ . Consequently, Γ𝜖,𝛿 ⊆ Γ𝜖 ′,𝛿 ′ which implies that

𝜌 (𝜖, 𝛿) ≤ 𝜌 (𝜖′, 𝛿 ′) or equivalently that 𝜌 is non-increasing in both

parameters.

Upwards-invertibility. . As 𝐹 is continuous, we have that 𝜌 must

also be continuous. Therefore, by Lemma 1 𝜌 is upwards invertible.

B PROOF OF OUR FLOATING POINT ATTACK
In this section, we provide proof of Theorem 4 first introduced in

Section 6. We restate the theorem for convenience below:

Theorem 4. Any mechanism that is based on IEEE754 floating
point addition, denoted ⊕, of some randomly generated noise 𝑍 with
the result of some computation 𝑓 (𝑎) on the private input 𝑎 is not
(𝜖, 𝛿) differentially private if:

• 𝑓 can attain the values 0.0 and 1.0 for some neighbouring
input values 𝑎 and 𝑎′ ∈ N (𝑎)

9
Both algorithms use an IBM script to perform the conversion in practice. It can be

found at: https://github.com/IBM/discrete-gaussian-differential-privacy/blob/master/

cdp2adp.py

• floating point values for 𝑍 with the property that they have
negative sign bit, their mantissa has its highest precision bit set
to 1, and their exponent has its lowest precision bit set to 0 can
be generated by the noise-generation part of the mechanism
with probability at least 𝛿 .

Proof. We call any IEEE754 floating point number attackable if
satisfies the property that it is negative, its mantissa has its highest

precision bit set to 1, and its exponent has its lowest precision bit

set to 0 like in Eq. (7).

To prove the theorem, we first show that the number 𝑍 ⊕ 0.0

is an attackable number when 𝑍 is attackable. We then show that

the number 𝑍 ′ ⊕ 1.0 is never an attackable number for any floating

point noise 𝑍 ′. We finish the proof by considering the output set

𝑆 consisting of all attackable floating point numbers that can be

generated for the mechanism output 𝑍 ⊕ 0.0 of 𝑎. For this choice of
𝑆 , P [𝑓 (𝑎′) ∈ 𝑆] is 0, as all numbers in 𝑆 cannot be generated by the

mechanism output 𝑍 ⊕ 1.0 of 𝑎′ for any noise, as these numbers

cannot be attackable. Therefore for this choice of 𝑆 , the definition

of differential privacy is violated if the probability P [𝑓 (𝑎) ∈ 𝑆] is
bigger than 𝛿 .

In order to complete our proof, we first need to prove that𝑍 ⊕0.0
is attackable when 𝑍 is. This directly follows from the observation

𝑍 ⊕ 0.0 = 𝑍 . Further, we need to prove that 𝑍 ′ ⊕ 1.0 cannot be an

attackable number for any floating point noise 𝑍 ′. This constitutes
the main part of the proof effort and is described next.

By way of contradiction, assume that 𝑂 ′ is an attackable float-

ing point number, such that 𝑂 ′ = 𝑍 ′ ⊕ 1.0 for some 𝑍 ′. As 𝑂 ′ is
negative, and all floating point numbers in the range (−∞,−0.0]
are monotone in their bit representation, we know that 𝑂 ′ is big-
ger than the floating point number −2.0 as −2.0’s exponent has its
lowest precision bit set to 1. Therefore, 𝑂 ′ ∈ (−2.0,−0.0). By the

monotonicity of floating point addition [11], we can then conclude

𝑍 ′ ∈ (−3.0,−1.0). We split this interval into two cases which we

consider separately below.

Let’s first assume 𝑍 ′ ∈ (−2.0,−1.0). In that interval, 𝑍 ′ can be

represented with the binary fraction −1.𝑚 × 2
0
where 𝑚 is the

binary representation of the mantissa of 𝑍 ′. Similarly, the floating

point number 1.0 is represented with the binary fraction 1.0 × 20.
Therefore,𝑂 ′, representing their sum, is a floating point number of

the type −0.𝑚 × 20. In order to be represented as IEEE754 floating

point number, −0.𝑚 × 20 needs to be rewritten as −1.𝑚𝑠 × 2𝑒 for
some negative 𝑒 and shifted mantissa𝑚𝑠 . The shifted mantissa𝑚𝑠

is generated from𝑚 by removing all of its leading zeros as well as

the first 1 and adding as many zeros at the end of𝑚𝑠 as bits were

removed from the front of𝑚. As at least one bit was removed from

the front of𝑚 (the one corresponding to the first 1 bit),𝑚𝑠 ends

in at least one 0. As𝑚𝑠 represents the mantissa of 𝑂 ′, 𝑂 ′ cannot
have its mantissa’s highest precision bit set to 1. This contradicts

the assumption that 𝑂 ′ is an attackable number.

Let’s now assume 𝑍 ′ ∈ (−3.0,−2.0]. In this interval, 𝑍 ′ can be

represented with the binary fraction −1.0𝑚 × 2
1
where𝑚 is the

binary representation of the mantissa of 𝑍 ′ after the leading 0.

Similarly, the floating point number 1.0 is represented with the

binary fraction 0.1 × 21. The resulting sum representing 𝑂 ′ then
becomes−0.1𝑚×21, which is then converted as before to−1.𝑚0×20.

https://github.com/IBM/discrete-gaussian-differential-privacy/blob/master/cdp2adp.py
https://github.com/IBM/discrete-gaussian-differential-privacy/blob/master/cdp2adp.py
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This, as before, introduces a trailing 0 in the mantissa of 𝑂 ′, which
leads to a contradiction with the assumption that 𝑂 ′ is attackable.

Therefore, we conclude that no floating point numbers 𝑍 can

make 𝑂 ′ attackable, which finishes the proof of our theorem. □

C CODE REFERENCES
In Table 7, we present links to the different differentially private

algorithms that we have audited in Section 7. Clicking on the URLs

in the table leads to the documentation of the exact implementations

used for each mechanism.

D EXTENDED RESULTS
In Tables 8 to 23, we present the results of attacking the different

methods from Table 7 for different values of 𝜖0 and 𝛿0. We compare

Delta-Siege against DP-Opt and DP-Sniper in terms of the number

of violations found and 𝜇. Further, we show the values of (𝜖1, 𝛿1)
and (𝜖0, ˆ𝛿0) from Fig. 2 for all methods.
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Table 7: Code for the mechanisms tested in Section 7

Library Mechanism URL

OpenDP [23] Laplacian https://docs.opendp.org/

OpenDP [23] Gaussian https://docs.opendp.org/

Diffprivlib [28] Laplacian https://github.com/IBM/differential-privacy-library/

Diffprivlib [28] Float Gaussian https://github.com/IBM/differential-privacy-library/

Diffprivlib [28] Analytic Float Gaussian https://github.com/IBM/differential-privacy-library/

Diffprivlib [28] Discrete Gaussian https://github.com/IBM/differential-privacy-library/

PyDP [45] Laplacian https://github.com/OpenMined/PyDP/

PyDP [45] Float Gaussian https://github.com/OpenMined/PyDP/

Opacus [51] Float Gaussian https://github.com/pytorch/opacus/

private-pgm MST [40] https://github.com/ryan112358/private-pgm/

private-pgm AIM [41] https://github.com/ryan112358/private-pgm/

Table 8: Results for 𝜖0 = 0.1 and 𝛿0 = 0

Delta-Siege DP-Sniper DP-Opt

Method [Implementation] # violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

Laplace Mechanism [IBM] 9 / 10 24.459

(0.100, 0)
(2.446, 0) 10 / 10 12.685

(0.100, 0)
(1.269, 0) 10 / 10 27.028

(0.100, 0)
(2.703, 0)

Laplace Mechanism [Inversion] 10 / 10 38.269

(0.100, 0)
(3.827, 0) 10 / 10 20.998

(0.100, 0)
(2.100, 0) 10 / 10 43.728

(0.100, 0)
(4.373, 0)

Laplace Mechanism [OpenDP] 0 / 10 0.954

(0.100, 0)
(0.095, 0) 2 / 10 0.599

(0.100, 0)
(0.060, 0) 0 / 10 0.922

(0.100, 0)
(0.092, 0)

Laplace Mechanism [PyDP] 0 / 10 0.933

(0.100, 0)
(0.093, 0) 1 / 10 0.675

(0.100, 0)
(0.068, 0) 0 / 10 0.929

(0.100, 0)
(0.093, 0)

Table 9: Results for 𝜖0 = 0.1 and 𝛿0 = 1 × 10−6

Delta-Siege DP-Sniper DP-Opt

Method [Implementation] # violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

Analytic Gaussian Mechanism [IBM] 10 / 10 9.117

(0.044, 0.00074)
(0.626, 0.00074) 9 / 10 4.422

(0.100, 1 × 10
−6 )

(0.490, 1 × 10
−6 ) 10 / 10 9.489

(0.100, 1 × 10
−6 )

(1.119, 1 × 10
−6 )

Discrete Gaussian Mechanism [IBM] 0 / 10 0.726

(0.018, 0.0043)
(0.009, 0.0043) 1 / 10 0.093

(0.100, 1 × 10
−6 )

(0.002, 1 × 10
−6 ) 0 / 10 0.244

(0.100, 1 × 10
−6 )

(0.022, 1 × 10
−6 )

Gauss Mechanism [OpenDP] 0 / 10 0.090

(0.056, 0.00035)
(0.002, 0.00035) 1 / 10 0.000

(0.100, 1 × 10
−6 )

(−0.024, 1 × 10
−6 ) 0 / 10 0.000

(0.100, 1 × 10
−6 )

(−0.001, 1 × 10
−6 )

Gaussian Mechanism [Box Muller] 10 / 10 8.645

(0.082, 0.00011)
(0.778, 0.00011) 7 / 10 3.644

(0.100, 1 × 10
−6 )

(0.364, 1 × 10
−6 ) 8 / 10 7.911

(0.100, 1 × 10
−6 )

(0.791, 1 × 10
−6 )

Gaussian Mechanism [IBM] 7 / 10 1.337

(0.078, 0.00027)
(0.105, 0.00027) 4 / 10 0.779

(0.100, 1 × 10
−6 )

(0.078, 1 × 10
−6 ) 6 / 10 1.213

(0.100, 1 × 10
−6 )

(0.121, 1 × 10
−6 )

Gaussian Mechanism [Opacus] 0 / 10 0.120

(0.087, 3.1 × 10
−5 )

(0.010, 3.1 × 10
−5 ) 1 / 10 0.000

(0.100, 1 × 10
−6 )

(−0.019, 1 × 10
−6 ) 1 / 10 0.097

(0.100, 1 × 10
−6 )

(0.010, 1 × 10
−6 )

Gaussian Mechanism [Polar] 8 / 10 1.487

(0.077, 0.00029)
(0.118, 0.00029) 6 / 10 2.794

(0.100, 1 × 10
−6 )

(0.279, 1 × 10
−6 ) 6 / 10 1.343

(0.100, 1 × 10
−6 )

(0.134, 1 × 10
−6 )

Gaussian Mechanism [PyDP] 3 / 10 0.834

(0.040, 0.00093)
(0.030, 0.00093) 1 / 10 0.108

(0.100, 1 × 10
−6 )

(0.009, 1 × 10
−6 ) 1 / 10 0.399

(0.100, 1 × 10
−6 )

(0.037, 1 × 10
−6 )

Gaussian Mechanism [Zigguart] 10 / 10 4.880

(0.081, 0.00012)
(0.377, 0.00012) 7 / 10 4.254

(0.100, 1 × 10
−6 )

(0.425, 1 × 10
−6 ) 7 / 10 4.553

(0.100, 1 × 10
−6 )

(0.455, 1 × 10
−6 )

https://docs.opendp.org/en/v0.2.0/api/python/opendp.meas.html?highlight=laplace#opendp.meas.make_base_laplace
https://docs.opendp.org/en/v0.2.0/api/python/opendp.meas.html?highlight=gaussia#opendp.meas.make_base_gaussian
https://github.com/IBM/differential-privacy-library/blob/main/diffprivlib/mechanisms/laplace.py#L29-L149
https://github.com/IBM/differential-privacy-library/blob/main/diffprivlib/mechanisms/gaussian.py#L32-L117
https://github.com/IBM/differential-privacy-library/blob/main/diffprivlib/mechanisms/gaussian.py#L120-L206
https://github.com/IBM/differential-privacy-library/blob/main/diffprivlib/mechanisms/gaussian.py#L209-L362
https://github.com/OpenMined/PyDP/blob/1a5be58860f4b806a9e861d99f7976cea4106100/src/bindings/PyDP/mechanisms/mechanism.cpp#L81-L107
https://github.com/OpenMined/PyDP/blob/1a5be58860f4b806a9e861d99f7976cea4106100/src/bindings/PyDP/mechanisms/mechanism.cpp#L109-L146
https://github.com/pytorch/opacus/blob/main/opacus/optimizers/optimizer.py#L102-L166
https://github.com/ryan112358/private-pgm/tree/master/mechanisms/mst.py#L19-L30
https://github.com/ryan112358/private-pgm/blob/master/mechanisms/aim.py#L43-L125
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Table 10: Results for 𝜖0 = 0.1 and 𝛿0 = 0.001

Delta-Siege DP-Sniper DP-Opt

Method [Implementation] # violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

Analytic Gaussian Mechanism [IBM] 10 / 10 11.844

(0.170, 2.8 × 10
−5 )

(2.799, 2.8 × 10
−5 ) 9 / 10 7.915

(0.100, 0.001)
(1.207, 0.001) 10 / 10 9.560

(0.100, 0.001)
(1.523, 0.001)

Discrete Gaussian Mechanism [IBM] 0 / 10 0.900

(0.034, 0.01)
(0.029, 0.01) 3 / 10 0.235

(0.100, 0.001)
(0.015, 0.001) 0 / 10 0.858

(0.100, 0.001)
(0.082, 0.001)

Gauss Mechanism [OpenDP] 0 / 10 0.371

(0.066, 0.0046)
(0.013, 0.0046) 0 / 10 0.000

(0.100, 0.001)
(−0.088, 0.001) 0 / 10 0.306

(0.100, 0.001)
(0.022, 0.001)

Gaussian Mechanism [Box Muller] 10 / 10 11.640

(0.124, 2.8 × 10
−5 )

(1.597, 2.8 × 10
−5 ) 7 / 10 6.632

(0.100, 0.001)
(0.663, 0.001) 10 / 10 8.498

(0.100, 0.001)
(0.850, 0.001)

Gaussian Mechanism [IBM] 10 / 10 6.571

(0.114, 0.00013)
(0.754, 0.00013) 7 / 10 4.196

(0.100, 0.001)
(0.420, 0.001) 10 / 10 4.875

(0.100, 0.001)
(0.487, 0.001)

Gaussian Mechanism [Opacus] 1 / 10 0.223

(0.127, 1.3 × 10
−5 )

(0.028, 1.3 × 10
−5 ) 2 / 10 0.000

(0.100, 0.001)
(−0.061, 0.001) 0 / 10 0.155

(0.100, 0.001)
(0.016, 0.001)

Gaussian Mechanism [Polar] 10 / 10 2.192

(0.113, 0.00015)
(0.248, 0.00015) 7 / 10 2.284

(0.100, 0.001)
(0.228, 0.001) 10 / 10 1.817

(0.100, 0.001)
(0.182, 0.001)

Gaussian Mechanism [PyDP] 10 / 10 1.724

(0.059, 0.0049)
(0.129, 0.0049) 4 / 10 0.000

(0.100, 0.001)
(−0.012, 0.001) 10 / 10 1.574

(0.100, 0.001)
(0.175, 0.001)

Gaussian Mechanism [Zigguart] 10 / 10 2.596

(0.113, 0.00014)
(0.293, 0.00014) 7 / 10 1.889

(0.100, 0.001)
(0.189, 0.001) 10 / 10 2.108

(0.100, 0.001)
(0.211, 0.001)

Table 11: Results for 𝜖0 = 0.1 and 𝛿0 = 0.1

Delta-Siege DP-Sniper DP-Opt

Method [Implementation] # violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

Analytic Gaussian Mechanism [IBM] 10 / 10 6.491

(0.611, 0.0078)
(7.669, 0.0078) 4 / 10 0.388

(0.100, 0.1)
(−0.006, 0.1) 10 / 10 2.777

(0.100, 0.1)
(1.110, 0.1)

Discrete Gaussian Mechanism [IBM] 0 / 10 0.988

(0.486, 0.017)
(0.477, 0.017) 0 / 10 0.000

(0.100, 0.1)
(−1.939, 0.1) 0 / 10 0.990

(0.100, 0.1)
(0.096, 0.1)

Gauss Mechanism [OpenDP] 0 / 10 0.680

(0.198, 0.061)
(0.080, 0.061) 0 / 10 0.000

(0.100, 0.1)
(−2.369, 0.1) 0 / 10 0.000

(0.100, 0.1)
(−∞, 0.1)

Gaussian Mechanism [Box Muller] 9 / 10 2.465

(0.182, 0.0003)
(0.436, 0.0003) 0 / 10 0.000

(0.100, 0.1)
(−2.215, 0.1) 0 / 10 0.000

(0.100, 0.1)
(−∞, 0.1)

Gaussian Mechanism [IBM] 10 / 10 6.189

(0.193, 0.00011)
(1.449, 0.00011) 0 / 10 0.000

(0.100, 0.1)
(−2.250, 0.1) 0 / 10 0.000

(0.100, 0.1)
(−∞, 0.1)

Gaussian Mechanism [Opacus] 3 / 10 0.784

(0.196, 8 × 10
−5 )

(0.147, 8 × 10
−5 ) 0 / 10 0.000

(0.100, 0.1)
(−2.664, 0.1) 0 / 10 0.000

(0.100, 0.1)
(−∞, 0.1)

Gaussian Mechanism [Polar] 10 / 10 8.796

(0.199, 5.8 × 10
−5 )

(1.961, 5.8 × 10
−5 ) 0 / 10 0.000

(0.100, 0.1)
(−2.286, 0.1) 0 / 10 0.000

(0.100, 0.1)
(−∞, 0.1)

Gaussian Mechanism [PyDP] 10 / 10 5.751

(0.764, 0.0027)
(6.953, 0.0027) 0 / 10 0.000

(0.100, 0.1)
(−0.748, 0.1) 10 / 10 2.092

(0.100, 0.1)
(0.654, 0.1)

Gaussian Mechanism [Zigguart] 10 / 10 10.883

(0.192, 0.00012)
(2.394, 0.00012) 0 / 10 0.000

(0.100, 0.1)
(−2.101, 0.1) 0 / 10 0.000

(0.100, 0.1)
(−∞, 0.1)

Table 12: Results for 𝜖0 = 1.0 and 𝛿0 = 0

Delta-Siege DP-Sniper DP-Opt

Method [Implementation] # violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

Laplace Mechanism [IBM] 10 / 10 5.784

(1.000, 0)
(5.784, 0) 10 / 10 6.011

(1.000, 0)
(6.011, 0) 10 / 10 6.171

(1.000, 0)
(6.171, 0)

Laplace Mechanism [Inversion] 10 / 10 9.009

(1.000, 0)
(9.009, 0) 10 / 10 8.082

(1.000, 0)
(8.082, 0) 10 / 10 9.009

(1.000, 0)
(9.009, 0)

Laplace Mechanism [OpenDP] 0 / 10 0.993

(1.000, 0)
(0.993, 0) 1 / 10 0.942

(1.000, 0)
(0.942, 0) 0 / 10 0.992

(1.000, 0)
(0.992, 0)

Laplace Mechanism [PyDP] 0 / 10 0.990

(1.000, 0)
(0.990, 0) 1 / 10 0.955

(1.000, 0)
(0.955, 0) 0 / 10 0.987

(1.000, 0)
(0.987, 0)
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Table 13: Results for 𝜖0 = 1.0 and 𝛿0 = 1 × 10−6

Delta-Siege DP-Sniper DP-Opt

Method [Implementation] # violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

Analytic Gaussian Mechanism [IBM] 10 / 10 8.967

(0.424, 0.0042)
(7.153, 0.0042) 10 / 10 6.498

(1.000, 1 × 10
−6 )

(8.040, 1 × 10
−6 ) 10 / 10 6.386

(1.000, 1 × 10
−6 )

(7.877, 1 × 10
−6 )

Discrete Gaussian Mechanism [IBM] 0 / 10 0.979

(0.138, 0.043)
(0.131, 0.043) 4 / 10 0.646

(1.000, 1 × 10
−6 )

(0.624, 1 × 10
−6 ) 0 / 10 0.688

(1.000, 1 × 10
−6 )

(0.667, 1 × 10
−6 )

Gauss Mechanism [OpenDP] 0 / 10 0.680

(0.172, 0.056)
(0.069, 0.056) 0 / 10 0.237

(1.000, 1 × 10
−6 )

(0.216, 1 × 10
−6 ) 0 / 10 0.226

(1.000, 1 × 10
−6 )

(0.205, 1 × 10
−6 )

Gaussian Mechanism [Box Muller] 10 / 10 10.615

(0.674, 0.0021)
(7.152, 0.0021) 10 / 10 7.041

(1.000, 1 × 10
−6 )

(7.041, 1 × 10
−6 ) 10 / 10 7.594

(1.000, 1 × 10
−6 )

(7.594, 1 × 10
−6 )

Gaussian Mechanism [IBM] 10 / 10 8.013

(0.722, 0.00083)
(5.877, 0.00083) 10 / 10 4.257

(1.000, 1 × 10
−6 )

(4.257, 1 × 10
−6 ) 10 / 10 6.382

(1.000, 1 × 10
−6 )

(6.382, 1 × 10
−6 )

Gaussian Mechanism [Opacus] 10 / 10 5.976

(0.818, 0.0001)
(4.890, 0.0001) 8 / 10 1.634

(1.000, 1 × 10
−6 )

(1.634, 1 × 10
−6 ) 10 / 10 4.867

(1.000, 1 × 10
−6 )

(4.867, 1 × 10
−6 )

Gaussian Mechanism [Polar] 10 / 10 9.140

(0.708, 0.0011)
(6.537, 0.0011) 10 / 10 4.724

(1.000, 1 × 10
−6 )

(4.724, 1 × 10
−6 ) 10 / 10 6.914

(1.000, 1 × 10
−6 )

(6.914, 1 × 10
−6 )

Gaussian Mechanism [PyDP] 10 / 10 4.037

(0.678, 0.00022)
(3.839, 0.00022) 10 / 10 2.292

(1.000, 1 × 10
−6 )

(2.470, 1 × 10
−6 ) 10 / 10 3.776

(1.000, 1 × 10
−6 )

(4.303, 1 × 10
−6 )

Gaussian Mechanism [Zigguart] 10 / 10 9.664

(0.691, 0.0016)
(6.687, 0.0016) 10 / 10 6.232

(1.000, 1 × 10
−6 )

(6.232, 1 × 10
−6 ) 10 / 10 7.235

(1.000, 1 × 10
−6 )

(7.235, 1 × 10
−6 )

Table 14: Results for 𝜖0 = 1.0 and 𝛿0 = 0.001

Delta-Siege DP-Sniper DP-Opt

Method [Implementation] # violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

Analytic Gaussian Mechanism [IBM] 10 / 10 6.189

(0.673, 0.0091)
(7.877, 0.0091) 10 / 10 5.400

(1.000, 0.001)
(8.072, 0.001) 10 / 10 5.607

(1.000, 0.001)
(8.483, 0.001)

Discrete Gaussian Mechanism [IBM] 0 / 10 0.992

(0.459, 0.03)
(0.453, 0.03) 1 / 10 0.939

(1.000, 0.001)
(0.945, 0.001) 0 / 10 0.955

(1.000, 0.001)
(0.962, 0.001)

Gauss Mechanism [OpenDP] 0 / 10 0.693

(0.288, 0.085)
(0.125, 0.085) 0 / 10 0.489

(1.000, 0.001)
(0.435, 0.001) 0 / 10 0.538

(1.000, 0.001)
(0.485, 0.001)

Gaussian Mechanism [Box Muller] 10 / 10 8.200

(0.888, 0.0045)
(7.331, 0.0045) 10 / 10 8.062

(1.000, 0.001)
(8.062, 0.001) 10 / 10 7.608

(1.000, 0.001)
(7.608, 0.001)

Gaussian Mechanism [IBM] 10 / 10 8.530

(0.884, 0.0047)
(7.481, 0.0047) 10 / 10 8.041

(1.000, 0.001)
(8.041, 0.001) 10 / 10 8.023

(1.000, 0.001)
(8.023, 0.001)

Gaussian Mechanism [Opacus] 10 / 10 6.042

(0.999, 0.001)
(6.031, 0.001) 10 / 10 3.298

(1.000, 0.001)
(3.298, 0.001) 10 / 10 5.891

(1.000, 0.001)
(5.891, 0.001)

Gaussian Mechanism [Polar] 10 / 10 8.206

(0.893, 0.0042)
(7.320, 0.0042) 10 / 10 8.022

(1.000, 0.001)
(8.022, 0.001) 10 / 10 7.818

(1.000, 0.001)
(7.818, 0.001)

Gaussian Mechanism [PyDP] 10 / 10 5.183

(0.868, 0.0026)
(7.146, 0.0026) 10 / 10 4.445

(1.000, 0.001)
(6.254, 0.001) 10 / 10 5.063

(1.000, 0.001)
(7.415, 0.001)

Gaussian Mechanism [Zigguart] 10 / 10 8.427

(0.891, 0.0044)
(7.488, 0.0044) 10 / 10 8.065

(1.000, 0.001)
(8.065, 0.001) 10 / 10 7.926

(1.000, 0.001)
(7.926, 0.001)
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Table 15: Results for 𝜖0 = 1.0 and 𝛿0 = 0.1

Delta-Siege DP-Sniper DP-Opt

Method [Implementation] # violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

Analytic Gaussian Mechanism [IBM] 10 / 10 4.011

(0.749, 0.15)
(9.887, 0.15) 10 / 10 3.395

(1.000, 0.1)
(8.068, 0.1) 10 / 10 3.952

(1.000, 0.1)
(10.440, 0.1)

Discrete Gaussian Mechanism [IBM] 0 / 10 0.996

(1.209, 0.049)
(1.203, 0.049) 0 / 10 0.000

(1.000, 0.1)
(−∞, 0.1) 0 / 10 0.996

(1.000, 0.1)
(0.992, 0.1)

Gauss Mechanism [OpenDP] 0 / 10 0.799

(1.313, 0.049)
(0.944, 0.049) 0 / 10 0.000

(1.000, 0.1)
(−2.076, 0.1) 0 / 10 0.756

(1.000, 0.1)
(0.619, 0.1)

Gaussian Mechanism [Box Muller] 10 / 10 1.622

(0.996, 0.1)
(1.616, 0.1) 0 / 10 0.581

(1.000, 0.1)
(0.581, 0.1) 10 / 10 1.637

(1.000, 0.1)
(1.637, 0.1)

Gaussian Mechanism [IBM] 10 / 10 1.474

(0.958, 0.12)
(1.412, 0.12) 2 / 10 0.733

(1.000, 0.1)
(0.733, 0.1) 10 / 10 1.676

(1.000, 0.1)
(1.676, 0.1)

Gaussian Mechanism [Opacus] 0 / 10 0.907

(0.996, 0.1)
(0.903, 0.1) 0 / 10 0.000

(1.000, 0.1)
(−0.233, 0.1) 2 / 10 0.935

(1.000, 0.1)
(0.935, 0.1)

Gaussian Mechanism [Polar] 10 / 10 1.693

(0.996, 0.1)
(1.686, 0.1) 3 / 10 0.902

(1.000, 0.1)
(0.902, 0.1) 10 / 10 1.710

(1.000, 0.1)
(1.710, 0.1)

Gaussian Mechanism [PyDP] 10 / 10 2.956

(1.510, 0.038)
(7.742, 0.038) 10 / 10 1.918

(1.001, 0.1)
(3.093, 0.1) 10 / 10 2.026

(1.001, 0.1)
(3.389, 0.1)

Gaussian Mechanism [Zigguart] 10 / 10 1.610

(0.996, 0.1)
(1.603, 0.1) 0 / 10 0.652

(1.000, 0.1)
(0.652, 0.1) 10 / 10 1.624

(1.000, 0.1)
(1.624, 0.1)

Table 16: Results for 𝜖0 = 3.0 and 𝛿0 = 0

Delta-Siege DP-Sniper DP-Opt

Method [Implementation] # violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

Laplace Mechanism [IBM] 10 / 10 1.161

(3.000, 0)
(3.484, 0) 3 / 10 0.944

(3.000, 0)
(2.831, 0) 10 / 10 1.134

(3.000, 0)
(3.403, 0)

Laplace Mechanism [Inversion] 10 / 10 1.403

(3.000, 0)
(4.209, 0) 7 / 10 1.099

(3.000, 0)
(3.297, 0) 10 / 10 1.403

(3.000, 0)
(4.209, 0)

Laplace Mechanism [OpenDP] 0 / 10 0.990

(3.000, 0)
(2.971, 0) 2 / 10 0.918

(3.000, 0)
(2.755, 0) 0 / 10 0.990

(3.000, 0)
(2.970, 0)

Laplace Mechanism [PyDP] 0 / 10 0.993

(3.000, 0)
(2.978, 0) 2 / 10 0.921

(3.000, 0)
(2.763, 0) 0 / 10 0.995

(3.000, 0)
(2.984, 0)

Table 17: Results for 𝜖0 = 3.0 and 𝛿0 = 1 × 10−6

Delta-Siege DP-Sniper DP-Opt

Method [Implementation] # violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

AIM Internal 6 / 10 1.405

(2.036, 0.00069)
(2.609, 0.00069) 0 / 10 0.311

(3.008, 1 × 10
−6 )

(1.564, 1 × 10
−6 ) 5 / 10 0.882

(3.008, 1 × 10
−6 )

(2.792, 1 × 10
−6 )

Analytic Gaussian Mechanism [IBM] 10 / 10 4.849

(0.707, 0.062)
(9.205, 0.062) 10 / 10 2.384

(3.000, 1 × 10
−6 )

(8.076, 1 × 10
−6 ) 10 / 10 2.885

(3.000, 1 × 10
−6 )

(10.133, 1 × 10
−6 )

Discrete Gaussian Mechanism [IBM] 2 / 10 0.994

(1.020, 0.021)
(1.011, 0.021) 1 / 10 0.660

(3.000, 1 × 10
−6 )

(1.864, 1 × 10
−6 ) 0 / 10 0.746

(3.000, 1 × 10
−6 )

(2.142, 1 × 10
−6 )

Gauss Mechanism [OpenDP] 0 / 10 0.777

(0.925, 0.06)
(0.628, 0.06) 0 / 10 0.460

(3.000, 1 × 10
−6 )

(1.292, 1 × 10
−6 ) 0 / 10 0.477

(3.000, 1 × 10
−6 )

(1.341, 1 × 10
−6 )

Gaussian Mechanism [PyDP] 10 / 10 4.517

(0.929, 0.034)
(8.948, 0.034) 10 / 10 2.391

(3.000, 1 × 10
−6 )

(8.108, 1 × 10
−6 ) 10 / 10 2.784

(3.000, 1 × 10
−6 )

(9.716, 1 × 10
−6 )

MST Internal 10 / 10 3.029

(1.875, 0.0015)
(3.665, 0.0015) 2 / 10 0.417

(3.008, 1 × 10
−6 )

(1.862, 1 × 10
−6 ) 9 / 10 1.635

(3.008, 1 × 10
−6 )

(3.939, 1 × 10
−6 )
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Table 18: Results for 𝜖0 = 3.0 and 𝛿0 = 0.001

Delta-Siege DP-Sniper DP-Opt

Method [Implementation] # violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

Analytic Gaussian Mechanism [IBM] 10 / 10 3.789

(0.793, 0.15)
(9.488, 0.15) 10 / 10 2.182

(3.000, 0.001)
(8.105, 0.001) 10 / 10 2.692

(3.000, 0.001)
(10.733, 0.001)

Discrete Gaussian Mechanism [IBM] 0 / 10 0.996

(1.335, 0.045)
(1.326, 0.045) 1 / 10 0.975

(3.000, 0.001)
(2.877, 0.001) 0 / 10 0.975

(3.000, 0.001)
(2.877, 0.001)

Gauss Mechanism [OpenDP] 0 / 10 0.819

(2.218, 0.013)
(1.708, 0.013) 0 / 10 0.792

(3.000, 0.001)
(2.270, 0.001) 0 / 10 0.784

(3.000, 0.001)
(2.242, 0.001)

Gaussian Mechanism [PyDP] 10 / 10 2.677

(1.728, 0.03)
(7.567, 0.03) 10 / 10 2.187

(2.998, 0.001)
(8.123, 0.001) 10 / 10 2.299

(2.998, 0.001)
(8.680, 0.001)

Table 19: Results for 𝜖0 = 3.0 and 𝛿0 = 0.1

Delta-Siege DP-Sniper DP-Opt

Method [Implementation] # violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

AIM Internal 0 / 10 0.323

(5.664, 0.001)
(2.951, 0.001) 0 / 10 0.000

(3.047, 0.1)
(−1.897, 0.1) 0 / 10 0.056

(3.047, 0.1)
(0.244, 0.1)

Analytic Gaussian Mechanism [IBM] 10 / 10 1.141

(0.000, 0.49)
(1.073, 0.49) 0 / 10 0.000

(∞, 0)
(0.000, 0) 0 / 10 0.000

(∞, 0)
(0.000, 0)

Discrete Gaussian Mechanism [IBM] 0 / 10 0.000

(∞, 0)
(0.000, 0) 0 / 10 0.000

(∞, 0)
(0.000, 0) 0 / 10 0.000

(∞, 0)
(0.000, 0)

Gauss Mechanism [OpenDP] 0 / 10 0.857

(4.927, 0.0052)
(4.047, 0.0052) 0 / 10 0.460

(3.000, 0.1)
(0.866, 0.1) 0 / 10 0.819

(3.000, 0.1)
(2.198, 0.1)

Gaussian Mechanism [PyDP] 0 / 10 0.000

(∞, 0)
(0.000, 0) 0 / 10 0.000

(∞, 0)
(0.000, 0) 0 / 10 0.000

(∞, 0)
(0.000, 0)

MST Internal 1 / 10 0.651

(5.234, 0.0027)
(3.959, 0.0027) 0 / 10 0.000

(3.047, 0.1)
(−1.284, 0.1) 0 / 10 0.173

(3.047, 0.1)
(0.730, 0.1)

Table 20: Results for 𝜖0 = 10.0 and 𝛿0 = 0

Delta-Siege DP-Sniper DP-Opt

Method [Implementation] # violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

Laplace Mechanism [IBM] 0 / 10 0.968

(10.000, 0)
(9.681, 0) 0 / 10 0.432

(10.000, 0)
(4.324, 0) 0 / 10 0.963

(10.000, 0)
(9.631, 0)

Laplace Mechanism [Inversion] 0 / 10 0.962

(10.000, 0)
(9.621, 0) 0 / 10 0.425

(10.000, 0)
(4.250, 0) 0 / 10 0.962

(10.000, 0)
(9.621, 0)

Laplace Mechanism [OpenDP] 0 / 10 0.958

(10.000, 0)
(9.579, 0) 0 / 10 0.425

(10.000, 0)
(4.248, 0) 0 / 10 0.954

(10.000, 0)
(9.544, 0)

Laplace Mechanism [PyDP] 0 / 10 0.960

(10.000, 0)
(9.600, 0) 1 / 10 0.000

(10.000, 0)
(−∞, 0) 0 / 10 0.961

(10.000, 0)
(9.605, 0)

Table 21: Results for 𝜖0 = 10.0 and 𝛿0 = 1 × 10−6

Delta-Siege DP-Sniper DP-Opt

Method [Implementation] # violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

Analytic Gaussian Mechanism [IBM] 10 / 10 1.126

(0.000, 0.51)
(1.148, 0.51) 0 / 8 0.000

(∞, 0)
(0.000, 0) 0 / 8 0.000

(∞, 0)
(0.000, 0)

Discrete Gaussian Mechanism [IBM] 0 / 10 0.000

(∞, 0)
(0.000, 0) 0 / 10 0.000

(∞, 0)
(0.000, 0) 0 / 10 0.000

(∞, 0)
(0.000, 0)

Gauss Mechanism [OpenDP] 0 / 10 0.863

(5.727, 0.011)
(4.668, 0.011) 0 / 10 0.609

(10.000, 1 × 10
−6 )

(5.633, 1 × 10
−6 ) 0 / 10 0.616

(10.000, 1 × 10
−6 )

(5.707, 1 × 10
−6 )

Gaussian Mechanism [PyDP] 0 / 10 0.000

(∞, 0)
(0.000, 0) 0 / 10 0.000

(∞, 0)
(0.000, 0) 0 / 10 0.000

(∞, 0)
(0.000, 0)
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Table 22: Results for 𝜖0 = 10.0 and 𝛿0 = 0.001

Delta-Siege DP-Sniper DP-Opt

Method [Implementation] # violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

Analytic Gaussian Mechanism [IBM] 10 / 10 1.072

(0.000, 0.62)
(1.691, 0.62) 0 / 10 0.000

(∞, 0)
(0.000, 0) 0 / 10 0.000

(∞, 0)
(0.000, 0)

Discrete Gaussian Mechanism [IBM] 0 / 10 0.000

(∞, 0)
(0.000, 0) 0 / 10 0.000

(∞, 0)
(0.000, 0) 0 / 10 0.000

(∞, 0)
(0.000, 0)

Gauss Mechanism [OpenDP] 0 / 10 0.854

(6.995, 0.042)
(5.539, 0.042) 0 / 10 0.694

(10.000, 0.001)
(6.251, 0.001) 0 / 10 0.722

(10.000, 0.001)
(6.568, 0.001)

Gaussian Mechanism [PyDP] 0 / 10 0.000

(∞, 0)
(0.000, 0) 0 / 10 0.000

(∞, 0)
(0.000, 0) 0 / 10 0.000

(∞, 0)
(0.000, 0)

Table 23: Results for 𝜖0 = 10.0 and 𝛿0 = 0.1

Delta-Siege DP-Sniper DP-Opt

Method [Implementation] # violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

# violations 𝜇
(𝜖1, 𝛿1 )
(𝜖0, ˆ𝛿0 )

Analytic Gaussian Mechanism [IBM] 10 / 10 1.024

(0.000, 0.68)
(3.906, 0.68) 0 / 10 0.000

(∞, 0)
(0.000, 0) 0 / 10 0.000

(∞, 0)
(0.000, 0)

Discrete Gaussian Mechanism [IBM] 0 / 10 0.000

(∞, 0)
(0.000, 0) 0 / 10 0.000

(∞, 0)
(0.000, 0) 0 / 10 0.000

(∞, 0)
(0.000, 0)

Gauss Mechanism [OpenDP] 0 / 10 0.791

(7.430, 0.35)
(4.814, 0.35) 1 / 10 0.600

(10.000, 0.1)
(4.478, 0.1) 0 / 10 0.711

(10.000, 0.1)
(5.837, 0.1)

Gaussian Mechanism [PyDP] 0 / 10 0.000

(∞, 0)
(0.000, 0) 0 / 10 0.000

(∞, 0)
(0.000, 0) 0 / 10 0.000

(∞, 0)
(0.000, 0)
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