Verifying Optimistic Algorithms Should be Easy
(Position Paper)

Noam Rinetzky Martin T. Vechev Eran Yahav Greta Yorsh
Queen Mary University of London IBM T.J. Watson Researcht€en

Abstract

In this paper, we call to bridge the gap between what makdsyrigpncurrent optimistic algorithms work
and current approaches for proving their correctness.

The Problem: Verification of Optimistic Concurrent Algorit hms

Highly-concurrent optimistic algorithms are notoriousigrd to verify. In particular, verifying that an optimistic

algorithm is linearizable [3] is quite challenging. (Seqy.g[9]). Given a highly-concurrent algorithm, our goal
is to find a proof that captures its designer’s intuition ag/ty the algorithm works. We believe that simple and
intuitive proofs can, and should, be obtained by embradiegpirit in which these algorithms are written.

In this paper, we show that the intuition behind many optiimisoncurrent algorithm can be naturally cap-
tured using global invariantsi la Lamprot [4], of gparticular class: In this class, observations regarding the
local state of a thread are completely separated from oéiseng regarding either the local states of other threads
or the global state.

What Makes Highly-Concurrent Optimistic Algorithms Work? A distinguishing feature of optimistic algo-
rithms is that every thread makes very little assumptiontherenvironment in which it operates. A thread can
rely on a structural invariant of the global state, but itreatnrely on local properties of other threads. A thread
operates by checkinglacal propertyto establish the validity of an update before it takes pldde local prop-
erty concerns only its local variables and a small fractibthe global shared memory. When the local property
does not hold, indicating that the desired update might teaalviolation of the structural invariant, the thread
has the ability to “rollback” its actions, and restart theegiion. This approach allows the thread to maintain
safety under any environment (possibly by sacrificing peesg).

A Motivating Example. Fig. 1 shows an optimistic set algorithm. The algorithm ig @fithe concurrent set
algorithms derived in [10]. The code is instrumented witlemgions that manipulated the set’s abstract value.
(The instrumentation, written in italics, is explained iranple 3.)

The set is implemented as a sorted singly-linked linkedwisth designated sentinélead and Tail nodes.
The Headnode holds the smallest possible key, dencted, and theTail node holds the largest possible key,
denoted~o. For simplicity, we illustrate our approach using only twet sperationsadd andr enove, with
their standard meaning. (We note that, although omittedcavehandle theont ai ns operation). The&key
argument to these operations, supplied by the client, meustriztly larger than-oc and strictly smaller thanc.

Bothadd andr enpove use the macr@ OCATE to traverse the list and locate an item based on the value of
its key. The list traversal performed IOCATE is optimistic and is done without any form of synchronizatio

!In this paper, we use the term “global invariant” as “globdthim a the context of the algorithm”, i.e., an invariant ceming the
shared resources used to implement the verified data steyetud not as an invariant concerning the whole state.

typedef struct E boolean remove(int key) { boolean add(int key){

int key; Entry xpred xcurr xr Entry xpred xcurr ,xentry
struct E xnext; restartremove : restartadd:
boolean marked; LOCATE(pred; curr; key) LOCATE(pred; curr; key)
} Entry; atomic{ atomic{
if (curr—>key == keyX if (curr—key != key){
curr—marked := true entry := new Entry(key)
r = curr—>next entry—>next := curr
LOCATE(pred, curr, keyj b := ! pred—marked b := !pred —>marked
pred := Head if ((pred—next==curr) && b){ if ((pred—next==curr) & b){
curr := Head>next pred—>next := r res := (k € Abs)
while (curr—key < key){ res := (k € Abs) Abs = AbsuU {k}
pred :=curr Abs := Abs\ {k} pred—>next := entry
curr = curr—=>next assert (res == true) assert (res == true)
} return true return true
} } else { goto restartremove} } else { goto restartadd}
} else { return false } } else { return false }
}
} }

Figure 1: The (instrumented) code of an optimistic set im@ated using atomic sections.

OnceL OCATE finds the position for the desired update, the operatiomgitte to apply this update atomically.
For simplicity, the update is implemented using an atomatise. Note that as a result, interference can occur
during, and after, the list traversal but not during the wpda

Verification Challenges

Interference. One of the main challenges in verifying concurrent prograsrthe need to reason about inter-
ference. Interference cannot be ignored due to the matipulaf shared resources by different threads. The
challenge is to find a way to reason about interference in alsinyet useful, way. More specifically, the chal-
lenge is to find a way which allows us to make as coarse assomspéibout the environment as possible, while
still being able to successfully prove the desired propserti

Most existing approaches make in their reasoning distinstiabout the state that cannot be observed by
the executing threads. We find that as a result of this pectie proofs become less intuitive and needlessly
complicated. We believe that it is both possible and delrabavoid making such distinctions in the proofs.

Thread-Local Linearization Points. Current approaches focus on finding a linearization poinefery oper-
ation, that is, the point in which the operation “seems t@ taffect instantaneously”. This point occurs between
the time the operation is invoked and the time the operatominates. This approach yields quite natural and
simple proofs when the linearization points of an operaticsithread-local i.e., can be determined by the lo-
cal state of the thread performing the operation. (Thread!llinearization points are often referred tofiasd
linearization points). Usually, linearization points bfg kind are easy to identify and typically correspond to a
statement in the code of the operation which performs a glgidate.

Example 1 The linearization points o$uccessfuhdd andr enpve operations, i.e., operations which return
t r ue, arethread-local They can be associated with the destructive updapr efd- >next .

Thread-Global Linearization Points. The proof of linearizability becomes much more demandingmtihe
linearization points aréhread-global i.e., can be determined only be examining the local stasewdral threads
or the shared state. (Thread-global linearization poirgsadten referred to ason-fixedlinearization points).
This type of linearization points is very common in optindstoncurrent algorithms, especially in operation
which are read only.

Example 2 The linearization points afinsuccessfuhdd andr enove operations aréhread-global

The need to consider non thread-local properties in ordeletermine the linearization point of an opera-
tion is particularly frustrating when we consider the ratienpleatomicobservations and permutations that an
operation can make. Intuitively, in many cases, every atamitation done by an operation can be simulated
by an MCAS operation. Thus, although the algorithm manages to futélitask correctly using very local and
limited observations, the assertions used in a formal pregdires much stronger observational power. Indeed,
and perhaps unsurprisingly, all existing approachesifwomatic verificatiorof linearizability, e.g., [1, 2,5, 8],
are limited to verifying algorithms with fixed linearizatigpoints.

Our Goal: Simple Verification of Optimistic Concurrent Algo rithms

We believe that it is possible to simplify the verificationagitimistic concurrent algorithms by limiting the ob-
servation in the assertions to a stylized form which separtite thread-local observation from a global invariant
regarding the shared state. (These invariants are a spesialof the invariants suggested by Lamport [4]). We
suggest to overcome the challenge of verifying operatioitis tiiread-global linearization points by using non-
constructive proofs. Specificallinstead of showing the linearization points of every ogeratvhich occur in
the concurrent trace, we suggest to only show their existenc

We believe that proofs in the spirit of our approach wouldibgpger and more intuitive than existing proofs
and easier to automate. We also believe that they will pebitter insight into the way that the algorithm works,
thus allowing us to use the proofs as a way to understand tiietions of the algorithm designer.

Stable-by-Construction Global Invariants. We ensure that our assertions are stable under interfetnce
restricting them to have tweeparateparts: athread-localinvariant and gglobal invariant. The thread-local
invariant records correlation between local variablesmafle threads. Specifically, the it is not allowed to relate
the local variables of several threads or to observe anybtautert of the heap. The global invariant correlates
only relationships in the global heap. Specifically, it is nobaikd to observe any mutable part of the local state
of threads.
More technically, we require that all assertions pertajrimstatements occurrirautsideof an atomic section
be of the formi; A I,. Theglobal assertion/; is a formula over global variables and fields of objects. Teall
assertion/y, is a formula over the local variables of a thread, its progcammter, andmmutableglobal variables.
The key observation is that assertions that separate ghkbatd from thread-local states are stable under
interference. That is, the (determined) effect of exegutire operations concurrently is the same as executing
each one by itself.

Example 3 The following properties are expressible in the restri¢tech that we define and hold for the running
example. We uselbs to denote the set’s abstract value. The latter is repreddmyt¢he set of keys in the nodes
which are reachable from the head of the list. (l4&hs can be determined by a function from the current global
state. See propertys).

def

01 = Yv.n*(v,T) every node reaches tail
def .

@2 = Yv.-n™* (v, v) acyclic

03 EVk € Keys.Hk <k <T.k head and tail keys

¢4 ZVo.—vm = n*(H,v) fumble

05 = Yoy, vg.(v1.n = v9) = v1.k < vo.k sorted

06 ZVk.(k € Abs) < (Ju.n*(H,v) Av.k = k) representation

Discussion. Verification using our restricted form of invariants can bkated to the works Lamport [4], Owicki-
Gries method [6], Reynholds [7]: Following Lamport, we adate using global invariants. However, our ap-
proach can also be viewed as a special (and simple) case Oftleki-Gries method [6] in which interference-
freedom is guaranteed by the special form of the invariatse global part is (by construction) stable under
interference. The local part is also stable under intenfezeas one thread cannot modify (or even observe) the
local variables of another thread. (Specifically,the sosd proof of our approach uses Owicki-Gries method [6]
to show the absence of interference.) In addition, ourictiins on the form of the assertions can be viewed as
a way to enforce a syntactic control of interference [7].

The Road Ahead

We believe that our approach can be used to verify an entindyfaf optimistic concurrent algorithms, using no
more than the small set of invariants shown in Example 3, witbw minor adaptations. In the near future, we
plan to put this belief to the test. We note that if our belgfdaund to be correct, then our approach would have
an additional benefit by revealing hidden commonalitiesvbeh different algorithms. We havepeoof sketch
for the correctness of our approach, and we plan to comgl&igoroduce a formal proof.

Our longer term goals are (i) extend the approach to handlgre@ss properties and (ii) use our approach as a
basis for an automatic verification tool.

Acknowledgements. We are grateful for the encouragement and insights we gdioed fruitful discussions
with Peter O’Hearn.

References

[1] AmiT, D., RINETZKY, N., REPS T. W., SAGIV, M., AND YAHAV, E. Comparison under abstraction for verifying linearitigh
In Computer Aided Verificatio(007), pp. 477-490.

[2] BERDINE, J., LEV-AMI, T., MANEVICH, R., RAMALINGAM , G., AND SAGIVv, S. Thread quantification for concurrent shape
analysis. InComputer Aided Verificatio(2008), pp. 399-413.

[3] HERLIHY, M. P.,AND WING, J. M. Linearizability: a correctness condition for coreumt objectsTransactions on Programming
Languages and Systems, BX(1990).

[4] LampPoORT, L. Proving the correctness of multiprocess prografBEE Transactions on Software Engineerin®231977), 125-143.

[5] MANEVICH, R., LEV-AMI, T., SAGIV, M., RAMALINGAM , G., AND BERDINE, J. Heap decomposition for concurrent shape
analysis. InStatic Analysis Symposiuf2008), pp. 363-377.

[6] Owickl, S.,AND GRIES, D. Verifying properties of parallel programs: an axiomatpproach.Communications of the ACM 19
5 (1976), 279-285.

[7] ReyNOLDS, J. C. Syntactic control of interference. ACM Principles of Programming Languag€s978), pp. 39—-46.

[8] VAFEIADIS, V. Shape-value abstraction for verifying linearizalilitn Verification, Model Checking, and Abstract Interpretation
(2009), pp. 335-348.

[9] VAFEIADIS, V., HERLIHY, M., HOARE, T., AND SHAPIRO, M. Proving correctness of highly-concurrent linearigatibjects. In
Principles and Practice of Parallel Programmir{g006).

[10] VECHEV, M. T., AND YAHAV, E. Deriving fine-grained concurrent linearizable objettsACM Programming Languages Design
and Implementatio2008).

