Certified Defense to Image Transformations via Randomized Smoothing

Randomized Smoothing for Parametric Transformations

We generalize randomized smoothing (RS) [Cohen et al.]

\[g(x) = \arg \max_{c \in \mathbb{D}} \mathbb{P}(f(x + \epsilon) = c) \]

for classifier \(f \), noise \(\epsilon \sim \mathcal{N}(0, \sigma^2 I) \)

Then \(g(x + \delta) = g(x) \) for \(\|\delta\|_2 \leq r_\delta \).

to randomized smoothing for parametric transformations (SPT):

\[g(x) = \arg \max_{c \in \mathbb{D}} \mathbb{P}(f(\psi(\beta)(x)) = c) \]

for classifier \(f \), noise \(\beta \sim \mathcal{N}(0, \alpha^2 I) \)

Then \(g(\psi(x)) = g(x) \) for \(\|\gamma\|_2 \leq r_\gamma \).

requires \(\psi_\alpha \circ \psi_\beta = \psi_{\alpha+\beta} \)

Heuristic best effort defense

By applying SPT to image rotation we can obtain a heuristic defense as rotations don’t compose as required (discussed next). Here we show results for adversarial rotations of up to 30°. In the paper we investigate the tightness of the obtained robustness radius and find counterexamples.

Certification in the Presence of Interpolation

Over a base classifier (neural network) \(f \) we construct (via RS) a classifier \(h_E \) that is robust to the rotation error. Then via SPT we construct a classifier \(g \) that is robust to transformations (e.g., rotations).

\[\forall \beta, \gamma \in \mathbb{R} \quad \|R_{\beta+\gamma}(x) - R_\beta \circ R_\gamma(x)\|_2 \leq E \]

\[g(\cdot): f \rightarrow h_E \rightarrow \text{stop} \]

\[h_E(\cdot): f \rightarrow \text{stop} \pm \delta \|\delta\|_2 \leq E \]

Computing the error bound on the training set

We obtain an error bound \(E \) on the training set, that we expect to hold for samples from the data distribution \(D \) with probability \(q_E \). We use interval analysis over \(\gamma \) and sampling over \(\beta \) to derive a sound bound.

\[q_E := \mathbb{P}_{x \sim D} \left(\max_{\gamma \in \Gamma} \|R_{\beta+\gamma}(x) - R_\beta \circ R_\gamma(x)\|_2 \leq E \right) \]

Computing individual error bounds online

For a given possible attacked \(x' = R_\gamma(x) \) we compute \(g(x') = g(x) \), without access to \(\gamma \) and \(x \). Again we use interval analysis over \(\gamma \) and sampling over \(\beta \) to obtain the bound \(E \).

\[\max_{\gamma \in \Gamma} \|R_{\beta}(x') - R_{\beta+\gamma}(x')\|_2 \leq E \]

\[\text{certified acc.} \quad g(x') = g(x) \text{ verified} \]

<table>
<thead>
<tr>
<th>MNIST</th>
<th>0.99</th>
<th>0.78</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFAR-10</td>
<td>0.91</td>
<td>0.85</td>
</tr>
<tr>
<td>ImageNet</td>
<td>0.76</td>
<td>0.76</td>
</tr>
<tr>
<td>Restricted ImageNet</td>
<td>0.72</td>
<td>30.00*</td>
</tr>
</tbody>
</table>

In order to calculate the above expression we need to compute the inverse rotation \(R_\gamma^{-1}(x') \). We relax this into the following set parametrized by \(\Gamma \), over which we then chose the \(\gamma \) maximizing the outer expression:

\[\{R_\Gamma^{-1}(x') := \{x | R_\Gamma(x) = x', \gamma \in \Gamma\} \]

We compute an overapproximating of this set by using interval analysis to invert the interpolation algorithm and obtain a lower and upper bound for each pixel in \(x \). By repeated application we can refine the result.

References

safeai.ethz.ch github.com/eth-sri/transformation-smoothing