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Abstract

Public benchmarks play an essential role in the evaluation of large language models.
However, data contamination can lead to inflated performance, rendering them
unreliable for model comparison. It is therefore crucial to detect contamination and
estimate its impact on measured performance. Unfortunately, existing detection
methods can be easily evaded and fail to quantify contamination. To overcome
these limitations, we propose a novel definition of contamination as artificially
inflated and non-generalizing benchmark performance instead of the inclusion
of benchmark samples in the training data. This perspective enables us to detect
any model with inflated performance, i.e., performance that does not generalize
to rephrased samples, synthetic samples from the same distribution, or different
benchmarks for the same task. Based on this insight, we develop CONSTAT, a
statistical method that reliably detects and quantifies contamination by compar-
ing performance between a primary and reference benchmark relative to a set of
reference models. We demonstrate the effectiveness of CONSTAT in an extensive
evaluation of diverse model architectures, benchmarks, and contamination scenar-
ios and find high levels of contamination in multiple popular models including
MISTRAL, LLAMA, YI, and the top-3 Open LLM Leaderboard models.1

1 Introduction

As large language models (LLMs) become increasingly effective at a wide range of tasks, many
companies and research institutions compete to develop better models [2, 5, 28, 35]. To facilitate
this development, a variety of benchmarks have been proposed that allow a standardized in-depth
comparison of model performance across diverse tasks [15, 16, 26, 32].

Data Contamination Modern LLMs are trained on vast amounts of internet-sourced data, raising
the risk of unintentionally including benchmark samples in the training set. Such data contamination
can lead to artificially inflated benchmark performance that does not accurately reflect a model’s
true ability to generalize to unseen tasks. However, model providers argue that the impact of this
contamination on model performance is negligible [2, 14, 35] and the enormous size of current
training sets almost guarantees contamination to some extent. This casts doubt on the relevance of
this traditional definition of contamination in the context of LLMs.

This Work: A New Perspective on Data Contamination We propose a new perspective on
contamination, defining it based on its effect on model performance rather than its cause. Specifically,
we define contamination as artificially inflated, non-generalizing performance, i.e., we say a model
is contaminated if and only if its performance relative to other models is significantly higher on the
original benchmark than on a similar reference benchmark. This definition captures the essence of the

1Code available at https://github.com/eth-sri/ConStat.
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Figure 1: Overview of our method. We first select models to check for contamination, then select ref-
erence models and benchmarks, and finally compute CONSTAT to detect and quantify contamination.

contamination problem, i.e., performance measurements becoming unreliable for model comparisons.
Furthermore, it enables principled detection methods that are robust against evasion attacks by
malicious providers as this would require generalizing performance improvements.

Traditional Contamination Detection Existing contamination detection methods [18, 23, 24,
30, 33, 36, 39, 40, 48] aim to detect the inclusion of benchmark samples in the training data as
a measure of contamination. However, these approaches show limited success, cannot quantify
the contamination’s effect on model performance, and have to make strict assumptions about the
contamination process, making them easy to evade [17].

This Work: A Statistical Test for Contamination In contrast, we leverage our novel performance-
based definition of data contamination to propose a statistical contamination test called CONSTAT,
illustrated in Fig. 1. Given a target model (M1 or M2) to check for contamination (first step in Fig. 1),
we select a set of reference models for performance comparison and a reference benchmark Dref that
is similar to the original benchmark D (second step). This reference benchmark can be a rephrased
version of the original benchmark, a synthetic benchmark generated from the same distribution, or a
different benchmark measuring performance on the same task. We then evaluate the reference models
on both benchmarks D and Dref and fit the difficulty correction function HDref describing the relation
between performance on the reference and original benchmarks (blue curve). By evaluating HDref at
the target model’s performance on the reference benchmark, we predict its expected performance
on the original benchmark (third step). Finally, we compute the difference δ between this expected
performance and the model’s actual performance on the original benchmark. Using bootstrapping, we
obtain an estimate of the contamination magnitude δ and a p-value that quantifies the likelihood of the
observed performance difference under the null hypothesis that the target model is not contaminated
(fourth step). In the illustrated case, model M1 achieves 60% on the reference benchmark, which
translates to an expected performance of 37% on the original benchmark. However, the measured
performance of 72% indicates a large contamination effect δ1 = 35% and thus strong contamination
with a p-value of 0.01%. In contrast, model M2 shows no signs of contamination.

Evaluation We evaluate CONSTAT on a wide range of contamination scenarios and model architec-
tures, demonstrating that it is significantly more effective at detecting contamination than any prior
method. We then use CONSTAT to study a range of popular open and proprietary models and find high
levels of contamination in MISTRAL-7b-v0.1 [28], LLAMA-3-70b [2], LLAMA-2-INSTRUCT-70b
[42], YI-34b [52], and a range of top Open LLM Leaderboard [7] models.

Key Contributions Our key contributions are:
• We propose a new performance-based definition of benchmark contamination (§2).
• We introduce CONSTAT, a statistical test that detects and quantifies contamination in

language models (§3).
• We empirically demonstrate CONSTAT’s effectiveness in an extensive evaluation across

various contamination scenarios (§4.2).
• We leverage CONSTAT to study a range of popular models and find contamination for

MISTRAL, LLAMA, YI, and the top-3 Open LLM Leaderboard models (§4.3-§4.5).

2



2 Defining Contamination

Before formalizing our novel definition, we first informally contrast the traditional, information-flow-
based perspective on contamination with our novel performance-based one.

Information-Flow Perspective In traditional machine learning, contamination typically refers to
any information flow between the benchmark used for performance measurement and model training.
In the context of LLMs, this is usually restricted to the direct inclusion of test set samples (or their
semantic equivalents) in the training dataset [36, 38, 50, 55].

However, this perspective suffers from several drawbacks. First, it does not fully capture the core
issue of contamination, which is whether it renders test set performance an unreliable predictor of
real-world performance. Second, in the era of zero-shot learning, we aim to measure performance on
"unseen" tasks, yet we train on internet-scale data that likely contains samples of almost any task. This
makes the threshold for contamination blurry. Third, limiting the definition to test sample inclusion
neglects the possibility of model and hyperparameter selection based on benchmark performance as a
source of contamination. Finally, even with this narrow definition, detecting contamination without
access to the training data is challenging, which makes it easy to circumvent [17].

Performance Perspective To overcome these limitations, we propose to define contamination
based on its outcome, rather than its cause. Informally, we define contamination as artificially inflated
performance on a benchmark that does not generalize to real-world performance on the corresponding
task, regardless of how it was achieved. This definition aligns better with the practical implications of
contamination and enables a more principled detection method that makes evasion difficult.

To detect contamination, we compare the performance of a model M on a benchmark D to its
performance on a reference benchmark Dref, the choice of which we will discuss later. It is crucial
to account for differences in difficulty between D and Dref. Otherwise, a slightly harder reference
benchmark Dref would falsely indicate inflated performance on D. Thus, direct performance compar-
ison is only valid if the distribution over sample difficulties is the same for both benchmarks, which
is a very strong assumption that is rarely true. To address this, we compare performances relative to
a set of reference models, allowing us to determine if a model’s performance on D is significantly
higher than expected, given its difficulty. In the next section, we make this definition more formal.

2.1 Formal Definition of Performance-Based Contamination

Reference Models To accurately compare performance between benchmarks, we use reference
models to correct for benchmark difficulty differences. For this purpose, we consider the set of all
reliable LLMs Mref from reputable sources to estimate the performance distribution of uncontam-
inated models. Although we cannot guarantee these models are uncontaminated, we can perform
leave-one-out contamination detection to remove suspicious models from the reference set. Further-
more, including contaminated models in Mref will only make our test more conservative, making it
less likely for uncontaminated models to be detected as contaminated.

Contamination Detection For each benchmark D, we define a scoring function SD : M → R
that assigns a score (e.g., accuracy) to every model from the space of all possible language models
M. Applied to the reference models Mref, it induces a cumulative distribution function FD over the
uncontaminated performance on this benchmark.

We now use the cumulative distributions FD and FDref to predict the performance of a model M on
D given its performance on Dref. Specifically, we first map the performance on the reference data
SDref(M) to a percentile q = FDref(SDref(M)) and then map this percentile to the corresponding per-
formance on the original benchmark F−1

D (q) using the percentile function F−1
D . To simplify notation,

we define the hardness correction function HDref : R → R as HDref = F−1
D ◦ FDref . This allows us to

estimate the effect of contamination on the model’s performance as SD(M)−HDref(SDref(M)) and
gives our formal definition of contamination:

Definition 1 (δ-Contamination). A model M ∈ M is δ-contaminated on a benchmark D with respect
to a reference benchmark Dref if SD(M)−HDref(SDref(M)) > δ.
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2.2 Types of Contamination

Depending on the choice of reference benchmark Dref, we can measure different types of contamina-
tion, depending on how poorly the inflated performance generalizes.

Syntax-Specific Contamination occurs when the model fails to generalize to semantically equivalent
samples. That is, the model has memorized the exact samples in the benchmark, and its performance
drops as soon as the wording changes. We therefore consider it to be the worst kind of contamination.
To measure syntax-specific contamination we create our reference benchmark Dref by rephrasing the
samples in the original benchmark D to obtain a semantically equivalent benchmark.

Sample-Specific Contamination occurs when the model fails to generalize to new samples from
the benchmark distribution. That is, while the model generalizes to samples that are semantically
equivalent to those in the original benchmark, it does not generalize to new samples from the same
distribution. To accurately measure sample-specific contamination, we would preferably generate
samples for Dref following the same steps used to produce D. As this is often infeasible in practice,
we instead generate synthetic samples for Dref by querying a strong LLM using few-shot prompting
and varying the provided few-shot examples to increase diversity.

Benchmark-Specific Contamination occurs when the model fails to generalize to different benchmarks
that aim to measure performance on the same task. That is, the model generalizes to new samples
from the original benchmark distribution but does not generalize to closely related benchmarks. To
measure benchmark-specific contamination we create (or select) a different benchmark Dref (e.g.,
MathQA) that aims to measure performance on the same task as D (e.g., GSM8k). We note that
benchmark-specific contamination is by far the least severe type of contamination. Further, while
strong sensitivity to the exact benchmark is undesirable, it is important to recognize that even small
differences between benchmarks can impact model performance. Therefore, benchmark-specific
contamination requires a more nuanced interpretation that takes into account these differences.

3 CONSTAT: A Statistical Test for Detecting Contamination

We now present CONSTAT, a novel method for detecting contamination as defined in §2 by computing
confidence bounds on the estimated contamination effect using a statistical test.

Reference Models To approximate the underlying distribution of reference models Mref, we select
a diverse sample of m models M̃ref = {Mref,1, ...,Mref,m} ⊂ Mref. We additionally include an
inherently uncontaminated random-guessing model to extend the coverage of our reference set.

Null Hypothesis To rigorously test for contamination, we derive a null hypothesis based on
our definition of contamination. The null hypothesis is the assumption that the model M is not
contaminated, meaning its actual score on the original data is at most δ worse than the predicted one:
SD(M)−HDref(SDref(M)) ⩽ δ where δ ∈ R≥0 can be chosen freely.

Estimating the Hardness Correction Function To compute the hardness correction function
HDref , we first estimate the CDFs FD and FDref as the empirical CDFs F̃D and F̃Dref , respectively. To
this end, let i1, ..., in be an index such that SD(Mref,ik) ⩽ SD(Mref,ik+1

). We obtain the CDF F̃D as

F̃D(x) =


0 if x < SD(Mi1)

k/n if SD(Mik) ⩽ x < SD(Mik+1
)

1 if SD(Min) ⩽ x

. (1)

Similarly, F̃Dref can be obtained from an index j1, ..., jn such that SDref(Mref,jk) ⩽ SDref(Mref,jk+1
).

Using Eq. (1), we find that HDref(SDref(Mjk)) = SD(Mik). Applying the empirical CDFs directly to
other points x ∈ [0, 1] would result in a step function estimate of HDref , leading to an overly rough
approximation of the hardness correction function. Thus, we compute the approximate hardness
function H̃Dref by fitting the points (SDref(Mjk), SD(Mik)) using a smoothing spline, minimizing the
following loss function:

4



n∑
k=1

(
SD(Mik)− ĤDref(SDref(Mjk))

)2
+ λ

∫ 1

0

Ĥ ′′
Dref

(x)2 dx (2)

where λ is a smoothing parameter that is chosen using generalized cross-validation [45].

Significance Estimation We determine the statistical significance for rejecting the null hypothesis
via bootstrapping over both the reference models and the samples in the benchmark, using pivotal
intervals [41] to correct for uncertainty in the bootstrapping process. By bootstrapping the models,
we consider the effect of our reference model selection M̃ref. By bootstrapping the samples, we
additionally include the error in our estimation of the scores themselves. Thus, given the estimate
δ̂ = SD(M)− ĤDref(SDref(M)) and corresponding bootstrap estimates δ̂1, ..., δ̂n, we compute the
p-confidence lower bound for δ as δ̂1−p = 2δ̂ − δ̂′1−p where δ̂′q is the q-quantile of δ̂1, ..., δ̂n. From
this, we obtain the p-value by inverting this lower bound with respect to q. Thus, we reject the null
hypothesis for a given δ with significance level p by computing the lowest p such that 2δ̂ − δ̂′1−p ⩾ δ.

Threat Model In accordance with [17], we briefly outline the threat model assumed by CONSTAT.
Since we only require the ability to measure the performance of the model on the benchmark, our
method is a black-box benchmark-level detection method that is robust to semantic preserving op-
erations. Furthermore, we make no additional assumptions on potential metadata contamination.
However, we do rely on the existence of reference models which we can use to estimate the perfor-
mance of uncontaminated models. Notably, however, we do not assume these reference models to
have a similar performance or architecture as the model we wish to test.

4 Evaluation

In this section, we evaluate CONSTAT empirically. We first demonstrate CONSTAT’s effectiveness,
showing it outperforms prior methods in detecting and quantifying contamination across a range
of intentionally contaminated models (§4.2). Next, we investigate the contamination of our chosen
reference models (§4.3), popular model families (§4.4), and top Open LLM Leaderboard models
(§4.5). Further, we conduct an ablation study in a simulated environment in App. B to validate several
design choices of CONSTAT.

4.1 Experimental Setup

Reference Models We select 20 models from reputable providers, including Meta’s LLAMA model
families [2, 42], Microsoft’s PHI-2 [27] and PHI-3 [1], Google’s GEMMA-1.1 [21], several MISTRAL
models [28], FALCON-7b [3], and the fully open-source OLMO [25]. A detailed overview of these
reference models is available in App. C.

Benchmarks We select a diverse set of four of the most popular LLM benchmarks to evaluate
CONSTAT: GSM8k [16] is a benchmark for mathematical reasoning, ARC-Challenge [15] is a
multiple-choice benchmark for science questions, MMLU [26] is a multiple-choice general purpose
benchmark and Hellaswag [53] is a dataset for commonsense natural language inference. Due to
computational constraints, we limit the number of samples in each benchmark to 2000.

Reference Benchmarks To generate reference data for syntax-specific and sample-specific contam-
ination we query GPT-4-TURBO [35] to rephrase samples from the original benchmark and generate
new synthetic samples. We generate around 1000 synthetic samples per benchmark and refer to
App. C for further details on the generation process. To detect benchmark-specific contamination, we
select appropriate reference benchmarks that measure performance on the same task: for GSM8k, we
use MathQA [4], for ARC-Challenge we use SCIQ [46], and for Hellaswag we use the Lambada-
OpenAI benchmark [37]. For MMLU, we did not select any reference benchmark and thus measured
only syntax- and sample-specific contamination.

Evaluation For evaluation, we use the LM Evaluation Harness [20] in a 5-shot setting. We report
estimated effects δ̂ along with the p-value for the null hypothesis that the effect δ is less than 0.
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4.2 Validating Contamination Detection with CONSTAT in a Controlled Setting

In this section, we demonstrate the effectiveness of CONSTAT in detecting and quantifying contami-
nation in a controlled setting and compare it to multiple baselines. For this purpose, we finetune both
LLAMA-2-INSTRUCT-7b and PHI-2 using a variety of hyperparameters and contamination scenarios
on each benchmark separately. We vary the number of epochs, the learning rate, the portion of
contaminated training samples, whether or not few-shot examples are used during fine-tuning, and
whether the model is trained on the original benchmark samples or on rephrased data. For more
details, we refer to App. C. We trained a total of 70 models, 9 of which finished training at a loss
spike and were therefore excluded from further analysis. 46 of the remaining models were trained on
the actual benchmark and should therefore exhibit both syntax- and sample-specific contamination.
The rest were trained on rephrased benchmark data and should therefore only exhibit sample-specific
contamination. To quantify the true sample-specific contamination effect, we only use half of each
benchmark for contamination and measure the performance gap to the other half.

Detecting Contamination We first check whether CONSTAT can accurately detect the presence
of contamination. We compare CONSTAT against several baselines [12, 34, 39, 40, 51] that aim
to detect contamination based on the presence of benchmark samples in the training data. Most
of these baselines [12, 34, 40, 51] require a detection threshold to be chosen for each model and
benchmark separately. This tuning process requires uncontaminated samples, making it impossible
to apply these methods in practice. For comparison to CONSTAT, we tuned these thresholds on the
uncontaminated half of the benchmark, which is the most ideal (but unrealistic) scenario. We extract
a p-value for these baselines by bootstrapping the samples in the benchmarks and checking how often
TPR@1%FPR is bigger than 1%. Models are considered contaminated for any method if p < 0.05.
The only baseline applicable in a realistic setting is Shi [39] and we use their recommendation to
consider a model contaminated if the score returned by their method is above 0.85.

Table 1: Percentage of syntax- and sample-specific
contaminated models detected by several methods.

Method Syntax [%] Sample [%]

Carlini et al. [12] 76.1∗ 65.6∗

Mireshghallah et al. [34] 76.1∗ 68.9∗

Yeom et al. [51] 78.3∗ 67.2∗

Shi et al. [40] 84.8∗ 70.5∗

Shi [39] 21.7 16.4

CONSTAT 89.1 98.4

* indicates that the method needs unrealistic access to
uncontaminated samples for hyperparameter selection.

Results in Table 1 show that CONSTAT sig-
nificantly outperforms all other methods with-
out needing prior knowledge of uncontaminated
samples. In particular, we find that CONSTAT
can detect 89% of syntax-specifically contami-
nated models, while the best baseline achieves
only 85%. The gap widens further for sample-
specific contamination, where CONSTAT detects
98% of contaminated models, while the best
baseline only detects 71%. The only baseline
that can be applied in a realistic setting, Shi [39],
performs significantly worse than CONSTAT.

We thus conclude that CONSTAT is the only contamination detection method that can reliably detect
contamination and significantly outperforms all baselines even if they are tuned optimally using
oracle access to the uncontaminated samples.
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Figure 2: Estimated δ̂ as a function of the true δ for
the finetuned models. 2-sigma intervals are shown.

Quantifying Contamination To evaluate
CONSTAT’s ability to estimate the sample-
specific contamination effect, we compare its
estimate to ground truth measurements on un-
contaminated samples. As shown in Fig. 2, we
observe excellent predictiveness at a coefficient
of determination of r2 = 0.94. The only three
models that show a significantly higher estimate
than the true effect achieve a perfect score on the
contaminated samples, capping the true effect
and explaining the overestimation.

Detailed Analysis on GSM8k We conduct an in-depth analysis of contaminated models finetuned
on GSM8k, referring to App. A.2 for a detailed table with all p-values. We finetuned 18 models on
this benchmark, one of which remained undetected under sample-specific contamination detection.
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Table 2: Contamination results for the reference models on syntax-specific, sample-specific, and
benchmark-specific contamination. We only report tests for which the multiple testing corrected
p-value is lower than 5% and include the non-corrected p-value, the estimated effect δ̂, the 95% lower
bound of the effect δ̂0.95 and the model performance on the benchmark. S stands for sample-specific
and B for benchmark-specific contamination. All numbers are reported in percentages.

Model Benchmark Type Perf. [%] p [%] δ̂ [%] δ̂0.95 [%]

LLAMA-3-70b ARC S 69.03 0.03 6.61 3.21
MISTRAL-7b-v0.1 GSM8k S 39.04 0.15 8.25 4.48
MISTRAL-7b-v0.1 Hellaswag S 83.65 0.24 3.14 1.27
LLAMA-2-INSTRUCT-70b Hellaswag S 85.55 0.41 3.37 1.29
MISTRAL-INSTRUCT-7b-v0.2 ARC B 62.46 0.04 10.62 5.95
MISTRAL-INSTRUCT-7b-v0.2 Hellaswag B 84.55 0.18 3.52 1.56
PHI-2 GSM8k B 58.91 < 10−2 36.42 26.46
PHI-3-MINI GSM8k B 76.65 0.29 16.30 6.33
OLMO-INSTRUCT-7b GSM8k B 11.75 < 10−2 8.86 4.99

For the detected syntax-specifically contaminated models, we observe an average increase in δ̂ with
a factor of 2.28 when transitioning from syntax-specific to sample-specific contamination. This
indicates that the models still generalize somewhat to semantically equivalent samples. Furthermore,
the models that were not detected by the syntax-specific contamination detection are exactly those
models that were trained on rephrased data or were trained for just one epoch. This indicates that these
models can still generalize to semantically equivalent samples. Since these scenarios are also more
likely to occur in practice, this shows that it is crucial to also consider sample-specific contamination
when applying CONSTAT. Finally, the model that remained undetected by the sample-specific
contamination detection was a PHI-2 model trained with a lower learning rate. For this model, the
actual contamination effect is approximately 5%, which is relatively small and thus indicates that
CONSTAT is not missing any major contamination.

4.3 Contamination of Reputable Reference Models

To determine if our set of reference models exhibit signs of contamination, we perform a leave-one-out
analysis, where we evaluate the contamination of model M using M̃ref \ {M} as reference models.
To control for performing multiple p-value tests and reduce the chance of false positives, we apply
the Benjamini-Hochberg [9] procedure per benchmark and contamination type to control the false
discovery rate at 5%. We report all significant results in Table 2 and we discuss them for each type of
contamination below.

Syntax-Specific Contamination As expected, we do not find syntax-specific contamination in any
reference model, i.e., none of the models fail to generalize to semantically equivalent samples.

Sample-Specific Contamination We find four instances of sample-specific contamination, all
with very significant p-values of less than p = 0.5% and considerable estimated contamination
effects between 3% and 8%. Specifically, we find contamination of LLAMA-3-70b on ARC, of
MISTRAL-7b-v0.1 and LLAMA-2-INSTRUCT-70b on Hellaswag, and MISTRAL-7b-v0.1 on GSM8k.
We note that the contamination of LLAMA-2-INSTRUCT-70b on Hellaswag is noted by its model
provider [42], but the other model providers do not provide any contamination report for their models.

We investigate these models further on the other benchmarks where the corrected p-value using the
Benjamini-Hochberg procedure was not significant. We discuss these results below and refer to
App. A for a full overview of their sample-specific contamination. We find that MISTRAL-7b-v0.1
achieves relatively low p-values on both remaining benchmarks (8% for ARC, 15% for MMLU).
Furthermore, we additionally evaluated MISTRAL-7b-v0.2 after obtaining these results and found
similar results for this model (see Table 17 in App. E). Therefore, we exclude MISTRAL-7b-v0.1
from our set of reference models. While in particular LLAMA-3-70b also exhibits low p-values
for other benchmarks, none fall below p ⩽ 1%. It is thus highly likely that also LLAMA-3-70b
and LLAMA-2-INSTRUCT-70b are contaminated across several benchmarks, but we keep both as
reference models to ensure that we do not obtain a higher false positive rate in our further analysis.
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Benchmark-Specific Contamination While we find several instances of benchmark-specific
contamination in the reference models, several at very low p-values (p < 0.01%), this requires a
more nuanced interpretation. For example, both PHI models exhibit very large effect sizes (> 15%)
and small p-values (p < 0.01%) for contamination on GSM8k. We suspect that this is due to their
reasoning-focused training process and small model size. While GSM8k allows free text answers,
giving the model tokens to reason, MathQA is a multiple-choice benchmark that requires the model
to answer immediately and therefore gives no room for this reasoning ability to shine.

4.4 Contamination of Popular Model Families

We now use CONSTAT to detect contamination in four popular model families, discussing results for
QWEN-1.5 [6] and YI [52] below, while deferring discussions of STABLELM-2 [8] and INTERNLM-
2 [11] to App. A.1.

QWEN-1.5 We evaluate all chat models from the QWEN-1.5 model family, with sizes 1.8b, 4b, 7b,
14b, 72b, and 110b. The only case of sample-specific contamination is for the 4b model on GSM8k
with p < 10−4 and an estimated effect of 5.4%. The larger models show significant benchmark-
specific contamination on ARC and Hellaswag, with p-values smaller than 1% and estimated effects
between 8% and 14%.

YI We evaluate both the 6b and 34b parameter base models of the YI model-family. Only YI-34b
shows significant contamination, with sample-specific contamination at p < 0.2% and estimated
effects of around 6% on both ARC and Hellaswag. We find additional sample-specific contamination
on GSM8k of around 4% at a p-value of p = 6% and syntax-specific contamination on Hellaswag
at a p-value of p = 5%. Thus, we conclude that this model shows significant contamination across
multiple benchmarks.

4.5 Contamination of Top Open LLM Leaderboard Models

We use CONSTAT to investigate contamination in the top three 7B models on the open LLM Leader-
board2, BARRAHOME/MISTROLL-7b-v2.2, YAM-PELEG/EXPERIMENT26-7b, and MTSAIR/-
MULTI_VERSE_MODEL and find that all three models exhibit significant benchmark-specific con-
tamination. Specifically, all models show strong contamination with estimated effects of δ̂ > 10%
for the benchmarks where the reference benchmark is not included in the Open LLM Leaderboard
(GSM8k, Hellaswag, and ARC). Further, all models show significant sample-specific contamination
on GSM8k with δ̂ ≈ 9%. For more detailed results, we refer to App. A.

This inflated performance could be caused by a model selection bias, as the Open LLM Leaderboard
features thousands of models. This issue is exacerbated by the recent trend of merging models
[22, 49] where hyperparameters are frequently selected based on their benchmark performance. We
therefore urge the community to be more cautious when selecting models from the leaderboard.

5 Related Work

Contamination Detection Contamination detection methods can be broadly divided into two main
categories. The first category [10, 14, 19, 35, 42, 44, 50] focuses on analyzing the training data
directly to identify overlaps with the benchmarks used for model evaluation. The second category
[18, 23, 24, 30, 33, 36, 39, 40, 48] relies solely on access to the model and its predictions, aiming
to detect contamination through model queries. As noted by Dekoninck et al. [17], some of these
methods require metadata (e.g., benchmark name, canonical ordering) to be leaked along with the
benchmark samples in the training data [23, 24, 36]. Methods that do not require metadata depend on
perplexity-based metrics to measure the model’s uncertainty on benchmark samples, but these can be
easily circumvented by training on rephrased samples [17]. It is important to note that none of these
methods can estimate the influence of contamination and that they are outperformed by CONSTAT in
terms of detection accuracy (see §4.2).

2Rank on Open LLM Leaderboard as of the 4th of May 2024.
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An alternative approach is presented by Zhu et al. [56], who measure model performance on rephrased
benchmarks instead of the original benchmarks to obtain more accurate estimates of model perfor-
mance. However, their results vary significantly across benchmarks, they do not provide a statistical
framework for contamination detection, and they only demonstrate that evaluating on rephrased
samples partially recovers the results of uncontaminated base models. Furthermore, they do not
go beyond measuring performance on rephrased benchmarks and can therefore also be evaded by
training on rephrased samples [17].

Reference Benchmarks Recent studies have introduced new benchmarks designed to evaluate
performance on tasks similar to those in prior popular benchmarks and thus can be used to estimate
the degree of contamination. GSM1k [54] was developed to closely replicate the efforts behind
GSM8k and to compare model performances between these benchmarks. However, GSM1k lacks
a statistical test, and the slight variations between GSM8k and GSM1k might partially explain the
contamination levels observed in their analysis. Another recent benchmark, SWE-bench [29], focuses
on evaluating performance on coding tasks. By comparing their results with those of Human-Eval
[13], one can visually interpret potential contamination in Human-Eval. However, the absence of a
statistical test hinders precise contamination detection. In both scenarios, CONSTAT can improve
their findings, enabling accurate estimations of contamination in existing models.

6 Discussion

Limitations Our method estimates the effect of contamination on performance relative to a set
of reference models. Therefore, if these reference models are also contaminated, our method
only measures the effect relative to this base level of contamination. However, our leave-one-out
experiment, presented in §4.3, helps identify and exclude contaminated models, partially mitigating
this limitation. Furthermore, it is important to note that accurate relative performance measurements
are sufficient for both model selection and to assess methodological improvements, which are the
most important use cases of benchmarks.

Further, our work uses an LLM to generate synthetic samples, introducing potential distributional
biases into the synthetic benchmark Dref. We briefly discuss these biases here. Firstly, synthetic
benchmark may contain more mislabeled samples. However, since these samples equally affect all
models, CONSTAT accounts for this in its difficulty correction. Secondly, synthetic samples generated
by a model are likely easier for that model itself to solve. Therefore, contamination results for the
model used to generate the samples would be unreliable for sample-specific contamination detection.
However, these limitations are not inherent flaws of CONSTAT, and can be mitigated by using more
sophisticated synthetic benchmark generation techniques.

Impact Model evaluation is a crucial part of LLM development, with benchmarks playing a key role
in evaluating model performance on tasks like code generation, question answering, and summariza-
tion. Contamination of these benchmarks can inflate performance estimates, potentially misleading
researchers and practitioners. To address this, CONSTAT provides a statistical framework to estimate
the impact of contamination on model performance. This enables more accurate evaluations and
allows for the removal of suspicious models from leaderboards, ensuring a fairer evaluation of model
capabilities. Furthermore, it is important to note that CONSTAT can be applied to any model, not just
LLMs, as long as the model’s performance can be measured on a benchmark.

7 Conclusion

We present CONSTAT, a statistical framework designed to detect contamination and estimate its effect
on model performance. Unlike existing methods, CONSTAT is based on a novel, performance-based
definition of contamination and compares performance with various reference benchmarks to obtain a
detailed contamination analysis that distinguishes between syntax-, sample-, and benchmark-specific
contamination. We investigate CONSTAT’s effectiveness in an extensive control study and demonstrate
that it not only outperforms existing methods but also, in contrast to them, does not require prior
knowledge about uncontaminated samples. Finally, we use CONSTAT to investigate contamination in
popular models and find, among others, very high levels of contamination in MISTRAL-7b-v0.1 and
YI-34b and high levels of contamination in LLAMA-3-70b and LLAMA-2-INSTRUCT-70b.
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Table 3: Full overview of sample-specific contamination in MISTRAL-7b-v0.1, LLAMA-2-INSTRUCT-
70b and LLAMA-3-70b. All numbers are reported in percentages.

Model Benchmark Perf. [%] p [%] δ̂ [%] δ̂0.95 [%]

LLAMA-2-INSTRUCT-70b ARC 61.86 14.68 1.96 −1.01
GSM8k 55.80 58.60 −0.41 −4.42
Hellaswag 85.55 0.41 3.37 1.29
MMLU 56.85 32.91 0.71 −2.10

LLAMA-3-70b ARC 69.03 0.03 6.61 3.21
GSM8k 81.58 15.45 2.05 −1.49
Hellaswag 86.45 1.01 2.86 0.90
MMLU 76.46 5.76 3.35 −0.21

MISTRAL-7b-v0.1 ARC 58.96 7.91 2.21 −0.40
GSM8k 39.04 0.15 8.25 4.48
Hellaswag 83.65 0.24 3.14 1.27
MMLU 58.01 15.23 1.88 −1.05

A Additional Results

We present the complete results for the experiments discussed in §4 here and include a discussion
on the STABLELM-2 and INTERNLM-2 model families. We provide a table with the results for all
evaluated model families where p < 1% in Table 4.

A.1 Discussion on INTERNLM-2 and STABLELM-2

INTERNLM-2 We evaluated four models in the INTERNLM-2 model family: the models with size
1.8b and 7b, and the math-base and math models, also of 7b parameters. Overall, we found very little
evidence of contamination in these models, with no model showing significant (p < 1%) sample-
specific contamination. However, we did find some evidence for benchmark-specific contamination
for GSM8k and Hellaswag for several models in the model family. Specifically, INTERNLM-2-7b
and INTERNLM-2-MATH-7b show significant benchmark-specific contamination on GSM8k with
p < 0.5% and estimated effects of 20% and 40% respectively. The size of this effect is likely due to
the same reasons as the measured contamination in the PHI models, where the models are too small to
solve mathematical questions in one go and have been trained/finetuned to perform chain-of-thought
mathematics. The benchmark-specific contamination on Hellaswag is present for all three 7b models
in the family, with 0.5% < p < 1% and estimated effects of 6% to 11%.

STABLELM-2 For STABLELM-2, we evaluated 6 models in the model family (12b, INSTRUCT-
12b, 1.6b, INSTRUCT-1.6b, ZEPHYR-3b and ALPHA-7b-v2). We found only one instance of sample-
specific contamination, with the 12b model showing slight (p = 0.7%) contamination for ARC.
Notably, we found that all of the models in this family show benchmark-specific contamination for
GSM8k with estimated effects between 15% and 40%.

A.2 Results for GSM8k Contaminated Models

We present the complete results for the contaminated models finetuned on the GSM8k benchmark in
Table 5. For a detailed explanation of each of the settings, we refer to App. C. We do mention here
that in the realistic setting, we only train for 1 epoch, without any few-shot samples in the prompt
and with additional background instruction-tuning data from the OpenOrca dataset [31].
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Table 4: Complete results for all evaluated model families for all tests with result p < 1%. All
numbers in the table are reported in percentages.

Model Benchmark Type Perf. [%] p [%] δ̂ [%] δ̂0.95 [%]

QWEN-INSTRUCT-1.5-14b ARC B 56.91 0.71 11.77 5.94
QWEN-INSTRUCT-1.5-72b ARC B 64.68 0.01 12.59 7.61
QWEN-INSTRUCT-1.5-110b ARC B 69.45 0.12 9.33 4.47
QWEN-INSTRUCT-1.5-4b GSM8k S 6.52 < 10−2 5.35 4.01
QWEN-INSTRUCT-1.5-7b Hellaswag B 78.65 0.74 7.46 3.00
QWEN-INSTRUCT-1.5-14b Hellaswag B 82.15 0.07 6.48 3.74
QWEN-INSTRUCT-1.5-72b Hellaswag B 86.35 < 10−2 8.24 6.05

YI-34b ARC S 63.99 0.20 5.00 2.12
YI-34b Hellaswag S 86.15 < 10−2 6.51 4.40
YI-34b Hellaswag B 86.15 0.14 3.96 1.89

INTERNLM-2-7b GSM8k B 62.09 0.43 19.27 7.98
INTERNLM-2-MATH-7b GSM8k B 72.93 < 10−2 39.40 27.15
INTERNLM-2-7b Hellaswag B 80.10 0.41 6.58 3.19
INTERNLM-2-MATH-7b Hellaswag B 77.65 0.90 8.55 3.11
INTERNLM-2-MATH-BASE-7b Hellaswag B 79.65 0.40 11.41 5.51

STABLELM-2-12b ARC S 59.47 0.68 4.61 1.59
STABLELM-2-1.6b GSM8k B 18.88 < 10−2 16.56 12.95
STABLELM-2-INSTRUCT-1.6b GSM8k B 42.00 < 10−2 27.79 19.27
STABLELM-2-ZEPHYR-3b GSM8k B 51.63 < 10−2 48.78 44.34
STABLELM-2-12b GSM8k B 58.00 0.39 17.92 6.96
STABLELM-2-INSTRUCT-12b GSM8k B 68.84 < 10−2 32.93 21.09
STABLELM-2-INSTRUCT-12b Hellaswag B 86.25 < 10−2 7.04 4.88

YAM-PELEG/EXPERIMENT26-7b ARC B 72.44 < 10−2 22.36 17.28
GSM8k S 74.53 0.24 7.60 3.19
GSM8k B 74.53 < 10−2 29.69 18.15
Hellaswag B 88.60 < 10−2 13.11 10.27

BARRAHOME/MISTROLL-7b-v2.2 ARC B 72.53 < 10−2 22.21 17.06
GSM8k S 74.53 0.34 7.34 3.05
GSM8k B 74.53 < 10−2 29.28 17.77
Hellaswag B 88.60 < 10−2 12.95 10.15

MTSAIR/MULTI_VERSE_MODEL ARC B 72.44 < 10−2 22.12 16.97
GSM8k S 74.68 0.53 7.20 2.65
GSM8k B 74.68 < 10−2 29.84 18.43
Hellaswag B 88.55 < 10−2 12.14 9.56
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Table 5: Complete results for the contaminated models finetuned on GSM8k. LLAMA-2 is the
LLAMA-2-INSTRUCT-7b model. δ is the actual effect measured on the uncontaminated samples. The
other values are the estimates p-values and effects for syntax- and sample-specific contamination. All
numbers in the table are reported in percentages.

Model Setting Perf. [%] δ [%] psyntax [%] δ̂syntax [%] psample [%] δ̂sample [%]

LLAMA-2 Default 92.11 79.38 < 10−2 40.35 < 10−2 82.77
Default, rephrased 64.64 50.40 99.14 −6.80 < 10−2 55.72
learning rate 10−4 73.29 69.96 < 10−2 43.60 < 10−2 72.18
learning rate 10−5 38.85 15.51 < 10−2 12.62 < 10−2 19.08
Trained for 1 epoch 25.19 7.92 0.94 5.42 < 10−2 11.94
Other few-shot samples 89.53 76.35 < 10−2 38.08 < 10−2 82.80
No few-shot samples 80.27 65.73 < 10−2 37.36 < 10−2 71.74
Realistic 69.80 50.71 < 10−2 32.38 < 10−2 56.99
Realistic, rephrased 40.52 20.67 94.50 −4.47 < 10−2 25.65

PHI-2 Default 79.51 36.03 < 10−2 14.96 < 10−2 41.46
Default, rephrased 69.20 19.95 94.93 −4.07 < 10−2 22.31
learning rate 10−4 82.25 62.25 < 10−2 33.39 < 10−2 68.42
learning rate 10−5 60.09 6.45 39.06 0.64 21.38 2.27
Trained for 1 epoch 55.39 9.02 6.98 3.90 0.05 10.34
Other few-shot samples 81.34 38.76 < 10−2 19.95 < 10−2 43.56
No few-shot samples 64.19 20.55 0.75 6.48 < 10−2 21.61
Realistic 59.79 12.06 4.93 4.30 < 10−2 16.45
Realistic, rephrased 60.55 6.30 88.04 −2.73 1.48 6.92
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B Ablation Study via Simulation

To further investigate the performance of CONSTAT, we conduct an ablation study using simulations.
This approach allows us to test various scenarios and understand the behavior of CONSTAT under
different conditions without the need for finetuning or computationally intense evaluations. Further-
more, it helps in verifying the p-values returned by various tests while avoiding the risk of tuning our
final test to our analysis in §4. We first explain the simulation setup and then present the results.

B.1 Simulation and Setup

Simulation In the simulation, samples are modeled as real numbers representing their complexity.
Each sample x in a benchmark D is drawn from a benchmark-specific distribution D. Therefore,
a benchmark D can be specified by a number n ∈ Z>0, indicating the number of samples, and a
distribution D, from which the samples are drawn. Given the benchmarks (n,D) and (nref,Dref), a
model is represented as M = (m,mref) ∈ R2, where each number indicates the quality of the model
on the respective benchmarks. The probability that a model M answers a sample x ∈ D correctly is
given by the formula min(1, exp(−x/m)). Note that this probability increases as the quality of the
model m grows and decreases as the complexity of the sample x increases.

If mref < m for a given model, the model is contaminated. Reference models can be drawn from
a distribution M over the real numbers such that mref = m for each reference model. To simulate
noise in the evaluation of models, we can add noise to the quality of the reference models, resulting
in mref ≈ m.

Statistical Tests We compare CONSTAT against various other statistical tests that one could
construct. First, we include various variants of CONSTAT. CONSTAT-NO-SORT does not sort the
reference models by their and fits the hardness correction function HDref directly on the scores
(SDref(Mi), SD(Mi)). CONSTAT-NO-RANDOM does not include a random model in the set of
reference models. CONSTAT-NO-BOOTSTRAP only performs bootstrapping over the samples and
not over the reference models.

We also include two alternative tests. MEAN-TEST directly compares performance on the reference
and original benchmarks, considering a model contaminated if its performance on the original bench-
mark is significantly higher. NORMALIZED-TEST instead computes the normalized performance
with respect to the models by computing the means µD, µDref and standard deviations σD, σDref of the
reference models on each benchmark. It then bootstraps the reference models and samples to obtain
the p-value as the probability that the normalized performance σ−1

D (SD(M)− µD) of the model on
the original benchmark is higher than on the reference benchmark. Therefore, NORMALIZED-TEST
essentially corrects for first- and second-order distributional differences between D and Dref.

Reporting Results We report results for specific distributions M,D and Dref for a model M
for which we aim to detect possible contamination. For each choice of distributions, we run 1000
simulations, each drawing new reference models and benchmarks from the given distributions and
performing the tests described before. This ablation focuses on the uncontaminated case, where
m = mref, as avoiding false positives is crucial. In Fig. 3a, we show an example plot of the resulting
CDF of the returned p-value when D = Dref. As expected, the CDF for each method is very close to
the identity line for the uncontaminated model. Ideally, the curve for uncontaminated models should
be as close as possible to this identity line to ensure reliable p-values. Above the line is especially
problematic, as this would be the cause of false positives. Furthermore, by swapping the distributions
D and Dref, one would obtain a mirror image of the plot. This means that a CDF that is below the
identity line in a given situation, would be above the identity line in the mirror image, and is therefore
also problematic for the same reason.

We now report results for various scenarios. In each case, we aim to ensure that a specific test fails
and explain why this is the case. In all explored scenarios, CONSTAT performs as expected, while the
other methods fail. Unless specified otherwise, we use 20 reference models and 1000 samples for
each benchmark, in line with our results presented in §4. A full overview of each parameter setting
can be found in Table 6. We always set the quality of the model under consideration to (1, 1).
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Table 6: Settings for the simulation scenarios. We use the union of two distributions to indicate the
distribution that samples from both distributions with equal probability. The σ column indicates the
noise added to the reference models, using a normal distribution with mean 0 and standard deviation
σ. A normal distribution is denoted using the notation N (µ, σ) where σ is the standard deviation.

Scenario M D Dref σ

Different Distributions N (1, 0.3) N (0.4, 0.3) N (0.8, 0.2) 0
Non-Linearity N (0.6, 0.2) N (0.8, 0.1) ∪N (1.4, 0.1) N (0.3, 0.1) ∪N (1, 0.1) 0
Noise N (0.8, 0.1) N (1, 0.4) N (1, 0.4) 0.05
Bootstrapping Models N (0.6, 1) N (0.8, 0.1) ∪N (1.4, 0.1) N (0.3, 0.1) ∪N (1, 0.1) 0.1
No Random Model N (4, 1) N (4, 0.2) ∪N (0.8, 0.8) N (0.8, 0.8) 0.05

B.2 Results

Different Distributions The MEAN-TEST should fail if the difficulty of one benchmark is different
than the other. We slightly decrease the difficulty of the samples in the original benchmark to make
MEAN-TEST return false positives, as shown in Fig. 3b. Despite M being uncontaminated, the
p-values returned by MEAN-TEST show a very steep CDF.

Non-Linearity NORMALIZED-TEST assumes a linear relationship between performances on refer-
ence and original benchmarks, but non-linear relationships can occur. For instance, it is non-linear
for sample-specific contamination in the GSM8k benchmark (see Fig. 1). Therefore, we change the
benchmark distributions to ensure a non-linear relationship. The result shown in Fig. 3c shows that
NORMALIZED-TEST returns a very steep CDF. We note that CONSTAT-NO-SORT also returns a
steep CDF in this particular case.

Noise When reference models do not have the same quality on both benchmarks, noise is introduced
in the signal that the test receives. Our theoretical analysis in §3 corrects for this noise by sorting the
reference models by performance on each benchmark. CONSTAT-NO-SORT is more susceptible to
this noise. We showcase this for an uncontaminated model in Fig. 3d by keeping D = Dref, but now
adding a small amount of noise to the reference models. CONSTAT-NO-SORT returns a steep CDF
and should not be used in practice due to the noisy nature of real-world scenarios.

Bootstrapping Models Bootstrapping over reference models is necessary for reliable p-values.
Without bootstrapping, the test would rely on the specific instantiation of the reference models,
leading to p-values that are either too certain, always returning 0 or 1. We repeat the non-linear
scenario with added noise to the reference models and a wider distribution over them. As shown in
Fig. 3e, CONSTAT-NO-BOOTSTRAP returns a CDF that is very steep at either edge.

No Random Model Adding a random model to the reference models in CONSTAT provides further
regularization. The effect of this addition only becomes apparent when we use fewer reference models
in a non-linear scenario. In such cases, all reference models are relatively close together and the
smoothing spline overfits to this local part of the curve. We demonstrate this in Fig. 3f, using only five
reference models and a non-linear relationship between the benchmarks. CONSTAT-NO-RANDOM
shows a rather steep CDF in this scenario.

We conclude that CONSTAT is robust to various scenarios and provides reliable p-values in all cases.
The other tests fail in the scenarios we have presented, highlighting the importance of the design
choices made in CONSTAT.
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Figure 3: CDF of various statistical tests for uncontaminated models in different scenarios.
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C Experimental Details

We describe the full details for the experiments presented in §4. This includes the preprocessing stage
of the benchmarks, the data generation process, the fine-tuning of the models on the benchmarks, and
the evaluation of the models, including the reference models used. Additionally, we provide details
on the computational resources necessary to run the experiments. Licensing information for all assets
used in the experiments is provided in App. D.

Preprocessing We select four benchmarks for our experiments, ARC [15], GSM8k [16], Hellaswag
[53], and MMLU [26]. Due to the large size of MMLU, we first select a subset of the topics
from which it consists. Specifically, we select the following topics: Abstract Algebra, Anatomy,
Astronomy, Business Ethics, Clinical Knowledge, College Biology, College Chemistry, College
Computer Science, College Mathematics, College Medicine, College Physics, Computer Security,
Conceptual Physics, Econometrics, and Electrical Engineering. We randomly select 2000 samples
from each of the benchmarks. These samples were then split into two equally-sized sets, one of which
was used for contaminating the fine-tuned models.

For the chosen reference benchmarks we limit the number of samples to 2000.

Data Generation For each benchmark, we generate a rephrased version of the benchmark and a
synthetic benchmark. For both these purposes, we use GPT-4-TURBO [35]. Specifically, for the
rephrased benchmarks, we write a system prompt asking the model to rephrase the input (including
options for multiple-choice benchmarks) of a given sample. Furthermore, we use a different system
prompt to generate a rephrased benchmark that rephrases both input and output. This second
rephrased benchmark is used to finetune the models that are trained on rephrased data for §4.2. By
using separate prompts for training and evaluation, we ensured that the evaluation did not occur on
the same data as the training.

For the synthetic benchmarks, we write a system prompt that asks to generate new synthetic samples
for the benchmark. To obtain faithful synthetic samples, we use few-shotting where the model is
given several examples of the benchmark. By placing these generated samples in the "assistant"
field of the chat model and changing the given few-shot examples for each sample, we ensured both
faithful and diverse samples. We generated 1000 samples for each benchmark.

Post-processing was then applied to the synthetically generated benchmark samples. First, duplicates
within the synthetic samples were removed by searching for high 1-gram overlap ratios between two
samples. Second, we removed samples with a high 1-gram overlap ratio with the original benchmark
samples, ensuring the synthetic samples were not too similar to the originals. Specifically, for the
GSM8k benchmark, we found that some generated samples did not result in an integer answer, or the
model used a rounding operation. These samples were removed by checking if the answer was an
integer and ensuring no rounding was involved.

The system prompts used for the rephrased benchmarks and synthetic benchmarks are available in
the code repository.

Finetuning We explain the finetuning process for the PHI-2 and LLAMA-2-INSTRUCT-7b models
that were used in §4.2. We use the Hugging Face Transformers library [47] for the finetuning process.

Specifically, we applied full finetuning with batch size 16 and the Adam optimizer on different
datasets and using different hyperparameters. We use the following default hyperparameters:

• A learning rate of 5 · 10−5.
• The dataset on which we train is the contaminatable part of a given benchmark.
• We train for 5 epochs.
• The prompt includes the exact few-shot samples used for evaluation.

We then train 8 other models where we always change specific parameters in this default setting.
Specifically, we train models that diverge from the default setting in the following ways:

1. Instead of training with the exact samples from the benchmark, we train on the rephrased
benchmark.
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2. We change the learning rate to 10−5.
3. We change the learning rate to 10−4.
4. We only train for 1 epoch.
5. We train without any few-shot samples in the prompt.
6. We train with a random set of few-shot samples instead of the few-shot samples from the

benchmark.
7. We do not include any few-shot samples in the prompt, include additional background

instruction-tuning data from the OpenOrca dataset [31], and only train for 1 epoch.
8. We do the same as in the previous setting, with the additional change that we train on the

rephrased benchmark instead of the actual one.

By including such a wide range of possible settings, we ensure that we cover a wide range of possible
contamination effects. As can be seen in Fig. 2, the resulting models indeed show varying levels of
contamination from 0% up to 80%.

Reference Models The following models were used as reference models in our experiments: PHI-2,
PHI-3, LLAMA-2-7b, LLAMA-2-INSTRUCT-7b, LLAMA-2-13b, LLAMA-2-INSTRUCT-13b, LLAMA-
2-INSTRUCT-70b, LLAMA-3-8b, LLAMA-3-INSTRUCT-8b, LLAMA-3-70b, LLAMA-3-INSTRUCT-
70b, MISTRAL-7b-v0.1, MISTRAL-INSTRUCT-7b-v0.1, MISTRAL-INSTRUCT-7b-v0.2, MIXTRAL-
INSTRUCT-8x7b, MIXTRAL-INSTRUCT-8x22b, FALCON-7b,FALCON-INSTRUCT-7b, GEMMA-1.1-
7b, GEMMA-1.1-INSTRUCT-7b, OLMO-INSTRUCT-7b. As discussed in §4.3, we removed MISTRAL-
7b-v0.1 from the reference models after a contamination analysis.

Evaluation We evaluate the models with v0.4.1 of the LM Evaluation Harness [20]. We use 5-shot
evaluation for all models and provide the custom fork of the evaluation harness to allow for the
evaluation on all the synthetic and rephrased benchmarks in our code repository.

Compute We spent around 300 USD on the OpenAI API to generate all benchmarks. Furthermore,
we used a single Nvidia H100 GPU for around 1 month to finetune and evaluate all models. Finally,
for models that were too large to fit on a single GPU, we used the Together API to run inference. We
spent an additional 263 USD on this platform.
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D Licensing Information

We include the license for all models, benchmarks and other assets used in this paper in Table 7.

Table 7: Table with assets used, description of their use and the license under which they are
distributed. Sections are split by the type of asset: benchmarks, code repositories and then models.

Asset Description & Use License Name

MMLU [26] General-purpose benchmark used for evaluation MIT License
Hellaswag [53] General-purpose benchmark used for evaluation MIT License
GSM8k [16] General-purpose benchmark used for evaluation MIT License
ARC-Challenge [15] General-purpose benchmark used for evaluation CC-BY-SA-4.0
OpenOrca [31] Instruction-tuning dataset used in finetuning pro-

cess
MIT License

LM Evaluation Harness [20] Framework used to perform evaluations MIT License
[39] Repository to run the [39] baseline Not Specified
Scipy [43] Adapted code for smoothing spline fitting BSD 3-Clause License

LLAMA-2 [42] Includes all LLAMA-2 models, were evaluated for
contamination and used for finetuning

Llama 2 Community
License Agreement

LLAMA-3 [2] Includes all LLAMA-3 models, were evaluated for
contamination

Llama 3 Community
License Agreement

FALCON [3] Includes all FALCON models, were evaluated for
contamination

Apache 2.0 License

GEMMA-1.1 [21] Includes all GEMMA-1.1 models, were evaluated
for contamination

Gemma Terms of Use

YAM-PELEG/EXPERIMENT26-
7b

Was evaluated for contamination Apache 2.0 License

BARRAHOME/MISTROLL-7b-
v2.2

Was evaluated for contamination MIT License

MTSAIR/MULTI_VERSE_MODEL Was evaluated for contamination Apache 2.0 License
MISTRAL [28] Includes all MISTRAL models, were evaluated for

contamination
Apache 2.0 License

PHI-2 [27] Was evaluated for contamination and used for fine-
tuning

MIT License

PHI-3 [1] Was evaluated for contamination. MIT License
QWEN-1.5 [6] Includes all QWEN-1.5 models, were evaluated for

contamination
Tongyi Qianwen Li-
cense Agreement

STABLELM-2 [8] Includes all STABLELM-2 models, were evaluated
for contamination

Stability Ai Non-
Commercial Research
Community License
Agreement

INTERNLM-2 [11] Includes all INTERNLM-2 models, were evaluated
for contamination

Apache 2.0 License

OLMO [25] Includes all OLMO models, were evaluated for
contamination

Apache 2.0 License

YI [52] Includes all YI models, were evaluated for contam-
ination

Yi Series Models
Community License
Agreement

GPT-4-TURBO Used to generate synthetic and rephrased bench-
marks

OpenAI Terms of Use
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Table 8: Contamination results for YAM-PELEG/EXPERIMENT26-7b, MTSAIR/-
MULTI_VERSE_MODEL, BARRAHOME/MISTROLL-7b-v2.2. B is benchmark-specific, S is
sample-specific and Y is syntax-specific contamination. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type p [%] δ̂ [%] δ̂0.95 [%]

BARRAHOME/MISTROLL-7b-v2.2 ARC 72.53 B < 10−2 22.21 17.06
S 55.90 −0.22 −4.88
Y 88.15 −3.09 −7.26

GSM8k 74.53 B < 10−2 29.28 17.77
S 0.34 7.34 3.05
Y 34.00 0.79 −2.49

Hellaswag 88.60 B < 10−2 12.95 10.15
S 96.48 −3.25 −6.01
Y 12.88 1.35 −0.57

MMLU 58.89 S 35.65 0.71 −2.41
Y 85.66 −1.83 −4.62

MTSAIR/MULTI_VERSE_MODEL ARC 72.44 B < 10−2 22.12 16.97
S 51.07 0.13 −4.49
Y 87.29 −2.91 −6.99

GSM8k 74.68 B < 10−2 29.84 18.43
S 0.53 7.20 2.65
Y 47.26 0.12 −3.02

Hellaswag 88.55 B < 10−2 12.14 9.56
S 96.40 −3.19 −5.92
Y 10.12 1.50 −0.40

MMLU 58.98 S 33.99 0.82 −2.33
Y 81.48 −1.52 −4.30

YAM-PELEG/EXPERIMENT26-7b ARC 72.44 B < 10−2 22.36 17.28
S 60.10 −0.53 −5.26
Y 90.97 −3.81 −8.09

GSM8k 74.53 B < 10−2 29.69 18.15
S 0.24 7.60 3.19
Y 14.74 2.07 −1.19

Hellaswag 88.60 B < 10−2 13.11 10.27
S 96.52 −3.25 −6.00
Y 13.35 1.36 −0.59

MMLU 59.03 S 23.81 1.36 −1.79
Y 78.91 −1.36 −4.17

E All Test Results

We present all results for each performed test in this section. Tables Table 8-Table 23 contain these
results, grouped by model family.
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Table 9: Contamination results for QWEN-INSTRUCT-1.5-4b, QWEN-INSTRUCT-1.5-7b, QWEN-
INSTRUCT-1.5-1.8b. B is benchmark-specific, S is sample-specific and Y is syntax-specific contami-
nation. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type p [%] δ̂ [%] δ̂0.95 [%]

QWEN-INSTRUCT-1.5-1.8b ARC 38.40 B 97.39 −6.47 −12.37
S 65.23 −1.17 −6.56
Y 75.55 −1.38 −4.72

GSM8k 31.16 B 16.59 6.43 −4.08
S 26.48 1.46 −2.38
Y 5.62 3.43 −0.13

Hellaswag 60.90 B 100.00 −9.29 −13.98
S 99.73 −7.34 −11.27
Y 82.43 −2.45 −7.91

MMLU 41.69 S 34.60 0.56 −2.43
Y 32.23 0.79 −2.15

QWEN-INSTRUCT-1.5-4b ARC 42.06 B 30.33 6.03 −22.11
S 32.46 0.79 −3.96
Y 86.90 −2.10 −5.24

GSM8k 6.52 B 99.82 −25.43 −36.93
S < 10−2 5.35 4.01
Y 11.87 1.59 −0.61

Hellaswag 69.35 B 93.97 −3.53 −7.06
S 66.77 −0.85 −4.22
Y 26.14 1.36 −3.00

MMLU 50.36 S 45.01 0.25 −2.87
Y 88.31 −2.14 −5.09

QWEN-INSTRUCT-1.5-7b ARC 55.12 B 3.05 14.29 2.24
S 59.77 −0.47 −3.61
Y 57.67 −0.33 −3.28

GSM8k 55.12 B 59.20 −1.38 −11.91
S 9.79 3.73 −1.09
Y 29.53 1.16 −2.54

Hellaswag 78.65 B 0.74 7.46 3.00
S 90.61 −1.87 −4.18
Y 15.20 1.74 −1.16

MMLU 57.82 S 69.80 −1.02 −4.37
Y 50.88 −0.02 −3.04
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Table 10: Contamination results for QWEN-INSTRUCT-1.5-14b, QWEN-INSTRUCT-1.5-72b, QWEN-
INSTRUCT-1.5-110b. B is benchmark-specific, S is sample-specific and Y is syntax-specific contami-
nation. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type p [%] δ̂ [%] δ̂0.95 [%]

QWEN-INSTRUCT-1.5-110b ARC 69.45 B 0.12 9.33 4.47
S 54.00 −0.20 −4.13
Y 56.38 −0.25 −3.29

GSM8k 82.11 B 79.77 −2.15 −7.64
S 20.01 2.05 −1.94
Y 7.08 2.80 −0.35

Hellaswag 84.25 B 29.03 0.69 −1.48
S 93.86 −2.31 −4.71
Y 25.42 0.93 −1.50

MMLU 74.00 S 65.01 −0.85 −4.87
Y 67.92 −0.72 −3.40

QWEN-INSTRUCT-1.5-14b ARC 56.91 B 0.71 11.77 5.94
S 88.65 −2.50 −5.72
Y 32.93 0.77 −2.11

GSM8k 68.39 B 5.12 10.28 −0.04
S 1.13 6.37 1.89
Y 75.33 −1.45 −4.94

Hellaswag 82.15 B 0.07 6.48 3.74
S 98.89 −3.14 −5.39
Y 3.41 2.61 0.27

MMLU 64.94 S 70.02 −1.12 −4.76
Y 34.23 0.67 −2.02

QWEN-INSTRUCT-1.5-72b ARC 64.68 B 0.01 12.59 7.61
S 70.96 −1.34 −5.42
Y 6.07 2.77 −0.17

GSM8k 79.45 B 5.76 9.74 −0.42
S 38.33 0.77 −3.41
Y 98.90 −4.39 −7.54

Hellaswag 86.35 B < 10−2 8.24 6.05
S 14.24 1.48 −0.76
Y 27.24 0.76 −1.31

MMLU 74.29 S 11.91 2.65 −1.18
Y 22.85 1.23 −1.48

Table 11: Contamination results for OLMO-INSTRUCT-7b. B is benchmark-specific, S is sample-
specific and Y is syntax-specific contamination. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type p [%] δ̂ [%] δ̂0.95 [%]

OLMO-INSTRUCT-7b ARC 46.08 B 22.68 7.22 −11.30
S 45.29 0.16 −2.93
Y 53.61 −0.10 −3.10

GSM8k 11.75 B < 10−2 8.86 4.99
S 7.31 2.14 −0.33
Y 57.97 −0.25 −2.52

Hellaswag 79.95 B 2.99 2.63 0.41
S 5.04 2.38 0.00
Y 17.90 1.14 −1.08

MMLU 41.94 S 70.97 −0.69 −2.88
Y 48.80 0.03 −2.61
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Table 12: Contamination results for GEMMA-1.1-INSTRUCT-2b, GEMMA-1.1-INSTRUCT-7b. B is
benchmark-specific, S is sample-specific and Y is syntax-specific contamination. All numbers are
reported in percentages.

Model Benchmark Perf. [%] Type p [%] δ̂ [%] δ̂0.95 [%]

GEMMA-1.1-INSTRUCT-2b ARC 44.71 B 99.47 −7.12 −11.79
S 26.13 0.69 −2.88
Y 73.27 −0.96 −3.51

GSM8k 10.61 B 100.00 −28.17 −38.87
S 90.87 −1.80 −3.67
Y 95.11 −2.43 −4.72

Hellaswag 63.25 B 89.68 −4.47 −9.01
S 87.14 −2.47 −5.07
Y 21.24 0.64 −4.85

MMLU 35.64 S 74.14 −0.93 −3.74
Y 85.61 −1.75 −4.17

GEMMA-1.1-INSTRUCT-7b ARC 58.02 B 9.31 3.64 −1.02
S 10.48 2.13 −0.74
Y 44.06 0.21 −2.44

GSM8k 50.80 B 98.63 −13.67 −23.14
S 81.05 −2.23 −6.10
Y 64.59 −0.72 −4.00

Hellaswag 76.85 B 1.79 5.79 1.59
S 3.21 3.18 0.40
Y 13.92 1.76 −1.16

MMLU 53.70 S 58.46 −0.31 −3.06
Y 90.68 −2.09 −4.58
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Table 13: Contamination results for INTERNLM-2-7b, INTERNLM-2-MATH-7b, INTERNLM-
2-MATH-BASE-7b, INTERNLM-2-1.8b. B is benchmark-specific, S is sample-specific and Y is
syntax-specific contamination. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type p [%] δ̂ [%] δ̂0.95 [%]

INTERNLM-2-1.8b ARC 39.93 B 100.00 −19.05 −23.95
S 85.40 −2.29 −6.76
Y 75.13 −1.28 −4.52

GSM8k 24.03 B 5.93 7.98 −0.37
S 19.37 1.64 −1.62
Y 91.30 −2.63 −5.83

Hellaswag 63.05 B 98.31 −6.84 −11.65
S 43.03 0.03 −5.80
Y 40.35 0.33 −5.29

MMLU 41.26 S 82.17 −1.54 −4.35
Y 52.23 −0.13 −3.12

INTERNLM-2-7b ARC 55.55 B 100.00 −13.68 −18.74
S 3.51 3.44 0.34
Y 27.51 0.92 −1.79

GSM8k 62.09 B 0.43 19.27 7.98
S 11.63 3.17 −1.21
Y 84.26 −2.10 −5.58

Hellaswag 80.10 B 0.41 6.58 3.19
S 2.64 2.73 0.46
Y 30.02 0.65 −1.53

MMLU 57.77 S 33.66 0.80 −2.38
Y 9.90 2.20 −0.62

INTERNLM-2-MATH-7b ARC 52.82 B 84.86 −3.14 −8.28
S 41.52 0.41 −3.09
Y 21.28 1.52 −1.61

GSM8k 72.93 B < 10−2 39.40 27.15
S 64.34 −0.89 −4.87
Y 71.92 −1.16 −4.36

Hellaswag 77.65 B 0.90 8.55 3.11
S 5.57 2.80 −0.11
Y 33.90 0.64 −2.48

MMLU 57.48 S 33.57 0.86 −2.49
Y 53.43 −0.14 −3.15

INTERNLM-2-MATH-BASE-7b ARC 56.23 B 64.31 −0.99 −5.50
S 21.60 1.49 −1.68
Y 38.46 0.52 −2.32

GSM8k 35.63 B 83.69 −7.17 −18.75
S 1.48 5.45 1.57
Y 14.23 2.36 −1.25

Hellaswag 79.65 B 0.40 11.41 5.51
S 4.63 2.41 0.05
Y 35.40 0.48 −1.80

MMLU 52.83 S 48.63 0.08 −3.16
Y 11.60 2.36 −0.93
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Table 14: Contamination results for LLAMA-2-INSTRUCT-7b, LLAMA-2-7b, LLAMA-2-INSTRUCT-
13b, LLAMA-2-13b, LLAMA-2-INSTRUCT-70b. B is benchmark-specific, S is sample-specific and Y
is syntax-specific contamination. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type p [%] δ̂ [%] δ̂0.95 [%]

LLAMA-2-13b ARC 56.23 B 98.26 −5.46 −9.43
S 13.56 1.62 −0.92
Y 48.39 0.07 −2.02

GSM8k 23.81 B 72.02 −3.41 −13.58
S 13.14 1.74 −1.24
Y 78.51 −1.33 −4.12

Hellaswag 82.35 B 97.33 −2.01 −3.69
S 2.07 2.38 0.51
Y 51.41 −0.03 −1.49

MMLU 48.52 S 73.33 −0.88 −3.21
Y 70.56 −0.76 −3.14

LLAMA-2-7b ARC 52.56 B 59.44 −0.66 −5.10
S 4.07 2.89 0.21
Y 18.31 1.14 −1.06

GSM8k 13.42 B 38.75 1.60 −5.56
S 35.13 0.37 −1.68
Y 53.37 −0.09 −2.38

Hellaswag 78.95 B 98.22 −2.42 −4.35
S 5.41 2.03 −0.05
Y 44.09 0.13 −1.66

MMLU 41.31 S 7.68 2.91 −0.54
Y 14.99 1.54 −1.14

LLAMA-2-INSTRUCT-13b ARC 56.57 B 3.70 4.98 0.49
S 72.99 −0.89 −3.46
Y 78.67 −1.15 −3.56

GSM8k 36.69 B 35.55 2.70 −8.22
S 35.35 0.62 −2.92
Y 35.94 0.66 −2.46

Hellaswag 82.35 B 77.82 −0.85 −2.75
S 18.86 1.05 −0.95
Y 10.86 1.30 −0.47

MMLU 46.83 S 80.09 −1.26 −3.55
Y 86.45 −1.72 −4.08

LLAMA-2-INSTRUCT-70b ARC 61.86 B 28.49 1.34 −2.70
S 14.68 1.96 −1.01
Y 87.74 −1.77 −4.21

GSM8k 55.80 B 7.23 9.18 −1.11
S 58.60 −0.41 −4.42
Y 57.70 −0.33 −3.55

Hellaswag 85.55 B 6.44 1.64 −0.15
S 0.41 3.37 1.29
Y 71.66 −0.52 −2.11

MMLU 56.85 S 32.91 0.71 −2.10
Y 43.26 0.25 −2.25

LLAMA-2-INSTRUCT-7b ARC 51.02 B 4.74 5.01 0.13
S 82.83 −1.52 −4.05
Y 76.26 −0.96 −3.19

GSM8k 22.74 B 16.17 5.40 −2.92
S 68.05 −0.59 −3.00
Y 7.90 2.35 −0.41

Hellaswag 78.10 B 91.52 −1.61 −3.52
S 93.08 −1.88 −3.89
Y 53.49 −0.12 −2.13

MMLU 43.24 S 86.64 −1.67 −3.78
Y 43.76 0.20 −2.22
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Table 15: Contamination results for LLAMA-3-INSTRUCT-70b, LLAMA-3-70b, LLAMA-3-8b,
LLAMA-3-INSTRUCT-8b. B is benchmark-specific, S is sample-specific and Y is syntax-specific
contamination. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type p [%] δ̂ [%] δ̂0.95 [%]

LLAMA-3-70b ARC 69.03 B 46.06 0.26 −4.05
S 0.03 6.61 3.21
Y 1.95 3.35 0.73

GSM8k 81.58 B 92.86 −5.03 −9.55
S 15.45 2.05 −1.49
Y 23.24 1.13 −1.60

Hellaswag 86.45 B 77.74 −0.74 −2.43
S 1.01 2.86 0.90
Y 94.19 −2.01 −3.82

MMLU 76.46 S 5.76 3.35 −0.21
Y 55.02 −0.12 −2.21

LLAMA-3-8b ARC 56.91 B 99.41 −6.46 −10.30
S 62.47 −0.39 −2.68
Y 49.13 0.04 −2.09

GSM8k 49.36 B 99.38 −15.27 −24.75
S 7.20 4.06 −0.59
Y 1.94 4.52 1.04

Hellaswag 80.90 B 99.26 −2.66 −4.35
S 44.87 0.15 −1.70
Y 94.78 −1.48 −2.94

MMLU 61.16 S 4.18 3.01 0.18
Y 10.88 1.78 −0.63

LLAMA-3-INSTRUCT-70b ARC 70.22 B 28.64 1.45 −2.80
S 75.48 −1.37 −5.12
Y 68.86 −0.52 −2.79

GSM8k 89.99 B 73.62 −1.21 −7.54
S 9.39 3.05 −1.03
Y 20.00 1.23 −1.50

Hellaswag 85.30 B 18.97 0.87 −0.88
S 97.73 −2.45 −4.38
Y 89.67 −1.24 −2.67

MMLU 77.53 S 43.27 0.17 −3.56
Y 15.82 1.18 −1.07

LLAMA-3-INSTRUCT-8b ARC 60.75 B 45.04 0.25 −3.77
S 66.87 −0.77 −3.88
Y 44.33 0.20 −2.09

GSM8k 75.89 B 7.93 8.40 −1.20
S 23.07 1.49 −2.25
Y 70.85 −0.89 −3.63

Hellaswag 78.10 B 99.46 −3.02 −4.95
S 98.96 −2.96 −4.85
Y 90.89 −1.43 −3.18

MMLU 62.23 S 76.69 −1.17 −3.80
Y 27.51 0.74 −1.53
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Table 16: Contamination results for PHI-2, PHI-3-MINI, PHI-3-SMALL, PHI-3-MEDIUM. B is
benchmark-specific, S is sample-specific and Y is syntax-specific contamination. All numbers are
reported in percentages.

Model Benchmark Perf. [%] Type p [%] δ̂ [%] δ̂0.95 [%]

PHI-2 ARC 58.45 B 70.14 −1.29 −5.43
S 97.63 −4.51 −7.80
Y 53.03 −0.08 −2.39

GSM8k 58.91 B < 10−2 36.42 26.46
S 56.18 −0.26 −4.03
Y 28.20 1.04 −2.09

Hellaswag 76.30 B 4.64 3.46 0.08
S 100.00 −4.80 −6.73
Y 26.31 0.83 −1.68

MMLU 51.96 S 99.39 −5.01 −7.87
Y 40.50 0.32 −2.16

PHI-3-MINI ARC 59.90 B 59.70 −0.61 −4.72
S 99.78 −6.94 −10.60
Y 49.33 0.05 −2.51

GSM8k 76.65 B 0.29 16.30 6.33
S 89.75 −2.86 −6.29
Y 86.35 −1.73 −4.29

Hellaswag 80.55 B 1.15 3.38 1.17
S 100.00 −6.34 −8.37
Y 62.19 −0.35 −2.26

MMLU 63.49 S 99.01 −4.94 −8.05
Y 40.40 0.29 −2.15

PHI-3-SMALL ARC 67.83 B 74.84 −1.88 −6.62
S 63.09 −0.76 −4.55
Y 26.75 1.15 −1.84

GSM8k 87.95 B 0.58 15.04 5.04
S 61.30 −0.70 −5.04
Y 58.49 −0.36 −3.31

Hellaswag 84.70 B 0.02 5.41 3.38
S 81.51 −1.14 −3.27
Y 71.57 −0.60 −2.40

MMLU 71.33 S 89.80 −2.89 −6.67
Y 40.60 0.37 −2.29

PHI-3-MEDIUM ARC 66.55 B 83.99 −2.73 −7.16
S 87.56 −2.68 −6.57
Y 91.94 −2.57 −5.55

GSM8k 86.35 B 0.03 21.11 10.78
S 37.34 0.76 −3.23
Y 65.15 −0.66 −3.59

Hellaswag 86.05 B 0.02 4.54 2.51
S 92.44 −1.83 −3.87
Y 20.51 0.87 −0.89

MMLU 74.14 S 63.19 −0.73 −4.64
Y 51.35 −0.04 −2.64
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Table 17: Contamination results for MISTRAL-7b-v0.1, MISTRAL-7b-v0.2. B is benchmark-specific,
S is sample-specific and Y is syntax-specific contamination. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type p [%] δ̂ [%] δ̂0.95 [%]

MISTRAL-7b-v0.1 ARC 58.96 B 95.01 −4.46 −8.76
S 7.91 2.21 −0.40
Y 28.07 0.79 −1.52

GSM8k 39.04 B 87.59 −7.71 −18.04
S 0.15 8.25 4.48
Y 66.44 −0.87 −4.42

Hellaswag 83.65 B 65.34 −0.42 −2.19
S 0.24 3.14 1.27
Y 16.97 0.94 −0.68

MMLU 58.01 S 15.23 1.88 −1.05
Y 11.08 1.88 −0.69

MISTRAL-7b-v0.2 ARC 58.19 B 98.02 −5.63 −10.01
S 23.24 1.17 −1.38
Y 45.61 0.15 −2.11

GSM8k 37.60 B 89.88 −8.55 −18.87
S 0.54 6.57 2.68
Y 76.32 −1.53 −5.07

Hellaswag 82.80 B 58.14 −0.25 −2.11
S 1.28 2.60 0.69
Y 50.08 −0.01 −1.60

MMLU 56.71 S 49.62 0.06 −2.87
Y 27.94 0.89 −1.61
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Table 18: Contamination results for MISTRAL-INSTRUCT-7b-v0.3, MISTRAL-INSTRUCT-7b-v0.2,
MISTRAL-INSTRUCT-7b-v0.1. B is benchmark-specific, S is sample-specific and Y is syntax-specific
contamination. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type p [%] δ̂ [%] δ̂0.95 [%]

MISTRAL-INSTRUCT-7b-v0.1 ARC 54.35 B 99.97 −9.04 −12.92
S 95.10 −2.83 −5.40
Y 73.29 −0.86 −3.17

GSM8k 35.86 B 98.51 −13.89 −23.86
S 85.29 −2.45 −5.63
Y 90.91 −2.67 −5.83

Hellaswag 74.90 B 90.11 −1.68 −3.97
S 97.12 −2.47 −4.62
Y 53.04 −0.13 −2.51

MMLU 49.69 S 29.29 0.77 −1.76
Y 72.16 −0.87 −3.36

MISTRAL-INSTRUCT-7b-v0.2 ARC 62.46 B 0.04 10.62 5.95
S 64.89 −0.70 −4.17
Y 80.34 −1.29 −3.80

GSM8k 42.61 B 80.76 −5.71 −16.01
S 94.39 −4.26 −8.35
Y 84.91 −2.10 −5.24

Hellaswag 84.55 B 0.18 3.52 1.56
S 81.26 −1.04 −3.01
Y 12.47 1.10 −0.56

MMLU 55.06 S 18.63 1.48 −1.28
Y 42.67 0.25 −2.21

MISTRAL-INSTRUCT-7b-v0.3 ARC 62.37 B 88.82 −3.24 −7.59
S 94.57 −3.64 −7.38
Y 66.69 −0.62 −3.06

GSM8k 48.22 B 94.33 −10.60 −20.56
S 35.14 1.03 −3.81
Y 89.74 −2.69 −6.15

Hellaswag 84.25 B 5.20 1.90 −0.02
S 62.58 −0.40 −2.42
Y 37.49 0.28 −1.31

MMLU 56.56 S 14.15 1.88 −0.93
Y 34.01 0.63 −1.89
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Table 19: Contamination results for MIXTRAL-INSTRUCT-8x22b, MIXTRAL-INSTRUCT-8x7b. B is
benchmark-specific, S is sample-specific and Y is syntax-specific contamination. All numbers are
reported in percentages.

Model Benchmark Perf. [%] Type p [%] δ̂ [%] δ̂0.95 [%]

MIXTRAL-INSTRUCT-8x22b ARC 72.95 B 0.77 6.01 2.00
S 10.63 2.64 −1.07
Y 20.07 1.10 −1.42

GSM8k 85.97 B 44.60 0.69 −3.86
S 65.36 −0.68 −4.37
Y 21.06 1.18 −1.46

Hellaswag 89.00 B 14.01 1.19 −0.62
S 22.49 0.82 −1.13
Y 26.36 0.62 −1.25

MMLU 74.14 S 29.85 0.97 −2.57
Y 59.95 −0.23 −2.42

MIXTRAL-INSTRUCT-8x7b ARC 69.54 B 73.09 −1.49 −5.59
S 47.27 0.11 −3.48
Y 68.30 −0.55 −2.85

GSM8k 65.66 B 95.56 −8.84 −18.06
S 69.87 −1.06 −4.53
Y 83.79 −1.78 −4.63

Hellaswag 87.60 B 20.79 0.82 −0.85
S 14.57 1.15 −0.76
Y 6.31 1.34 −0.10

MMLU 66.73 S 26.75 1.07 −1.93
Y 77.86 −0.98 −3.09

35



Table 20: Contamination results for STABLELM-2-12b, STABLELM-2-ZEPHYR-3b, STABLELM-
2-1.6b, STABLELM-2-ALPHA-7b-v2. B is benchmark-specific, S is sample-specific and Y is
syntax-specific contamination. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type p [%] δ̂ [%] δ̂0.95 [%]

STABLELM-2-ALPHA-7b-v2 ARC 44.28 B 100.00 −10.65 −15.06
S 60.46 −0.58 −3.99
Y 45.14 0.14 −2.76

GSM8k 5.31 B 61.89 −1.10 −7.51
S 27.98 0.65 −1.12
Y 90.92 −1.72 −3.80

Hellaswag 77.20 B 100.00 −5.41 −7.36
S 3.88 2.65 0.23
Y 43.34 0.15 −2.18

MMLU 42.13 S 3.20 4.00 0.49
Y 26.45 1.11 −1.87

STABLELM-2-ZEPHYR-3b ARC 44.80 B 23.74 5.20 −10.17
S 75.44 −1.43 −4.93
Y 56.38 −0.32 −3.55

GSM8k 51.63 B < 10−2 48.78 44.34
S 3.29 5.47 0.54
Y 75.39 −1.45 −4.92

Hellaswag 72.95 B 35.74 0.74 −3.18
S 100.00 −7.45 −9.83
Y 44.96 0.15 −3.67

MMLU 40.29 S 83.87 −1.61 −4.45
Y 35.87 0.63 −2.46

STABLELM-2-1.6b ARC 43.43 B 100.00 −26.35 −31.68
S 14.90 2.41 −2.41
Y 56.10 −0.30 −3.49

GSM8k 18.88 B < 10−2 16.56 12.95
S 23.94 1.22 −1.64
Y 49.96 0.00 −2.92

Hellaswag 71.05 B 100.00 −5.16 −7.61
S 5.19 4.31 −0.06
Y 31.06 1.02 −2.93

MMLU 35.69 S 29.73 1.25 −2.34
Y 32.27 0.84 −2.20

STABLELM-2-12b ARC 59.47 B 99.97 −14.01 −19.28
S 0.68 4.61 1.59
Y 1.10 3.78 1.12

GSM8k 58.00 B 0.39 17.92 6.96
S 11.92 3.10 −1.34
Y 17.98 1.85 −1.51

Hellaswag 84.45 B 18.16 0.98 −0.87
S 2.96 2.16 0.25
Y 30.69 0.49 −1.15

MMLU 56.51 S 77.34 −1.46 −4.67
Y 72.72 −0.98 −3.70
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Table 21: Contamination results for STABLELM-2-INSTRUCT-12b, STABLELM-2-INSTRUCT-1.6b.
B is benchmark-specific, S is sample-specific and Y is syntax-specific contamination. All numbers
are reported in percentages.

Model Benchmark Perf. [%] Type p [%] δ̂ [%] δ̂0.95 [%]

STABLELM-2-INSTRUCT-1.6b ARC 42.66 B 29.38 5.53 −19.03
S 70.33 −1.20 −5.11
Y 48.97 0.00 −3.39

GSM8k 42.00 B < 10−2 27.79 19.27
S 26.27 1.77 −2.67
Y 62.76 −0.67 −4.32

Hellaswag 69.60 B 31.25 1.08 −4.38
S 100.00 −5.99 −8.50
Y 68.68 −1.21 −5.21

MMLU 38.31 S 61.21 −0.66 −4.05
Y 9.37 2.50 −0.64

STABLELM-2-INSTRUCT-12b ARC 64.25 B 2.17 26.11 5.20
S 67.88 −1.15 −5.28
Y 18.72 1.61 −1.31

GSM8k 68.84 B < 10−2 32.93 21.09
S 17.74 2.37 −1.86
Y 32.26 0.88 −2.41

Hellaswag 86.25 B < 10−2 7.04 4.88
S 98.40 −3.43 −5.84
Y 3.32 2.18 0.24

MMLU 55.50 S 90.13 −2.49 −5.67
Y 44.42 0.25 −2.74

Table 22: Contamination results for FALCON-INSTRUCT-7b, FALCON-7b. B is benchmark-specific,
S is sample-specific and Y is syntax-specific contamination. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type p [%] δ̂ [%] δ̂0.95 [%]

FALCON-7b ARC 46.84 B 99.96 −8.77 −12.77
S 78.77 −1.23 −3.80
Y 39.48 0.30 −2.10

GSM8k 4.25 B 95.19 −8.40 −15.69
S 89.76 −1.36 −2.70
Y 79.29 −0.83 −2.50

Hellaswag 78.50 B 100.00 −4.13 −5.97
S 2.47 2.67 0.44
Y 62.41 −0.32 −2.09

MMLU 26.10 S 68.27 −0.39 −2.13
Y 16.74 1.35 −1.48

FALCON-INSTRUCT-7b ARC 45.05 B 71.90 −1.48 −5.71
S 94.92 −3.15 −5.90
Y 77.85 −1.17 −3.64

GSM8k 4.40 B 94.97 −8.50 −15.86
S 49.71 0.04 −1.47
Y 41.32 0.23 −1.43

Hellaswag 69.15 B 99.80 −4.81 −7.94
S 84.96 −1.67 −4.17
Y 95.80 −3.43 −6.23

MMLU 26.30 S 31.59 0.38 −1.52
Y 54.78 −0.16 −2.63
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Table 23: Contamination results for YI-34b, YI-6b. B is benchmark-specific, S is sample-specific
and Y is syntax-specific contamination. All numbers are reported in percentages.

Model Benchmark Perf. [%] Type p [%] δ̂ [%] δ̂0.95 [%]

YI-34b ARC 63.99 B 99.86 −14.18 −20.29
S 0.20 5.00 2.12
Y 16.29 1.58 −1.06

GSM8k 66.79 B 95.95 −9.04 −18.47
S 6.10 4.29 −0.30
Y 59.86 −0.52 −3.85

Hellaswag 86.15 B 0.14 3.96 1.89
S < 10−2 6.51 4.40
Y 4.97 1.75 0.01

MMLU 71.48 S 41.94 0.49 −3.22
Y 24.43 1.09 −1.57

YI-6b ARC 54.44 B 100.00 −15.81 −20.49
S 4.82 3.03 0.03
Y 40.58 0.35 −2.22

GSM8k 33.59 B 70.57 −3.51 −14.79
S 28.13 1.35 −2.50
Y 22.92 1.53 −1.91

Hellaswag 77.30 B 51.87 −0.10 −2.27
S 8.65 1.94 −0.39
Y 68.03 −0.65 −2.92

MMLU 57.38 S 42.25 0.40 −3.03
Y 57.89 −0.33 −3.22
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