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Abstract

We present a new certification method for image
and point cloud segmentation based on random-
ized smoothing. The method leverages a novel
scalable algorithm for prediction and certification
that correctly accounts for multiple testing, nec-
essary for ensuring statistical guarantees. The
key to our approach is reliance on established
multiple-testing correction mechanisms as well
as the ability to abstain from classifying single
pixels or points while still robustly segmenting
the overall input. Our experimental evaluation on
synthetic data and challenging datasets, such as
Pascal Context, Cityscapes, and ShapeNet, shows
that our algorithm can achieve, for the first time,
competitive accuracy and certification guarantees
on real-world segmentation tasks. We provide an
implementation at https://github.com/
eth-sri/segmentation-smoothing.

1. Introduction
Semantic image segmentation and point cloud part segmen-
tation are important problems in many safety critical do-
mains including medical imaging (Perone et al., 2018) and
autonomous driving (Deng et al., 2017). However, deep
learning models used for segmentation are vulnerable to
adversarial attacks (Xie et al., 2017; Arnab et al., 2018; Xi-
ang et al., 2019), preventing their application to such tasks.
This vulnerability is illustrated in Fig. 1, where the task is to
segment the (adversarially attacked) image shown in Fig. 1a.
We see that the segmentation of the adversarially attacked
image is very different from the ground truth depicted in
Fig. 1b, potentially causing unfavorable outcomes. While
provable robustness to such adversarial perturbations is well
studied for classification (Katz et al., 2017; Gehr et al., 2018;
Wong & Kolter, 2018; Cohen et al., 2019), the investigation
of certified segmentation just begun recently (Lorenz et al.,
2021; Tran et al., 2021).
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(a) Attacked image (b) Ground truth segmentation

(c) Attacked segmentation (d) Certified segmentation

Figure 1. In semantic segmentation, a model segments an input (a)
by classifying each pixel. While the result should match (b), a
non-robust model predicts (c) as the input (a) was perturbed by
additive `2 noise (PGD). Our model is certifiably robust to this
perturbation (d) by abstaining from ambiguous pixels (white). The
model abstains where multiple classes meet, causing ambiguity.
We provide technical details and further examples in App. C.

Certifiably robust segmentation is a challenging task, as the
classification of each component (e.g., a pixel in an image)
needs to be certified simultaneously. Many datasets and
models in this domain are beyond the reach of current deter-
ministic verification methods while probabilistic methods
need to account for accumulating uncertainty over the large
number of individual certifications.

In this work we propose a novel method to certify the ro-
bustness of segmentation models via randomized smoothing
(Cohen et al., 2019), a probabilistic certification method able
to certify `2 robustness around large images. As depicted
in Fig. 1d, our method enables the certification of chal-
lenging segmentation tasks by certifying each component
individually, abstaining from unstable ones that cause naive
algorithms to fail. This abstention mechanism also pro-
vides strong synergies with the multiple testing correction,
required for the soundness of our approach, thus enabling
high certification rates.

While we focus in our evaluation on `2 robustness, our
method is general and can also combined with random-
ized smoothing methods that certify robustness to other
`p-bounded attacks or parametrized transformations like
rotations (Fischer et al., 2020).

https://github.com/eth-sri/segmentation-smoothing
https://github.com/eth-sri/segmentation-smoothing
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Main Contributions Our key contributions are:

• We investigate the obstacles of scaling randomized
smoothing from classification to segmentation, identi-
fying two key challenges: the influence of single bad
components and the multiple testing trade-offs (§4)

• We introduce a scalable algorithm that addresses these
issues, allowing, for the first time, to certify large scale
segmentation models (§5).

• We show that this algorithm can be applied to different
generalizations of randomized smoothing, enabling
defenses against different attacker models (§5.2).

• We provide an extensive evaluation on semantic im-
age segmentation and point cloud part segmentation,
achieving up to 88% and 55% certified pixel accuracy
on Cityscapes and Pascal context respectively, while
obtaining mIoU of 0.6 and 0.2 (§6).

2. Related Work
In the following, we survey the most relevant related work.

Adversarial Attacks Biggio et al. (2013); Szegedy et al.
(2014) discovered adversarial examples, which are inputs
perturbed in a way that preserves their semantics but fools
deep networks. To improve performance on these inputs,
training can be extended to including adversarial examples,
called adversarial training (Kurakin et al., 2017; Madry et al.,
2018). Most important to this work are attacks on semantic
segmentation: Xie et al. (2017) introduced a targeted gradi-
ent based unconstrained attack, by maximizing the summed
individual targeted losses for every pixel. Arnab et al. (2018)
applied FGSM based attacks (Goodfellow et al., 2015) to
the semantic segmentation setting. Similarly, the vulnera-
bility of point cloud classifiers was exposed in Xiang et al.
(2019); Liu et al. (2019); Sun et al. (2020).

Certified robustness and defenses However, adversari-
ally trained neural networks do not come with robustness
guarantees. To address this, different certification methods
have been proposed recently using various methods, relying
upon SMT solvers (Katz et al., 2017; Ehlers, 2017), semidef-
inite programming (Raghunathan et al., 2018a) and linear
relaxations (Gehr et al., 2018; Zhang et al., 2018; Wang
et al., 2018; Weng et al., 2018; Wong & Kolter, 2018; Singh
et al., 2019b;a). Specifically, linear relaxations have been
used beyond the classical `p noise setting to certify against
geometric transformations (Singh et al., 2019b; Balunovic
et al., 2019; Mohapatra et al., 2020b) and vector field attacks
(Ruoss et al., 2021).

To further improve certification rates, methods that train
networks to be certifiable have been proposed (Raghunathan

et al., 2018b; Mirman et al., 2018; Gowal et al., 2018;
Balunovic & Vechev, 2020).

Notable to our setting are Lorenz et al. (2021); Tran et al.
(2021), who extend deterministic certification to point cloud
segmentation and semantic segmentation respectively. How-
ever, due to the limitations of deterministic certification
these models are small in scale. Further, Bielik & Vechev
(2020); Sheikholeslami et al. (2021) improved robust classi-
fiers with the ability to abstain from classification.

Randomized Smoothing Despite all this, deterministic
certification performance on complicated datasets remained
unsatisfactory. Recently, based on Li et al. (2018) and
Lécuyer et al. (2019), Cohen et al. (2019) presented random-
ized smoothing, which was the first certification method to
successfully certify `2 robustness of large neural networks
on large images. Salman et al. (2019) improved the results,
by combining the smoothing training procedure with ad-
versarial training. Yang et al. (2020) derive conditions for
optimal smoothing distributions for `1, `2 and `∞ adver-
saries, if only label information is available. Mohapatra
et al. (2020a) incorporated gradient information to improve
certification radii. Zhai et al. (2020); Jeong & Shin (2020)
improved the training procedure for base models by intro-
ducing regularized losses.

Randomized smoothing has been extended in various ways.
Bojchevski et al. (2020) proposed a certification scheme suit-
able for discrete data and applied it successfully to certify
graph neural networks. (Levine & Feizi, 2020b) certified
robustness against Wasserstein adversarial examples. Fis-
cher et al. (2020) and Li et al. (2021) used randomized
smoothing to certify robustness against geometric perturba-
tions. Salman et al. (2020) showed that using a denoiser,
of the shelf classifiers can be turned into certifiable classi-
fiers without retraining. Levine & Feizi (2020a) and Lin
et al. (2021) presented methods to certify robustness against
adversarially placed patches.

Most closely related to this work are Chiang et al. (2020),
which introduces median smoothing and applies it to cer-
tify object detectors, and Schuchardt et al. (2021), which
also extends randomized smoothing to collective robustness
certificates over multiple components. They specifically
exploit the locality of the classifier to the data, making their
defense particularly suitable for graphs where an attacker
can only modify certain subsets. While their approach can
in principle be applied to semantic segmentation, modern
approaches commonly rely on global information.

3. Randomized Smoothing for Classification
In this section we will briefly review the necessary back-
ground and notation on randomized smoothing, before ex-
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Algorithm 1 adapted from (Cohen et al., 2019)

# evaluate f̄ at x
function PREDICT(f , σ, x, n, α)
cnts← SAMPLE(f , x, n, σ)
ĉA, ĉB ← top two indices in cnts
nA, nB ← cnts[ĉA], cnts[ĉB]
if BINPVALUE(nA, nA + nB , =, 0.5) ≤ α return ĉA
else return �

# certify the robustness of f̄ around x
function CERTIFY(f , σ, x, n0, n, α)
cnts0 ← SAMPLE(f,x, n0, σ)
ĉA ← top index in cnts0

cnts← SAMPLE(f,x, n, σ)
pA ← LOWERCONFBND(cnts[ĉA], n, 1− α)
if pA > 1

2 return prediction ĉA and radius σΦ−1(pA)
else return �

tending it in §4 and §5. Randomized smoothing (Cohen
et al., 2019) constructs a robust (smoothed) classifier f̄ from
a (base) classifier f . The classifier f̄ is then provably robust
to `2-perturbations up to a certain radius.

Concretely, for a classifier f : Rm 7→ Y and random variable
ε ∼ N (0, σ21): we define a smoothed classifier f̄ as

f̄(x) := arg max
c

Pε∼N (0,σ21)(f(x + ε) = c). (1)

This classifier f̄ is then robust to adversarial perturbations:

Theorem 3.1 (From (Cohen et al., 2019)). Suppose cA ∈ Y ,
pA, pB ∈ [0, 1]. If

Pε(f(x+ ε) = cA) ≥ pA ≥ pB ≥ max
c6=cA

Pε(f(x+ ε) = c),

then f̄(x + δ) = cA for all δ satisfying ‖δ‖2 ≤ R with
R := σ

2 (Φ−1(pA)− Φ−1(pB)).

In order to evaluate the model f̄ and calculate its robustness
radius R, we need to be able to compute pA for the input
x. However, since the computation of the probability in
Eq. (1) is not tractable (for most choices of f ) f̄ can not
be evaluated exactly. To still query it, Cohen et al. (2019)
suggest PREDICT and CERTIFY (Algorithm 1) which use
Monte-Carlo sampling to approximate f̄ . Both algorithms
utilize the procedure SAMPLE, which samples n random
realizations of ε ∼ N (0, σ) and computes f(x + ε), which
is returned as a vector of counts for each class in Y . These
samples are then used to estimate the class cA and radius R
with confidence 1− α, where α ∈ [0, 1]. PREDICT utilizes
a two-sided binomial p-value test to determine f̄(x). With
probability at most α it will abstain, denoted as � (a prede-
fined value), else it will produce f̄(x). CERTIFY uses the
Clopper-Pearson confidence interval (Clopper & Pearson,

1934) to soundly estimate pA and then invoke Theorem 3.1
with pB = 1− pA to obtain R. If CERTIFY returns a class
other than � and a radius R, then with probability 1−α the
guarantee in Theorem 3.1 holds for this R. The certification
radius R increases if (i) the value of pA increases, which
increases if the classifier f is robust to noise, (ii) the number
of samples n used to estimate it increases, or (iii) the α
increases which means that the confidence decreases.

4. Randomized Smoothing for Segmentation
To show how randomized smoothing can be applied in the
segmentation setting we first discuss the mathematical prob-
lem formulation and two direct adaptations of randomized
smoothing to the problem. By outlining how these fail in
practice, we determine the two key challenges preventing
their success. Then in, §5, we address these challenges.

Segmentation Given an input x = {xi}Ni=0 of N com-
ponents xi ∈ X (e.g., points or pixels) and a set of
possible classes Y , segmentation can be seen as a func-
tion f : XN → YN . That is, to each xi we assign a
fi(x) = yi ∈ Y , where fi denotes the i-th component
of the output of f invoked on input x. Here we assume
X := Rm. Unless specified, we will use m = 3 as this
allows for RGB color pixels as well as 3d point clouds.

Direct Approaches To apply randomized smoothing, as
introduced in §3, to segmentation, we can reduce it to one
or multiple classification problems.

We can recast segmentation f : XN → YN as a classifica-
tion problem by considering the cartesian product of the
co-domain V :=×N

i=1
Y and a new function f ′ : XN → V

that performs classification. Thus we can apply CERTIFY
(Algorithm 1) to the base classifier f ′. This provides a math-
ematically sound mapping of segmentation to classification.
However, a change in the classification of a single compo-
nent xi will change the overall class in V making it hard to
find a majority class ĉA with high pA in practice. We refer to
this method as JOINTCLASS, short for “joint classification”.

Alternatively, rather than considering all components at
the same time, we can also classify each component indi-
vidually. To this end, we let fi(x) denote the i-th com-
ponent of f(x) and apply CERTIFY, in Algorithm 1, N
times to evaluate f̃i(x) to obtain classes ĉA,1, . . . , ĉA,N
and radii R1, . . . , RN . Then the overall radius is given
as R = miniRi and a single abstention will cause an
overall abstention. To reduce evaluation cost we can reuse
the same input samples for all components of the output
vector, that is sample f(x) rather than individual fi(x).
We refer to this method as INDIVCLASS. Further, the
result of each call to CERTIFY only holds with proba-
bility 1 − α. Thus, using the union bound, the overall
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correctness is limited by 1 − P(
∨
i i-th test incorrect) ≤

1 − max(
∑
i P(i-th test incorrect), 1) = 1 − min(Nα, 1)

(by the union bound), which for large N quickly becomes
problematic. This can be compensated by carrying out calls
to CERTIFY with α′ = α

N , which becomes prohibitively
expensive as n needs to be increased for the procedure to
not abstain.

Key Challenges These direct applications of randomized
smoothing to segmentation suffer from multiple problems
that can be reduced to two challenges:

• Bad Components: Both algorithms can be forced to ab-
stain or report a small radius by a single bad component
xi for which the base classifier is unstable.

• Multiple Testing Trade-off : Any algorithm that, like
INDIVCLASS, reduces the certification segmentation
to multiple stochastic tests (such as CERTIFY) suffers
from the multiple testing problem. As outlined before,
if each partial result only holds with probability α
then the overall probability decays, using the union
bound, linearly in the number of tests. Thus, to remain
sound one is forced to choose between scalability or
low confidence.

5. Scalable Certified Segmentation
We now introduce our algorithm for certified segmentation
by addressing these challenges. In particular, we will side-
step the bad component issue and allow for a more favorable
trade-off in the multiple-testing setting.

To limit the impact of bad components on the overall result,
we introduce a threshold τ ∈ [ 1

2 , 1) and define a model
f̄τ : XN → ŶN , with Ŷ = Y ∪ {�}, that abstains if the
probability of the top class for component xi is below τ :

f̄τi (x) =

{
cA,i if Pε∼N (0,σ)(fi(x + ε)) > τ

� else
,

where cA,i = arg maxc∈Y Pε∼N (0,σ)(fi(x + ε) = c).

This means that on components with fluctuating classes, the
model f̄τ does not need to commit to a class. For the model
f̄τ , we obtain a safety guarantee similar to the original
theorem by (Cohen et al., 2019):

Theorem 5.1. Let Ix = {i | f̄τi (x) 6= �, i ∈ 1, . . . , N}
denote the set of non-abstain indices for f̄τ (x). Then,

f̄τi (x + δ) = f̄τi (x), ∀i ∈ Ix

for δ ∈ RN×m with ‖δ‖2 ≤ R := σΦ−1(τ).

Proof. We consider f̄τ1 , . . . , f̄
τ
N independently. With

pA,i := Pε∼N (0,σ)(fi(x + ε) = cA,i) > τ , we invoke

Algorithm 2 algorithm for certification and prediction

# evaluate f̄τ at x
function SEGCERTIFY(f , σ, x, n, n0, τ , α)
cnts0

1, . . . ,cnts
0
N ← SAMPLE(f , x, n0, σ)

cnts1, . . . ,cntsN ← SAMPLE(f , x, n, σ)
for i← {1, . . . , N}:
ĉi ← top index in cnts0

i

ni ← cntsi[ĉi]
pvi ←BINPVALUE(ni, n, ≤, τ )

r1, . . . , rN ← FWERCONTROL(α, pv1, . . . , pvN )
for i← {1, . . . , N}:

if ¬ri: ĉi ← �
R← σΦ−1(τ)
return ĉ1, . . . , ĉN , R

Theorem 3.1 with pA = τ for f̄τ and obtain robustness
radius R := σΦ−1(τ) for f̄τi (x). This holds for all i where
the class probability pA,i > τ , denoted by the set Ix.

Certification Similarly to Cohen et al. (2019), we cannot
invoke our theoretically constructed model f̄τ and must
approximate it. The simplest way to do so would be to
invoke CERTIFY for each component and replace the check
pA > 1

2 by pA > τ . However, while this accounts for
the bad component issue, it still suffers from the outlined
multiple testing problem. To address this issue, we now
introduce the SEGCERTIFY procedure in Algorithm 2.

We will now briefly outline the steps in Algorithm 2 be-
fore describing them in further detail and arguing about its
correctness and properties. Algorithm 2 relies on the same
primitives as Algorithm 1, as well as the FWERCONTROL
function, which performs multiple-testing correction, which
we will formally introduce shortly. As before, SAMPLE
denotes the evaluation of samples f(x + ε) and cntsi de-
notes the class frequencies observed for the i-th component.
Similar to CERTIFY, we use two sets of samples cnts and
cnts0 to avoid a model selection bias (and thus invalidate
our statistical test): We use n0 samples, denoted cnts0

i

to guess the majority class cA,i for the i-th component, de-
noted ĉi and then determine its appearance count ni out of
n trails from cntsi. With these counts, we then perform
a one-sided binomial test, discussed shortly, to obtain its
p-value pvi. Given these p-values we can employ FWER-
CONTROL, which determines which tests we can reject in
order to obtain overall confidence 1−α. The rejection of the
i-th test is denoted by the boolean variable ri. If we reject
the i-th test (ri = 1), we assume its alternate hypothesis
pA,i > τ and return the class cA,i, else we return �.

To establish the correctness of the approach and improve
on the multiple testing trade-off, we will now briefly review
statistical (multiple) hypotheses testing.
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Hypothesis Testing Here we consider a fixed but arbitrary
single component i: If we guessed the majority class cA,i for
the i-th component to be ĉi, we assume that fi(x+ε) returns
ĉi with probability pĉi,i (denoted p in the following). We
now want to infer wether p > τ or not, to determine whether
f̄τ will output ĉi or �. We phrase this as a statistical test
with null hypothesis (H0,i) and alternative (HA,i):

(H0,i) : p ≤ τ (HA,i) : p > τ

A statistical test lets us assume a null hypothesis (H0,i) and
check how plausible it is given our observational data. We
can calculate the p-value pv, which denotes the probability
of the observed data or an even more extreme event under
the null hypothesis. Thus, in our case rejecting (H0,i) means
returning ĉi while accepting it means returning �.

Rejecting the null hypothesis when it is actually true (in our
case returning a class if we should abstain) is called a type I
error. The opposite, not rejecting the null hypothesis when
it is false is called a type II error. In our setting type II errors
mean additional abstentions on top of those f̄τ makes by
design. Making a sound statement about robustness means
controlling the type I error while reducing type II errors
means fewer abstentions due to the testing procedure.

Commonly, a test is rejected if its p-value is below some
threshold α, as in the penultimate line of PREDICT (Al-
gorithm 1). This bounds the probability of type I error at
probability (or “level”) α.

Multiple Hypothesis Testing Multiple tests performed
at once require additional care. Usually, if we perform N
tests, we want to bound the probability of any type I error
occurring. This probability is called the family wise error
rate (FWER). The goal of FWER control is, given a set of
N tests and α, to reject tests such that the FWER is limited
at α. In Algorithm 2 this is denoted as FWERCONTROL,
which is a procedure that takes the value α and p-values
pv1, . . . , pvN and decides on rejections r1, . . . , rN .

The simplest procedure for this is the Bonferroni method
(Bonferroni, 1936), which rejects individual tests with p-
value pvi ≤ α

N . It is based on the same consideration we
applied for the failure probability of INDIVCLASS in §4.
While this controls the FWER at level α it also increases the
type II error, and thus would reduce the number of correctly
classified components. To maintain the same number of
correctly classified components we would need to increase
n or decrease α.

A better alternative to the Bonferroni method is the Holm
correction (or Holm-Bonferroni method) (Holm, 1979)
which orders the tests by acceding p-value and steps through
them at levels α

N , . . . ,
α
1 (rejecting null if the associated p

value is smaller then the level) until the first level where no

additional test can be rejected. This method also controls
the FWER at level α but allows for a lower rate of type II
errors.

Further improving upon these methods, usually requires
additional information. This can either be specialization
to a certain kind of test (Tukey, 1949), additional knowl-
edge (e.g., no negative dependencies between tests, for pro-
cedures such as (Šidák, 1967)) or an estimate of the de-
pendence structure computed via Bootsrap or permutation
methods (Westfall & Young, 1993).

While our formulation of SEGCERTIFY admits all of these
corrections, Bootstrap or permutaion procedures are gener-
ally infeasible for large N . Thus, in the rest of the paper we
consider both Holm and Bonferroni correction and compare
them in §6.1.

We note that while methods (Westfall, 1985) exist for as-
sessing that N Clopper-Pearson confidence intervals hold
jointly at level α, thus allowing better correction for INDIV-
CLASS, these methods do not scale to realistic segmentation
problems as they require re-sampling operations that are
expensive on large problems.

5.1. Properties of SEGCERTIFY

SEGCERTIFY is a conservative algorithm, as it will rather
abstain from classifying a component than returning a wrong
or non-robust result. We formalize this as well as a statement
about the correctness of SEGCERTIFY in Proposition 1.

Proposition 1. Let ĉ1, . . . , ĉN be the output of SEGCER-
TIFY for input x and Îx := {i | ĉi 6= �}. Then with
probability at least 1− α over the randomness in SEGCER-
TIFY Îx ⊆ Ix, where Ix denotes the previously defined
non-abstain indices of f̄τ (x). Therefore ĉi = f̄τi (x) =

f̄τi (x + δ) for i ∈ Îx and δ ∈ RN×m with ‖δ‖2 ≤ R.

Proof. Suppose that i ∈ Îx \ Ix. This i then represents a
type I error. However, the overall probability of any such
type I error is controlled at level α by the FWERCONTROL
step. Thus with probability at least 1 − α, Îx ⊆ Ix. The
rest follows from Theorem 5.1.

We note that there are fundamentally two reasons for
SEGCERTIFY to abstain from the classification of a compo-
nent: either because the true class probability pA,i is less
than or equal to τ in which case f̄τi abstains by definition
or because of a type II error in SEGCERTIFY. This type II
error can occur either if we guess the wrong ĉi from our n0

samples or because we could not gather sufficient evidence
to reject (H0,i) under α-FWER. Proposition 1 only makes
a statement about type I errors, but not type II errors, e.g.,
Î could always be the empty set. In general, the control of
type II errors (called “power”) of a testing procedure can
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be hard to quantify without a precise understanding of the
underlying procedure (in our case the model f ). However,
in §6.1 we will investigate this experimentally.

In contrast to Cohen et al. (2019) we do not provide separate
procedures for prediction and certification, as for a fixed τ
both only need to determine pA,i > τ for all i with high
probability (w.h.p.). For faster prediction, the algorithm can
be invoked with larger α and smaller n.

ForN = 1, the algorithm exhibits the same time complexity
as those proposed by Cohen et al. (2019). For largerN , time
complexity stays the same (plus the time for sorting the p-
values in Holm procedure), however due to type II errors the
number of abstentions increases. Counteracting this leads
to the previously discussed multiple-testing trade-off.

Summary Having presented SEGCERTIFY we now sum-
marize how it addresses the two key challenges. First, the
bad component issue is offset by the introduction of a thresh-
old parameter τ . This allows to exclude single components,
which would not be provable, from the overall certificate.
Second, due to this threshold we now aim to show a fixed
lower bound pA = τ , where we can use a binomial p-value
test rather than the Clopper-Pearson interval for a fixed con-
fidence. The key difference here is that the binomial test
produces a p-value that is small unless the observed rate
ni

n is close to τ , while the Clopper-Pearson interval aims to
show the maximal pA for a fixed confidence. This former
setting generally lends itself better to the multiple testing
setting. In particular for correction algorithms such as Holm
this lets small p-values offset larger ones.

5.2. Generality

While presented in the `2-robustness setting as in Cohen
et al. (2019), SEGCERTIFY is not tied to this and is com-
patible with many extensions and variations of Theorem 3.1
in a plug-and-play manner. For example, Li et al. (2018);
Lécuyer et al. (2019); Yang et al. (2020) showed robustness
to `1 (and other `p) perturbations. Fischer et al. (2020) in-
troduced an extension that allows computing a robustness
radius over the parameter of a parametric transformation.
In both of these, it suffices for practical purposes to update
SAMPLE to produce perturbations from a suitable distribu-
tion (e.g., rotation or Laplace noise) as well as update the
calculation of the radiusR to reflect the different underlying
theorems. Similarly, in f̄τ and Theorem 5.1, it suffices to
update the class probability according to the sample distri-
bution and radius prescribed by the relevant theorem.

Extensions to k-FWER When we discussed FWER con-
trol so far, we bounded the probability of making any type I
error by α. However, in the segmentation setting we have
many individual components, and depending on our objec-

tive, we may allow a small budget of few errors. In this
setting, we can employ k-FWER control (Lehmann & Ro-
mano, 2012). It controls the probability of observing k or
more type I errors at probability α. Thus with probability
1 − α we have observed at most k − 1 type I errors (false
non-abstentions). Lehmann & Romano (2012) introduces a
procedure similar to Holm method that allows for k-FWER
that is optimal (without the use of further information on test
dependence) and can be simply plugged into SEGCERTIFY.
We provide further explanation and evaluation in App. B.2.

6. Experimental Evaluation
We evaluate our approach in three different settings: (i)
investigating the two key challenges on toy data in §6.1, (ii)
semantic image segmentation in §6.2, and (iii) point clouds
part segmentation in §6.3. All timings are for a single Nvidia
GeForce RTX 2080 Ti. For further details, see App. A.

6.1. Toy Data

We now investigate how well SEGCERTIFY and the two
naive algorithms handle the identified challenges.

Here we consider a simple setting, where our input is of
length N and each component can be from two possible
classes. Further, our base model is an oracle (that does not
need to look at the data) and is correct for each of N − k
component with probability 1− γ for some γ ∈ [0, 1] and
k ∈ 0, . . . , N . On the remaining k components it is correct
with probability 1− 5γ (clamped to [0, 1]).

We evaluate JOINTCLASS, INDIVCLASS with Bonferroni
correction and SEGCERTIFY with Holm, denoted SEGCER-
TIFYHOLM, as well as Bonferroni correction, denoted
SEGCERTIFYBON. Note that SEGCERTIFYBON in con-
trast to INDIVCLASS employs thresholding. We investigate
the performance of all methods under varying levels of
noise by observing the rate of certified components. As
the naive algorithms either provide a certificate for all pix-
els or none, we have repeated the experiment 600 times,
showing a smoothed average in Fig. 2a (the unsmoothed
version can be found in App. A). In this setting, we assume
N = 100 components, k = 1 and γ varies between 0 and
0.1 along the x-axis. All algorithms use n0 = n = 100 and
α = 0.001. SEGCERTIFY uses τ = 0.75. This means that
for γ ≤ 0.05, all abstentions are due to the testing procedure
(type II errors) and not prescribed by τ in the definition of
f̄τ . For 0.05 < γ ≤ 0.1, there is one prescribed abstention
as k = 1. Thus the results provide an empirical assessment
of the statistical power of the algorithm.

As outlined §4, JOINTCLASS and INDIVCLASS are very
susceptible to a single bad component. While JOINTCLASS
almost fails immediately for γ > 0, INDIVCLASS works
until γ becomes large enough so that the estimated confi-
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(c) SEGCERTIFY with different testing
corrections for various numbers of com-
ponents N with error rate γ = 0.05.

Figure 2. We empirically investigate the power (ability to avoid type II errors – false abstention) of multiple algorithms on synthetic data.
The y-axis shows the rate of certified (rather than abstained) components. An optimal algorithm would achieve 1.0 or 0.99 in all plots.

dence interval of 1− 5γ cannot be guaranteed to be larger
than 0.5. Both variants of SEGCERTIFY also deteriorate
with increasing noise. The main culprit for this is guess-
ing a wrong class in the n0 samples. We showcase this in
Fig. 2b, where we use the same setting as in Fig. 2a but with
n0 = n = 1000. Here, both SEGCERTIFY variants have
the expected performance (close to 1) even with increas-
ing noise. For INDIVCLASS, these additional samples also
delay complete failure, but do not prevent it. The main take-
away from Figs. 2a and 2b is that SEGCERTIFY overcomes
the bad component issue and the number of samples n, n0

is a key driver for its statistical power.

Lastly, in Fig. 2c we compare SEGCERTIFYBON and
SEGCERTIFYHOLM. Here, γ = 0.05, k = 0, n = n0 =
1000, α = 0.1 and N increases (exponentially) along the
x-axis. We see both versions deteriorate in performance
as N grows. As before, this is to be expected as out of N
components some of the initial guesses based on n0 samples
may be wrong or n may be too small to correctly reject the
test. However, we note that the certification gap between
SEGCERTIFYBON and SEGCERTIFYHOLM grows as N
increases due to their difference in statistical power.

We conclude that SEGCERTIFY addresses both challenges,
solving the bad component issue and achieving better trade-
offs in multiple testing. Particularly in the limit the benefit
of Holm correction over Bonferrroni becomes apparent.

6.2. Semantic Image Segmentation

Next, we evaluate SEGCERTIFY on the task of semantic
image segmentation considering two datasets, Cityscapes,
and Pascal Context. The Cityscapes dataset (Cordts et al.,
2016) contains high-resolution (1024× 2048 pixel) images
of traffic scenes annotated in 30 classes, 19 of which are
used for evaluation. An example of this can be seen in Fig. 1
(the hood of the car is in an unused class). The Pascal Con-
text dataset (Mottaghi et al., 2014) contains images with

59 foreground and 1 background classes, which before seg-
mentation are resized to 480× 480. There are two common
evaluation schemes, either using all 60 classes or just the 59
foreground classes. Here we use the later setting.

As a base model in this settings, we use a HrNetV2 (Sun
et al., 2019; Wang et al., 2019). Like many segmentation
models, it can be invoked on different scales. For exam-
ple, to achieve faster inference we scale an image down
half its length and width, invoke the segmentation model,
and scale up the result. Or, to achieve a more robust or
more accurate segmentation we can invoke segmentation on
multiple scales, scale the the output probabilities to the orig-
inal input size, average them, and then predict the class for
each pixel. Here we investigate how different scales allow
different trade-offs for provably robust segmentation via
SEGCERTIFY. We note that at the end, we always perform
certification on the 1024 × 2048-scale result. We trained
our base models with Gaussian Noise (σ = 0.25), as in
Cohen et al. (2019). Details about the training procedure
and further results can be found in App. A.1 and B.3.

Evaluation results for 100 images on both datasets are given
in Table 1. We observe that the certified model has accuracy
close to that of the base model, even outperforming it some-
times, even though it is abstaining for a number of pixels.
This means that abstentions generally happens in wrongly
predicted areas or on ignored classes. Similar to Cohen et al.
(2019), we observe best performance on the noise level we
trained the model on (σ = 0.25) and degrading performance
for higher values. Interestingly, by comparing the results
for σ = 0.5 at scale 1.0 and smaller scales, we observe that
the resizing for scales < 1.0 acts as a natural denoising step,
allowing better performance with more noise. Further, in
Fig. 3 we show how the certified accuracy degrates with dif-
ferent values of τ . We use scale 0.25 and n = 300 and the
same parameters as in Table 1 otherwise. Up to τ = 0.92
we observe very gradual drop-off with increasing τ . Then
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Table 1. Segmentation results for 100 images. acc. shows the mean per-pixel accuracy, mIoU the mean intersection over union, %�
abstentions and t runtime in seconds. All SEGCERTIFY (n0 = 10, α = 0.001) results are certifiably robust at radius R w.h.p. multiscale
uses 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 as well as their flipped variants for Cityscapes and additionally 2.0 for Pascal.

Cityscapes Pascal Context

scale σ R acc. mIoU %� t acc. mIoU %� t

0.25 non-robust model - - 0.93 0.60 0.00 0.38 0.59 0.24 0.00 0.12

base model - - 0.87 0.42 0.00 0.37 0.33 0.08 0.00 0.13

SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 0.84 0.43 0.07 70.00 0.33 0.08 0.13 14.16
0.33 0.22 0.84 0.44 0.09 70.21 0.34 0.09 0.17 14.20
0.50 0.34 0.82 0.43 0.13 71.45 0.23 0.05 0.27 14.23

SEGCERTIFY
n = 500, τ = 0.95

0.25 0.41 0.83 0.42 0.11 229.37 0.29 0.01 0.30 33.64
0.33 0.52 0.83 0.42 0.12 230.69 0.26 0.01 0.39 33.79
0.50 0.82 0.77 0.38 0.20 230.09 0.10 0.00 0.61 33.44

0.5 non-robust model - - 0.96 0.76 0.00 0.39 0.74 0.38 0.00 0.16

base model - - 0.89 0.51 0.00 0.39 0.47 0.13 0.00 0.14

SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 0.88 0.54 0.06 75.59 0.48 0.16 0.09 16.29
0.33 0.22 0.87 0.54 0.08 75.99 0.50 0.17 0.11 16.08
0.50 0.34 0.86 0.54 0.10 75.72 0.36 0.10 0.21 16.14

1.0 non-robust model - - 0.97 0.81 0.00 0.52 0.77 0.42 0.00 0.18

base model - - 0.91 0.57 0.00 0.52 0.53 0.18 0.00 0.18

SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 0.88 0.59 0.11 92.75 0.55 0.22 0.22 18.53
0.33 0.22 0.78 0.43 0.20 92.85 0.46 0.18 0.34 18.57
0.50 0.34 0.34 0.06 0.40 92.48 0.17 0.03 0.41 18.46

multi non-robust model - - 0.97 0.82 0.00 8.98 0.78 0.45 0.00 4.21

base model - - 0.92 0.60 0.00 9.04 0.56 0.19 0.00 4.22
SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 0.88 0.57 0.09 1040.55 0.52 0.21 0.29 355.00

observe a sudden drop-off as n is becomes insufficient to
proof any component (even those that are always correct).
All values use Holm correction. We contrast them with
Bonferroni correction in App. B.3.
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Figure 3. Radius versus certified mean per-pixel accuracy for se-
mantic segmentation on Cityscapes at scale 0.25. Numbers next to
dots show τ . The y-axis is scaled to the fourth power for clarity.

Lastly, we observe that our algorithm comes with a large
increase in run-time as is common with randomized smooth-
ing. However, the effect here is amplified as semantic seg-
mentation commonly considers large models and large im-
ages. On average, 30s (for n = 100) are spent on computing
the p-values, 0.1s on computing the Holm correction and
the test of the reported time on sampling. We did not op-
timize our implementation for speed, other than choosing
the largest possible batch size for each scale, and we believe
that with further engineering run time can be reduced.

6.3. Pointcloud Part Segmentation

For point clouds part segmentation we use the ShapeNet
(Chang et al., 2015) dataset, which contains 3d CAD mod-
els of different objects from 16 categories, with multiple
parts, annotated from 50 labels. Given the overall label and
points sampled from the surface of the object, the goal is
to segment them into their correct parts. There exist two
variations of the described ShapeNet task, one where every
point is a 3d coordinate and one where each coordinate also
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Table 2. results on 100 point clouds part segmentations. acc. shows
the mean per-point accuracy, %� abstentions and t runtime in
seconds. all SEGCERTIFY (n0 = 100, α = 0.001) results are
certifiably robust w.h.p.

n τ σ acc %� t

fσ=0.25 - - - 0.81 0.00 0.57
1000 0.75 0.250 0.62 0.32 54.47
1000 0.85 0.250 0.52 0.44 54.41

10000 0.95 0.250 0.41 0.56 496.57
10000 0.99 0.250 0.20 0.78 496.88

fnσ=0.25 - - - 0.86 0.00 0.57
1000 0.75 0.250 0.78 0.16 54.46
1000 0.85 0.250 0.71 0.25 54.41

10000 0.95 0.250 0.62 0.35 496.65
10000 0.99 0.250 0.39 0.60 496.68

fσ=0.5 - - - 0.70 0.00 0.55
1000 0.75 0.250 0.57 0.23 54.40
1000 0.75 0.500 0.47 0.44 54.47
1000 0.85 0.500 0.41 0.54 54.39

10000 0.95 0.500 0.30 0.67 496.30
10000 0.99 0.500 0.11 0.87 496.47

fnσ=0.5 - - - 0.78 0.00 0.56
1000 0.75 0.250 0.74 0.10 54.78
1000 0.75 0.500 0.67 0.21 54.58
1000 0.85 0.500 0.61 0.30 54.44

10000 0.95 0.500 0.53 0.41 497.40
10000 0.99 0.500 0.37 0.60 497.87

contains its surface normal vector. Each input consists of
2048 points and before it is fed to the neural network its
coordinates are centered at the origin and scaled such that
the point furthest away from the origin has distance 1.

Using the PointNetV2 architecture (Qi et al., 2017a;b; Yan
et al., 2020), we trained four base models: fσ=0.25, fnσ=0.25,
fnσ=0.5 and fσ=0.5 where ·n denotes the inclusion of nor-
mal vectors and σ the noise used in training. We apply all
smoothing after the rescaling to work on consistent sizes
and we only perturb the location, not the normal vector.
Commonly, the underlying network is invoked 3 times and
the results averaged as the classification algorithm involves
randomness. As Theorems 3.1 and 5.1 do not require the
underlying f to be deterministic, we also use the average of
3 runs for each invocation of the base model.

We provide the results in Table 2 and Fig. 4. We note
that on the same data non-robust model achieves 0.91 and
0.90 with and without normal vectors respectively. While
certification results here are good compared with the base
model, this ratio is worse than in image segmentation and
more samples (n) are needed. This is because here – in
contrast to image segmentation – a perturbed point can have
different semantics if it is moved to a different part of the
object, causing label fluctuation. Further, as Fig. 4, shows
we see a gradual decline in accuracy when increasing τ
rather than the sudden drop in Fig. 3. As before, all values
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Figure 4. Radius versus certified accuracy at different radii for
Pointcloud part segmentation. Numbers next to dots show τ .

are computed using Holm correction and we provide results
for Bonferroni in App. B.4.

Using the same base models, we apply the randomized
smoothing variant by Fischer et al. (2020) and achieve an
accuracy of 0.69 while showing robustness to 3d rotations.
App. B.5 provides further details and the obtained guarantee.

6.4. Discussion & Limitation

By reducing the problem of certified segmentation to only
non-fluctuating components, we significantly reduce the dif-
ficulty and achieve strong results on challenging datasets.
However, a drawback of the method is the newly introduced
hyperparameter τ . In practice a suitable value can be deter-
mined by the desired radius or the empirical performance
of the base classifier. High values of τ will permit a higher
certification radius, but also lead to more abstentions and
require more samples n for both certification and inference
(both done via SEGCERTIFY). Further, as is common with
adversarial defenses is a loss of performance compared to
a non-robust model. However we expect further improve-
ments in accuracy by the application of specialized training
procedures (Salman et al., 2019; Zhai et al., 2020; Jeong &
Shin, 2020), which we briefly investigate in App. B.3.

7. Conclusion
In this work we investigated the problem of provably robust
segmentation algorithms and identified two key challenges:
bad components and trade-offs introduced by multiple test-
ing that prevent naive solutions from working well. Based
on this we introduced SEGCERTIFY, a simple yet powerful
algorithm that clearly overcomes the bad component issue
and allows for significantly better trade-offs in multiple-
testing. It enables certified performance on a similar level
as an undefended base classifier and permits guarantees to
multiple threat models in a plug-and-play manner.
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Supplemental Material for
Scalable Certified Segmentation via Randomized Smoothing

A. Experimental Details
A.1. Experimental Details for §6.2

We use a HrNetV2 (Sun et al., 2019; Wang et al., 2019) with
the HRNetV2-W48 backbone from their official PyTorch
1.1 (Paszke et al., 2019) implementation1. For Cityscapes
we follow the outlined training procedure, only adding the
σ = 0.25 Gaussian noise. For Pascal Context we doubled
the number of training epochs (and learning rate schedule)
and added the σ = 0.25 Gaussian noise. During inference
we use different batch sizes for different scales. These are
summarized in Table 3. All timing timing results are given
for a single Nvidia GeForce RTX 2080 Ti and using 12
cores of a Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz.
When training on an machine with 8 Nvidia GeForce RTX
2080 Ti one training epoch takes around 4 minutes for both
of the data sets.

We evaluate on 100 images each, that is for Cityscapes we
use every 5th image in the test set and for Pascal every 51st.

We consider two metrics:

• (certified) per-pixel accuracy: the rate of pixels cor-
rectly classified (over all images)

• (certified) mean intersection over union (mIoU): For
each image i and each class c (ignoring the � “class”)
we calculate the ratio IoU ic =

|P i
c∩G

i
c|

|P i
c∪Gi

c|
where P ic de-

notes the pixel locations predicted as class c for input
i and Gic denotes the pixel locations for class c in the
ground truth of input i. We then average IoU ic over all
inputs and classes.

A.2. Experimental Details for §6.3

Using the PointNetV2 architecture (Qi et al., 2017a;b; Yan
et al., 2020) implemented in PyTorch 2 (Paszke et al., 2019).
Again we keep the training parameters unchanged other than
the addition of noise during training. One training epoch
on a single Nvidia GeForce RTX 2080 Ti takes 6 minutes.

1https://github.com/HRNet/
HRNet-Semantic-Segmentation

2https://github.com/yanx27/Pointnet_
Pointnet2_pytorch

Table 3. Batch sizes used in segmentation inference.

scale Cityscapes Pascal Context

0.25 24 80
0.50 12 64
0.75 4 32
1.00 4 20
multi 4 10

In inference we use a batch size of 50. All timing results
are given for a single Nvidia GeForce RTX 2080 Ti and
using 12 cores of a Intel(R) Xeon(R) Silver 4214R CPU @
2.40GHz.

Again, we evaluate on 100 inputs. This corresponds to every
28th input in the test set. As a metric we consider the (certi-
fied) per-component accuracy: the rate of parts/components
correctly classified (over all inputs).

B. Additional Results
B.1. Additional Results for §6.1

In Figs. 2b and 2c we show smoothed plots as JOINTCLASS
and INDIVCLASS are either correct on all components or
non at all. Here, we provide the unsmoothed results in Fig. 5.
In order to obtain the plots in Fig. 2 we apply a Savgol filter
(Savitzky & Golay, 1964) of degree 1 over the 11 closest
neighbours (using the SciPy implementation) and use a step
size of 0.001 for γ.

B.2. k-FWER and error budget

Here we discuss the gains from allowing a small budget
of errors and applying k-FWER control as outlined in
§5.2. Control for k-FWER at level α means that P (≥
k type I errors) ≤ α. Which for k = 1 recovers standard
FWER control. Thus, if we allow a budget of b type I er-
rors at level α we need to perform k-FWER control with
k = b+ 1. In the following we will refer only to the budget
b, to avoid confusion between the k in k-FWER and the k
noisy components in the setting of §6.1.

Fig. 6 shows an empirical evaluation of this approach for
different b for γ = 0.05, one noisy components and different

https://github.com/HRNet/HRNet-Semantic-Segmentation
https://github.com/HRNet/HRNet-Semantic-Segmentation
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
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(a) Unsmoothed version of Fig. 2b. On N = 100 components,
with a classifier that has error rate 5γ on one component and
γ on all others.
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(b) Unsmoothed version of Fig. 2c. SEGCERTIFY with differ-
ent testing corrections for various numbers of components N
with error rate γ = 0.05.

Figure 5. Unsmoothed versions of Fig. 2. We empirically investigate the power (ability to avoid type II errors – false abstention) of
multiple algorithms on synthetic data. The y-axis shows the rate of certified (rather than abstained) components. An optimal algorithm
would achieve 1.0 or 0.99 in all plots.
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(a) α = 0.1.
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Figure 6. Evaluation where an error budget of up top b type I errors is allowed. Potentially allowing a small amount of errors greatly
increases the power of the test. N varies along the x-axis, γ = 0.05 and k components with error rate 5γ.

levels of N . Fig. 6a uses α = 0.1 and Fig. 6b α = 0.001.
We see that allowing a single error leads to a huge gain
in power for the N = 106 setting. Similarly, allowing 1
percent or 1 permille errors greatly strengthen the method.

False Discovery Rate Similarly, SEGCERTIFY can em-
ploy false discovery rate (FDR) control rather than (k-
)FWER control. FDR control limits the expected number
of type I errors. Since this is a much weaker statement than
FWER it allows for less type II errors. However, while
useful this kind of control leaves the area of (statistical)
certified robustness for a more relaxed probabilistic setting
which we do not investigate here further.

B.3. Additional Results for §6.2

Table 8 shows an extended version of Table 1. Both of these
tables use Holm correction. Table 4 shows the difference to
Table 8 if instead Bonferroni correction was used. Generally
this difference is very small in this setting as it appears the
true pA are far from τ . However in some settings (such as
multi resolution) the effect of Holm correction can be up
to 2%. Since for a particular base classifier or τ this gain
can quickly go from neglectable to significant and since the
additional evaluation time (< 0.1s) is neglectable compared
to the time for sampling we believe Holm correction to be
preferable in most cases.
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Table 4. Difference when Bonferroni correction rather than Holm correction is used in Table 8. Only differences ≥ 10−4 are shown. We
observed no such differences on the Pascal Context dataset.

Cityscapes

scale σ R acc. mIoU %�

0.5
SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 -0.0008 -0.0005 0.0019
0.33 0.22 -0.0014 -0.0010 0.0024
0.50 0.34 -0.0021 -0.0019 0.0031

0.5
SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 -0.0009 -0.0014 0.0014
0.33 0.22 -0.0012 -0.0020 0.0016
0.50 0.34 -0.0005 -0.0004 0.0006

1.0
SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 -0.0012 -0.0032 0.0016
0.33 0.22 -0.0020 -0.0018 0.0024
0.50 0.34 -0.0000 -0.0000 0.0001

SEGCERTIFY
n = 300, τ = 0.90 0.25 0.17 0.0001 0.0002 -0.0002

multi
SEGCERTIFY
n = 100, τ = 0.75 0.25 0.17 -0.0125 -0.0185 0.0173

Consistency Training Here we investigate a naive instan-
tiation of training approach from Jeong & Shin (2020).

Jeong & Shin (2020) improve the training for classification
models used as base models in randomized smoothing by
adding a consistency regularization term in training. We use
this same term, but compute it for every pixel and average
the results. To obtain the results in Table 5 we used m = 2,
λ = 1, η = 0.5 and σ = 0.25. Depending on the scale
we see either slightly better or slightly worse results than
with standard Gaussian data augmentation in training. This
shows the promise of the method but also highlights the
need for potential further specialization to the segmentation
setting, particularly by considering the effect of scaling.

B.4. Additional Results for §6.3

Table 6 shows the change when executing the experiments
in Table 2 with Bonferroni correction instead of Holm cor-
rection.

B.5. Certification beyond `p

As outlined in §5.2, SEGCERTIFY can be easily adapted to
non-`2-settings. Here we show that we can certify against
and adversary rotating 3d point clouds. A 3d rotation is
parameterized by 3 angles which we will denote ε ∈ R3 and
define ψε(x) : RN×3 → RN×3 as

(ψε(x))i = Rεxi, (2)

where Rε denotes the 3d rotation matrix specified by ε. The
randomized smoothing approach of Fischer et al. (2020)

allows to certify robustness in this case: f(x) = f(ψδ(x))
for δ with ‖δ‖2 ≤ R, by sampling rotations ψε(x) with ε ∼
N (0, σ2). The parameter robustness radius R is computed
the same as throughout the paper. When applied to points
with a normal vector, Eq. (2) can be extended to apply Rε
to the point coordinates as well as the normal vector.

Using one of the model from §6.3, fnσ=0.5 , we perform this
version of randomized smoothing.

The results are shown in Table 7. Since the models was
not specifically trained to be robust under rotations, the per-
formance quickly deteriorates. Nevertheless we can certify
robustness to rotations with a parameter radius R of 0.17
and 0.085 for σ of 0.25 and 0.125 respectively.

The same approach can be applied to models that are empir-
ically invariant to most rotations while not formally rotation
invariant. In these cases we need to certify a radius of
R =

√
3π (when measuring angles in radians). When using

a fixed τ , an appropriate σ can be chosen as σ =
√

3π
Φ−1(τ) .

While this is relativity large σ, this does not pose an obstacle
for a mostly robust base model.

Table 7. Results for point cloud part segmentation under 3d rota-
tion. The baseline and base model is fnσ=0.5. SEGCERTIFY uses
τ = 0.75, n0 = 100, n = 1000 and α = 0.0001.

model / σ acc %� t

baseline 0.77 0.00 0.72
0.125 0.69 0.16 74.13

0.25 0.61 0.26 74.51
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Table 5. Same setting as Table 8 but using a model trained with consitency regularization.

Cityscapes

scale σ R acc. mIoU %�

0.25 base model - - 0.87 0.40 0.00

SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 0.83 0.42 0.07
0.33 0.22 0.84 0.42 0.09
0.50 0.34 0.82 0.43 0.14

0.50 base model - - 0.91 0.53 0.00

SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 0.89 0.57 0.06
0.33 0.22 0.89 0.57 0.07
0.50 0.34 0.86 0.57 0.11

1.00 base model - - 0.92 0.62 0.00

SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 0.88 0.63 0.12
0.33 0.22 0.79 0.46 0.20
0.50 0.34 0.39 0.06 0.32

Table 6. Difference when Bonferroni correction rather than Holm correction is used in Table 2.

n τ σ acc %�
fσ=0.25

1000 0.75 0.250 -0.0012 0.0019
1000 0.85 0.250 -0.0023 0.0029

10000 0.95 0.250 -0.0013 0.0009
10000 0.99 0.250 -0.0008 0.0009

fnσ=0.25

1000 0.75 0.250 -0.0020 0.0026
1000 0.85 0.250 -0.0026 0.0032

10000 0.95 0.250 -0.0011 0.0010
10000 0.99 0.250 -0.0013 0.0011

fσ=0.5

1000 0.75 0.250 -0.0007 0.0010
1000 0.75 0.500 -0.0002 0.0010
1000 0.85 0.500 -0.0017 0.0028

10000 0.95 0.500 -0.0007 0.0010
10000 0.99 0.500 -0.0003 0.0003

fnσ=0.5

1000 0.75 0.250 -0.0009 0.0017
1000 0.75 0.500 -0.0015 0.0024
1000 0.85 0.500 -0.0019 0.0028

10000 0.95 0.500 -0.0043 0.0013
10000 0.99 0.500 -0.0008 0.0007
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Table 8. Extended version of Table 1. Segmentation results for 100 images. acc. shows the mean per-pixel accuracy, mIoU the mean
intersection over union, %� abstentions and t runtime in seconds. All SEGCERTIFY (n0 = 10, α = 0.001) results are certifiably robust
at radius R w.h.p. multiscale uses 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 as well as their flipped variants for Cityscapes and additionally 2.0 for
Pascal. All numbers are obtained via Holm correction.

Cityscapes Pascal Context

scale σ R acc. mIoU %� t acc. mIoU %� t

0.25 non-robust model - - 0.93 0.60 0.00 0.38 0.59 0.24 0.00 0.12
base model - - 0.87 0.42 0.00 0.37 0.33 0.08 0.00 0.13

SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 0.84 0.43 0.07 70.00 0.33 0.08 0.13 14.16
0.33 0.22 0.84 0.44 0.09 70.21 0.34 0.09 0.17 14.20
0.50 0.34 0.82 0.43 0.13 71.45 0.23 0.05 0.27 14.23

SEGCERTIFY
n = 300, τ = 0.90

0.25 0.32 0.83 0.43 0.10 143.37 0.32 0.08 0.23 24.33
0.33 0.42 0.82 0.43 0.12 143.30 0.32 0.09 0.29 24.42
0.50 0.64 0.79 0.40 0.18 143.54 0.20 0.04 0.43 24.13

SEGCERTIFY
n = 500, τ = 0.95

0.25 0.41 0.83 0.42 0.11 229.37 0.29 0.01 0.30 33.64
0.33 0.52 0.83 0.42 0.12 230.69 0.26 0.01 0.39 33.79
0.50 0.82 0.77 0.38 0.20 230.09 0.10 0.00 0.61 33.44

SEGCERTIFY
n = 10000, τ = 0.99

0.25 0.58 - - - - 0.25 0.07 0.48 557.29
0.33 0.77 - - - - 0.24 0.07 0.58 557.34
0.50 1.17 - - - - 0.11 0.03 0.77 557.32

0.5 non-robust model - - 0.96 0.76 0.00 0.39 0.74 0.38 0.00 0.16
base model - - 0.89 0.51 0.00 0.39 0.47 0.13 0.00 0.14

SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 0.88 0.54 0.06 75.59 0.48 0.16 0.09 16.29
0.33 0.22 0.87 0.54 0.08 75.99 0.50 0.17 0.11 16.08
0.50 0.34 0.86 0.54 0.10 75.72 0.36 0.10 0.21 16.14

SEGCERTIFY
n = 300, τ = 0.90

0.25 0.32 0.87 0.53 0.08 143.40 0.46 0.15 0.17 27.17
0.33 0.42 0.86 0.52 0.10 145.90 0.47 0.16 0.21 27.17
0.50 0.64 0.83 0.50 0.15 144.61 0.31 0.10 0.38 27.32

SEGCERTIFY
n = 500, τ = 0.95

0.25 0.41 0.86 0.52 0.09 228.63 0.45 0.19 0.21 38.27
0.33 0.52 0.85 0.51 0.11 228.38 0.46 0.16 0.26 38.43
0.50 0.82 0.82 0.49 0.16 228.73 0.30 0.09 0.44 38.37

0.75 non-robust model - - 0.97 0.80 0.00 0.46 0.76 0.41 0.00 0.15
base model - - 0.90 0.59 0.00 0.47 0.55 0.18 0.00 0.15

SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 0.88 0.57 0.09 82.69 0.53 0.19 0.15 16.78
0.33 0.22 0.86 0.56 0.12 82.87 0.54 0.20 0.20 16.83
0.50 0.34 0.64 0.27 0.31 82.19 0.29 0.07 0.33 16.83

SEGCERTIFY
n = 300, τ = 0.90

0.25 0.32 0.84 0.54 0.13 177.44 0.51 0.19 0.22 29.48
0.33 0.42 0.84 0.52 0.15 177.22 0.51 0.20 0.28 29.58
0.50 0.64 0.60 0.24 0.37 177.67 0.25 0.06 0.45 29.53

1.0 non-robust model - - 0.97 0.81 0.00 0.52 0.77 0.42 0.00 0.18
base model - - 0.91 0.57 0.00 0.52 0.53 0.18 0.00 0.18

SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 0.88 0.59 0.11 92.75 0.55 0.22 0.22 18.53
0.33 0.22 0.78 0.43 0.20 92.85 0.46 0.18 0.34 18.57
0.50 0.34 0.34 0.06 0.40 92.48 0.17 0.03 0.41 18.46

SEGCERTIFY
n = 300, τ = 0.90

0.25 0.32 0.86 0.56 0.14 204.82 0.53 0.21 0.29 33.83
0.33 0.42 0.75 0.40 0.24 204.58 0.42 0.17 0.44 33.78
0.50 0.64 0.31 0.05 0.47 204.57 0.15 0.03 0.52 33.43

multi non-robust model - - 0.97 0.82 0.00 8.98 0.78 0.45 0.00 4.21
base model - - 0.92 0.60 0.00 9.04 0.56 0.19 0.00 4.22
SEGCERTIFY
n = 100, τ = 0.75

0.25 0.17 0.88 0.57 0.09 1040.55 0.52 0.21 0.29 355.00
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C. Details on Attacks & Fig. 1
To produce the visualization in Fig. 1 we used a custom
PGD attack described below and produced an `2 adversarial
example within a range of 0.16. We performed certification
with n = 100, α = 0.001, σ = 0.25 and τ = 0.75, which
certifies robustness at an radius of R = σΦ−1(τ) = 0.1686.
We perform this certification on the clean input and thus
show robustness to the attack. As the non-robust model for
Fig. 1c we used a pretrained HrNet from the same repository
as outlined in App. A.1.

We use k = 100 steps for the attack and step size s = 10∗R
k .

While scaling can be simply incorporated into the attack, we
use scale 1.0 for both the attacked an the certified classifier.

We used an Nvidia Titan RTX to perform these attacks as
the memory requirement exceeds that of a single Nvidia
GeForce RTX 2080 Ti.

Here, in Figs. 7 and 8 we provide further visualizations
like Fig. 1. The visualization in Fig. 7 is hand-picked (like
Fig. 1), while the ones in Fig. 8 are chosen randomly from
the evaluated images.

C.1. PGD for Segmentation

Following the work of Madry et al. (2018), Arnab et al.
(2018) and Xie et al. (2017) we use a slightly generalized
form of the untargeted `2 projected gradient decent (PGD)
attack. This version is the same as untargeted PGD (Madry
et al., 2018) in the classification setting, but we adapt the
loss to be the average of all pixel losses as in Xie et al.
(2017). Formally, for an input x ∈ XN = [0, 1]N×3 with
ground truth segmentation y ∈ YN and model f a radius R

and stepsize s ∈ R we produce an adversarial example x′k
after k steps.

x′0 = x + ε, ε ∼ [0, 1] with ‖ε‖2 ≤ R
x′i+1 = cR,x(x′i + s∇x′i

L(x,y))

with clamping function

cR : RN×3 → [0, 1]N×3

cR,x(x′) =

[
x +R

x′ − x

‖x′ − x‖2

]
,

where [·] denotes component-wise clamping to [0, 1], and
loss

L(x,y) =
1

N

N∑
i=1

H(fi(x),yi), (3)

whereH denotes the cross entropy function.



Scalable Certified Segmentation via Randomized Smoothing

(a) Attacked image (b) Ground truth seg. (c) Attacked segmentation (d) Certified segmentation

Figure 7. Another hand-picked example like Fig. 1.

(a) Attacked image (b) Ground truth seg. (c) Attacked segmentation (d) Certified segmentation

Figure 8. Randomly chosen examples like Fig. 1.


