
Certified Defense to Image Transformations via
Randomized Smoothing

Marc Fischer, Maximilian Baader, Martin Vechev
Department of Computer Science

ETH Zurich
{marc.fischer, mbaader, martin.vechev}@inf.ethz.ch

Abstract

We extend randomized smoothing to cover parameterized transformations (e.g.,
rotations, translations) and certify robustness in the parameter space (e.g., rotation
angle). This is particularly challenging as interpolation and rounding effects mean
that image transformations do not compose, in turn preventing direct certification of
the perturbed image (unlike certification with `p norms). We address this challenge
by introducing three different kinds of defenses, each with a different guarantee
(heuristic, distributional and individual) stemming from the method used to bound
the interpolation error. Importantly, we show how individual certificates can be
obtained via either statistical error bounds or efficient online inverse computation
of the image transformation. We provide an implementation of all methods at
https://github.com/eth-sri/transformation-smoothing.

1 Introduction

Deep neural networks are vulnerable to adversarial examples [1] – small changes that preserve
semantics (e.g., `p-noise or geometric transformations such as rotations) [2], but can affect the output
of a network in undesirable ways. As a result, there has been substantial recent interest in methods
which aim to ensure the network is certifiably robust to adversarial examples [3–13].

Certification guarantees There are two principal robustness guarantees a certified defense can
provide at inference time: (i) the (standard) distributional guarantee, where a robustness score is
computed offline on the test set to be interpreted in expectation for images drawn from the data
distribution, and (ii) an individual guarantee, where a certificate is computed online for the (possibly
perturbed) input. The choice of guarantee depends on the application and regulatory constraints.

Guarantees with `p norms When considering `p norms, existing certification methods can be
directly used to obtain either of the above two guarantees: for an image x and adversarial noise
δ, ‖δ‖p < r, proving that a classifier f is r-robust around x′ := x + δ is enough to guarantee
f(x) = f(x′). That is, it suffices to prove robustness of a perturbed input in order to certify that the
perturbation did not change the classification, as the r-ball around x′ includes x.

Key challenge: guarantees for geometric perturbations Perhaps not intuitively, however, for
more complex perturbations such as geometric transformations, proving robustness around an image
x′ via existing methods (e.g., [9–12]) does not imply that f(x) = f(x′) for the original image x. To
illustrate this issue, consider the rotation Rγ , by angle γ of an image x, followed by an interpolation
I . Certifying that the classification of the rotated image x′ := I ◦Rγ(x) for ‖γ‖ < r is robust under
further rotations I ◦ Rβ for ‖β‖ < r is not sufficient to imply that x and x′ classify the same, as
rotating x′ back by β = −γ does not return the original image x due to interpolation. A central
challenge then is to develop techniques that are able to handle more involved perturbations.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/eth-sri/transformation-smoothing

Table 1: Certificates obtained by different methods.
∗ indicates deterministic certification, other meth-
ods hold with high confidence.

dist. indiv.

Composable perturbation ψ (e.g., additive `p-bound)

relaxation-based∗ [3–6] 3 3
Cohen et al. [7] 3 3

Non-composable ψ (e.g., rotation I ◦R)

INDIVSPT (3) 3

DISTSPTD 3 w.p. qE 3 w.p. qE
DISTSPTx 3 7
relaxation-based∗ [9–12] 3 7
RS-based [13, 14] 3 7

This work: certification beyond `p norms In
this work we address this challenge and intro-
duce the first certification methods for geometric
transformations based on randomized smooth-
ing (RS): we extend RS [7] to handle transfor-
mations (SPT) by adding (Gaussian) noise to
transformation parameters, enabling us to han-
dle large models and datasets (e.g., ImageNet).
Our methods, their guarantees and how they
compare to standard RS [7] (on `p norms) and
other techniques, are shown in Table 1.

BASESPT As with standard RS over `p

norms, SPT (not listed) provides individual and
distributional guarantees, but only for compos-
able parametric transformations, that is, where:
ψγ : ψβ+γ = ψγ ◦ ψβ . For non-composable ones (e.g., rotations with interpolation), BASESPT is
only a heuristic defense, motivating the need for appropriate certification methods.

INDIVSPT This method provides the strongest guarantees for non-composable transformations
and works as follows: at inference time, for each input x′, it calculates an individual upper bound of
the expression ε without access to (the original) x, then combined with SPT and smoothing. A key
step here is computing the inverse ψ−1

γ (x′) of x′, for which we introduce an efficient technique.

DISTSPT While desirable (it mimics original RS guarantees), INDIVSPT can be expensive to
apply at inference time and obtain tight certificates with. This motivates the study of more relaxed,
still useful certification guarantees, as well as corresponding methods which achieve tighter bounds
using these definitions. The idea of DISTSPT is to estimate a probabilistic upper bound for the
expression ε = ‖ψβ ◦ ψγ(x) − ψβ+γ(x)‖2, combined with SPT and RS. The first variant here is
DISTSPTD, where this upper bound is estimated offline on the training dataset and holds for all x
from the data distributionD, with probability qE . This method enjoys both probabilistic distributional
and individual guarantees. The weakening of the definition used by INDIVSPT (now probabilistic
over qE) enables the method to compute tighter bounds. The second variant, DISTSPTx, provides
weaker guarantees than DISTSPTD, with the provided bound now computed for individual x on the
test set. It obtains a distributional guarantee, however, it does not provide individual guarantees –
this restriction allows DISTSPTx to compute even tighter bounds. We remark that recent methods
targeting robustness to geometric transformations (e.g., [11, 13, 14] also fall in this class.

To summarize, our core contributions are:

• A generalization of randomized smoothing to parameterized transformations.
• A number of novel certification methods for non-composable parameterized transformations,

systematically exploring both distributional and individual guarantees while considering
deterministic and probabilistic bounds. In the process, we highlight the rich interplay
between certification definitions and tightness of the corresponding certificates.

• A thorough evaluation of all methods on common image datasets, showcasing certified
robustness to ±30◦ rotations for 50% of inputs on Restricted ImageNet.

2 Related Work

We now survey the most closely related work in neural network certification and defenses.

`p norm based certification and defenses The discovery of adversarial examples [1, 15] triggered
interest in training and certifying robust neural networks. An attempt to improve model robustness
are empirical defenses [16, 17], strategies which harden a model against an adversary. While this
may improve robustness to current adversaries, typically robustness cannot be formally verified
with current certification methods. This is because complete methods [18–20] do not scale and
incomplete methods relying on over approximation lose too much precision [3, 21, 22, 6, 10, 23],

2

even for networks trained to be amenable to certification. Recently, randomized smoothing was
introduced, which could for the first time, certify a (smoothed) classifier against norm bound `2 noise
on ImageNet [24, 25, 7, 8, 26], by relaxing exact certificates to high confidence probabilistic ones.
Smoothing scales to large models, however, it is currently limited to norm-based perturbations.

Semantic perturbations Transformations such as translations and rotations can produce adversarial
examples [2, 27]. An enumerative approach certifying against semantic perturbations was presented in
[9]. There, the search space is reduced by only consider next neighbor interpolation. Unfortunately, for
more elaborate interpolations (e.g., bilinear), the approach becomes infeasible. The first certification
against rotations with bilinear interpolations was carried out in [10], later significantly improved on
by [11]. Both methods generate linear relaxations and propagate them through the network. However,
the methods do not yet scale to large networks (i.e., ResNet-50) or complex data sets (i.e., ImageNet).
The approaches of [12] and [10] are similar for rotation. [13, 14] reduce transformations to multiple
`2-balls which they certify via RS so to obtain a certificate for the overall transformation. As outlined
in Table 1, all these methods result in a distributional but not an individual guarantee.

3 Generalization of Smoothing

A smoothed classifier g : Rm 7→ Y can be constructed out of an ordinary classifier f : Rm 7→ Y , by
calculating the most probable result of f(x + ε) where ε ∼ N (0, σ21):

g(x) := arg max
c

Pε∼N (0,σ21)(f(x + ε) = c).

One then obtains the following robustness guarantee:
Theorem 3.1 (From [7]). Suppose cA ∈ Y , pA, pB ∈ [0, 1]. If

Pε(f(x + ε) = cA) ≥ pA ≥ pB ≥ max
c6=cA

Pε(f(x + ε) = c),

then g(x + δ) = cA for all δ satisfying ‖δ‖2 ≤ σ
2 (Φ−1(pA)− Φ−1(pB)) =: rδ .

We now generalize this theorem to parameterized transformations. Consider the composable trans-
formations ψβ : Rm → Rm, satisfying ψβ ◦ ψγ = ψβ+γ for all β, γ ∈ Rd. Then we can define a
smoothed classifier g : Rm → Y analogously for a parametric transformation ψβ by

g(x) = arg max
c

Pβ ∼ N (0,σ21) (f ◦ ψβ(x) = c) . (1)

With that, we obtain the following robustness guarantee:
Theorem 3.2. Let x ∈ Rm, f : Rm → Y be a classifier and ψβ : Rm → Rm be a composable
transformation as above. If

Pβ(f ◦ ψβ(x) = cA) ≥ pA ≥ pB ≥ max
cB 6=cA

Pβ(f ◦ ψβ(x) = cB),

then g ◦ ψγ(x) = cA for all γ satisfying ‖γ‖2 ≤ σ
2 (Φ−1(pA) − Φ−1(pB)) =: rγ . Further, if g is

evaluated on a proxy classifier f ′ that behaves like f with probability 1 − ρ and else returns an
arbitrary answer, then rγ := σ

2 (Φ−1(pA − ρ)− Φ−1(pB + ρ)).

The proof is similar to the one presented in Cohen et al. [7] and is given in App. A. The key difference
is that we allow parameterized transformations ψ, while Cohen et al. [7] only allows additive noise.

4 Certification with interpolation and rounding errors

Figure 1: Rotations with inter-
polation do not compose.

We now instantiate Theorem 3.2 for parameterized geometric image
transformations Tβ , β ∈ Rd, followed by interpolation I , denoted as
T Iβ . A geometric transformation Tβ is followed by an interpolation I
in order to express the result on the pixel grid. In general, even if Tβ
composes, T Iβ does not (see Fig. 1 in the case where Tβ is a rotation
Rβ by an angle β). This prevents us from directly instantiating
Theorem 3.2 with ψβ := T Iβ .

3

To address this issue, we now show how to construct a classifier gE with the desired guarantees,
namely that gE ◦ T Iγ (x) = gE(x) for γ with ‖γ‖2 ≤ rγ , thus enabling certification of image
transformations (which may not compose). Our proposed construction consists of two steps.

First, for a fixed but arbitrary x, let hE be a classifier satisfying interpolation invariance:

hE ◦ T Iβ ◦ T Iγ (x) = hE ◦ T Iβ+γ(x) ∀β, γ ∈ Rd. (2)

We now instantiate Theorem 3.2 with f := hE ◦ I and ψβ := Tβ , obtaining a smoothed classifier
gE(x) := arg maxc Pβ ∼ N (0,σ21) (hE ◦ I ◦ Tβ(x) = c) , such that gE ◦ Tγ(x) = cA = gE(x) for
γ with ‖γ‖2 ≤ rγ by Theorem 3.2. Further, since

gE ◦ Tγ(x) = arg max
c

Pβ ∼ N (0,σ21) (hE ◦ I ◦ Tβ ◦ Tγ(x) = c)

= arg max
c

Pβ ∼ N (0,σ21)

(
hE ◦ T Iβ ◦ T Iγ (x) = c

)
= gE ◦ T Iγ (x),

where the first and last equities hold by the definition of gE and the second one due to Eq. (2). Thus,
we obtain a classifier gE with the desired property.

Second, we discuss the construction of the desired hE (from step 1). Consider the interpolation error

ε(β, γ,x) := T Iβ ◦ T Iγ (x)− T Iβ+γ(x), (3)

bounded by E ∈ R≥0 s.t. ∀β, γ ∈ Rd. ‖ε(β, γ,x)‖2 ≤ E (4)

for a given but arbitrary x. Thus if hE is `2-robust with radius E around T Iβ+γ(x), interpolation
invariance holds. While many choices for such hE are possible in the rest of the paper we instantiate
hE by applying Theorem 3.1 to a base classifier b.

Obtaining probabilistic guarantees from Theorem 3.2 So far we assumed that x is arbitrary but
fixed and constructed E and hE for this x specifically. In general, finding a tight deterministic bound
E that holds ∀β, γ is computationally challenging. Thus, we relax this deterministic guarantee into a
probabilistic one:

Pβ∼N (0,σ21) (‖ε(β, γ,x)‖2 ≤ E) ≥ 1− ρE ∀γ ∈ Rd. (5)

meaning Eq. (4) holds with probability at least 1 − ρE , in turn implying that Eq. (2) also holds at
least with probability 1 − ρE . This can also be formulated as having a proxy classifier h′E which
behaves like hE with probability at least 1− ρE on the inputs specified by Eq. (2). In practice, we
construct h′E which behaves like hE with probability at least 1 − ρE on all inputs, implying this
behavior on the inputs from Eq. (2). From h′E , we then obtain f ′ := h′E ◦ I which behaves like f
with probability at least 1− ρE on all inputs. Then, we can apply Theorem 3.2 by setting ρ to ρE and
obtain the desired guarantee. In Section 5, we show how to obtain E for DISTSPT and INDIVSPT.

5 Calculation of error bounds

In Section 5.1 we derive a distributional error bound over a dataset and in Section 5.2 a per-image
bound. Throughout this section, we assume the attacker model γ ∈ Γ ⊆ Rd. As we compute E with
this assumption, our obtained certificate proves robustness of gE to T Iγ for γ ∈ Γ with ‖γ‖2 ≤ rγ .

5.1 Distributional bounds for DISTSPT

For a fixed E ∈ R≥0, ρE ∈ [0, 1], the probability that ε is bounded by E for x ∼ D is

qE := Px∼D(Pβ∼N (0,σ21)(max
γ∈Γ
‖ε(β, γ,x)‖2 ≤ E) ≥ 1− ρE). (6)

In practice, for DISTSPTD we evaluate qE by sampling x and counting how often the inner property
holds. We compute the inner probability by: (i) sampling multiple realizations of β, (ii) computing
their corresponding error ε and checking how many are successfully bounded byE, and (iii) bounding
the inner probability using Clopper-Pearson. If this lower bound is larger than 1− ρE we count this

4

as a positive sample, else a negative one. Once these counts are obtained for a number of sampled
points x, we can apply Clopper-Pearson and obtain a lower bound qE with the desired confidence.
For DISTSPTx only the inner probability needs to be computed for an individual image x. Formally
this can be seen as considering the data distribution D that just contains x (thus qE = 1).

To compute the maximization over γ we employ standard interval analysis, which allows us to
efficiently propagate lower and upper bounds [28]. By propagating the hyperrectangle containing
Γ along with the sampled β and x, we eventually obtain a lower and upper bound for the norm
calculation of which we take the maximum:

max
γ∈Γ
‖ε(β, γ,x)‖2 ≤ max ‖T Iβ ◦ T IΓ(x)− T Iβ+Γ(x)‖2. (7)

The result can be refined by splitting the hyperrectangle Γ into smaller hyperrectangles Γk for
k ∈ {0, . . . , N}. The refined bound is

max
γ∈Γ
‖ε(β, γ,x)‖2 ≤ max

k∈{0,...,N}
max ‖T Iβ ◦ T IΓk(x)− T Iβ+Γk

(x)‖2. (8)

To obtain E in the first place, we perform the same sampling operations as above (sample x and
β) but do not compute any probabilities, that is, for each sample (x, β), we simply keep the values
attained by Eq. (8).

For DISTSPTD we pick an E that bounds many of these values, choosing ρE to be small. Once E is
obtained, we compute qE as described above. Instantiating the construction of Section 4 with this E
yields the guarantee that for a random image x ∼ D the guarantees provided by Theorem 3.2 hold
with probability qE .

For DISTSPTx, after we determine a suitable E for the given x we can determine ρE .

5.2 Individual bounds for INDIVSPT

At inference time, we are given x′ := T Iγ (x) but neither the original x nor the parameter γ ∈ Γ,
and we would like to certify that gE(x′) = gE(x). When ψβ composes as required in Section 3,
this can be certified by showing g is robust with a sufficient radius rγ . However, when ψβ does not
compose, this can be accomplished by applying Theorem 3.2 to show gE(x) is robust with radius rγ
that includes Γ. In turn, this requires a bound E (see Eq. (5)) for x (rather than x′):

Pβ∼N (0,σ21)

(
max
γ∈Γ
‖ε(β, γ,x)‖2 ≤ E

)
≥ 1− ρE . (9)

Now, we would like to compute an upper bound on the max term without having access to x. This is
accomplished as follows: First, in the above equation, we replace ε by its definition (Eq. (3)) and
T Iγ (x) by x′. We then replace x with a symbolic set of possible inputs that could have generated x′,
denoted as (T IΓ)−1(x′) := {x ∈ Rm | T Iγ (x) = x′, γ ∈ Γ} which we can use instead of x due to
the maximization over γ. As in Section 5.1, we obtain the resulting bound via interval analysis:

max
γ∈Γ
‖ε(β, γ,x)‖2 ≤ max ‖T Iβ (x′)− T Iβ+Γ ◦ (T IΓ)−1(x′)‖2. (10)

The computation of the inverse (T IΓ)−1(x′) is explained in Section 6. By substituting Eq. (10) in
Eq. (9) we can obtain and verify E as in Section 5.1 (except we do not need to sample x’s). As before,
we can refine the upper bound of Eq. (10) by splitting Γ into Γk. We note as the inverse does not
depend on β, given x′, it only needs to be computed once and can be reused whenever we evaluate
Eq. (10) for a given sample β.

6 Inverse Computation

We now discuss how to obtain a set containing all possible inverse images. That is, given x′ := T Iγ (x)

and γ ∈ Γ, we compute the set (T IΓ)−1(x′) which contains all possible x. First, we cover the
necessary background. To ease presentation, we assume even image height and width. We embed the
images in R2 by centering them at 0 on an odd integer grid G := (2Z + 1)× (2Z + 1) and centered
at 0. We denote the value of a pixel at (i, j) ∈ G by pi,j ∈ [0, 1].

5

(a) Rotated (b) Inverse (c) 10× refined inverse (d) Original

Figure 2: Over approximation of the inverse image. The image pairs (b) and (c) depict the lower (left)
and upper (right) interval pixel bounds for the inverse image and the 10× refined image respectively.

Transformations The pixel values p′i′,j′ for (i′, j′) ∈ G of an image, produced by a transformation
Tγ : R2 → R2 with parameter γ ∈ Rd, is calculated by interpolating at the inversely transformed
coordinate T−1

γ (i′, j′), followed by the interpolation I resulting in p′i′,j′ = I ◦ T−1
γ (i′, j′).

Bilinear interpolation A prominent interpolation is bilinear interpolation, given by

I(x, y) = pv,w
2+v−x

2
2+w−y

2 +pv,w+2
2+v−x

2
y−w

2 +pv+2,w
x−v

2
2+w−y

2 +pv+2,w+2
x−v

2
y−w

2 , (11)

where (v, w) ∈ G is the coordinate such that (x, y) lies in the (v, w)-interpolation region, that is
(x, y) ∈ [v, v + 2]× [w,w + 2]. We use v and w as grid indices in the context of the interpolation I .
If pv,w has no defined value because (v, w) is out of range for the image, we set pv,w to 0.

We start by giving a procedure to calculate constraints of a single pixel (i, j) for a single color
channel, after which we present an iterative procedure to refine that constraint. The inverse image is
then obtained by following this procedure for every pixel in every color channel. We illustrate the
steps in Section 6.1 using the example of a rotated image x′ (Fig. 2a).

The attacker transformed the original image x (Fig. 2d) using T Iγ for γ ∈ Γ and therefore obtained the
pixel values p′i′,j′ of the transformed image x′ by evaluating p′i′,j′ = I◦T−1

γ (i′, j′). The interpolation
I uses the pixel values pi,j of x. The following steps invert this relation for every coordinate (i, j):

Step 1 For every (i′, j′) ∈ G, we over-approximate the region the pixel value p′i′,j′ could have
been interpolated from, which is ci′,j′ := T−1

Γ (i′, j′), C := {ci′,j′ | (i′, j′) ∈ G}. In practice, only a
finite subset of C is used. In App. B, we show how to calculate this subset efficiently.

Step 2 The interpolation I is defined piecewise per (v, w)-interpolation region [v, v+2]×[w,w+2],
so the algebraic form of I , Eq. (11) holds for each interpolation region separately. For every
interpolation region cornering (i, j) that ci′,j′ intersects with, the pixel value p′i′,j′ yields constraints
for value pi,j . Here, we describe just the constraint qi,j associated with the (i, j)-interpolation region;
others ((i− 2, j − 2), (i− 2, j), (i, j − 2)) work analogously. First, for every ci′,j′ ∈ C we calculate
its intersection with the (i, j)-interpolation region, yielding

[xl, xu]× [yl, yu] := ci′,j′ ∩ [i, i+ 2]× [j, j + 2].

We can plug this into the interpolation I , where we instantiate (v, w)← (i, j), resulting into

p′i′,j′ ∈ I([xl, xu], [yl, yu]) = pi,j
2+i−[xl,xu]

2
2+j−[yl,yu]

2 + pi,j+2
2+i−[xl,xu]

2
[yl,yu]−j

2

+ pi+2,j
[xl,xu]−i

2
2+j−[yl,yu]

2 + pi+2,j+2
[xl,xu]−i

2
[yl,yu]−j

2 .
(12)

Next, we solve for the pixel value of interest pi,j . Then, we replace all other three pixel values pi,j+2,
pi+2,j , and pi+2,j+2 with the (trivial) [0, 1] constraint, covering all possible pixel values. While this
results into sound constraints for pi,j , instantiating [xl, xu] and [yl, yu] with its corner (x, y) furthest
from (i, j), yields still a sound but more precise constraint qi,j for pi,j . Here, this amounts to x← xu
and y ← yu. App. B presents a detailed explanation of the derivation. The result is

qi,j =
[
p′i′,j′ −

(
2+i−xu

2
yu−j

2 + xu−i
2

2+j−yu
2 + xu−i

2
yu−j

2

)
, p′i′,j′

] (
2+i−xu

2
2+j−yu

2

)−1
.

Step 3 In order to be sound, we need to take the union over qi−2,j−2, qi−2,j , qi,j−2, qi,j for each
ci′,j′ . To gain precision, we can intersect all of those unions and finally, we can intersect this
constraint with the trivial one, [0, 1], resulting in the final pixel constraint for pixel pi,j :

pi,j ∈ [0, 1] ∩
(⋂
ci′,j′∈C

qi−2,j−2(ci′,j′) t qi,j−2(ci′,j′) t qi−2,j(ci′,j′) t qi,j(ci′,j′)
)
, (13)

6

where t denotes the join operation, that is [a, b] t [c, d] := [min(a, c),max(b, d)]. If the intersection
of ci′,j′ with the respective (v, w)-interpolation region is empty, we omit qv,w in Eq. (13).

In Section 5.2, we split Γ into Γk. It often happens that one of the resulting intervals is empty. Then
we know for sure that γ lies in a different Γk, speeding up the process substantially.

Refined Inverse The constraints can be refined by following the same steps as for calculating
the inverse, but instead of replacing the (unknown) pixel values in Eq. (12) with [0, 1], we replace
them with the intervals calculated previously. However, replacing [xl, xu]× [yl, yu] with the corner
furthest away from (i, j) would be unsound. To be sound, one needs to consider all 4 corners of
every non-empty intersection [xl, xu]× [yl, yu] and join all interval constraints. Similarly, we use the
previously calculated constraint for pi,j instead of [0, 1] in Eq. (13). This procedure can be repeated
to further increase precision. The final result after applying the refinement 10 times is shown in
Fig. 2c representing the lower (left) and upper (right) interval bound for all pixels.

6.1 Example

1 3 5

1

3

5

(a) c5,1

1 3 5

1

3

5

(b) Intersections

Figure 3: To improve presenta-
tion, the red arc is 3× longer.

We calculate the constraint for pixel (3, 3) of the original image
(Fig. 2d), depicted as the green dot in Fig. 3 under the assumption
γ ∈ [23◦, 26◦]. We elaborate the constraints that pixel (5, 1) of the
rotated image (Fig. 2a) yields for pixel (3, 3) of the original image.

Step 1 We illustrate the calculation of the set C for c5,1 :=

R−1
[23◦,26◦] (5

1) =
(

[4.06,4.21]
[2.85,3.11]

)
. The result is depicted as the green

box in Fig. 3a enclosing the red arc. The red arc shows the precise set of coordinates where the pixel
value p′5,1 could have been interpolated from the original image x.

Step 2 The only non-empty intersections of c5,1 with interpolation regions (blue squares in Fig. 3),
cornering (3, 3) are the (3, 1) and the (3, 3)-interpolation regions, hence we omit q1,1 and q1,3. The
intersection with the (3, 3)-interpolation region yields [xl, xu] = [4.06, 4.21] and [yl, yu] = [3, 3.11]
(dark brown rectangle in Fig. 3b), hence at the furthest corner (x, y) = (4.21, 3.11), we get

q3,3 = [0.73, 2.48] =
[
p′5,1 −

(
5−x

2
y−3

2 + x−3
2

5−y
2 + x−3

2
y−3

2

)
, p′5,1

]
(5−x

2
5−y

2)−1,

and the intersection with the (3, 1)-interpolation region yields [xl, xu] = [4.06, 4.21] and [yl, yu] =
[2.85, 3] (light brown rectangle in Fig. 3b), hence at the furthest corner (x, y) = (4.21, 2.85), we get

q3,1 = [0.72, 2.48] =
[
p′5,1 −

(
5−x

2
3−y

2 + x−3
2

3−y
2 + x−3

2
y−1

2

)
, p′5,1

] (
5−x

2
y−1

2

)−1
.

Step 3 The join q3,1 t q3,3 yields [0.72, 2.48]. After intersecting this with [0, 1] and the constraints
from the other ci′,j′ ∈ C (as in Eq. (13)), we are left with the final result p3,3 ∈ [0.73, 1].

The final result of the inverse calculation for all pixels is shown in Fig. 2b representing the lower
(left) and upper (right) interval bounds for all pixels. The iterative refinement is shown in Fig. 2c.

7 Experimental Evaluation

We now present our extensive evaluation of the different defenses discussed so far.

7.1 Instantiation in Practice

In Section 4 we showed how to certify robustness of gE to T Iγ , obtained from Eq. (1) with f := hE ◦I
and ψβ := Tβ . Since in practice hE ◦ I and Tβ cannot be evaluated as I and Tβ are not available
independently, in order to evaluate gE in practice, we need to re-write it as follows:

gE(x) = arg max
c

Pβ ∼ N (0,σ21) ((hE ◦ I) ◦ Tβ(x) = c)

= arg max
c

Pβ ∼ N (0,σ21) (hE ◦ (I ◦ Tβ)(x) = c) =: g(x),

7

which is an instantiation of Eq. (1) with f := hE and ψβ := T Iβ , both of which are available.

Further, as the probability in Eq. (1) cannot be computed exactly, in practice we use the approximation
introduced in Cohen et al. [7]: by taking n samples around a given x with standard deviation σ, we
can obtain g(x) and the corresponding robustness radius r with confidence 1− α. Here, n can be too
small to make a statement with confidence 1−α, in which case the classifier abstains. Further, we let
σγ , αγ , nγ , rγ and σδ, αδ, nδ, rδ denote the parameters and radius required to use Theorem 3.2 and
Theorem 3.1 in practice, respectively. Statistically sound certification as in Cohen et al. [7] requires
to fist take n0 many samples fist and guessing the correct class on them. In our case we apply both
T Iβ and additive noise ε to these n0 samples.

7.2 Setup

All experiments were performed on a machine with 2 GeForce RTX 2080 Tis and an Intel(R)
Core(TM) i9-9900K CPU. As base classifiers b we utilize neural networks in PyTorch [29], using
robustness [30] and Salman et al. [8] for training. Further, we implemented the interval analysis (cf.
§5 and §6) of the interpolation error and inverse computation in C++/CUDA.

We consider rotations RIγ by γ degrees and translations ∆I
γ by γ ∈ R2 with bilinear interpolation I .

Here, we allow the adversary to choose γ ∈ Γ. For a scalar Γ± ∈ R≥0, we permit Γ := [−Γ±,Γ±]
for rotations and Γ := [−Γ±,Γ±]2 for translations. All estimates of E include interpolation errors as
well as 8-bit representation (“rounding”) errors. When we estimate ρE with confidence αE .

We evaluate on ImageNet [31], Restricted ImageNet (RImageNet)[32], a subset of ImageNet with
10 classes, CIFAR-10 [33], and MNIST [34]. For the base classifier, in Section 7.3 we use standard
models without any additional training, while in the other sections we use models trained with data
augmentation (transformations, `2-noise) using [8].

In §7.4 and §7.5, we apply a circular or rectangular vignette for rotation and translation respectively,
to reduce error estimates in areas of the image where information is lost. We also apply a Gaussian
blur prior to classification to further reduce the high-frequency components of the interpolation
error. App. D contains further details on prepossessing, model training and parameters. Note that
pre-processing does not impact the theoretical guarantees as long as it is consistently applied. We
provide an ablation study regarding vignetting and Gaussian blur in App. F. Additional experiments,
including other interpolation methods or audio classification are provided in App. E, highlighting
the generality of our methods. Throughout the section all individual certificates hold with overall
confidence 1− α for α = 0.01.

7.3 BASESPT

Table 2: Evaluation of BASESPT. We obtain Acc
for b on the test set and evaluate adv. Acc. on
3000 images obtained by the worst-of-100 attack.
t denotes the average run time of g.

Acc. adv. Acc.

Dataset T I Γ± b b g t [s]

MNIST RI 30◦ 0.99 0.73 0.99 0.97
CIFAR-10 RI 30◦ 0.91 0.26 0.85 0.95
ImageNet RI 30◦ 0.76 0.56 0.76 5.43

MNIST ∆I 4 0.99 0.03 0.53 0.86
CIFAR-10 ∆I 4 0.91 0.44 0.79 0.95
ImageNet ∆I 20 0.76 0.65 0.75 6.70

We can quickly obtain a well-motivated but em-
pirical defense by instantiating Theorem 3.2
with ψβ := T Iβ and ignoring both the interpo-
lation error Eq. (3) and the construction in Sec-
tion 4. Table 2 shows results on an undefended
classifier b and the BASESPT smoothed version
g. Here Acc. is obtained over the whole dataset.
To evaluate adv. Acc. we use the worst-of-k
proposed by Engstrom et al. [2], which returns
the γ yielding the highest cross-entropy loss out
of k randomly sampled γ ∼ U(Γ). We apply
worst-of-k to 1000 images and produce 3 at-
tacked images each, resulting 3000 samples on
which we then evaluate b and g. For g, the av-
erage inference time per image t is generally
fast, where most time is spent on sampling transformations. The actual inference, invoking b on
the samples, is not slowed down as all samples fit into a single batch. In this section we use
nγ = 1000, σγ = Γ±. and αγ = 0.01.

We do not obtain certificates here as the assumptions of Theorem 3.2 are violated. However, we
investigate in App. E if the certification radius holds practically.

8

Table 3: Evaluation of DISTSPTD for T I := RI . We show the test set accuracy of b, certified
accuracy of g at different radii rγ , along with the average run time t. # denotes values obtained by
sampling. Each certificate hold with overall confidence 0.99.

g cert. acc at rγ

Dataset E qE b acc. 0◦ 10◦ 20◦ 30◦ t [s] nγ

MNIST 0.45 0.99 0.98 0.89 0.88 0.87 0.85 21.56 200
CIFAR-10 0.55 0.99 0.56 0.31 0.28 0.25 0.19 89.75 50
CIFAR-10 0.55 0.99 0.56 0.32 0.30 0.28 0.25 351.47 200
RImageNet 1.20# 0.97 0.78 0.74 0.72 0.68 0.61 100.73 50
RImageNet 1.35# 0.99 0.78 0.64 0.62 0.56 0.50 100.13 50
ImageNet 0.95# 0.75 0.38 0.30 0.24 0.18 0.12 100.21 50
ImageNet 1.20# 0.97 0.38 0.23 0.19 0.13 0.09 100.73 50
ImageNet 1.35# 0.99 0.38 0.16 0.12 0.08 0.06 100.44 50

7.4 DISTSPT 1

Here we evaluate DISTSPTD and DISTSPTx and compare with related approaches.

DISTSPTD First we consider DISTSPTD, where E is obtained over the training set and expected
to hold in distribution as discussed in Section 5.1. This allows to run both prediction, where the
robust accuracy shown here can be expected to hold in distribution, as well as certification (e.g. to
show g(x) = g(x′)) at inference time.

Table 3 shows our results for DISTSPTD with rotations. We restrict the attacker model to Γ± = 90◦

for MNIST and Γ± = 30◦ for other datasets.

To obtain E, we first sample the interpolation error in Eq. (7) (using 1000 images). Subsequently,
we choose E slightly larger than this error. With E fixed, we test for ρE = 0.001 and expect qE to
be close to 1 for all datasets. Table 3 shows qE obtained with confidence 1− αE = 0.999 by using
1000 samples for x and 8000 for β (and correction for possible test errors over β). For small images,
these bounds can be computed quickly. However, for large images (ImageNet), the optimization over
γ for many images is computationally expensive. Thus, for ImageNet we replace the max in Eq. (6)
with the maximum over 10 samples γ ∈ U(Γ) (indicated by # in Table 3). This formally restricts
the certificate to only hold against random attacks (such as worst-of-10). However, if sufficient
computational resources are available, the max method can still be applied (we empirically find the
method to obtain similar values). On (R)ImageNet (variable image size) we resize all images so that
the short side is 512 pixel prior to applying transformations. As RImageNet is a subset of ImageNet,
we use E obtained on the later.

Now, we evaluate the accuracy of b and g. For b we use the whole test set, while for g we use 1000
samples. In addition to the results in Table 3, at rγ = 50, the MNIST g in this configuration still
achieves 0.75 certified accuracy. Comparing the results on ImageNet and RImageNet shows that the
limiting factor for our method is the robustness of the base classifier, not the size of the image.

We use σγ = 30 for all datasets and σδ = 0.25, nδ = 10000, n0 = 10000 for MNIST, σδ =
0.3, nδ = 15000, n0 = 10000 for CIFAR-10 and σδ = 0.5, nδ = 2500, n0 = 200 for (R)ImageNet
in all but the E = 1.35 setting where we use σδ = 0.55. We use αγ = 0.005− αE and αδ = 0.005

nγ
,

such that the overall confidence for each certificate is 0.99. We expect these results to hold in
distribution for at least qE percent of data points.

To showcase that DISTSPTD can be applied as an online defense to obtain individual certificates
g(x) = g(x′), we also evaluate on attacked images. Using the same settings as above we can certify
for 91 out of 100 MNIST images, adversarially rotated with Γ± = 30, that they are classified the
same as the original, while also being correct.

1The results in §7.4 and §7.5 differ from those in the version published at NeurIPS’20 due to an imple-
mentation bug we since fixed. Further, we improved readability and provide additional results enable better
comparison. A version of Table 3 in the original layout can be found in App. E.3.

9

Table 4: Evaluation of DISTSPTx for T I := RI . We show the test set certified accuracy of g at
different radii rγ , along with the average E estimated, the average time tE to estimate E and average
time tRS to apply randomized smoothing. # denotes values obtained by sampling. ∗ we use a server
with 128 threads on an AMD EPYC 7601 processor, on the same system as the other results these
take 766 s. Each certificate hold with overall confidence 0.99.

g cert. acc at rγ

Dataset Γ± σγ 0◦ 10◦ 20◦ 30◦ 50◦ avg. E tE [s] tRS [s] nγ

MNIST 50◦ 30 0.93 0.92 0.91 0.90 0.82 0.34 53.33 20.56 200
CIFAR-10 30◦ 40 0.35 0.30 0.27 0.22 - 0.34 81.83 91.72 50
CIFAR-10 10◦ 10 0.43 0.37 - - - 0.34 51.12 92.83 50
ImageNet 30◦ 30 0.31 0.25 0.17 0.11 - 0.86# 73.58∗ 100.47 50
ImageNet 30◦ 30 0.32 0.29 0.22 0.16 - 0.86# 73.58∗ 396.50 200

Finally, we evaluate translations on MNIST (E = 0.65, ρE = 0.99, Γ± = 2) and achieve certified
accuracy 64% and 49% at rγ of 0 and

√
2, respectively. We use σγ = 1.5, σδ = 0.25, nγ = 200 and

the other parameters as for rotation.

DISTSPTx We now evaluate DISTSPTx. Here, we certify a classifier g (for a fixed b, σγ , σε)
on the test set. At inference time we just predict new samples and expect the obtained robustness
certificates to hold in distribution. We show the certification results in Table 4.

To this end, it is sufficient to obtain E, ρE (as in Eq. (6)) for each individual image x rather than for
the whole data distribution. Naturally, these individual bounds are much lower than E obtained over
the data distribution, allowing for better accuracy.

On MNIST and CIFAR-10, for each image x we use 100 samples of β (optimizing over γ) to guess
E as 1.1 times the largest observed error. Then, we use another 400 samples of β to test for ρE with
αE = 0.001. On ImageNet we use the same procedure but chose E as the largest observed error over
240 samples of β plus 0.03. As for DISTSPTD, we use sampling to approximate the maximization.
When optimizing for E we stop either when the highest bound for any β is 0.3 or after a timeout of 2
minutes. Varying these parameters may allow for an even lower E at the cost of more run time.

For translation (σγ = 0.25, nγ = 200,Γ± = 2, σγ = 2.5) we use the same setup but optimize until
the maximal error is lower than 0.55 or a timeout of 2 minutes is reached. We choose E as the
maximal error over the first 100 images plus 0.02. With an average E of 0.56, we obtain a certified
accuracy of 0.89, 0.86, 0.85 and 0.82 at radii rγ of 0, 1,

√
2, and 2, respectively. The average analysis

took 62.22s and certification 19.33s. We note that in general DISTSPTD results are a lower bound
for the results of DISTSPTx. In theory, DISTSPTD can perform better if ρE is lower (e.g. when
more samples are used). However, in practice this is offset by the tighter error bound. We see that the
average E is much lower than the upper bound used in DISTSPTD, allowing better results.

Unless stated differently in Table 4, we use the same parameters as for DISTSPTD, with the exception
of σδ where we use 0.15, 0.20, 0.18, 0.50, 0.40 for the order as in Table 4. As before, all certificates
hold with confidence 0.99 as αγ = 0.005− αE and αδ = 0.005

nγ
.

Comparison to other work Related approaches, Balunovic et al. [11], Li et al. [13], provide
distribution certificates, e.g., they certify images on the test set and the obtained certified accuracy
can then be expected to hold for new, potentially perturbed images. However, it is not possible to
certify novel inputs – this is the same setting as with DISTSPTx. Balunovic et al. [11] certifies model
accuracy on the test set and thus provides a distributional bound. On MNIST they report 87.01% of
certified accuracy for rotations with ±30◦ (35s per image), which with further refinement (at cost of
run time) can be increased to 97%, and for translations with ±2 pixels 76.30% (263s per image). On
CIFAR-10 they certify rotation up to 10◦ for 62.51%, but unlike our work, the method does not scale
to larger image sizes and models, such as ResNet-50 on ImageNet. We provide further comparison
with Balunovic et al. [11] in App. F. For a comparison with [13, 14], we refer the reader to that work.
Pei et al. [9] certify ±2◦ in 714 s per image on ImageNet. However, in contrast to us they focus on
nearest-neighbor interpolation, which can be enumerated.

10

7.5 INDIVSPT 1

Finally, we evaluate INDIVSPT, where we compute E on the given input. The bound computed
by interval analysis is always sound, but may be quite large due to the loss of precision inherent in
interval analysis. We show results for MNIST and discuss challenges on larger datasets in App. C.
To this end, we attack images as in Section 7.3, and subsequently apply INDIVSPT. We use the
worst-of-100 attack on a base classifier b to obtain a set of attacked images. To these images we then
apply INDIVSPT. For rotations (Γ± = 10, σγ = 30, σδ = 0.3, nγ = 200, nδ = 10000, n0 = 10000,
3 attacks per image, 1000 images) we fix E = 0.45 and use 500 samples of β to obtain the correct
ρE (Eq. (9)) with αE = 0.001. g was correct on 82% of attacked images. For 81% we could
certify that the attacked image that classifies the same as the original. The analysis of E took
on average 0.26 s and the randomized smoothing 25.03 s. For translation we use the same setup
(Γ± = 1, σγ = 1.5, σδ = 0.3, nγ = 200, 3 attacks per image, 100 images) also starting with
E = 0.45. g classified 75% of attacked images correctly and could certify rγ ≥ 1 and thereby
g(x) = g(x′) on 59% while on average taking 14.14 s for analysis and 19.89 s for smoothing per
image. The reason for the higher run time is that compared to rotation fewer possible inverses can be
discarded. We use 10 refinement steps for both rotations and translations.

7.6 Limitations & Generalization

While we showcased translation and rotation, our approach is not limited to these transformations
or to specific interpolation methods. BASESPT and DISTSPT can be directly adapted to other
transformations, interpolation schemes or domains such as audio (see App. E). INDIVSPT can also
be adapted but requires additional care. Generally, Theorem 3.2 can be applied to all parameterized
data transformations that are additive in the parameter space. If this holds up to a small error, as
discussed here, DISTSPT and INDIVSPT can be applied. While many data transformations, e.g.,
image scaling are additive in their parameter space, their compositions are often not (e.g., rotation
and translation). As we are most limited by the `p-robustness of b, any gains in `p certification will
directly improve our method. Further, INDIVSPT can incur a large loss of precision in the inverse
computation. Improving this directly increases the applicability of the method.

8 Conclusion

We presented the first generalization of randomized smoothing to image transformations, a challenging
task as image transformations do not compose. Based on this generalization, we presented several
certified defenses allowing for both distributional and individual guarantees (relying on statistical error
bounds or on efficient inverse computation). Our exploration highlights interesting trade-offs between
certification guarantees and tightness of the resulting bounds. Finally, our extensive evaluation
demonstrates the methods can handle realistic datasets and models.

9 Broader Impact

In general, methods from artificial intelligence can be applied in beneficial and malicious ways. While
this poses a threat in itself, verification techniques provide formal guarantees for the robustness of the
model, independently of the intended use case. Certification techniques could therefore distinguish
a potentially unstable model from a stable one in safety critical settings, e.g., autonomous driving.
However, especially for regulators, it is of utter importance to understand the certified properties
of different certification methods precisely, as to avoid legal model deployment in safety critical
applications based on misconceptions.

Acknowledgments and Disclosure of Funding

We thank the authors of [13], in particular Maurice Weber and Linyi Li, for insightful discussion and
pointing out an implementation bug. Further, we thank all reviewers for their helpful comments and
feedback.

We do not have any additional funding or compensation to disclose.

11

References
[1] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J.

Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In Yoshua Bengio
and Yann LeCun, editors, 2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL
http://arxiv.org/abs/1312.6199.

[2] Logan Engstrom, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. A rotation and a
translation suffice: Fooling cnns with simple transformations. CoRR, abs/1712.02779, 2017.
URL http://arxiv.org/abs/1712.02779.

[3] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and
Martin T. Vechev. AI2: safety and robustness certification of neural networks with abstract
interpretation. In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23
May 2018, San Francisco, California, USA, pages 3–18. IEEE Computer Society, 2018. doi:
10.1109/SP.2018.00058. URL https://doi.org/10.1109/SP.2018.00058.

[4] Matthew Mirman, Timon Gehr, and Martin T. Vechev. Differentiable abstract interpreta-
tion for provably robust neural networks. In Jennifer G. Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 3575–3583. PMLR, 2018. URL http://proceedings.mlr.press/
v80/mirman18b.html.

[5] Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via the convex
outer adversarial polytope. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research,
pages 5283–5292. PMLR, 2018. URL http://proceedings.mlr.press/v80/wong18a.html.

[6] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Semidefinite relaxations for
certifying robustness to adversarial examples. In Samy Bengio, Hanna M. Wallach,
Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, ed-
itors, Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada., pages 10900–10910, 2018. URL http://papers.nips.cc/paper/
8285-semidefinite-relaxations-for-certifying-robustness-to-adversarial-examples.

[7] Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified adversarial robustness via
randomized smoothing. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pages
1310–1320. PMLR, 2019. URL http://proceedings.mlr.press/v97/cohen19c.html.

[8] Hadi Salman, Greg Yang, Jerry Li, Pengchuan Zhang, Huan Zhang, Ilya P. Razenshteyn, and
Sébastien Bubeck. Provably robust deep learning via adversarially trained smoothed classifiers.
CoRR, abs/1906.04584, 2019. URL http://arxiv.org/abs/1906.04584.

[9] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Towards practical verification of
machine learning: The case of computer vision systems. CoRR, abs/1712.01785, 2017. URL
http://arxiv.org/abs/1712.01785.

[10] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T. Vechev. An abstract domain
for certifying neural networks. PACMPL, 3(POPL):41:1–41:30, 2019. doi: 10.1145/3290354.
URL https://doi.org/10.1145/3290354.

[11] Mislav Balunovic, Maximilian Baader, Gagandeep Singh, Timon Gehr, and Martin T. Vechev.
Certifying geometric robustness of neural networks. In NeurIPS, pages 15287–15297, 2019.

[12] Jeet Mohapatra, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel. Towards verifying
robustness of neural networks against semantic perturbations. CoRR, abs/1912.09533, 2019.

12

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1712.02779
https://doi.org/10.1109/SP.2018.00058
http://proceedings.mlr.press/v80/mirman18b.html
http://proceedings.mlr.press/v80/mirman18b.html
http://proceedings.mlr.press/v80/wong18a.html
http://papers.nips.cc/paper/8285-semidefinite-relaxations-for-certifying-robustness-to-adversarial-examples
http://papers.nips.cc/paper/8285-semidefinite-relaxations-for-certifying-robustness-to-adversarial-examples
http://proceedings.mlr.press/v97/cohen19c.html
http://arxiv.org/abs/1906.04584
http://arxiv.org/abs/1712.01785
https://doi.org/10.1145/3290354

[13] Linyi Li, Maurice Weber, Xiaojun Xu, Luka Rimanic, Tao Xie, Ce Zhang, and Bo Li. Provable
robust learning based on transformation-specific smoothing. CoRR, abs/2002.12398, 2020.

[14] Linyi Li, Maurice Weber, Xiaojun Xu, Luka Rimanic, Bhavya Kailkhura, Tao Xie, Ce Zhang,
and Bo Li.

[15] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic, Pavel Laskov,
Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In
ECML/PKDD (3), volume 8190 of Lecture Notes in Computer Science, pages 387–402. Springer,
2013.

[16] Xiaoyu Cao and Neil Zhenqiang Gong. Mitigating evasion attacks to deep neural networks via
region-based classification. In Proceedings of the 33rd Annual Computer Security Applications
Conference, Orlando, FL, USA, December 4-8, 2017, pages 278–287. ACM, 2017. doi:
10.1145/3134600.3134606. URL https://doi.org/10.1145/3134600.3134606.

[17] Xuanqing Liu, Minhao Cheng, Huan Zhang, and Cho-Jui Hsieh. Towards robust neural
networks via random self-ensemble. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu,
and Yair Weiss, editors, Computer Vision - ECCV 2018 - 15th European Conference, Munich,
Germany, September 8-14, 2018, Proceedings, Part VII, volume 11211 of Lecture Notes in
Computer Science, pages 381–397. Springer, 2018. doi: 10.1007/978-3-030-01234-2_23. URL
https://doi.org/10.1007/978-3-030-01234-2_23.

[18] Rüdiger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In
Deepak D’Souza and K. Narayan Kumar, editors, Automated Technology for Verification and
Analysis - 15th International Symposium, ATVA 2017, Pune, India, October 3-6, 2017, Proceed-
ings, volume 10482 of Lecture Notes in Computer Science, pages 269–286. Springer, 2017. doi:
10.1007/978-3-319-68167-2_19. URL https://doi.org/10.1007/978-3-319-68167-2_19.

[19] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex:
An efficient SMT solver for verifying deep neural networks. In Rupak Majumdar and Viktor
Kuncak, editors, Computer Aided Verification - 29th International Conference, CAV 2017,
Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I, volume 10426 of Lecture Notes in
Computer Science, pages 97–117. Springer, 2017. doi: 10.1007/978-3-319-63387-9_5. URL
https://doi.org/10.1007/978-3-319-63387-9_5.

[20] Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and Pawan Kumar
Mudigonda. A unified view of piecewise linear neural network verification. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and
Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December
2018, Montréal, Canada., pages 4795–4804, 2018. URL http://papers.nips.cc/paper/
7728-a-unified-view-of-piecewise-linear-neural-network-verification.

[21] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient formal
safety analysis of neural networks. In NeurIPS, pages 6369–6379, 2018.

[22] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane S.
Boning, and Inderjit S. Dhillon. Towards fast computation of certified robustness for relu
networks. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 5273–5282.
PMLR, 2018. URL http://proceedings.mlr.press/v80/weng18a.html.

[23] Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A convex
relaxation barrier to tight robustness verification of neural networks. In NeurIPS, pages 9832–
9842, 2019.

[24] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana. Certified
robustness to adversarial examples with differential privacy. 2019 IEEE Symposium on Security
and Privacy (SP), pages 656–672, 2018.

13

https://doi.org/10.1145/3134600.3134606
https://doi.org/10.1007/978-3-030-01234-2_23
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-319-63387-9_5
http://papers.nips.cc/paper/7728-a-unified-view-of-piecewise-linear-neural-network-verification
http://papers.nips.cc/paper/7728-a-unified-view-of-piecewise-linear-neural-network-verification
http://proceedings.mlr.press/v80/weng18a.html

[25] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. Second-order adversarial attack
and certifiable robustness. CoRR, abs/1809.03113, 2018. URL http://arxiv.org/abs/1809.
03113.

[26] Runtian Zhai, Chen Dan, Di He, Huan Zhang, Boqing Gong, Pradeep Ravikumar, Cho-Jui
Hsieh, and Liwei Wang. Macer: Attack-free and scalable robust training via maximizing
certified radius. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rJx1Na4Fwr.

[27] Can Kanbak, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Geometric ro-
bustness of deep networks: Analysis and improvement. In 2018 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pages 4441–4449. IEEE Computer Society, 2018. doi: 10.1109/CVPR.
2018.00467. URL http://openaccess.thecvf.com/content_cvpr_2018/html/Kanbak_

Geometric_Robustness_of_CVPR_2018_paper.html.

[28] Hend Dawood. Theories of interval arithmetic: mathematical foundations and applications.
LAP Lambert Academic Publishing, 2011.

[29] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[30] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, and Dimitris Tsipras. Robustness (python
library), 2019. URL https://github.com/MadryLab/robustness.

[31] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[32] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander
Madry. Robustness may be at odds with accuracy. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.
URL https://openreview.net/forum?id=SyxAb30cY7.

[33] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[34] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E. Howard,
Wayne E. Hubbard, and Lawrence D. Jackel. Handwritten digit recognition with a
back-propagation network. In David S. Touretzky, editor, Advances in Neural Informa-
tion Processing Systems 2, [NIPS Conference, Denver, Colorado, USA, November 27-30,
1989], pages 396–404. Morgan Kaufmann, 1989. URL http://papers.nips.cc/paper/
293-handwritten-digit-recognition-with-a-back-propagation-network.

[35] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Francis R. Bach and David M. Blei, editors, Proceedings
of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 448–456. JMLR.org,
2015. URL http://proceedings.mlr.press/v37/ioffe15.html.

[36] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res.,
15(1):1929–1958, 2014. URL http://dl.acm.org/citation.cfm?id=2670313.

[37] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017.

[38] Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. CoRR,
abs/1804.03209, 2018. URL http://arxiv.org/abs/1804.03209.

[39] S. Davis and P. Mermelstein. Comparison of parametric representations for monosyllabic word
recognition in continuously spoken sentences. In IEEE Transactions on Acoustics, Speech, and
Signal Processing. IEEE, 1980.

14

http://arxiv.org/abs/1809.03113
http://arxiv.org/abs/1809.03113
https://openreview.net/forum?id=rJx1Na4Fwr
https://openreview.net/forum?id=rJx1Na4Fwr
http://openaccess.thecvf.com/content_cvpr_2018/html/Kanbak_Geometric_Robustness_of_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Kanbak_Geometric_Robustness_of_CVPR_2018_paper.html
https://github.com/MadryLab/robustness
https://openreview.net/forum?id=SyxAb30cY7
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network
http://proceedings.mlr.press/v37/ioffe15.html
http://dl.acm.org/citation.cfm?id=2670313
http://arxiv.org/abs/1804.03209

Supplementary Material for
Certified Defense to Image Transformations via

Randomized Smoothing

A Proof of Theorem 3.2

We now proceed to proof Theorem 3.2. We achieve this by first proofing an auxiliary Theorem and
Lemma, and then instantiating as a special case Theorem 3.2 of these slightly more general results.

Theorem A.1. Let x ∈ Rn, f : Rm → Y be a classifier, ψβ : Rn → Rm a composable trans-
formation for β ∼ N (0,Σ) with a symmetric, positive-definite covariance matrix Σ ∈ Rm×m.
If

Pβ(f ◦ ψβ(x) = cA) = pA ≥ pA ≥ pB ≥ pB = max
cB 6=cA

Pβ(f ◦ ψβ(x) = cB),

then g ◦ ψγ(x) = cA for all γ satisfying√
γTΣ−1γ < 1

2 (Φ−1(pA)− Φ−1(pB)) =: rγ .

Proof. The assumption is

P ((f ◦ ψβ) (x) = cA) = pA ≥ pA ≥ pB ≥ pB = P ((f ◦ ψβ) (x) = cB) .

By the definition of g we need to show that

P ((f ◦ ψβ+γ) (x) = cA) ≥ P ((f ◦ ψβ+γ) (x) = cB) .

We define the set A := {z | γTΣ−1z ≤
√
γTΣ−1γΦ(pA)}. We claim that for β ∼ N (0,Σ), we

have

P(β ∈ A) = pA (14)

P(f ◦ ψβ+γ(x) = cA) ≥ P(β + γ ∈ A). (15)

First, we show that Eq. (14) holds.

P(β ∈ A) = P(γTΣ−1β ≤
√
γTΣ−1γΦ(pA))

= P(γTΣ−1N (0,Σ) ≤
√
γTΣ−1γΦ(pA))

= P(γT
√

Σ−1N (0,1) ≤
√
γTΣ−1γΦ(pA))

= P(N (0, γTΣ−1γ) ≤
√
γTΣ−1γΦ(pA))

= P(
√
γTΣ−1γN (0, 1) ≤

√
γTΣ−1γΦ(pA))

= P(N (0, 1) ≤ Φ(pA))

= Φ(Φ−1(pA))

= pA

Thus Eq. (14) holds. Next we show that Eq. (15) holds. For a random variable v ∼ N (µv,Σv) we
write pv(z) for the evaluation of the Gaussian cdf at point z.

15

P(f ◦ ψβ+γ(x) = cA)− P(β + γ ∈ A)

=

∫
Rd

[f ◦ ψz = cA] pβ+γ(z)dz −
∫
A

pβ+γ(z)dz

=

∫
Rd\A

[f ◦ ψz(x) = cA] pβ+γ(z)dz +

∫
A

[f ◦ ψz(x) = cA] pβ+γ(z)dz −
∫
A

pβ+γ(z)dz

=

∫
Rd\A

[f ◦ ψz(x) = cA] pβ+γ(z)dz +

∫
A

[f ◦ ψz(x) = cA] pβ+γ(z)dz

−
(∫

A

[f ◦ ψz(x) = cA] pβ+γ(z)dz +

∫
A

[f ◦ ψz(x) 6= cA] pβ+γ(z)dz

)
=

∫
Rd\A

[f ◦ ψz(x) = cA] pβ+γ(z)dz −
∫
A

[f ◦ ψz(x) 6= cA] pβ+γ(z)dz

Lemma 1
≥ t

(∫
Rd\A

[f ◦ ψz(x) = cA] pβ(z)dz −
∫
A

[f ◦ ψz(x) 6= cA] pβ(z)dz

)

= t

(∫
Rd

[f ◦ ψz(x) = cA] pβ(z)dz −
∫
A

pβ(z)dz

)
Eq. (14)
≥ 0.

Thus also Eq. (15) holds.

Next, we claim that for B := {z | γTΣ−1z ≥
√
γTΣ−1γΦ−1(1− pB)} holds that

P(f ◦ ψβ(x) = cB) ≤ P(β ∈ B) (16)
P(f ◦ ψβ+γ(x) = cB) ≤ P(β + γ ∈ B) (17)

The proofs for Eq. (16) and Eq. (17) are analogous to the proofs for Eq. (14) and Eq. (15).

Now we derive the conditions that lead to P(β + γ ∈ A) > P(β + γ ∈ B):

P(β + γ ∈ A) = P
(
γTΣ−1(β + γ) ≤

√
γTΣ−1γΦ−1(pA)

)
= P

(
γTΣ−1(Σ

1
2N (0,1) + γ) ≤

√
γTΣ−1γΦ−1(pA)

)
= P

(
γT
√

Σ−1N (0,1) + γTΣ−1γ ≤
√
γTΣ−1γΦ−1(pA)

)
= P

(√
γTΣ−1γN (0,1) + γTΣ−1γ ≤

√
γTΣ−1γΦ−1(pA)

)
= P

(
N (0,1) +

√
γTΣ−1γ ≤ Φ−1(pA)

)
= P

(
N (0,1) ≤ Φ−1(pA)−

√
γTΣ−1γ

)
= Φ(Φ−1(pA)−

√
γTΣ−1γ)

Similarly, we have

P(β + γ ∈ B) = P
(
N (0,1) ≥ Φ−1(1− pB)−

√
γTΣ−1γ

)
= Φ(

√
γTΣ−1γ − Φ−1(1− pB))

Thus, we get
P(β + γ ∈ A) > P(β + γ ∈ B)

⇔ Φ(Φ−1(pA)−
√
γTΣ−1γ) > Φ(

√
γTΣ−1γ − Φ−1(1− pB))

⇔ Φ−1(pA)−
√
γTΣ−1γ >

√
γTΣ−1γ − Φ−1(1− pB)

⇔ Φ−1(pA) + Φ−1(1− pB) > 2
√
γTΣ−1γ

⇔ 1
2 (Φ−1(pA)− Φ−1(pB)) >

√
γTΣ−1γ.

16

Next ,we show the lemma used in the proof.
Lemma 1. There exists t > 0 such that pβ+γ(z) ≤ pβ(z) · t for all z ∈ A. And further pβ+γ(z) >
pβ(z) · t for all z ∈ Rd \A.

Proof.
pβ+γ(z)

pβ(z)
= exp

(
− 1

2 (z − γ)TΣ−1(z − γ) + 1
2z

TΣ−1z
)

= exp
(
− 1

2z
TΣ−1z + zTΣ−1γ − 1

2γ
TΣ−1γ + 1

2z
TΣ−1z

)
= exp

(
zTΣ−1γ − 1

2γ
TΣ−1γ

)
What is the lowest t if it exists such that pβ+γ(z)

pβ(z) ≤ t?
pβ+γ(z)

pβ(z)
≤ t

⇔ exp
(
zTΣ−1γ − 1

2γ
TΣ−1γ

)
≤ t

⇔ zTΣ−1γ − 1
2γ

TΣ−1γ ≤ log t

⇔ zTΣ−1γ ≤ log t+ 1
2γ

TΣ−1γ

Because z ∈ A, we know that
zTΣ−1γ ≤

√
γTΣ−1γΦ−1(pA).

Does there exist a t such that both upper bound coincide? Yes, namely

t = exp
(√

γTΣ−1γΦ−1(pA)− 1
2γ

TΣ−1γ
)
.

The case pβ+γ(z) > pβ(z) · t is analogous.

Lemma 2. If we evaluate on a proxy classifier f ′ instead of f , behaving with probability (1− ρ) the
same as f and with probability ρ differently than f and if

Pβ,f ′(f
′ ◦ ψβ(x) = cA) ≥ p′A ≥ p′B ≥ max

cB 6=cA
Pβ,f ′(f

′ ◦ ψβ(x) = cB),

then g ◦ ψγ(x) = cA for all γ satisfying

‖γ‖2 <
σ

2
(Φ−1(p′A − ρ)− Φ−1(pB + ρ)).

Proof. By applying the union bound we can relate the output probability p of f for a class c with the
output probability of f ′ and p′:

p′ := Pβ,f ′(f
′ ◦ ψβ(x) = c)

= Pβ,f ′ ((f ◦ ψβ(x) = c) ∨ (f ′ error))

≤ Pβ(f ◦ ψβ(x) = c) + Pf ′(f
′ error)

= p+ ρ

Thus we can obtain new bounds pA ≥ p′A − ρ and pB ≤ p′B + ρ from p′A and p′B measured on f ′.
Plugging these bounds in Theorem 3.2 yields the result.

We now show Theorem 3.2 (restarted below): Setting Σ = σ21 in Theorem A.1 directly recovers
Theorem 3.2 up to the last sentence, which in turn is a direct consequence of Lemma 2.
Theorem (Theorem 3.2 restated). Let x ∈ Rm, f : Rm → Y be a classifier and ψβ : Rm → Rm be
a composable transformation as above. If

Pβ(f ◦ ψβ(x) = cA) ≥ pA ≥ pB ≥ max
cB 6=cA

Pβ(f ◦ ψβ(x) = cB),

then g ◦ ψγ(x) = cA for all γ satisfying ‖γ‖2 ≤ σ
2 (Φ−1(pA) − Φ−1(pB)) =: rγ . Further, if g is

evaluated on a proxy classifier f ′ that behaves like f with probability 1 − ρ and else returns an
arbitrary answer, then rγ := σ

2 (Φ−1(pA − ρ)− Φ−1(pB + ρ)).

17

B Inverse and Refinement

B.1 Details for Step 2

In this section, we elaborate on the details of Step 2 in Section 6. We consider the intersection of ci′,j′
with the (i, j)-interpolation region, [xl, xu]× [yl, yu] := ci′,j′ ∩ [i, i+ 2]× [j, j + 2]. This yields,

p′i′,j′ ∈ I([xl, xu], [yl, yu]) = pi,j
2+i−[xl,xu]

2
2+j−[yl,yu]

2 + pi,j+2
2+i−[xl,xu]

2
[yl,yu]−j

2

+ pi+2,j
[xl,xu]−i

2
2+j−[yl,yu]

2 + pi+2,j+2
[xl,xu]−i

2
[yl,yu]−j

2 .

Next, we solve for the pixel value pi,j to get the constraint qi,j :

qi,j =
(
p′i′,j′ − pi,j+2

2+i−[xl,xu]
2

[yl,yu]−j
2 − pi+2,j

[xl,xu]−i
2

2+j−[yl,yu]
2

− pi+2,j+2
[xl,xu]−i

2
[yl,yu]−j

2

)(
2+i−[xl,xu]

2
2+j−[yl,yu]

2

)−1

Because we don’t have any constraints for the pixel values pi+2,j , pi,j+2 and pi+2,j+2, we replace
their values by the [0, 1] constraint and obtain:

qi,j =
(
p′i′,j′ −

(
2+i−[xl,xu]

2
[yl,yu]−j

2 − [xl,xu]−i
2

2+j−[yl,yu]
2

− [xl,xu]−i
2

[yl,yu]−j
2

)
[0, 1]

)(
2+i−[xl,xu]

2
2+j−[yl,yu]

2

)−1

Instead of using standard interval analysis to compute the constraints for pi,j , we use the following
more efficient transformer: We replace [xl, xu] and [yl, yu] with the coordinate (x, y) ∈ [xl, xu]×
[yl, yu] furthest away from (i, j), which is in our case (xu, yu) to obtain

qi,j =
(
p′i′,j′ −

(
2+i−xu

2
yu−j

2 + xu−i
2

2+j−yu
2 + xu−i

2
yu−j

2

)
[0, 1]

)(
2+i−xu

2
2+j−yu

2

)−1

=
[
p′i′,j′ −

(
2+i−xu

2
yu−j

2 + xu−i
2

2+j−yu
2 + xu−i

2
yu−j

2

)
, p′i′,j′

] (
2+i−xu

2
2+j−yu

2

)−1
.

B.2 Algorithm

Here, we present the algorithm used to compute the inverse of a transformation. For the
construction of the set C, we iterate only over the index set P . The set P is constructed
do include all points in G that could yield non empty intersections ci′,j′ , thus this is just to
speed up the evaluation and equivalent otherwise to the algorithm described in the main part.
Data: Image x′ ∈ Rm×m, transform T , parameter range B, coordinates i, j
Result: Range for the pixel value pi,j .

1 N ←
(

[i−2,i+2]
[j−2,j+2]

)
2
(

[i′l,i
′
u]

[j′l,j
′
u]

)
← TB(N)

3 P ←
{(

i′

j′

) ∣∣∣ i′∈range(bi′lc,...,di
′
ue,2)

j′∈range(bj′lc,...,dj
′
ue,2)

}
4 C ←

{
ci′,j′ := T−1

B

(
i′

j′

)
∩N

∣∣∣ ci′,j′ 6= ∅, (i′, j′) ∈ P}
5 pi,j ← [0, 1] ∩

(⋂
ci′,j′∈C

qi−2,j−2(ci′,j′) ∪ qi,j−2(ci′,j′) ∪ qi−2,j(ci′,j′) ∪ qi,j(ci′,j′)

)
Algorithm 1: Procedure to calculate the range for the pixel values of the inverse image.

B.3 Experimental Evaluation

To investigate the impact of refinement on the downstream error estimate we used 20 MNIST images,
rotated each with 3 random angles and then proceeded to calculate the inverse. In the calculation, we
considered the range Γ± = 10. We see that a low number of refinements have a large impact on the
error but the returns become quickly diminishing. The impact on the run time of a single additional
refinement step is negligible.

18

Figure 4: Interpolation and rounding error E as well as run time for different numbers of refinement
steps.

(a) Rotated (b) Inverse (c) 10× refined inverse (d) Original

Figure 5: Computation of the inverse, analogous to Fig. 2, for images from ImageNet [31].

C Inverse for Rich Images

INDIVSPT performs poorly on large images, such as those from ImageNet as the inverse computation
outlined in Section 6 produces a too large over-approximation of x leading to E estimates of around
40, while manageable value would be ≤ 2.

Fig. 5 shows the computed inverse for such images. We observe a pattern of artifacts in the inverse,
where the pixel value can not be narrowed down sufficiently resulting in the large estimate of E.
The result of the refined inverse is perfectly recognizable to a human observer (or a neural network),
highlighting the promise of the algorithm for future applications.

D Experiment Details

D.1 Details for Section 7.3

To evaluate BASESPT we use the following classifiers. Note that Table 7 in App. E.1 contains results
for further datasets:

MNIST [34] We trained a convolutional network consisting of CONV2D(k, n), with k×k filter size,
n filter channels and stride 1, batch norm BN [35], maximum pooling MAXPOOL(k) on
k × k grid, DROPOUT(p) [36] with probability p and linear layers LIN(a, b) from Ra to Rb.

19

CONV2D(5, 32),RELU,BN
CONV2D(5, 32),RELU,MAXPOOL(2),DROPOUT(0.2)

CONV2D(3, 64),RELU,BN
CONV2D(3, 64),RELU,BN,MAXPOOL(2),DROPOUT(0.2)

CONV2D(3, 128),RELU,BN
CONV2D(1, 128),RELU,BN, FLATTEN

LIN(128, 100),RELU
LIN(100, 10)

We used data normalization for MNIST and trained for 180 epochs with SGD, starting from
learning rate 0.01, decreasing it by a factor of 10 every 60 epochs. No other pre-processing
was used.

FashionMNIST [37] We trained a ResNet-18 with data normalization. We trained for 180 epochs
with SGD with an initial learning rate of 0.01, lowering it by a factor of 10 every 60 epochs.

CIFAR [33] We trained a ResNet-18 with data normalization. We trained for 90 epochs with SGD
with an initial learning rate of 0.1, lowering it by a factor of 10 every 30 epochs. We resized
GTSRB images to 32× 32× 3.

ImageNet [31] We used the pre-trained ResNet50 from torchvision: https://pytorch.org/
docs/stable/torchvision/models.html.

D.2 Details for Section 7.4

In Section 7.4 we use a ResNet-18 architecture for MNIST and a ResNet-110 for CIFAR-10 and, as
in, App. D.1, ResNet-50 for (R)ImageNet. We trained them to be robust to image transformations
(rotation, translation) as well as `2 noise.

To train networks that perform well when randomized smoothing is applied, we utilize the training
procedure SMOOTHADVPGD as outlined in Salman et al. [8]. For each batch of samples we apply a
randomized data augmentation, vignetting, and Gaussian blur. After this prepossessing we then apply
SMOOTHADVPGD (noise restricted to the vingetted area) then evaluate or train on the batch.

The intuition behind the Gaussian blur is that many artifacts, such as the interpolation error are have
high frequencies. The blur acts as a low-pass filter and discards high frequency noise. This does not
strongly impact the classification accuracy, but drastically reduces the error estimate and therefore the
amount of noise that needs to be added for robust classification. The filter is parameterized by σb and
the filter size sb. Formally the filter is a convolution with a filter matrix F ∈ Rsb×sb . Each entry in F
is filled with values of a two dimensional Gaussian distribution centered at the center of the matrix
and evaluated at the center of the entry. Afterwards the matrix is normalized such that

∑
i,j , Fi,j = 1.

In the error estimation and inference we use the same prepossessing as during training.

MNIST For MNIST we use a ResNet-18 (that takes a single color channel in the input layer), which
we trained with PGD step size 0.2, batch size 1024, and initial learning rate 0.01 over 180 epochs,
lowering the learning rate every 60 epochs. For DISTSPTD we use σ = 0.22 and data augmentation
with rotations in [−90, 90] degrees for the rotation model and σ = 0.3 and random translations of
±50% for the translation model. For the Gaussian blur we use σb = 2.0 with filter size sb = 5 on all
models.

For DISTSPTx we use a model trained with σ = 0.15 for rotations and but the same translation
model.

CIFAR-10 For DISTSPTD we train a ResNet-110 with batch size 256, σ = 0.25 and random
rotations in [−60, 60] as well as SMOOTHADVPGD with m = 1 samples, t = 8 steps and warmup of
10 epochs for a perturbation size of 0.5. We train over 150 epochs and lower the learning rate every
50 steps. For the Gaussian blur we use σb = 1.0 and sb = 5.

20

https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html

For DISTSPTx we use σ = 0.12, perturbation size of 0.25, m = 8 and t = 1 and keep other
parameters the same. Both variants take about 17 minutes per epoch on a single GeForce RTX 2080
Tis.

(Restricted) ImageNet We trained with a batch size of 400 for 90 epochs using stochastic gradient
decent with a learning rate starting at 0.1, which is decreased by a factor 10 every 30 epochs. On both
datasets , we used σ = 0.5 and PGD step size 1.0, as well as σb = 2.0 and sb = 5. For Restricted
ImageNet we train with random rotation in [−60, 60] and for ImageNet in [−30, 30].

Training 1 epoch of ImageNet with 6 GeForce RTX 2080 Tis and a 16-core node of aw Intel(R)
Xeon(R) Gold 6242 CPU @ 2.80GHz takes roughly 2.5 hours and roughly 30 minutes for Restricted
ImageNet. For the accuracy of b in Table 3, we evaluate four settings — with vingetting, with
Gaussian blur, with both and with neither — and report the highest. Table 5 shows a comparison
across all settings.

Table 5: Base models evaluated on the whole data set either with Gaussian blur (G), Vingetting (V),
both or neither.

Model T I Standard +G +V +G+V

MNIST, DISTSPTD RI 0.98 0.98 0.98 0.98
MNIST, DISTSPTx RI 0.98 0.98 0.98 0.98
MNIST ∆I 0.94 0.92 0.94 0.93
CIFAR-10 DISTSPTD RI 0.34 0.36 0.56 0.56
CIFAR-10 DISTSPTx RI 0.75 0.76 0.70 0.70
RImageNet RI 0.77 0.77 0.78 0.77
ImageNet RI 0.38 0.32 0.38 0.32

To sample E for (R)ImageNet we use a server with an AMD EPYC 7601 processor with 128 threads.

Table 6 shows a version Table 3 in the layout of the version of this paper published at NeurIPS’20.

Table 6: Evaluation of DISTSPT for T I := RI . εmax is computed on the training set. We show the
test set accuracy of b, certified accuracy of g and distribution of the obtained certification radius rγ ,
along with the average run time t and the number of used samples nγ , nδ . # denotes values obtained
by sampling. Each certificate hold with overall confidence 0.99.

Acc. rγ percentile

Dataset εmax E b g 25th 50th 75th t [s] nγ nδ

MNIST 0.36 0.45 0.98 0.89 52.95 57.22 57.22 21.56 200 10000
CIFAR-10 0.51 0.55 0.56 0.31 24.80 30.00† 30.00† 89.75 50 15000
CIFAR-10 0.51 0.55 0.56 0.32 30.00† 30.00† 30.00† 351.47 200 15000
RImageNet 0.91 1.20 0.78 0.74 30.00† 30.00† 30.00† 100.73 50 2500
RImageNet 0.91 1.35 0.78 0.64 30.00† 30.00† 30.00† 100.13 50 2500
ImageNet 0.91 0.95 0.38 0.30 14.51 24.34 30.00† 100.21 50 2500
ImageNet 0.91 1.20 0.38 0.23 12.38 21.47 30.00† 100.73 50 2500
ImageNet 0.91 1.35 0.38 0.16 10.46 21.47 30.00† 100.44 50 2500

D.3 Details for Section 7.5

For rotation we use the σ = 0.22 model as in App. D.2 and for translation also the same model.

E Additional Experiments

E.1 Additional Results for Section 7.3

Table 7 is an extended version of Table 2 and provides results for additional datasets.

21

Table 7: Extended version of Table 2. Evaluation of BASESPT on 1000 images. The attacker used
worst-of-100. We use nγ = 1000, σγ = Γ±.

Acc. adv. Acc.

Dataset T I Γ± b b g t [s]

MNIST RI 30◦ 0.99 0.73 0.99 0.97
FMNIST RI 30◦ 0.91 0.13 0.87 7.98
CIFAR-10 RI 30◦ 0.91 0.26 0.85 0.95
GTSRB RI 30◦ 0.91 0.30 0.88 8.00
ImageNet RI 30◦ 0.76 0.56 0.76 5.43

MNIST ∆I 4 0.99 0.03 0.53 0.86
FMNIST ∆I 4 0.91 0.10 0.50 6.12
CIFAR-10 ∆I 4 0.91 0.44 0.79 0.95
GTSRB ∆I 4 0.91 0.30 0.63 5.17
ImageNet ∆I 20 0.76 0.65 0.75 6.70

Table 8: We first use BASESPT to obtain the certification radius rγ on 30 images and subsequently
sample from the parameter space indicated by Γ± = rγ and checked whether the certificate holds
for them. We use 30 samples and nγ = 2000 samples for the smoothed classifier. The last column
shows the number of images for which we found violations.

Dataset T I Γ± median rγ rγ violated

MNIST RI 30◦ 28.34 0
FMNIST RI 30◦ 13.45 1
CIFAR-10 RI 30◦ 19.16 14
GTSRB RI 30◦ 20.93 0
ImageNet RI 10◦ 27.13 1

MNIST ∆I 4 1.12 0
FMNIST ∆I 4 1.78 1
CIFAR-10 ∆I 4 4.76 14
GTSRB ∆I 4 2.58 0
ImageNet ∆I 20 16.43 0

Table 9: Same setup as in Table 8, but with circular vignetting.

Dataset T I Γ± median rγ rγ violated rγ violated, no interpolation

MNIST RI 30◦ 28.34 0 0
FMNIST RI 30◦ 17.07 0 0
CIFAR-10 RI 30◦ 11.49 10 0
GTSRB RI 30◦ 25.28 0 0

E.2 “Certification Radius” of BASESPT

As BASESPT uses Theorem 3.2 to justify the heuristic, this also makes it tempting to use the bound
rγ provided by it. However, as the assumptions of Theorem 3.2 are violated it does not formally
present a certification radius. Here we investigate if and how much it holds nevertheless. To do
this we construct a smoothed classifier g from an undefended base classifier b and calculated the
certification radius rγ . Subsequently, we sampled 100 new rotated images in the parameter space
induced by Γ± = rγ and evaluated on them. The results are shown in Table 8. While generally
robust, the radius does not constitute a certificate, as we can clearly find violations.

In the context of rotation RI we add circular vignetting (as we do for DISTSPT and INDIVSPT)
to make the behavior closer to a composing transformation. For this experiment, we retrained the
same networks, but applied the vignette during training. Results are shown in Table 9 where we can
see that this already decreases the number of violations for CIFAR-10 and FMNIST. In a final step

22

we assume knowledge of the attacker parameter γ and replace RIβ ◦RIγ (for the same images) with
RIβ+γ in the evaluation of the classifier, in which case Theorem 3.2 should hold and indeed we don’t
observe any more violations.

E.3 Additional Results for Section 7.4

Beyond Bilinear Interpolation BASESPT and DISTSPT can directly be applied to image transfor-
mations using other interpolation schemes without any adaption. INDIVSPT, however, requires the
adaption of the inverse algorithm. While this is generally possible, we consider it beyond the scope
of this work.

We guess (based on 1000 samples) and verify E using 1000 samples for x and 8000 for β. We
summarize these results in Table 10. On datasets other than MNIST we observeE larger than possible.
At manageable levels, the qE becomes too low for practical purposes.

On MNIST with the same settings as for DISTSPTD we certify 90 out of 100 images at rγ = 30 (for
bilinear interploation with E = 0.45 91 can be certified).

Table 10: E and qE for bicubic interpolation.

Dataset E qE

MNIST 0.5 0.99
CIFAR-10 1.10 0.99
CIFAR-10 0.55 0.27
ImageNet 2.50 0.99
ImageNet 1.20 0.28

E.4 Audio Volume Change

To show that our method can be used beyond image transformation we showcase an adaption to audio
volume changes. The volume of an audio signal can be changed by multiplying the signal with a
constant. In order to change the signal x by β (measured in decibel [β] = dB) we multiply x by
10β/20. Thus the transformation is ψβ(x) := 10β/20 · x, which composes:

ψβ ◦ ψγ(x) = 10(β+γ)/20 · x = ψβ+γ(x).

In practice such signals are stored in final precision, e.g. 16-bit, thus potentially introducing rounding
errors, with an `2-norm bound by E. If this is ignored BASESPT can be applied to obtain guarantees.
Otherwise, DISTSPT and INDIVSPT can be used to obtain sound bounds.

To evaluate this we use the speech commands dataset [38], consisting of 30 different commands,
spoken by people, which are to be classified. The length of the recordings are one second each. We
use a classification pipeline that converts audio wave forms into MFCC spectra [39] and then treats
these as images and applies normal image classification. We use a ResNet-50, that was trained with
Gaussian noise, but not SMOOTHADVPGD. We apply the noise before the waveform is converted to
the MFCC spectrum.

For DISTSPT we estimate E to be 0.005 with the parameters ρE = 0.05, σγ = 3 and Γ = 3 (for
which qE ≈ 0.75). On 100 samples, the base classifier f was correct 93 times. At rgamma of 1,
2, 3 and 4 the certified accuracy was 0.92, 0.89, 0.83 and 0.69 respectively. This corresponds to
±1.12, ±1.26, ±1.41 and ±1.58 dB. At nγ = 150 and nε = 400 the average certification time was
26.80 s. We use αγ = 0.004, αε = 0.005

nγ
, assuming (but not computing) αE = 0.001 here, for a total

confidence of 0.99 in each certificate.

To investigate INDIVSPT we use σγ = 0.85,Γ = 1.05. For 92 out of 100 perturbed audio signals to
compute ε. We obtained εmax ≤ 0.0055 and for 68 an ε ≤ 0.005, which together with our results
for DISTSPT suggests the applicability of the method. For each signal we used 100 samples for β.
For cases with εmax > 0.0055 we in fact observed εmax � 0.0055, as here many parts of the signal
were amplified beyond the precision of the 16-bit representation and clipped to ±1. This makes the
information unrecoverable and sound error bound estimates large.

23

Table 11: Maximum observed errors and with-
out gaussian blur (G) and without vignetting
(V).

Dataset Both -V -G -V-G

MNIST 0.36 0.36 2.47 2.51
CIFAR-10 0.51 6.08 2.66 18.17
ImageNet 0.91 70.66 9.25 75.69

Table 12: Correct classifications and by the
model and verifications by DeepG [11], with
and without vignetting (V), out of 100 images.

Model Correct [11] [11]+V

MNIST 98 86 87
CIFAR-10 74 65 32
CIFAR-10+V 78 63 23

F Further Comparison and Ablation

To show that the vignette and Gaussian blur are essential to our algorithm we perform a small ablation
study. Table 11 shows the maximal error observed when sampling as in DISTSPT. We use the same
setup as in Section 7.4, but with 10000 samples for ImageNet.

Both, vignetting and Gaussian blur reduce the error bound significantly for DISTSPT and INDIVSPT.
On CIFAR-10 and ImageNet vignetting is very impactful because the corners of images are rarely
black in contrast to MNIST. Li et al. [13] uses vignetting for the same reason. Without either of the
methods bounding the error would not be feasible.

For INDIVSPT vignetting is crucial, even for MNIST, as we can make no assumptions for parts that
are rotated into the image. Thus we need to set these pixels to the full [0, 1] interval (see Fig. 2).
Without Gaussian blur the certification rate drops to 0.11.

Further, we extend this comparison to related work: We extended Balunovic et al. [11] (Table 1
in their paper) to include vignetting. The results are shown in Table 12. We also retrained their
CIFAR-10 model with vignetting (CIFAR-10+V) for completeness. While vignetting on MNIST
slightly helps (+1 image verified) on CIFAR-10 it leads to a significant drop. Including Gaussian
blur into [11] would require non-trivial adaption of the method. However, we implemented this for
interval analysis (on which their method is built) and found no impact on results.

24

	Introduction
	Related Work
	Generalization of Smoothing
	Certification with interpolation and rounding errors
	Calculation of error bounds
	Distributional bounds for DistSPT
	Individual bounds for IndivSPT

	Inverse Computation
	Example

	Experimental Evaluation
	Instantiation in Practice
	Setup
	BaseSPT
	DistSPTThe results in sec:methodglobal,sec:methodindividual differ from those in the version published at NeurIPS'20 due to an implementation bug we since fixed. Further, we improved readability and provide additional results enable better comparison. A version of tab:rotResults in the original layout can be found in sec:addit-methodglobal.
	IndivSPTfn:eval
	Limitations & Generalization

	Conclusion
	Broader Impact
	Proof of thm:bound
	Inverse and Refinement
	Details for Step 2
	Algorithm
	Experimental Evaluation

	Inverse for Rich Images
	Experiment Details
	Details for sec:methodheuristic
	Details for sec:methodglobal
	Details for sec:methodindividual

	Additional Experiments
	Additional Results for sec:methodheuristic
	``Certification Radius'' of BaseSPT
	Additional Results for sec:methodglobal
	Audio Volume Change

	Further Comparison and Ablation

