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ABSTRACT

The widespread applicability of large language models (LLMs) has increased the
availability of many fine-tuned models of various sizes targeting specific tasks.
Given a set of such specialized models, to maximize overall performance, it is im-
portant to figure out the optimal strategy for selecting the right model for a given
user query. An effective strategy could drastically increase overall performance
and even offer improvements over a single large monolithic model. Existing ap-
proaches typically fall into two categories: routing, where a single model is se-
lected for each query, and cascading, which runs a sequence of increasingly larger
models until a satisfactory answer is obtained. However, both have notable lim-
itations: routing commits to an initial model without flexibility, while cascading
requires executing every model in sequence, which can be inefficient. Addition-
ally, the conditions under which these strategies are provably optimal remain un-
clear. In this work, we derive optimal strategies for both routing and cascading.
Building on this analysis, we propose a novel approach called cascade routing,
which combines the adaptability of routing with the cost-efficiency of cascading.
Our experiments demonstrate that cascade routing consistently outperforms both
routing and cascading across a variety of settings, improving both output quality
and lowering computational cost, thus offering a unified and efficient solution to
the model selection problem.1

1 INTRODUCTION

Large language models (LLMs) have found applications in a wide range of tasks, some of which are
easily handled by small models, while others require the full capacity of state-of-the-art LLMs. This
has led to the development of many fine-tuned models of various sizes that target specific tasks. To
maximize performance, it is crucial to select the most suitable model for each query, accounting for
both the expected quality of the model’s output and the model’s cost. Such model selection strategies
can significantly improve performance over any individual model and can reduce inference costs by
selecting a smaller model when the query does not require the full capacity of a larger model.

Routing and Cascading Two primary strategies have been proposed to solve model selection.
The first, routing, directs each input query to a specific model from a set of available models (Chen
et al., 2022; Liu et al., 2024), as illustrated in Fig. 1(a). This approach is particularly effective when
different expert LLMs are needed for different tasks, enabling the selection of the most suitable
expert for each query. The second strategy, cascading, processes an input query through a sequence
of increasingly larger models, stopping when a model produces an answer deemed sufficiently good
(Chen et al., 2023; Varshney and Baral, 2022), as illustrated in Fig. 1(b). Cascading is particularly
valuable for handling queries of varying difficulty, as it allows simpler queries to be addressed by
smaller, less expensive models while reserving more complex queries for larger models.

Restrictive Conditions Despite their utility, both routing and cascading impose significant restric-
tions on the model selection process. In routing, the initial selection of a model is final, prevent-
ing any reconsideration after the initial decision. In cascading, each query must sequentially pass
through all models in the chain until a suitable answer is found, with no option to reroute to a poten-
tially better model. Therefore, a less restrictive strategy that combines the strengths of both routing
and cascading could offer significant performance improvements.

1Code available at https://github.com/eth-sri/cascade-routing.
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Figure 1: Overview of three model selection strategies. Routing selects a single model for a query,
cascading processes queries through a sequence of models, and cascade routing generalizes both.

Lack of Theoretical Understanding Furthermore, the conditions under which current routing
and cascading strategies are optimal, are not well understood. For routing, an extensive proof is
required just to show that current strategies are close to optimal (Chen et al., 2022), while the the-
oretical analysis of current cascading algorithms is based on restrictive assumptions and does not
provide optimality guarantees (Chen et al., 2023; Varshney and Baral, 2022). This lack of theoreti-
cal understanding hinders the development of more effective model selection strategies.

This Work: Cascade Routing To address these limitations, we first derive optimal routing and
cascading strategies by framing them as linear optimization problems aimed at maximizing output
quality while remaining within a given cost budget. For routing, this optimal strategy is close to
the one obtained by prior work, while for cascading we derive a new strategy that is provably better
than existing approaches. Building on this theoretical analysis, we propose a new paradigm called
cascade routing, which generalizes both routing and cascading. As illustrated in Fig. 1(c), cascade
routing initially routes a query to any available model but keeps rerouting to different models until
a model produces an answer of sufficient quality. We prove the optimality of our cascade routing
strategy and show that it offers significantly more flexibility in processing a query.

Results We evaluate cascade routing on a wide range of tasks, demonstrating that it significantly
outperforms both routing and cascading. Notably, cascade routing consistently improves perfor-
mance by 1% to 4% across all settings on the popular RouterBench benchmark (Hu et al., 2024),
which represents a relative improvement over a naive baseline by an additional 13% to 80%. Fur-
thermore, we show that our new cascading strategy outperforms existing cascading strategies by up
to 2%, validating that our theoretical analysis leads to practical improvements over prior work.

Contributions Our main contributions are as follows:
• We derive optimal strategies for routing and cascading and obtain a new cascading strategy

that is provably better than prior approaches (§2, §3).
• We introduce cascade routing, a new paradigm that combines the strengths of routing and

cascading, and prove its optimality (§4).
• We conduct a thorough evaluation, demonstrating that cascade routing consistently outper-

forms the baselines (§5).

2 ROUTING AS LINEAR OPTIMIZATION

We derive an optimal routing strategy to select the best model for a given query, providing detailed
proofs for all statements in this section in App. A. We will use the analysis presented here to develop
the optimal cascading and cascade routing strategies in §3 and §4, respectively.

Routing Strategy In routing, our goal is to develop a strategy that selects the best language model
for a given input query. Formally, let X represent the distribution over all possible queries, and
suppose we have k language models m1, . . . ,mk available for routing. Further, let ∆k denote the
set of all probability distributions over k variables. A routing strategy can then be defined as follows:
Definition 1 (Routing). A routing strategy s is a function s : X → ∆k that maps a query x ∈ X to
a probability distribution over models. si(x) denotes the probability that mi is selected for query x.
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A routing strategy selects a model by sampling from the distribution s(x) for each query x. In prior
work, routing strategies were restricted to be deterministic, i.e., si(x) ∈ {0, 1} (Chen et al., 2022;
Hu et al., 2024). In contrast, we propose using a more general probabilistic routing strategy that
enables a better solution and an easier theoretical analysis.

Quality and Cost In routing, we seek to maximize the expected output quality of the selected
model while adhering to a given cost budget B. Quality could measure model accuracy, user prefer-
ence, or any other performance indicator. We define the quality function qi(x) as the output quality
of model mi on query x, and the cost function ci(x) as the cost of running model mi on x.

However, since these functions are unknown in practice, we need estimators q̂i(x) and ĉi(x) that
approximate the output quality and cost of querying model mi on input x. Estimators for qi(x) can
be created using small classifiers trained to predict model accuracy, as done in prior work (Hu et al.,
2024; Shnitzer et al., 2023). ĉi(x) can be estimated by tokenizing the input query and determining
the average output length of the model on a query. Then, we can use API-specific costs per token to
estimate the cost of running a model on a query.

Optimal Routing Using these estimators, we can formally define the optimal routing strategy:
Definition 2 (Optimal Routing). The optimal routing strategy sOPT for a given cost budget B is the
solution to the optimization problem

max
s

Ex∈X ,i∈{1,...,k}(si(x)q̂i(x))

s.t. Ex∈X ,i∈{1,...,k}(si(x)ĉi(x)) ⩽ B.
(1)

We now explain how to solve this linear optimization problem. Intuitively, the optimal routing
strategy optimizes the cost-quality tradeoff τi(x, λ) = q̂i(x) − λĉi(x), where λ ∈ R+ controls the
balance between quality and cost based on the budget B. For each query x, the model that achieves
the highest value of τi(x, λ) is selected.

More formally, for a given λ ∈ R+, we define two deterministic routing strategies: sλMIN(x), which
selects the cheapest model achieving the optimal cost-quality tradeoff, and sλMAX(x), which selects
the most expensive model achieving this tradeoff. The optimal routing strategy sOPT is then deter-
mined by the following theorem:
Theorem 1 (Optimal Routing Strategy). For a given cost budget B, there exists a λ ∈ R+ and a
γ ∈ [0, 1] such that the optimal routing strategy sOPT equals γsλMIN + (1 − γ)sλMAX. Furthermore,
all routing strategies that have an expected cost that is exactly equal to B and can be written as a
convex combination of sλ

′

MIN and sλ
′

MAX for some λ′ ∈ R+ achieve the same optimal quality.

Since γ is often not equal to 0 or 1, the optimal routing strategy is not deterministic and instead
selects a model probabilistically. Therefore, prior work that only considered deterministic routing
strategies (Chen et al., 2022; Hu et al., 2024) cannot express the routing strategy from Theorem 1
and fall back to the near-optimal sλMIN instead.

Due to the second part of Theorem 1, we only need to find a set of hyperparameters λ and γ that
achieve the desired cost budget. To determine these parameters, we estimate the cost of each strategy
using a validation dataset D that is representative of the query distribution X . Since the cost of sλMIN

increases as λ decreases (see App. A), we use a binary search to find the appropriate value of λ. γ
is determined by interpolating between the costs of sλMIN and sλMAX to match the budget B.

3 CASCADING AS SEQUENTIAL ROUTING

In this section, we extend our analysis of the optimal routing strategy to the cascade setting, provid-
ing detailed proofs for all the statements in this section in App. B. The solution derived here will be
used to develop the optimal strategy for cascade routing in §4.

Cascading In cascading, an input query is passed through a chain of increasingly larger and more
expensive models. The cascade stops once a model’s output meets a certain condition, and that
output is returned. We will reinterpret cascading as a sequence of routing problems. To do so, we
first define the models over which we need to route, which we refer to as supermodels.
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Definition 3 (Supermodel). A supermodel M is a sequence of models (mi1 , . . . ,mij ) such that
running a query through M is equivalent to running it through each of the models in the sequence.
The set of all supermodels is denoted as M. By Mi:j we denote the supermodel (mi, . . . ,mj).

In cascading, we only need to consider the supermodels M1:1, . . . ,M1:k. The full expressivity of
Definition 3 will only be necessary for cascade routing in §4.

A cascade occurs as a sequence of decision steps, where at each step, it decides whether to compute
the next model in the sequence or terminate. By step j, the first j−1 models have been computed. At
this point, the cascade will run one of the supermodels M1:j−1, . . . ,M1:k. If any of the supermodels
M1:j , . . . ,M1:k is optimal, the cascade proceeds to run the next model. In contrast, if the supermodel
M1:j−1 is optimal, the cascade halts and returns the output of the last computed model.

Thus, a cascade can be characterized as a sequence of routing strategies that route between the su-
permodels M1:j−1, . . . ,M1:k. Even though the action associated with supermodels M1:j , . . . ,M1:k

– continuing the cascade – is the same, it is essential to use all of them in the routing strategy. For
instance, if mj performs poorly but mj+1 performs exceptionally well on a given query, the cascade
should continue. Limiting consideration to the supermodels M1:j−1 and M1:j alone would therefore
result in suboptimal decisions. Formally, we define a cascading strategy as follows:

Definition 4 (Cascading Strategy). A cascading strategy s is a sequence of routing strategy
(s(1), . . . , s(k)) such that s(j) routes between the supermodels M1:j−1, . . . ,M1:k.

Quality and Cost To apply Theorem 1 to find the optimal cascading strategy, we first need to
derive the quality and cost estimates of the supermodels. Both of these can depend on the answers
of previously computed models. Therefore, let q̂(j)(x) and ĉ(j)(x) represent the updated estimates
in step j after computing the first j − 1 models.

We derive the quality and cost estimates associated with supermodel M1:i, denoted as q̂(j)1:i (x) and
ĉ
(j)
1:i (x), based on the quality and cost estimates of the individual models. Trivially, the cost estimate

of the supermodel is equal to the sum of the individual model costs. The quality of a supermodel,
however, is governed by the best model within it. Thus, it equals E[max(q̂1(x), . . . , q̂i(x))], where
the expected value reflects the uncertainty in each quality estimate. This expected value is crucial
since ignoring uncertainty would falsely assume that the quality of a supermodel is always equal
to the best model within it, even though the best model may return a poor answer, while another
returns a good one. To estimate the uncertainties associated with the quality estimates, we compute
the variance of q̂(j)i (x)− q̂

(k)
i (x) over a validation dataset D.

While the form of these estimates works well in practice and is intuitively clear, we note that alter-
native approaches are possible. However, the optimality proof of our cascading strategy does not
depend on the specific form of the estimates, and can therefore be adapted to other formulations.

Optimal Cascading We now leverage the optimal routing strategy from Theorem 1 to determine
the optimal cascading strategy. As before, optimality is defined in terms of maximizing the expected
output quality while adhering to a given cost budget. However, the budget is now only enforced over
the entire cascade, and not over the individual steps. This leads to a slightly different formulation of
the optimal cascading strategy:

Theorem 2 (Optimal Cascading Strategy). For a given cost budget B, there exist λ1, . . . , λk ∈ R+

and a γ ∈ [0, 1] such that the optimal cascading strategy sOPT = (s
(1)
OPT, . . . , s

(k)
OPT) is given by the

equalities s(j)OPT = γs
(j),λj
MIN + (1− γ)s

(j),λj

MAX where s
(j),λj
MIN and s

(j),λj

MAX are defined as in Theorem 1.

The main difference between Theorem 2 and Theorem 1 is that not all combinations of hyperparam-
eters λ1, . . . , λk ∈ R+ and γ ∈ [0, 1] that achieve cost budget B are optimal. Instead, finding the
optimal hyperparameters requires solving another optimization problem. Specifically, let us denote
by QD : (R+)k+1 → R, resp. CD : (R+)k+1 → R, the average quality, resp. cost, of a cascading
strategy on a training dataset D for a given set of hyperparameters λ1, . . . , λk ∈ R+ and γ ∈ [0, 1].
Then, the optimal hyperparameters are the solution to the optimization problem

max
λ1,...,λk,γ

QD(λ1, . . . , λk, γ)

s.t. CD(λ1, . . . , λk, γ) ⩽ B.
(2)
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We could not find an analytical solution to this problem. Therefore, we assume λ1 = · · · = λk = λ
and apply the binary search technique from §2 to determine the optimal λ. This value is then used
as initialization for a hyperparameter optimization tool, Hyperopt2, to find the optimal values.

Prior Work Prior work on cascading has often relied on strong assumptions to simplify the strat-
egy. The most common technique uses a threshold to decide whether to continue the cascade on
an input x (Chen et al., 2023; Gupta et al., 2024). Specifically, in step j, the cascade continues
if q̂(j)j−1(x) < τj for some threshold τj ∈ R. Below, we outline the conditions under which this
simplified approach is optimal.
Corollary 1 (Optimal Threshold Strategy). Under minor technical assumptions, the thresholding
strategy is equivalent to our cascading strategy if and only if the following conditions hold: the cost
estimate ĉ

(j)
i (x) is independent of x for all i, j ∈ {1, . . . , k}, q̂(j)i (x) is independent of x for all

i ⩾ j, and the quality estimate q̂
(j)
1:i (x) is equal to q̂

(j)
i (x).

4 CASCADE ROUTING AS CASCADE GENERALIZATION

Both routing and cascading are powerful techniques that enable the efficient use of multiple models.
However, their use is often orthogonal: while routing is useful when we have several specialized
models that are experts at specific tasks, cascading is more beneficial when input queries vary in
difficulty. In this section, we therefore present cascade routing, which is a generalization of both
techniques. Proofs for all theorems and lemmas in this section are included in App. C.

Cascade Routing Cascade routing closely resembles cascading, but with one crucial difference:
the routing strategy at step j routes between all possible supermodels, not just the supermodels
M1:j−1, . . . ,M1:k. Therefore, both Definition 4 and Theorem 2 can be extended to this setting.
Definition 5 (Cascade Routing). A cascade routing strategy s is a sequence of routing strategies
(s(1), . . . , s(k)) such that, for a given sample x ∈ X , s(j) routes between all supermodels in M that
start with the j − 1 models that have already been computed for this query.
Theorem 3 (Optimal Cascade Routing). For a given cost budget B, there exist λ1, . . . , λk ∈ R+

and a γ ∈ R+ such that the optimal cascade routing strategy sOPT = (s
(1)
OPT, . . . , s

(k)
OPT) is given by

s
(j)
OPT = γs

(j),λj
MIN + (1− γ)s

(j),λj

MAX where s
(j),λj
MIN and s

(j),λj

MAX are defined as in Theorem 1.

While cascade routing extends cascading and can therefore use the same hyperparameter optimiza-
tion scheme, it also introduces additional challenges which we address in the following paragraphs.

Model Order In cascading, the model order is predetermined, and the routing strategy only de-
cides whether to proceed with the next model in the sequence. In contrast, cascade routing must
dynamically determine the order in which models are computed. Despite this, both the estimated
quality q̂

(j)
M (x) and cost ĉ(j)M (x) of a supermodel M are order-independent. Therefore, supermodels

that contain the same models in a different order will have the same associated cost and quality. To
mitigate this, we sort the models within the selected supermodel by cost and compute the cheap-
est one first. This approach aligns with cascading, where more expensive models are only used if
cheaper models do not suffice.

Number of Supermodels In cascading, the quality and cost must be computed for a maximum
of k supermodels at each step. However, in cascade routing, the number of supermodels grows
exponentially, leading to the need to evaluate up to 2k supermodels. This increase can become
prohibitively costly, particularly since the model selection process must remain computationally
negligible with respect to model computation. To mitigate this, we leverage so-called negative
marginal gains. Specifically, if a model m in a supermodel M negatively impacts the quality-cost
tradeoff, all supermodels containing all models in M can be pruned from the search space. Since
this negative contribution is quite common, this allows us to prune the search space significantly.
More formally, this pruning operation relies on the following lemma:
Lemma 1 (Negative Marginal Gain). Let M ∈ M and m be any model in M . Let the marginal gain
of m w.r.t. M be defined as τM (x, λ) − τM\{m}(x, λ). Then, if the marginal gain of m w.r.t. M is
strictly negative for a given query, the optimal cascade routing strategy will never run a supermodel
M ′ ∈ M that contains all models in M .

2https://github.com/hyperopt/hyperopt
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Three Models Five Models Eleven Models

Low Med High Low Med High Low Med High

Linear Interp. 69.62 69.62 69.62 69.22 69.22 69.22 70.51 70.51 70.51
Routing 79.73 74.97 71.81 81.24 74.43 71.33 83.25 74.63 72.67
Cascade (Baseline) 80.86 74.64 72.48 82.33 73.03 69.53 84.48 73.64 69.79

Cascade (Ours) 81.13 76.10 72.67 83.05 75.15 70.18 84.45 75.10 70.26
Cascade Routing 82.34 76.56 73.23 84.34 76.32 72.74 87.28 77.62 74.40

Table 1: AUC scores in % for different strategies on RouterBench across model and noise levels.

5 EVALUATION

We evaluate the performance of cascade routing and demonstrate that it significantly outperforms
all other strategies. Additionally, we show that our new cascading approach surpasses the threshold-
based cascading method (see Corollary 1). For this purpose, we first conduct experiments on Router-
Bench (Hu et al., 2024), a benchmark specifically designed to evaluate routing and cascading (§5.1).
Next, we test cascade routing on two additional benchmarks to evaluate its performance in more
realistic scenarios (§5.2). Lastly, we perform an ablation study to examine the impact of various
design choices in cascade routing on performance and runtime (§5.3).

5.1 ROUTERBENCH

RouterBench (Hu et al., 2024) is a benchmark developed to evaluate the efficacy of different
model selection strategies. It includes questions from seven diverse benchmarks, such as MMLU
(Hendrycks et al., 2021), GSM8k (Cobbe et al., 2021), and MBPP (Austin et al., 2021), alongside
answers from eleven different models ranging from GPT-4 (OpenAI, 2023) to Mistral-7B (Jiang
et al., 2023). All models are evaluated under both zero-shot and five-shot settings.

Quality and Cost Estimates Similar to (Hu et al., 2024), we estimate quality and cost by adding
zero-centered Gaussian noise to their true values. Both cost and quality estimates are modeled as
linear functions fitted on these noisy signals. We define the variance of the noisy signal as σ2

before
before model computation and σ2

after after. By ensuring that σafter < σbefore, this setup reflects the
increased accuracy in cost and quality estimates after model computation, which is an essential
requirement for cascading to perform well. To explore different uncertainty levels, we vary the
variances to simulate low-, medium-, and high-noise scenarios, with exact values for the variances
detailed in App. D.

Models We evaluate cascade routing on RouterBench using three, five, and all eleven models
available for model selection, ensuring a comprehensive evaluation across a range of scenarios. The
exact models for each scenario are provided in App. D.

0.000 0.001 0.002 0.003
Cost

0.5

0.6

0.7

0.8

Quality

Models

Linear Interpolation

Routing

Cascade (Baseline)

Cascade (Ours)

Cascade Routing

Figure 2: Quality-cost tradeoff on Router-
Bench for five models and medium-noise.

Strategies We compare cascade routing against sev-
eral baseline strategies, including the routing strat-
egy described in §2, the threshold-based cascading ap-
proach from prior work (Corollary 1), and the optimal
cascading strategy (Theorem 2). Additionally, as in (Hu
et al., 2024), we include a baseline that linearly interpo-
lates cost and quality on the Pareto frontier of the mod-
els. Fig. 2 illustrates the performance of these strategies
with five models in a medium-noise setting.

Evaluation Metric For each method, we evaluate
performance using cost budgets ranging from the
cheapest to the most expensive model, as shown in
Fig. 2. This produces a quality-cost curve for each strat-
egy. Following (Hu et al., 2024), we use the Area Under
the Curve (AUC) as the performance metric.
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Classification Open-Form

LLAMA GEMMA MISTRAL LLAMA GEMMA MISTRAL

Linear Interp. 74.28 61.68 63.39 79.11 54.10 53.86
Routing 74.92 64.44 64.89 79.32 58.40 58.71
Cascade (Baseline) 74.79 54.31 61.22 79.23 56.18 48.29

Cascade (Ours) 75.42 62.82 63.36 79.68 57.67 55.51
Cascade Routing 75.52 64.70 64.97 79.84 59.62 58.69

Table 2: AUC scores on a classification and open-form reasoning benchmark.

Results Table 1 presents the results for the zero-shot setting, with the five-shot results detailed
in App. E. Cascade routing consistently outperforms all baseline strategies with performance gains
between 1% to 4%, which measured relatively to the naive linear interpolation baseline means that
cascade routing improves by 13% to 80% over the baselines. This performance gap widens as
more models are available and narrows under higher noise levels, indicating that cascade routing is
most effective with large model sets and accurate cost and quality estimates. Furthermore, our new
cascading strategy outperforms the threshold-based cascade by up to 2%, reinforcing the practical
relevance of our theoretical results.

5.2 OTHER BENCHMARKS

RouterBench does not provide log probabilities associated with model answers, which constrains
the construction of more realistic quality estimates using features like perplexity. To address this,
we develop two benchmarks that better simulate practical use cases for cascade routing.

Datasets We perform experiments on classification and open-form reasoning tasks. The classifi-
cation benchmarks include ARC-Challenge (Clark et al., 2018), MMLU-Pro (Wang et al., 2024),
and MixEval (Ni et al., 2024). For open-form reasoning tasks, we use MMLU-Pro and GSM8k
(Cobbe et al., 2021). In classification, models select a single option representing their answer, with
no intermediate reasoning process. In contrast, open-form reasoning allows models to generate their
answers after reasoning. We split each benchmark into a training set for training quality and cost
estimates and a test set for evaluation. We evaluate nine models, three each from the LLAMA-3.1
(AI@Meta, 2024), GEMMA (Gemma Team et al., 2024), and MISTRAL (Jiang et al., 2023) model
families. The exact models are specified in App. D.

Quality and Cost Estimates We estimate model quality by fitting a linear model based on features
that reflect model uncertainty, such as perplexity (Gupta et al., 2024). Further features include the
originating benchmark of each sample and whether earlier models in the cascade agree on their
prediction. Full details on the features are provided in App. D. The linear model is trained using
these features on the benchmark’s training split.

For cost estimation, we first calculate the number of tokens in both the query and the model’s re-
sponse. We then use API-based prices per token for each model to estimate the cost.3 In classi-
fication, where responses consist of a single token, the cost can be determined before running the
model. In open-form reasoning tasks, where response lengths vary, we estimate this length based on
responses from previous models in the cascade if the model has not yet been computed. If no model
response is available, we estimate the response length using the average from the training data.

Results Table 2 presents the results for the LLAMA, GEMMA, and MISTRAL model families across
both benchmarks. Cascade routing consistently performs on par with or outperforms all baselines,
though with narrower margins reaching up to 1.2%. This reduced gain can be attributed to two main
factors. First, the quality and cost estimates are very noisy, leading to performance gains over the
naive baseline similar to those observed in high-noise scenarios on RouterBench. Second, the cas-
cading strategy sometimes underperforms compared to the linear interpolation baseline, indicating
that the post-computation features used for quality estimation, such as perplexity, do not provide
sufficient advantage to warrant running models in a cascading fashion.

3We used the Together API for all our experiments.
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Low-Noise Medium-Noise High-Noise

AUC (%) Time (ms) AUC (%) Time (ms) AUC (%) Time (ms)

Cascade Routing 87.26 12.05 77.60 12.75 74.41 9.41
SLOW 87.29 80.04 77.62 87.23 74.41 67.45
GREEDY 85.93 1.64 77.16 1.59 74.35 1.04
NO-EXPECT 85.98 3.37 77.11 3.04 74.35 1.77

Table 3: AUC scores and average runtime for various variations of cascade routing on RouterBench
when using all eleven models.

As expected, cascade routing is most effective when both routing and cascading outperform the
linear interpolation baseline. When cascading offers no or very small performance improvement,
cascade routing typically reduces to pure routing. Larger performance gains are observed only
when cascading adds value beyond routing. Our results suggest that more sophisticated methods
are needed to enhance quality estimates and improve the overall effectiveness of all model selection
strategies in practical applications.

5.3 ABLATION STUDY

We conduct an ablation study to examine the impact of various design choices in cascade routing
on performance and runtime. Runtime is a critical factor because the overhead introduced by the
strategy must be negligible compared to the time required for model computation. If the strategy
adds significant overhead, its performance gains may be offset by the increased runtime.

To investigate this, we repeat the experiment from §5.1 when using all eleven models, testing dif-
ferent variations of cascade routing. We evaluate a slower variation that omits Lemma 1, thereby
requiring more supermodels to be evaluated (SLOW), a greedy variation that only considers super-
models of length j + 1 at step j (GREEDY), and a version that does not compute the expected value
when evaluating supermodel quality, using the quality of the best model instead (NO-EXPECT).

Results Table 3 presents the results of the ablation study. As expected, the SLOW variation is al-
most an order of magnitude slower while achieving similar performance. In contrast, both GREEDY
and NO-EXPECT are faster but perform worse in the low- and medium-noise scenarios by 0.5% to
1.3%. Interestingly, there seems to be a much smaller performance gap in the high-noise scenario.
This is due to the very low variance in the quality estimates, since the linear model used for quality
estimation predicts an almost constant value for each query in this scenario, making the expected
value computation less important.

Furthermore, the GREEDY and NO-EXPECT variants perform very similarly, while GREEDY is about
twice as fast as NO-EXPECT. This suggests that one should almost always use the normal variant of
cascade routing, and only consider the GREEDY variant if runtime is a critical concern. Neither the
SLOW nor the NO-EXPECT variant is recommended, as they either perform worse or are significantly
slower than the normal variant.

6 RELATED WORK

We discuss related work in routing and cascading.

Routing Routing is a widely studied problem in machine learning, particularly in the task of di-
recting input queries to specialized expert models. One of the most common applications of routing
is model selection for natural language input queries with a known correct answer (Ding et al., 2024;
Hari and Thomson, 2023; Liu et al., 2024; Jang et al., 2023; Nguyen et al., 2024; Sakota et al., 2024;
Shnitzer et al., 2023). All these works train a machine learning model to predict whether a given
model will correctly answer a query. Though the setups in these works are largely similar, they vary
in certain specifics, such as the type of input queries or the features used for quality estimation.

Routing is also applied in other areas. For instance, Lu et al. (2024); Ong et al. (2024) use preference
data to train a quality estimator, which facilitates routing in scenarios involving real-world user
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queries where clear ground-truth answers may not exist. Additionally, Chen et al. (2022) employ
routing for API selection in multi-label classification tasks, focusing on directing queries to the
appropriate API based on task requirements. Similarly, Zhang et al. (2024) apply routing in software
agent environments, directing user issues to the agent most suited to handle them.

Cascading Cascading techniques are primarily used to reduce inference costs by employing
smaller models initially and only cascading to larger models if the smaller ones fail to provide a
sufficiently accurate answer. Most often, cascading decisions are based on the smaller model’s con-
fidence in its own predictions (Chen et al., 2023; Ramírez et al., 2024; Varshney and Baral, 2022).
However, alternative techniques also exist. For example, Madaan et al. (2023) propose running
models multiple times and measuring the variance in their responses to decide whether to cascade
to a larger model.

For classification tasks, early stopping is another cascading strategy (Li et al., 2021; Schuster et al.,
2022). In this approach, the cascade halts when a model’s intermediate layers generate representa-
tions that are sufficiently informative to predict the correct class. This reduces computational costs
by avoiding the need to process every query through the entire model.

There has also been specific research on quality estimation within cascading frameworks. Gupta
et al. (2024) examine various measures of uncertainty in language model answers, evaluating their
impact on cascading performance. Meanwhile, Jitkrittum et al. (2023) explore failure cases in cas-
cading mechanisms that rely on uncertainty, introducing alternative quality measures that enhance
cascade efficiency. Lastly, Xue et al. (2023) apply cascading to majority voting for a single model
to obtain a method called dynamic voting: the cascade stops depending on the aggregated answers
of all previous model computations. This allows the system to process simpler queries using fewer
votes while allocating more computational resources for harder queries.

7 LIMITATIONS

While cascade routing provides a promising approach to improve model selection strategies, it re-
quires accurate cost and quality estimates to be effective. However, in §5.2 we found that quality
estimates based on current state-of-the-art methods contain significant noise. This limits the per-
formance improvement of cascade routing over routing, as the quality estimates are not accurate
enough to guide the selection of the best model. As shown in §5.1, lower noise in the quality and
cost estimates lead to much better performance of all model selection strategies, indicating that fur-
ther work that aims to reduce the noise in the quality and cost estimates is needed to fully leverage
the potential of cascade routing.

Another limitation is the necessity of a training dataset to optimize the hyperparameters associated
with cascade routing. While both routing and cascading suffer from the same disadvantage, the
training data required for routing is much more minimal, since it only needs to estimate two hyper-
parameters. In contrast, cascade routing requires estimating multiple hyperparameters on a more
complex optimization surface.

8 CONCLUSION

In this work, we introduced a novel framework for routing and cascading that enabled us to propose
theoretically optimal strategies for both paradigms. Furthermore, we used this theoretical analysis to
propose a new paradigm for model selection, cascade routing, which combines the benefits of both
routing and cascading. We showed that cascade routing can significantly outperform its baselines,
especially with good quality and cost estimates. Furthermore, we found that our new cascading
strategy significantly outperforms existing approaches to cascading, showing our theoretical anal-
ysis also leads to practical gains. Our work provides a theoretical foundation for model selection
strategies and opens up new avenues for future research in this area, especially in the direction of
obtaining more accurate quality and cost estimates.
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A ROUTING

To prove Theorem 1, we first rewrite the routing optimization problem in Eq. (1) as a linear program
over functions s : X → Rk instead of functions s : X → ∆k. This makes the optimization problem
more tractable. Specifically, Eq. (1) can be rewritten as follows:

max
r

Ex∼X

[
k∑

i=1

si(x)q̂i(x)

]

s.t. Ex∼X

[
k∑

i=1

si(x)ĉi(x)

]
⩽ B

∀i ∈ {1, ..., k} : ∀x ∈ X : si(x) ≥ 0 ∧
k∑

j=1

sj(x) = 1

(3)

We then rewrite Theorem 1 to allow for a more exact formulation of the optimal routing strategy:
Theorem 4. (Optimal Routing Strategy) Suppose there exists an admissible solution to the set of
constraints in Eq. (3). For any λ ∈ R+, let Sλ be the set of routing strategies s that satisfy the
following constraints:

∀x ∈ X ,∀i ∈ {1, ..., k} : q̂i(x)− λĉi(x) < max
j

q̂j(x)− λĉj(x) ⇒ si(x) = 0 (4)

If there exists a strategy in S0 that has a cost less than or equal to B, then this strategy achieves the
optimal quality. Otherwise, there exists a λ∗ ∈ R+ such that Sλ contains a routing strategy that has
exactly cost B and all routing strategies in

⋃
λ∈R+ Sλ that have cost B achieve the same optimal

quality.

There is one extra condition mentioned here that we omitted in the main text. The requirement of
having at least an admissible solution to the constraints in Eq. (3) is necessary to ensure that the set
of possible solutions to Eq. (3) is not empty. For instance, the cost budget B can be too low such
that even running the cheapest model for each query is too expensive.

The formulation of sOPT as a convex combination of sλMIN and sλMAX is a direct consequence of The-
orem 4. Indeed, let λ∗ be as defined in Theorem 4. Then sλ

∗

MIN, resp. sλ
∗

MAX, must have the lowest,
resp. highest, cost among all routing strategies in Sλ∗ . Since there is a routing strategy in Sλ∗ that
has cost B, there must exist a convex combination of sλ

∗

MIN and sλ
∗

MAX that also has cost B and thus
achieves the optimal quality.

We first prove several lemmas before proving the theorem.
Lemma 2. Sλ is non-empty and convex for all λ ∈ R+.

Proof. Non-emptiness follows from the fact that the routing strategy that assigns all probability
mass for a sample x to a model i for which q̂i(x) − λĉi(x) is maximal, is in Sλ. For convexity,
let s(1), s(2) ∈ Sλ be arbitrary. Let sγ be the convex combination of s(1) and s(2) with weight
γ ∈ [0, 1]. Let x ∈ X be arbitrary. Then, sγi (x) > 0 if and only if s(1)i (x) > 0 or s(2)i (x) > 0. Since
s(1), s(2) ∈ Sλ, we have q̂i(x) − λĉi(x) ⩾ maxj q̂j(x) − λĉj(x) for all i such that s(1)i (x) > 0 or
s
(2)
i (x) > 0. This implies that q̂i(x)−λĉi(x) ⩾ maxj q̂j(x)−λĉj(x) for all i such that sγi (x) > 0.

Thus, sγ ∈ Sλ.

Lemma 3. Let λ1 < λ2 and s(1), resp. s(2) be arbitrary routing strategies in Sλ1 , resp. Sλ2 . Then,
the cost of s(1) is greater or equal to the cost of s(2), i.e.,

Ex∼X

[
k∑

i=1

s
(1)
i (x)ĉi(x)

]
⩾ Ex∼X

[
k∑

i=1

s
(2)
i (x)ĉi(x)

]

Proof. We show that for any x ∈ X , the cost of s(1) is greater or equal to the cost of s(2). Let x ∈ X
be arbitrary. Suppose s(1) is strictly cheaper than s(2). Then, there must exist a model pair i, j such
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that ĉi(x) < ĉj(x), s
(1)
i (x) > s

(2)
i (x) ⩾ 0, and s

(2)
j (x) > s

(1)
j (x) ⩾ 0. However, s(1)i (x) > 0

implies

q̂i(x)− λ1ĉi(x) ⩾ q̂j(x)− λ1ĉj(x).

Furthermore, since λ1 − λ2 < 0, we have

ĉi(x)(λ1 − λ2) > ĉj(x)(λ1 − λ2).

Adding these two inequalities gives

q̂i(x)− λ2ĉi(x) > q̂j(x)− λ2ĉj(x),

which is a contradiction with s
(2)
j (x) > 0. Thus, the cost of s(1) is greater or equal to the cost of

s(2).

Lemma 4. Let Λ be the set of points λ ∈ R such that there exist an x ∈ X and i ̸= j such that
q̂i(x) − λĉi(x) = q̂j(x) − λĉj(x). Let λ1 < λ2 be such that [λ1, λ2] ∩ Λ = ∅. Then, Sλ1

= Sλ2
.

Furthermore, if [λ1, λ2] ∩ Λ = {λ∗}, then Sλ ⊂ Sλ∗ for all λ ∈ [λ1, λ2].

Proof. We first show the first statement by showing that Sλ1
\ Sλ2

= ∅. Sλ2
\ Sλ1

= ∅ follows
analogously. Suppose there exists a routing strategy s ∈ Sλ1

\ Sλ2
. Since s /∈ Sλ2

, there must exist
an x ∈ X and model i such that si(x) > 0 and q̂i(x)− λ2ĉi(x) < maxj q̂j(x)− λ2ĉj(x). Let j be
an index such that q̂i(x)− λ2ĉi(x) < q̂j(x)− λ2ĉj(x). Since s ∈ Sλ1 , we have q̂i(x)− λ1ĉi(x) ⩾
q̂j(x)−λ1ĉj(x). By continuity, there exists a λ ∈ [λ1, λ2] such that q̂i(x)−λĉi(x) = q̂j(x)−λĉj(x),
which is a contradiction with [λ1, λ2] ∩ Λ = ∅.

Now suppose [λ1, λ2] ∩ Λ = {λ∗}. Let λ ∈ [λ1, λ
∗) be arbitrary and let s ∈ Sλ be arbitrary. We

show that s ∈ Sλ∗ . For λ ∈ (λ∗, λ2], the proof is completely analogous. By contradiction, suppose
there exists an x ∈ X and model i such that si(x) > 0 and q̂i(x)−λ∗ĉi(x) < maxj q̂j(x)−λ∗ĉj(x).
This means there exists a model j such that q̂i(x)− λ∗ĉi(x) < q̂j(x)− λ∗ĉj(x). Since s ∈ Sλ, we
know that q̂i(x)− λĉi(x) ⩾ q̂j(x)− λĉj(x). This implies that there must exist a λ′ ∈ [λ1, λ

∗) such
that q̂i(x) − λ′ĉi(x) = q̂j(x) − λ′ĉj(x). However, this is a contradiction with [λ1, λ

∗) ∩ Λ = ∅.
Thus, s ∈ Sλ∗ .

In what follows, we will assume that |Λ| < ∞. This is a very minor assumption. For instance,
if q̂ and ĉ only take on a finite amount of values, this is trivially satisfied. Since estimators are
implemented on a computer, they will always have a finite precision, meaning that q̂ and ĉ will only
take on a finite amount of values.
Lemma 5. Let λ1 < λ2 and s(1), resp. s(2) be arbitrary routing strategies in Sλ1 , resp. Sλ2 , with
costs resp. B1 and B2. Then, for any B ∈ [B1, B2] there exists a λ ∈ [λ1, λ2] such that Sλ contains
a routing strategy that has exactly cost B.

Proof. Let B ∈ [B1, B2] be arbitrary. If B = B1 or B = B2, the statement is trivially true.
Therefore, suppose B ∈ (B1, B2). Let Λ be as defined in Lemma 4. By Lemma 3, there exists
a λ∗ ∈ [λ1, λ2] such that all strategies in Sλ for λ < λ∗, resp. λ > λ∗, have cost at least, resp.
at most, B. If λ∗ /∈ Λ, then the first part of Lemma 4, together with |Λ| < ∞, implies that
Sλ∗ = Sλ∗−ϵ = Sλ∗+ϵ for some ϵ > 0. All the strategies in Sλ∗ must therefore have cost both
at least and at most B, meaning they should equal B. We can therefore assume that λ∗ ∈ Λ. By
Lemma 4 and |Λ| < ∞, there is en ϵ > 0 such that Sλ∗−ϵ ⊂ Sλ∗ and Sλ∗+ϵ ⊂ Sλ∗ . Let s− ∈ Sλ∗−ϵ

and s+ ∈ Sλ∗+ϵ be arbitrary. Let sγ be the convex combination of s− and s+ with weight γ ∈ [0, 1].
Since s−, s+ ∈ Sλ∗ , we have sγ ∈ Sλ∗ by Lemma 2. Denote by B−, resp. B+, the cost of s−, resp
s+. Furthermore, the cost of sγ is γB−+(1−γ)B+. Since B ∈ [B−, B+], there exists a γ ∈ [0, 1]
such that sγ has cost exactly B.

We can now prove the theorem.

Proof. If S0 contains a solution that has cost less than or equal to B, then this solution trivially
achieves the optimal quality. Thus, for the rest of the proof we can assume that the cost of every so-
lution in S0 is greater than B. For λ → ∞, Sλ contains the solution that assigns all probability mass
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to the model with the lowest cost. Since there is an admissible solution, this solution necessarily has
cost less than B. Therefore, by Lemma 5, there exists a λ∗ ∈ R such that Sλ∗ contains a routing
strategy that has exactly cost B.

Let s be an arbitrary routing strategy in
⋃

λ∈R+ Sλ that has cost B. Specifically, let s ∈ Sλ. Let s′
be any other routing strategy that is an admissible solution to the optimization problem. Then:

Ex∈X

[
k∑

i=1

s′i(x)q̂i(x)

]
= Ex∈X

[
k∑

i=1

s′i(x)q̂i(x)− λB + λB

]

⩽ Ex∈X

[
k∑

i=1

s′i(x) (q̂i(x)− λĉi(x)) + λB

]

⩽ Ex∈X

[
k∑

i=1

si(x) (q̂i(x)− λĉi(x)) + λB

]

= Ex∈X

[
k∑

i=1

si(x)q̂i(x)

]

Thus, s achieves the optimal quality.

B CASCADING

To prove Theorem 2, we heavily rely on the results derived in App. A. As explained in §3, cascading
can be reinterpreted as a sequence of routing problems. However, to prove optimality, we need to be
slightly more careful with the exact formulation of the problem.

At step j, the cascading strategy needs to decide whether to stop the cascade or to continue to
the next model. It should continue to the next model if any of the supermodels M1:j , . . . ,M1:k is
better to run than M1:j−1 for some measure of ’better’. Therefore, the cascading strategy is indeed
performing a routing operation between the supermodels M1:j−1, . . . ,M1:k.

However, the optimization problem does slightly change compared to the routing problem. First of
all, for each query x ∈ X , there is a possibility that the cascade is stopped before step j. Therefore,
the cascade should not aim to optimize the quality at step j for such a query, since it would not have
any effect on the overall quality of the cascade. Furthermore, the budget B is only enforced over the
entire cascade, and not over the individual steps. Since the problem changes through steps, it is not
required that the cost of the router at step j is exactly equal to B.

Therefore, we reformulate cascading using an inner and outer optimization problem. The inner
optimization problem aims to find the optimal routing strategy at step j for a given budget Bj . The
outer optimization problem aims to find the optimal budget Bj for each step j such that the overall
quality of the cascade is maximized under the constraint that the total cost of the cascade is at most
B.

To formulate this more exactly, let Pj(M) be the probability that the cascade computed supermodel
M by step j. Then, the inner optimization problem at step j can be formulated as:
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max
r(j)

Ex∼X

Pj(M1:j−1)

k∑
i=j−1

r1:i(x)q̂
(j)
1:i (x)


s.t. Ex∼X

Pj(M1:j−1)

k∑
i=j−1

r1:i(x)ĉ
(j)
1:i (x)

 ⩽ Bj

∀i ∈ {j − 1, ..., k} : ∀x ∈ X : r1:i(x) ≥ 0 ∧
k∑

i=j−1

r1:i(x) = 1

(5)

Note that Pj(M1:j−1) can be incorporated in the quality and cost estimates. This leaves us with the
exact same optimization problem as the routing problem, but with a different budget Bj . Since the
chosen model only depends on the maximization of Pj(M1:j−1)q̂

(j)
i (x)−λjPj(M1:j−1)ĉ

(j)
i (x), the

probability Pj(M1:j−1) can be divided out of the optimization problem.

The inner optimization problems prove the existence of optimal routing strategies at each step j
with parameters λj . We note that there only needs to be one parameter γ that determines the convex
combination since the budget B is only enforced over the entire cascade.

Let us denote the quality and cost of the entire cascading strategy for given parameters λ1, . . . , λk

and γ as Q(λ1, . . . , λk, γ) and C(λ1, . . . , λk, γ) respectively. Then, the outer optimization problem
can be formulated as:

max
λ1,...,λk,γ

Q(λ1, . . . , λk, γ)

s.t. C(λ1, . . . , λk, γ) ⩽ B
(6)

To solve this outer optimization problem, we simply perform a hyperparameter search over the
budgets B1, . . . , Bk using a hyperparameter optimization search as discussed in §3.

B.1 PRIOR APPROXIMATIONS

We now prove Corollary 1. Before doing so, we first need to define what we exactly mean by
equivalency. For this purpose, let C1 be defined as follows:

C1 =
{
s | s is a cascading strategy with parameters λ1, . . . , λk, γ = 0 using estimates q̂(j), ĉ(j)

}
Similarly, let C2 be defined as follows:

C2 =
{
s | s is a thresholding strategy with parameters τ1, . . . , τk using estimates q̂(j), ĉ(j)

}
We note that we set γ = 0 since the thresholding strategy is deterministic. We therefore restrict the
cascading strategy to be deterministic as well.

We define the equivalence between the two sets as follows:

Definition 6 (Equivalence of Strategies). We say a set of strategies C1 is equivalent to another set
of strategies C2, denoted as C1 ≡ C2, if for all s0 ∈ C1 ∪ C2 there exists a s1 ∈ C1, and a s2 ∈ C2
such that for all x ∈ X , s0, s1 and s2 take the same decisions on x.

We can now more accurately state the conditions under which the thresholding strategy is equivalent
to the optimal strategy.

Corollary 2 (Optimal Thresholding Strategy). Let C1, C2 be defined as above. Then, C1 ≡ C2 if and
only if there exists alternative quality and cost estimates q̂(j)

′

i (x) and ĉ
(j)′

i (x) with associated set of
cascading strategies C′

1 such that C1 ≡ C′
1 and the following conditions hold on these alternative

quality and cost estimates: ĉ
(j)′

i (x) is independent of x and bigger than 0, q̂(j)
′

i (x) is independent
of x for all i ⩾ j, and q̂

(j)′

1:i (x) is equal to q̂
(j)′

i (x).
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The main difference between Corollary 2 and Corollary 1 is that we impose the possibility of alter-
native quality and cost estimates. However, this does not really influence equivalency in the intuitive
sense. Indeed, one could alternatively phrase the corollary as follows: the thresholding strategy
is equivalent to any of our cascading strategies if and only if it is possible to construct alternative
estimates such that the conditions hold.

Proof. We note that the cascade s ∈ C1 continues on a sample if the following condition holds:

q̂
(j)
1:j−1(x)− λj ĉ

(j)
1:j−1(x) < max

i∈{j,...,k}
q̂
(j)
1:i (x)− λj ĉ

(j)
1:i (x) (7)

If C1 ≡ C′
1, it is clear that Eq. (7) reduces to the thresholding strategy for all strategies in C′

1. Indeed,
for any s ∈ C′

1, set τj = maxi∈{j,...,k} q̂
(j)
1:i − λj ĉ

(j)
j:i and the thresholding strategy is equivalent to s.

Alternatively, if s ∈ C2, suppose maxi∈{j,...,k} q̂
(j)
1:i −λj ĉ

(j)
j:i = q̂

(j)
1:i −λj ĉ

(j)
j:i for some index i. Then,

set λj = τj/ĉ
(j)
j:i − q̂

(j)
1:i /ĉ

(j)
j:i and the cascading strategy is equivalent to s. Therefore, C1 ≡ C′

1 ≡ C2.

Suppose now that C1 ≡ C2. We construct alternative quality and cost estimates q̂(j)
′

i (x) and ĉ
(j)′

i (x)

such that the conditions hold and such that C1 ≡ C′
1. For this purpose, we define ĉ

(j)′

i (x) = 1 for
all i, j ∈ {1, . . . , k}, q̂(j)

′

i (x) = 1 for all i ⩾ j, and q̂
(j)′

i (x) = q̂
(j)
i (x) otherwise. Furthermore, we

set q̂(j)
′

1:i (x) = q̂
(j)′

i (x) for all i, j ∈ {1, . . . , k}. The equivalence of C′
1 and C2 can now be proven

analogously to the previous paragraph. Therefore, C1 ≡ C′
1 ≡ C2.

C CASCADE ROUTING

We first note that the proof of the optimality of the cascade routing strategy is equivalent to the proof
of the optimality of the cascade strategy, except that the expectation in the optimization problem
Eq. (5) is now not only over x ∈ X , but also over all possible supermodels that were computed by
step j − 1. However, this does not change the optimization problem, and the proof is completely
analogous to the proof given in §3. Thus, all we need to prove is Lemma 1. To prove the lemma, we
first prove the following lemma.

Lemma 6. Let Q1, ..., Qk be distributions. Let S be the superset of {1, ..., k}. Then f : S → R
defined as f(S) = E(maxi∈S Qi) is submodular. Here, we define maxi∈∅ Qi = −∞

Proof. Let T ⊂ S ⊂ {1, . . . , k} and j ∈ {1, . . . , k} be arbitrary. To show the submodularity of f ,
we need to show that

f(T ∪ {j})− f(T ) ≥ f(S ∪ {j})− f(S).

We can write:

f(S ∪ {j})− f(S) = E( max
i∈S∪{j}

Qi)− E(max
i∈S

Qi)

= E(max(0, Qj −max
i∈S

Qi))

⩽ E(max(0, Qj −max
i∈T

Qi))

= E( max
i∈T∪{j}

Qi)− E(max
i∈T

Qi)

= f(T ∪ {j})− f(T ).

In the proof, we needed maxi∈∅ Qi = −∞ in the case T = ∅.

We note that the assertion that maxi∈∅ Qi = −∞ corresponds to the fact that giving no answer to a
query has −∞ quality.

We can now prove Lemma 1.
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Quality Cost

σbefore σafter σbefore σafter

LOW 0.6 0.3 0.0002 0.00005
MEDIUM 1.6 0.8 0.0004 0.0001
HIGH 2.4 1.2 100 100

Table 4: Standard deviations of the noise levels on the RouterBench dataset.

Proof. Let M and m be as in the lemma. Suppose M ′ is a supermodel that contains all models in
M . Furthermore, let M ′′ = M ′ \m. We show that the supermodel M ′′ is always strictly preferred
over M ′. To see this, we note that the difference between τM ′(x, λ) and τM ′′(x, λ) is equal to

E( max
m′∈M ′

q̂m′(x))− E( max
m′∈M ′′

q̂m′(x))− λj ĉm(x)

By Lemma 6, this difference is smaller than q̂M (x)− q̂M\{m}(x)−λj ĉm(x). Thus, by assumption,
this difference is negative, and therefore M ′′ is always preferred over M ′, which concludes the
proof.

D EXPERIMENTAL DETAILS

We describe some additional details about the experimental setup and the datasets used in our ex-
periments.

D.1 ROUTERBENCH

Data Split We use 5% of the RouterBench data (around 2000 samples) to optimize the hyperpa-
rameters of cascading, routing, and cascade routing. The remaining 95% is used for evaluation. We
use the same data split for all noise levels.

Noise In Table 4 we specify the standard deviations of the noise levels on the RouterBench dataset.
To put these numbers into context, we note that quality varies between 0 and 1, and the average cost
of the smallest models is 0.000073, while the average cost of the largest models is 0.003281. We
fit a logistic regression model on this noisy signal to obtain the quality and cost estimates. This
simulates the noise in the features that are used to estimate the quality and cost of the models.

Models In the evaluated scenarios for three models, we use the models MIXTRAL-8X7B-
CHAT, GPT-3.5-TURBO-1106, and GPT-4-1106-PREVIEW. When using five models, we add
WIZARDLM-13B-V1.2 and CLAUDE-V2 to the mix. For eleven models, we use all models avail-
able in the benchmark.

D.2 OTHER BENCHMARKS

Data Split We split each dataset in each benchmark into a training set and a test set, each com-
prising 50% of the data. For all datasets except GSM8k, the training set is created by splitting the
original test data. In the case of GSM8k, since a separate training set is already available, we use
this pre-existing training data, leaving the original test set unchanged. The training set is then further
divided, with 50% used for training quality and cost estimators, and the remaining 50% reserved for
hyperparameter optimization through validation.

Evaluation Setting We use completion-based evaluation in a one-shot setting for each benchmark.
For the classification tasks, we obtain the probability associated with each class ("A", "B", "C",
. . . ) from the model directly. For open-form reasoning tasks, we extract the answer by instruction
the model to generate a completion that ends with an extractable answer. If the model does not
output an answer in the correct format, we perform a best-effort extraction by trying various regex
patterns. Details on the prompts and regex patterns used for each benchmark are provided in the
code repository.
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Three Models Five Models Eleven Models

Low Med High Low Med High Low Med High

Linear Interp. 74.21 74.21 74.21 73.82 73.82 73.82 75.16 75.16 75.16
Routing 81.50 77.22 76.01 82.43 76.84 75.54 85.34 77.77 76.44
Cascade (Baseline) 83.16 78.58 76.89 84.27 76.59 73.92 87.14 78.60 74.94

Cascade (Ours) 82.68 78.79 77.00 84.26 77.20 74.30 86.67 78.67 75.08
Cascade Routing 83.82 78.92 77.11 85.51 78.82 76.74 88.78 80.88 78.02

Table 5: AUC scores in % for different strategies on RouterBench across model and noise levels for
five-shot evaluation.

Models For the LLAMA-3.1 model family, we use the models LLAMA-3.1-8B-INSTRUCT,
LLAMA-3.1-70B-INSTRUCT, and LLAMA-3.1-405B-INSTRUCT. For the GEMMA model fam-
ily, we use the models GEMMA-2B-INSTRUCT, GEMMA-2-9B-INSTRUCT, and GEMMA-2-27B-
INSTRUCT. For the MISTRAL model family, we use the models MISTRAL-7B-INSTRUCT-V0.3,
MIXTRAL-8X7B-INSTRUCT-V0.1, and MIXTRAL-8X22B-INSTRUCT-V0.1.

Features Quality Estimates We specify the exact features used for the logistic regression model
that serves as the quality estimator in §5.2. First, we include a one-hot encoding of the various
datasets in each benchmark. Furthermore, for classification, we include the probability associated
with the highest class and the entropy of the class probabilities if the model has been computed. If
several models have been computed, we include both whether they agree on their prediction, and the
JS-divergence between their class probabilities. For open-form reasoning, we include the perplexity,
number of tokens, and several quantiles of the logits if the model has been computed, in accordance
with Gupta et al. (2024). If several models have been computed, we also include whether they agree
on their prediction.

We note that we train a separate logistic regression model for each history of computed models, and
for each model separately as well. Thus we have one linear model for each combination of a target
model mi and computed models mi1 , . . . ,mij . All the linear models are trained on the training set
included in the benchmark.

E ADDITIONAL RESULTS

In Table 5 we report the AUC scores for the RouterBench dataset across different models and noise
levels for the five-shot evaluation. Our conclusions presented in §5.1 remain consistent with the
results presented in Table 5. However, there is one notable inconsistency: in two of the three low-
noise scenarios, our cascading strategy performs worse than the threshold-based baseline cascade.
In the scenario with three models, we find its cause can be found in the more difficult optimization
surface for the hyperparameters of our cascading strategy. Specifically, our cascading strategy at
some point starts to lose quality as cost increases. By simply setting the hyperparameters of the
cascading strategy once it starts to lose quality to the ones where it obtained its highest quality, we
obtain a quality of 83.35% over the 83.17% of the baseline cascade.

In contrast, for low-noise and eleven models, a similar approach does not yield a better result. Rather,
the discrepancy is caused by a small mismatch between the quality estimates of supermodels and
the chosen model. While the quality estimate is based on the expected maximum of all models, we
restrict the selected model to be the last model that was computed in the cascade. Since the expected
maximum is higher than the quality of the last model, this discrepancy can lead to suboptimal de-
cisions. By allowing both the baseline cascade and our cascading strategy to select the model with
the highest quality estimate, we find that our cascading strategy once again outperforms the base-
line cascade. Note that this slight discrepancy is not relevant for cascade routing, since the extra
restriction is not imposed in this setting.
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