
Computer-Assisted Construction of Efficient Concurrent Algorithms

Martin Vechev, Eran Yahav, Maged Michael, Hagit Attiya, Greta Yorsh

Practical and efficient concurrent systems are notoriously hard to design, implement, and verify. As concur-
rent systems become a larger part of society’s mission-critical infrastructure, it is imperative that we raise the
level of confidence in the correctness of these systems, and that we understand the trade-offs inherent in our
algorithmic choice.

Current practices for developing concurrent systems are rather limited. Directly using low-level concurrency
constructs is the realm of experts, and is extremely error-prone. Generic higher-level constructs (e.g., transac-
tional memory) are currently limited, and are not clearly easier to use. Analytic techniques (e.g., race detection)
only address a fraction of the problems, and can only be applied after the code is written and is potentially broken
in a fundamental manner. This motivates us to explore a methodology and a tool that assist an algorithm designer
during the construction process. Our hope is that at least for specific domains it would be possible to generate
efficient provably correct concurrent systems from higher-level specifications.

A Motivating Example

Fig. 1 shows a standard sequential implementation of a set data structure. This implementation uses an underlying
singly linked-list. The list is sorted in ascending key order, and uses two sentinel nodes head (with a key value
smaller than the smallest possible key in the set) and tail (with a key value larger than the largest possible key in
the set). The set supports three operations: add, remove, and contains, with their standard meaning. All
operations use a macro LOCATE to traverse the list and locate an item based on the value of its key.

bool add(int key) {
Entry *pred,*curr,*entry;
LOCATE(pred, curr, key)
k=(curr−>key == key)
if(k) return false
entry = new Entry(key)
entry−>next = curr
pred−>next = entry
return true

}

bool remove(int key) {
Entry *pred,*curr,*r;
LOCATE(pred, curr, key)
k=(curr−>key 6= key)
if(k) return false
r = curr−>next
pred−>next = r
return true

}

bool contains(int key) {
Entry *pred,*curr;
LOCATE(pred, curr, key)
k=(curr−>key==key)
if(k) return true
if(¬k) return false

}

LOCATE(pred, curr, key) {
pred=head
curr = head−>next
while(curr−>key < key){
pred=curr
curr = curr−>next
}

}

Figure 1: A sequential implementation of a set algorithm based on a sorted singly-linked-list.

Fig. 2 shows a new concurrent set algorithm we derived (see [21] for details). In the figure, we use 〈ptr, bit〉
to denote a pair of a reference and a bit value stored in the same word (as done e.g., in [9, 17]). The first thing to
note is that the concurrent algorithm of Fig. 2 is quite distant from the sequential implementation of Fig. 1, and
in particular, uses the lower-level compare and swap (CAS) synchronization primitive. Moreover, looking at the
concurrent algorithm, it is quite challenging to understand how it works and why certain choices were made. For
example, how do we separate implementation details (such as using a CAS) from key algorithmic insights? How
does this algorithm compare to other sophisticated algorithms such as [9, 10, 17]? What are the commonalities
between these algorithms? How can the trade-offs between the algorithms be described formally? What does it
mean exactly for a concurrent algorithm to be more efficient or more concurrent than another?

1



boolean add(int key) {
Entry *pred,*curr,*entry;

restart :
LOCATE(pred, curr, key)
k=(curr−>key == key)
if(k) return false
entry = new Entry(key)
entry−>next = curr
val=CAS(&pred−>〈next, marked〉, 〈curr, 0〉, 〈entry, 0〉)
if(¬val) goto restart
return true
}

boolean remove(int key) {
Entry *pred,*curr,*r

restart :
LOCATE(pred, curr, key)
k=(curr−>key 6= key)
if(k) return false
〈r, m〉 = curr−>〈next, marked〉
lval=CAS(&curr−>〈next, marked〉, 〈r, m〉, 〈r, 1〉)
if(¬lval) goto restart
pval=CAS(&pred−>〈next, marked〉, 〈curr, 0〉, 〈r, 0〉)
if(¬pval) goto restart
return true
}

Figure 2: A concurrent set algorithm using a marked bit to mark deleted nodes. The bit is stored with the next
pointer in a single word. Synchronization is implemented using CAS. The code of contains remains as the
one of Fig. 1, does not use synchronization and does not restart. The LOCATE is the one of Fig. 1. The algorithm
assumes an automatic garbage collector.

Challenges

In the following, we describe three major challenges that we extracted from our experience with construction and
verification of efficient concurrent algorithms.

Challenge 1: Leveraging Commonalities between Algorithms
Construction and implementation: can we reuse construction steps of other algorithms in order to
create a new one? Can the construction of new algorithms be partially automated?
Verification: can we share proof effort by using the same proof steps for multiple algorithms?

The quest to find repeatable steps or a general methodology for constructing concurrent algorithms is not
a new idea. A paper by Herlihy [11] outlines a precise methodology for constructing concurrent algorithms.
Another line of work revolves around building powerful primitives. The idea being that one could use these
primitives as building blocks of more complex algorithms. An example of a primitive is a multiple-compare-
and-swap (MCAS) operation. Among others, such implementations were provided in [7, 13]. These approaches,
while providing clear primitives or steps, typically result in impractical algorithms. Another flavor of universal
constructions is Software Transactional Memory (STM), for which there are various implementation (e.g. [5,8]).

It was initially envisioned that one could convert sequential algorithms to concurrent ones by wrapping the
algorithm with a transaction. In this approach, assuming the sequential implementation is correct, the resulting
transactional implementation will be correct by construction.

Universal constructions, such as STM, trade-off efficiency for correctness. Unfortunately, in some cases
the space and time overhead incurred by these methods is unacceptable in practice. The core source of the
inefficiency of STM is that it is oblivious to the concurrent object’s specification. Without a specification, it
is necessary to be conservative and restart operations even when the concurrent execution does not violate the
underlying (missing) specification. As a result, an efficient implementation using STM often has to break an
operation into multiple fine-grained transactions, leading to the same correctness challenges as non-transactional
fine-grained implementations.

Significant efforts have been made towards proving and deriving various concurrent algorithms, e.g. [3, 4,
6, 14, 19]. However, existing derivation methodologies are geared towards reconstructing an existing algorithm
by a series of provably-correct derivation steps. The emphasis in these approaches is not on finding repeatable
derivation steps that could be used across algorithms. The fact that steps are not repeatable, together with the
intricate formal details of these methods, leads to limited adoption by algorithm designers. In fact, these methods
are mainly used as a proof methods of existing algorithms rather than as a construction method of new algorithms.

2



Challenge 2: Comparing Algorithms
Asymptotic complexity provides a natural way to compare sequential algorithms. However, for con-
current algorithms, it is not clear how they should be compared. For example, what does it mean for
one algorithm to be “more concurrent” than another?

Since we are interested in constructing efficient algorithms, it is mandatory that we formally define what does
it mean for an algorithm to be efficient, and how algorithms could be compared in terms of efficiency. Initial
studies in [1, 13] provided theoretical definitions, but it is still not clear whether these classifications are fine
enough to distinguish algorithms that exhibit significant differences in practice.

Challenge 3: Representation
How do you represent practical concurrent algorithms in a way that exposes underlying dependencies?

In our experience, one of the key challenges underlying all of these questions is the lack of a meaningful al-
gorithmic representation. Ideally, such a representation would make it easier to extract the maximal concurrency
of an algorithm and make it natural to perform transformation steps between algorithms.

The problem with representation is again a gap between theory and practice. Concurrency theory offers a
wealth of models for reasoning about concurrency: Petri nets [20], Process algebras (e.g., CCS [18], CSP [12],
ACP [2]), trace theory [16], and more. Despite (or due to?) the wide variety of theoretical models, the concurrency
model used in most widely adopted programming languages is based on the notion of threads. Threads require
the algorithm designer to explicitly reason about all possible interleavings of her program and prune invalid
interleavings by using synchronization constructs. Obtaining a correct and efficient concurrent algorithm using
this abstraction of concurrency is extremely difficult [15]. Often, the programmer is forced to manually over-
constrain the concurrency in order to make reasoning about correctness feasible. Finding a practical yet well-
founded model for representing concurrent programs is the fundamental challenge underlying all other challenges
described in this paper.

Past Experience

As a first modest step to address the aforementioned challenges, we engaged in an initial case study involving
two fundamental domains: concurrent garbage collection [22, 23] and concurrent data structures [21].

The specific challenge we tackled in these domains was: constructing algorithms with fine-grained atomic
sections while striving to find repeatable steps.

To help us address this specific challenge, we constructed a tool called PARAGLIDER for the automatic ex-
ploration of a space of concurrent algorithms. In our framework, the designer specifies a set of “building blocks”
from which algorithms can be constructed. These blocks reflect the designer’s insights about: (a) the sequen-
tial behavior of the operations, (b) the coordination metadata employed in the concurrent implementations, and
(c) the synchronization operations used to coordinate between different threads. Given a set of building blocks,
our framework automatically explores the space of algorithms, using model checking with abstraction to verify
algorithms in the space. When a full coverage of the induced space turns out to be infeasible, we expect the
designer to simplify the search.

In preliminary experiments with this approach, we found that this form of an iterative design also benefits the
designer: she can start the exploration by specifying only a few building blocks and placing severe constraints;
use our framework; study the resulting algorithm(s); detect a common pattern; and reuse our framework with a
more sophisticated input constraining our system to respect the common pattern.

Using our approach, we were able to discover new algorithms as well as reconstruct existing ones, while
separating algorithmic insights from implementation details.

Our case study sheds some light on Challenge 1. However, our current approach is limited and requires a sig-
nificant amount of human insight. We believe that a satisfactory construction methodology must first address the

3



fundamental problem of representation (Challenge 3), and the problem of expressing relationships between algo-
rithms (Challenge 2). With a suitable representation, we can re-visit the description of commonalities between
algorithms (Challenge 1).

The Road Ahead

We are still in the early days of these experimental construction approaches, but the results we obtained so far
give us hope for the future. In the immediate future, we plan on leveraging our current insights towards building
a practical tool that can assist an algorithmic designer.

References
[1] ATTIYA, H., AND DAGAN, E. Improved implementations of binary universal operations. J. ACM 48, 5 (2001), 1013–1037.

[2] BAETEN, J. C. M., AND WEIJLAND, W. P. Process algebra. Cambridge University Press, 1990.

[3] COLVIN, R., AND GROVES, L. A scalable lock-free stack algorithm and its verification. In SEFM (2007), IEEE Computer Society,
pp. 339–348.

[4] COLVIN, R., GROVES, L., LUCHANGCO, V., AND MOIR, M. Formal verification of a lazy concurrent list-based set algorithm. In
CAV (2006).

[5] DAVE DICE, O. S., AND SHAVIT, N. Transactional locking ii. In DISC (2006).

[6] FEIJEN, W. H. J., AND VAN GASTEREN, A. J. M. On a method of multiprogramming. Springer-Verlag New York, Inc., New York,
NY, USA, 1999.

[7] FRASER, K. Practical lock freedom. PhD thesis (2003).

[8] HARRIS, T., AND FRASER, K. Language support for lightweight transactions. SIGPLAN Not. 38, 11 (2003), 388–402.

[9] HARRIS, T. L. A pragmatic implementation of non-blocking linked-lists. In DISC ’01: Proc. of conf. on Distributed Computing
(London, UK, 2001), Springer, pp. 300–314.

[10] HELLER, S., HERLIHY, M., LUCHANGCO, V., MOIR, M., SCHERER, W., AND SHAVIT, N. A lazy concurrent list-based set
algorithm. In Proc. of conf. On Principles Of Distributed Systems (OPODIS 2005) (2005), pp. 3–16.

[11] HERLIHY, M. A methodology for implementing highly concurrent data objects. TOPLAS, 5 (1993).

[12] HOARE, C. A. R. Communicating sequential processes. Commun. ACM 21, 8 (1978), 666–677.

[13] ISRAELI, A., AND RAPPOPORT, L. Disjoint-access-parallel implementations of strong shared memory primitives. In PODC
(1994), ACM, pp. 151–160.

[14] JACKSON, P. B. Verifying a garbage collection algorithm. In Theorem Proving in Higher Order Logics, 11th International Confer-
ence (1998), LNCS, Springer-Verlag, pp. 225–244.

[15] LEE, E. A. The problem with threads. Computer 39, 5 (2006), 33–42.

[16] MAZURKIEWICZ, A. Concurrent program schemes and their interpretation. Tech. rep., 1977.

[17] MICHAEL, M. M. High performance dynamic lock-free hash tables and list-based sets. In SPAA (2002), pp. 73–82.

[18] MILNER, R. A Calculus of Communicating Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1982.

[19] PAVLOVIC, D., PEPPER, P., AND SMITH, D. R. Colimits for concurrent collectors. In Verification: Theory and Practice (2003),
vol. 2772 of LNCS, Springer-Verlag, pp. 568–597.

[20] REISIG, W. Petri nets: an introduction. Springer-Verlag New York, Inc., New York, NY, USA, 1985.

[21] VECHEV, M. T., AND YAHAV, E. Deriving fine-grained concurrent linearizable objects. In PLDI (2008).

[22] VECHEV, M. T., YAHAV, E., AND BACON, D. F. Correctness-preserving derivation of concurrent garbage collection algorithms.
In PLDI (2006), ACM, pp. 341–353.

[23] VECHEV, M. T., YAHAV, E., BACON, D. F., AND RINETZKY, N. CGCExplorer: a semi-automated search procedure for provably
correct concurrent collectors. In PLDI (2007), pp. 456–467.

4


