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Abstract—This paper addresses the problem of placing mem-
ory fences in a concurrent program running on a relaxed memory
model. Modern architectures implement relaxed memory models
which may reorder memory operations or execute them non-
atomically. Special instructions called memory fences are provided
to the programmer, allowing control of this behavior. To ensure
correctness of many algorithms, in particular of non-blocking
ones, a programmer is often required to explicitly insert memory
fences into her program. However, she must use as few fences as
possible, or the benefits of the relaxed architecture may be lost.
Placing memory fences is challenging and very error prone, as it
requires subtle reasoning about the underlying memory model.

We present a framework for automatic inference of memory
fences in concurrent programs, assisting the programmer in this
complex task. Given a finite-state program, a safety specification
and a description of the memory model, our framework computes
a set of ordering constraints that guarantee the correctness of
the program under the memory model. The computed constraints
are maximally permissive: removing any constraint from the so-
lution would permit an execution violating the specification. Our
framework then realizes the computed constraints as additional
fences in the input program.

We implemented our approach in a tool called FENDER and
used it to infer correct and efficient placements of fences for
several non-trivial algorithms, including practical concurrent
data structures.

I. INTRODUCTION

On the one hand, memory barriers are expensive
(100s of cycles, maybe more), and should be used
only when necessary. On the other, synchronization
bugs can be very difficult to track down, so memory
barriers should be used liberally, rather than relying
on complex platform-specific guarantees about limits
to memory instruction reordering. – Herlihy and
Shavit, The Art of Multiprocessor Programming [1].

Modern architectures use relaxed memory models in which
memory operations may be reordered and executed non-
atomically [2]. These models enable improved hardware per-
formance with respect to the standard sequentially consistent
model [3]. However, they pose a burden on the programmer,
forcing her to reason about non-sequentially consistent pro-
gram executions. To allow programmer control over those exe-
cutions, processors provide special memory fence instructions.

As multicore processors become increasingly dominant,
highly-concurrent algorithms emerge as critical components
of many systems [4]. Highly-concurrent algorithms are noto-
riously hard to get right [5] and often rely on subtle ordering of
events, an ordering that may be violated under relaxed memory
models (cf. [1, Ch.7]).

Finding a correct and efficient placement of memory fences
for a concurrent program is a challenging task. Using too
many fences (over-fencing) hinders performance, while using
too few fences (under-fencing) permits executions that violate
correctness. Manually balancing between over- and under-
fencing is very difficult, time-consuming and error-prone as
it requires reasoning about non sequentially consistent exe-
cutions (cf. [1], [6], [7]). Furthermore, the process of finding
fences has to be repeated whenever the algorithm changes, and
whenever it is ported to a different architecture.

Our Approach In this paper, we present a tool that auto-
matically infers correct and efficient fence placements. Our
inference algorithm is defined in a way that makes the de-
pendencies on the underlying memory model explicit. This
makes it possible to use our algorithm with various memory
models. To demonstrate the applicability of our approach,
we implement a relaxed memory model that supports key
features of modern relaxed memory models. We use our tool to
automatically infer fences for several state of the art concurrent
algorithms, including popular lock-free data structures.

Main Contributions The main contributions of this paper are:
• A novel algorithm that automatically infers a correct

and efficient placement of memory fences in concurrent
programs.

• A prototype implementation of the algorithm in a tool
capable of inferring fences under several memory models.

• An evaluation of our tool on several highly concur-
rent practical algorithms such as: concurrent sets, work-
stealing queues and lock-free queues.

II. EXISTING APPROACHES

We are aware of two existing tools designed to assist pro-
grammers with the problem of finding a correct and efficient
placement of memory fences. However, both of these suffer
from significant drawbacks.

CheckFence In [7], Burckhardt et al. present “CheckFence”, a
tool that checks whether a specific fence placement is correct
for a given program under a relaxed memory model. In terms
of checking, “CheckFence” can only consider finite executions
of a linear program and therefore requires loop unrolling. Code
that utilizes spin loops requires custom manual reductions.
This makes the tool unsuitable for checking fence placements
in algorithms that have unbounded spinning (e.g. mutual
exclusion and synchronization barriers). To use “CheckFence”
for inference, the programmer uses an iterative process: she
starts with an initial fence placement and if the placement is



incorrect, she has to examine the (non-trivial) counterexample
from the tool, understand the cause of error and attempt to fix it
by placing a memory fence at some program location. It is also
possible to use the tool by starting with a very conservative
placement and choose fences to remove until a counterexample
is encountered. This process, while simple, may easily lead to
a “local minimum” and an inefficient placement.
mmchecker presented in [8] focuses on model-checking with
relaxed memory models, and also proposes a naive approach
for fence inference. Huynh et. al formulate the fence inference
problem as a minimum cut on the reachability graph. While
the result produced by solving for a minimum cut is sound, it is
often suboptimal. The key problem stems from the lack of one-
to-one correspondence between fences and removed edges.
First, the insertion of a single fence has the potential effect
of removing many edges from the graph. So it is possible that
a cut produced by a single fence will be much larger in terms
of edges than that produced by multiple fences. [8] attempts to
compensate for this by using a weighing scheme, however this
weighing does not provide the desired result. Worse yet, the
algorithm assumes that there exists a single fence that can be
used to remove any given edge. This assumption may cause a
linear number of fences to be generated, when a single fence
is sufficient.

III. OVERVIEW

In this section, we use a practically motivated scenario to
illustrate why manual fence placement is inherently difficult.
Then we informally explain our inference algorithm.

A. Motivating Example

Consider the problem of implementing the Chase-Lev work-
stealing queue [9] on a relaxed memory model. Work stealing
is a popular mechanism for efficient load-balancing used in
runtime libraries for languages such as Java, Cilk and X10.
Fig. 1 shows an implementation of this algorithm in C-like
pseudo-code. For now we ignore the fences shown in the code.

The data structure maintains an expandable array of items
called wsq and two indices top and bottom that can wrap
around the array. The queue has a single owner thread that can
only invoke the operations push() and take() which operate
on one end of the queue, while other threads call steal()
to take items out from the opposite end. For simplicity, we
assume that items in the array are integers and that memory is
collected by a garbage collector (manual memory management
presents orthogonal challenges [10]).

We would like to guarantee that there are no out of bounds
array accesses, no lost items overwritten before being read,
and no phantom items that are read after being removed. All
these properties hold for the data structure under a sequentially
consistent memory model. However, they may be violated
when the algorithm executes on a relaxed model.

Under the SPARC RMO [11] memory model, some oper-
ations may be executed out of order. Tab. I shows possible
reorderings under that model (when no fences are used) that
lead to violation of the specification. The column locations

1 t y p e d e f s t r u c t {
2 long s i z e ;
3 i n t ∗ap ;
4 } i t e m t ;
5
6 long top , bot tom ;
7 i t e m t ∗wsq ;

1 void push ( i n t t a s k ) {
2 long b = bot tom ;
3 long t = t o p ;
4 i t e m t∗ q = wsq ;
5 i f ( b−t ≥ q→ s i z e −1){
6 q = expand ( ) ;
7 }
8 q→ap [ b % q→ s i z e ]= t a s k ;

f e n c e ( ” s t o r e−s t o r e ” ) ;
9 bot tom = b + 1 ;

10 }

1 i n t t a k e ( ) {
2 long b = bot tom − 1 ;
3 i t e m t∗ q = wsq ;
4 bot tom = b ;

f e n c e ( ” s t o r e−l o a d ” ) ;
5 long t = t o p ;
6 i f ( b < t ) {
7 bot tom = t ;
8 re turn EMPTY;
9 }

10 t a s k = q→ap [ b % q→ s i z e ] ;
11 i f ( b > t )
12 re turn t a s k ;
13 i f ( ! CAS(& top , t , t + 1 ) )
14 re turn EMPTY;
15 bot tom = t + 1 ;
16 re turn t a s k ;
17 }

1 i n t s t e a l ( ) {
2 long t = t o p ;

f e n c e ( ” load−l o a d ” ) ;
3 long b = bot tom ;

f e n c e ( ” load−l o a d ” ) ;
4 i t e m t∗ q = wsq ;
5 i f ( t ≥ b )
6 re turn EMPTY;
7 t a s k =q→ap [ t % q→ s i z e ] ;

f e n c e ( ” load−s t o r e ” ) ;
8 i f ( ! CAS(& top , t , t + 1 ) )
9 re turn ABORT;

10 re turn t a s k ;
11 }

1 i t e m t∗ expand ( ) {
2 i n t news ize = wsq→ s i z e ∗ 2 ;
3 i n t∗ newi tems = ( i n t ∗) m a l lo c ( news ize∗ s i z e o f ( i n t ) ) ;
4 i t e m t ∗newq = ( i t e m t ∗) m a l lo c ( s i z e o f ( i t e m t ) ) ;
5 f o r ( long i = t o p ; i < bot tom ; i ++) {
6 newi tems [ i % news ize ] = wsq→ap [ i % wsq→ s i z e ] ;
7 }
8 newq→ s i z e = news ize ;
9 newq→ap = newitems ;

f e n c e ( ” s t o r e−s t o r e ” ) ;
10 wsq = newq ;
11 re turn newq ;
12 }

Fig. 1. Pseudo-code of the Chase-Lev work stealing queue [9].

# Locations Effect of Reorder Needed Fence
1 push:8:9 steal() returns phantom item store-store
2 take:4:5 lost items store-load
3 steal:2:3 lost items load-load
4 steal:3:4 array access out of bounds load-load
5 steal:7:8 lost items load-store
6 expand:9:10 steal() returns phantom item store-store

TABLE I
POTENTIAL REORDERINGS OF OPERATIONS IN THE CHASE-LEV

ALGORITHM OF FIG. 1 RUNNING ON THE RMO MEMORY MODEL.

lists the two lines in a given method which contain memory
operations that might get reordered and lead to a violation.
The next column gives an example of an undesired effect
when the operations at the two labels are reordered. There
could be other possible effects (e.g., program crashes), but we
list only one. The last column shows the type of fence that
can be used to prevent the undesirable reordering. Informally,
the type describes what kinds of operations have to complete
before other type of operations. For example, a store-load
fence executed by a processor forces all stores issued by
that processor to complete before any new loads by the same
processor start.



Avoiding Failures with Manual Insertion of Fences To
guarantee correctness under the RMO model, the programmer
can try to manually insert fences that avoid undesirable
reorderings. As an alternative to placing fences based on
her intuition, the programmer can use an existing tool such
as CheckFence [7] as described in Section II. Repeatedly
adding fences to avoid each counterexample can easily lead
to over-fencing: a fence used to fix a counterexample may
be made redundant by another fence inferred for a later
counterexample. In practice, localizing a failure to a single
reordering is challenging and time consuming as a failure
trace might include multiple reorderings. Furthermore, a single
reordering can exhibit multiple failures, and it is sometimes
hard to identify the cause underlying an observed failure. Even
under the assumption that each failure has been localized to a
single reordering (as in Tab. I), inserting fences still requires
considering each of these 6 cases.

In a nutshell, the programmer is required to manually
produce Tab. I: summarize and understand all counterexamples
from a checking tool, localize the cause of failure to a single
reordering, and propose a fix that eliminates the counterexam-
ple. Further, this process might have to be repeated manually
every time the algorithm is modified or ported to a new
memory model. For example, the fences shown in Fig. 1
are required for the RMO model, but on the SPARC TSO
model the algorithm only requires the single fence in take().
Keeping all of the fences required for RMO may be inefficient
for a stronger model, but finding which fences can be dropped
might require a complete re-examination.

Automatic Inference of Fences It is easy to see that the
process of manual inference does not scale. In this paper, we
present an algorithm and a tool that automates this process.
The results of applying our tool on a variety of concurrent
algorithms, including the one in this section, are discussed in
detail in Section V.

B. Description of the Inference Algorithm

Our inference algorithm works by taking as input a finite-
state program, a safety specification and a description of
the memory model, and computing a constraint formula that
guarantees the correctness of the program under the memory
model. The computed constraint formula is maximally permis-
sive: removing any constraint from the solution would permit
an execution violating the specification.

Applicability of the Inference Algorithm Our approach is
applicable to any operational memory model on which we
can define the notion of an avoidable transition that can be
prevented by a local (per-processor) fence. Given a state, this
requires the ability to identify: (i) that an event happens out
of order; (ii) what alternative events could have been forced
to happen instead by using a local fence. Requirement (i) is
fairly standard and is available in common operational memory
model semantics. Requirement (ii) states that a fence only
affects the order in which instructions execute for the given
processor but not the execution order of other processors. This

holds for most common models, but not for PowerPC, where
the SYNC instruction has a cumulative effect [12].

State Given a memory model and a program, we can build
the transition system of the program, i.e. explore all reachable
states of the program running on that memory model. A state
in such a transition system will typically contain two kinds
of information: (i) assignments of values to local and global
variables; (ii) per-process execution buffer containing events
that will eventually occur (for instance memory events or
instructions waiting to be executed), where the order in which
they will occur has not yet been determined.

Computing Avoid Formulae Given a transition system and
a specification, the goal of the inference algorithm is to infer
fences that prevent execution of all traces leading to states that
violate the specification (error states). One naive approach is
to enumerate all (acyclic) traces leading to error states, and try
to prevent each by adding appropriate fences. However, such
enumeration does not scale to any practical program, as the
number of traces can be exponential in the size of the transition
system which is itself potentially exponential in the program
length. Instead, our algorithm works on individual states and
computes for each state an avoid formula that captures all
the ways to prevent execution from reaching the state. Using
the concept of an avoidable transition mentioned earlier, we
can define the condition under which a state is avoidable. The
avoid formula for a state σ considers all the ways to avoid all
incoming transitions to σ by either: (i) avoiding the transition
itself; or (ii) avoiding the source state of the transition. Since
the transition system may contain cycles, the computation of
avoid formulae for states in the transition system needs to be
iterated to a fixed point.

Example Consider the simple program of Fig. 2(a). For this
program, we would like to guarantee that R1 ≥ R2 in its
final state. For illustrative purposes, we consider a simple
memory model where the stores to global memory are atomic
and the only allowed relaxation is reordering data independent
instructions. Fig. 2(b) shows part of the transition system built
for the program running on this specific memory model. We
only show states that can lead to an error state. In the figure,
each state contains: (i) assignments to local variables of each
process (L1 and L2), and the global variables G; (ii) the
execution buffer of each process (E1 and E2); (iii) an avoid
formula which we explain below.

The initial state (state 1) has R1 = R2 = X = Y = 0.
There is a single error state where R1 = 0 and R2 = 1
(state 9). The avoid formula for each state is computed as
mentioned earlier. For example, the avoid formula for state 2 is
computed by taking the disjunction of avoiding the transition
A2 and avoiding the source state of the transition (state 1).
To check whether A2 is an avoidable transition from state
1, we check whether A2 is executed out of order, and what
are the alternative instructions that could have been executed
by A instead. We examine the execution buffer E1 of state
1 and find all instructions that precede A2. We find that
A2 is executed out of order, and that A1 could have been



R1 = R2 = X = Y = 0 ;

A:
A1 : STORE 1 , X
A2 : STORE 1 , Y

||
B :

B1 : LOAD Y, R1
B2 : LOAD X, R2

(a)

(b)

Fig. 2. An example program (a) and its partial transition system (b).
Avoidable transitions are drawn with thicker lines.

executed to avoid this transition. So, we generate the constraint
[A1 < A2] as a way to avoid the transition A2. The meaning
of the constraint is that this transition can be avoided if A1 is
executed before A2. Since the source state (state 1) cannot be
avoided, the avoid formula for state 2 is just [A1 < A2]. The
constraint [B1 < B2] for state 3 is obtained similarly.

For state 5, there are two incoming transitions: B2 and
A2. Here, B2 is taken out of order from state 2 and hence
we generate the constraint [B1 < B2]. The constraint for
the parent state 2 is [A1 < A2], so the overall constraint
becomes [B1 < B2] ∨ [A1 < A2]. Similarly, we perform the
computation for transition A2 from state 3 which generates an
identical constraint. The final avoid formula for state 5 is thus
the conjunction of [B1 < B2]∨ [A1 < A2] with itself. In other
words, it is this exact formula. The transition from state 2 to
state 4 is taken in order. Therefore, the transition itself cannot
be avoided and the only way to avoid reaching 4 is through the

avoid formula of its predecessor, state 2. For the error state
9, the two incoming transitions do not generate constraints
as they are executed in-order. The overall constraint is thus
generated as conjunction of the constraints of the predecessor
states 7 and 8, and it is [B1 < B2] ∧ [A1 < A2].

Because our example graph is acyclic, a single pass over
the graph is sufficient. It is easy to check the formulas that
appear in Fig. 2(b) indeed correspond to a fixed point. Since
there is only one error state, the resulting overall constraint is
the avoid constraint of that error state: [A1 < A2]∧[B1 < B2].

Finally, this constraint can be implemented by introducing
a store-store fence between A1 and A2 and a load-load fence
between B1 and B2.

C. Memory Models
To demonstrate our fence inference algorithm on realistic

relaxed memory models, we define and implement the model
RLX that contains key features of modern memory models.
According to the categorization of [2], summarized in Fig. 3,
there are five such key features. The leftmost three columns
in the table represent order relaxations. For instance, W → R
means the model may reorder a write with a subsequent read
from a different variable. The rightmost columns represent
store atomicity relaxations - that is, whether a store can
be seen by a process before it is globally performed. Our
memory model supports four of these features, but precludes
“reading other’s writes early” and speculative execution of
load instructions.

The memory model is defined operationally, in a design
based on [13] and [14]. We represent instruction reordering
by using an execution buffer, similar to the “reordering box”
of [15] and the “local instr. buffer” of [14]. To support non-
atomic stores we, like [13], split store operations into a “store;
flush” sequence, and allow local load operations to read values
that have not yet been flushed. This allows us to talk about
the model purely in terms of reordering, without paying any
additional attention to the question of store atomicity.

Barring speculative execution of loads, RLX corresponds
to Sun SPARC v9 RMO and is weaker than the SPARC v9
TSO and PSO models. RLX is strictly weaker than the IBM
370. Since RLX is weaker than these models, any fences that
we infer for correctness under RLX are going to guarantee
correctness under these models.

Our framework allows to instantiate models stronger than
RLX, by disabling some of the relaxations in RLX. In fact, the
framework supports any memory model that can be expressed
using a bypass table (similar to [14] and the “instruction
reordering table” of [13]). This enables us to experiment with
fence inference while varying the relaxations in the underlying
memory model. In Section V, we show how different models
lead to different fence placements in practical concurrent algo-
rithms, demonstrating the importance of automatic inference.

IV. INFERENCE ALGORITHM

In this section, we describe our fence inference algorithm.
Due to space restrictions, the description is mostly informal.
The full technical details can be found in [16].



Relaxation W → R W → W R → RW R Others’ R Own
Order Order Order W Early W Early

SC X
IBM 370 X
TSO X X
PSO X X X
Alpha X X X X
RMO X X X X
PowerPC X X X X X

Fig. 3. Categorization of relaxed memory models, from [2].

A. Preliminaries

We define a program P in the standard way, as a tuple
containing an initial state Init, the program code Progi for
each processor, and an initial statement Starti. The program
code is expressed in a simple assembly-like programming lan-
guage, which includes load/store memory operations, arbitrary
branches and compare-and-swap operations. We assume that
all statements are uniquely labeled, and thus a label uniquely
identifies a statement in the program code, and denote the set
of all program labels by Labs.
Transition Systems A transition system for a program P is a
tuple 〈ΣP , TP 〉, where ΣP is a set of states, TP is a set of
labeled transitions σ l−→ σ′. A transition is in TP if σ, σ′ ∈
ΣP and l ∈ Labs, such that executing the statement at l results
in state σ′. The map enabled : ΣP → P(Labs) is tied to the
memory model and specifies which transitions may take place
under that model.
Dynamic Program Order Much of the literature on memory
models (e.g. [11], [12], [17]) bases the model’s semantics on
the concept of program order, which is known a priori. This is
indeed the case for loop-free or statically unrolled programs.
For programs that contain loops, Shen et. al show in [13] that
such an order is not well defined, unless a memory model
is also provided. Furthermore, for some memory models the
program order may depend on the specific execution.

To accommodate programs with loops, we define a dynamic
program order. This order captures the program order at any
point in the execution. For a given state σ and a process p, we
write l1 <σ,p l2 when l1 precedes l2 in the dynamic program
order. The intended meaning is that in-order execution from
state σ would execute the statement at l1 before executing the
statement at l2.

B. An Algorithm for Inferring Ordering Constraints

Given a finite-state program P and a safety specification S,
the goal of the algorithm is to infer a set of ordering constraints
that prevent all program executions violating S and can be
implemented by fences.
Avoidable Transitions and Ordering Constraints The ordering
constraints we compute are based on the concept of an
avoidable transition — a transition taken by the program
that could have been prohibited by some fence. This captures
the intuition of a transition that was taken out of order. To
identify such transitions we use the dynamic program order:
a transition t = σ

lt−→ σ′ is avoidable if there exists some l1
such that l1 <σ,p lt.

With every pair of labels l1, l2 ∈ Labs we associate a
proposition [l1 ≺ l2]. We call such a proposition an ordering
constraint. We define a constraint formula as a proposi-
tional formula over ordering constraints. For each transition
t = σ

lt−→ σ′ we then define the formula prevent(t) =∨
{[l1 ≺ lt] | l1 <σ,p lt}. Intuitively, prevent(t) is the

formula that captures all possible ordering constraints that
would prohibit the execution of t by the program. Note
that if t is not avoidable, this is an empty disjunction and
prevent(t) = false.

Algorithm 1: Fence Inference
Input: Program P, Specification S
Output: Program P’ satisfying S

1 compute 〈ΣP , TP 〉
2 avoid(Init)← false
3 foreach state σ ∈ ΣP \ {Init} do
4 avoid(σ)← true

5 workset← ΣP \ {Init}
6 while workset is not empty do
7 σ ← select and remove state from workset
8 ϕ← avoid(σ)
9 foreach transition t = (µ −→ σ) ∈ TP do

10 ϕ← ϕ ∧ (avoid(µ) ∨ prevent(t))
11 if avoid(σ) 6≡ ϕ then
12 avoid(σ)← ϕ
13 add all successors of σ in ΣP to workset

14 ψ ←
∧
{avoid(σ) | σ 2 S}

15 return implement(P, ψ)

Inference The algorithm operates directly on program states.
For every state σ in the program’s transition system, the
algorithm computes a constraint formula avoid(σ) such that
satisfying it prevents execution from reaching σ. The com-
puted formula avoid(σ) captures all possible ways to prevent
execution from reaching σ by forbidding avoidable transitions.

The algorithm computes a fixed point of avoid constraints
for all states in the program’s transition system. First, we
build the transition system 〈ΣP , TP 〉 of the program. For
σ = Init, we initialize avoid(σ) to false. For all other states,
we initialize it to true. We then add all states to the workset.
The algorithm proceeds by picking a state from the workset,
and computing the new avoid constraint for the state. A state
can only be avoided by avoiding all incoming transitions (a
conjunction). To avoid the transition, we must (i) consider all
possible ways to avoid the transition from the predecessor state
(by using prevent(t)); or (ii) avoid the predecessor state, by
using its own avoid constraint. (see line 10 of the algorithm).

As shown in line 11 every such computation step requires
comparing two boolean formulas for equality. While in general
NP-hard, this is not a problem in practice due to the structure
of our formulas and their relatively modest size.

When a fixed point is reached, the algorithm computes
the overall constraint ψ by taking the conjunction of avoid
constraints for all error states. Any implementation satisfying
ψ is guaranteed to avoid all error states, and thus satisfy



the specification. Finally, the algorithm calls the procedure
implement(P,ψ) which returns a program that satisfies ψ.

Ensuring Termination In cases where the transition system
is an acyclic graph (e.g. transition systems for spinloop-
free programs), we can avoid performing the fixed point
computation altogether. If the states are topologically sorted,
the computation can be completed with a single linear pass
over the transition system. In the general case, we can show
the set of mappings between states and constraints forms a
finite lattice and our function is monotonic and continuous.
Thus convergence is assured.

Safety and Maximal Permissiveness Given a program P and a
specification S, the avoid formula ϕ computed by Algorithm 1
is the maximally permissive avoid formula such that all traces
of P satisfying ϕ are guaranteed to satisfy S. More formally,
we say a constraint formula admits a transition t = σ

lt−→ σ′ if
there exists an assignment α � ϕ so that every proposition of
the form v = [l1 ≺ lt] where l1 <σ,p lt we have JvKα = false.
Here JvKα is the value of proposition v in the assignment
α. We can lift this definition of admits from transitions to
program traces. Then if ϕ 6= false it only admits traces that
satisfy S, but for any ψ 6= ϕ such that ϕ⇒ ψ, there exists a
trace π of P that reaches σ such that ψ admits π, but σ 2 S.

C. Fence Inference

Our algorithm computes a maximally permissive constraint
formula ψ. We can then use a standard SAT-solver to get
assignments for ψ, where each assignment represents a set
of constraints that enforces correctness. Since for a set of
constraints C, a superset C ′ cannot be more efficiently imple-
mented, we need only consider minimal (in the containment
sense) sets.

An orthogonal problem is to define criteria that would allow
us to select optimal fences that enforce one of those sets. In
our work, we focus on a simple natural definition using set
containment: a fence placement is a set of program labels
where fences are placed and we say that a placement P1 is
better than P2 when P1 ⊆ P2.

Given a minimal assignment C for the formula ψ, for each
satisfied proposition [l1 ≺ l2], we can insert a fence either right
after l1 or right before l2, thus getting a correct placement of
fences. We can try this for all minimal assignments of ψ, and
select only the minimal fence placements. This procedure can
be improved by defining a formula ξ s.t. every proposition
in ψ is replaced with after(l1) ∨ before(l2). Here, after(l)
and before(l) map labels to a new set of propositions, so
that if l2 appears immediately after l1 in the program, then
after(l1) = before(l2). Then, our fence placements will be
the minimal assignments to ξ. This allows us to directly apply
a SAT-solver and consider fewer fence placements.

Of course this local approach will not guarantee a minimal
placement of fences because there can be many ways to
implement a constraint [l1 ≺ l2] aside from inserting a fence
immediately after l1 or before l2. For instance, if l1, ...l4 ap-
pear in this order in the program, and ψ = [l1 ≺ l4]∧ [l2 ≺ l3]

then we can implement ψ by a single fence between l2 and
l3. More precise and elaborate implementation strategies are
possible if the program’s control flow graph is taken into
account. However, in our experiments we found the simple
local fence placement strategy to produce optimal results.

V. EXPERIMENTS

We have implemented our algorithm in a tool called FENDER.
Our tool takes as input a description of a memory model, a
program and a safety specification. The tool then automatically
infers the necessary memory fences.

A. Methodology

We experiment with FENDER by varying the following:
(i) Input Algorithm - we experiment with five concurrent

data structures and one mutual exclusion algorithm.
(ii) Client Program - we experiment with clients of varying

size and complexity.
(iii) Memory Model - we experiment with 3 relaxed models

and the sequentially consistent model as a baseline.
(iv) Specification - in some benchmarks, there is more than

one reasonable specification.
(v) Bound on the execution buffer, when required.

Algorithms We applied our tool to various challenging state-
of-the-art concurrent algorithms:
• MSN: Michael&Scott’s lock-free queue [18].
• LIFO WSQ: LIFO idempotent work-stealing queue [19].
• Chase-Lev WSQ: Chase&Lev’s work-stealing queue [9].
• Dekker: Dekker’s mutual exclusion [20].
• Treiber: Treiber’s lock-free stack [21].
• VYSet: Vechev&Yahav’s concurrent list-based set [22].

Clients For each algorithm, we ran FENDER with several
clients. Our tool permits exhaustive exploration of bounded
clients that consist of a (bounded) sequence of initialization
operations followed by (bounded) sequences of operations
performed in parallel. A client typically consists of 2 or 3
processes, where each process invokes several data structure
operations. Below, we use the term “program” to refer to the
combination of an algorithm and a client.
Memory Models As noted earlier, our RLX model is equiv-
alent to SPARC RMO without support for speculation. Our
framework can instantiate stronger models, and in our exper-
iments, we infer fences under four memory models: RMO,
PSO, TSO, and as a reference, SC, the sequentially consistent
model. The models RMO, PSO and TSO implement three
different sets of relaxations as described in [2]. All three
implement the “read own writes early” relaxation. RMO
implements the W → R, W → W and R → RW relaxations.
PSO removes the R → RW relaxation and TSO additionally
removes the W →W relaxation.
Specification We consider safety specifications realized as
state invariants on the program’s final state. To write an
invariant, for most algorithms, we observed the results a
specification of sequential consistency would produce and
then write invariants that are implied by this specification. In



Initial Client |E| Time States Edges #C
State Bnd (sec.)

MSN empty e|d ∞ 0.83 1219 2671 2
empty e|e ∞ 1.78 4934 12670 1
empty ee|dd ∞ 5.21 24194 61514 3
empty ed|ed ∞ 13.05 86574 242822 2
empty ed|de ∞ 9.26 59119 167067 4
empty e|e|d ∞ 31.43 233414 653094 3

ChaseLev empty pppt(tpt|sss) ∞ 97.22 386283 1030857 -
WSQ empty tttt(ptt|sss) ∞ 255.5 1048498 2819355 -

empty pppt(ttp|sss) ∞ 90.28 281314 878880 -
empty tttt(tpp|sss) ∞ 355.95 1325858 4150650 -
empty tttp(tptp|ss) ∞ 37.98 280396 698398 -

”LIFO” 2/2 tp|ss ∞ 0.69 2151 3190 2
WSQ 2/2 tpt|ss ∞ 1.94 9721 16668 2

2/2 ptp|ss ∞ 11.41 89884 195246 3
2/2 ptt|ss ∞ 11.31 85104 198353 4
1/1 ptt|ss ∞ 4.07 23913 48997 4

Dekker - - 1 0.64 1388 2702 2
- - 10 2.13 7504 14477 2
- - 20 2.71 13879 26422 2
- - 50 5.99 33004 62257 2

Treiber empty p|t ∞ 1 71 93 2
empty pt|tp ∞ 1.02 3054 6190 2
empty pp|tt ∞ 0.6 1276 2250 2

VYSet empty ar|ra 10 1.98 4079 6247 2
empty aa|rr 10 4.56 20034 31623 2
empty ar|ar 10 2.19 6093 9905 2
empty aaa|rrr 10 7.98 41520 66533 2

TABLE II
EXPERIMENTAL RESULTS FOR THE RMO MODEL

this context, sequential consistency refers not to the memory
model, but to the high level specification that an algorithm
should satisfy. In some experiments we also used additional,
weaker specifications.

Bound on the Execution Buffer As recently shown in [23], the
reachability problem for weak memory models is, depending
on the model, either undecidable or non-primitive recursive
even for finite-state programs. To avoid this problem we add
a stronger condition and require the execution buffers to be
bounded. In four of our benchmarks this was the natural
behavior, and in the other two we’ve had to enforce a bound.

Experimental Setup Experiments were performed on an IBM
xSeries 336 with 4 Intel Xeon 3.8Ghz processors, 5GB
memory, running a 64-bit Red Hat Enterprise Linux. Tab. II
contains performance metrics for RMO, the most relaxed
memory model that we considered.

B. Results

A summary of our experimental results is shown in Tab. II.
For each data structure, several parallel clients were used. For
each client, the “Initial” and ”Client” columns represent the
initial state of the data structure and the operations performed
by the client respectively. “e” represents an enqueue operation,
“d” a dequeue, “p” put, “s” steal, “a” add and “r” remove. The
“|E|” column represents the bound on the length of execution
buffers, and “#C” the number of constraints in a minimal
solution to the avoid formula for that client. Since for Chase-
Lev the constraint formula was solved only for the conjunction
of all clients, individual “#C” values are not given. The “Time”

column shows the total analysis time. This includes the state
exploration time, the constraint inference time and the SAT-
solving time. Note that in all cases the solving component was
negligible.

In Tab. III we show a comparison of the performance of
FENDER for different memory models it supports. On average
the number of states for PSO was ≈ 4.5 times smaller and for
TSO ≈ 40 times smaller than for RMO.

Chase-Lev Work Stealing Queue For this data structure, we
ran an exhaustive set of clients with two bounds: (i) all
clients were of the form of 4 initializer operations, followed
by a parallel section with 5 > X > 3 invocations by
the owner, and 6 − X steal invocations by another process.
(ii) If a particular client’s state space exceeded 2.5 million
states, it was terminated and discarded. In Tab. II we show
representative clients that produced useful constraints. In those
experiments, FENDER inferred a set of 9 constraints which can
be implemented using the 6 fences of Fig. 1. In particular, the
fence between lines 9 and 10 in expand() also prevents the
reordering of the store on line 10 with the stores on lines 8 an
6. Under PSO, we are left with 6 constraints and 3 fences—all
of the fences in steal() are no longer needed. Even under
TSO, one fence still remains necessary—it is the store-load
fence between lines 4 and 5 in the take() operation.

Michael-Scott Queue For MSN FENDER inferred all 3 required
fences under RMO. The placement for this algorithm in [7]
contained 7 fences, however, 2 of these are the result of [7]
allowing extra speculation, and 2 are not required in our model
due to conservative memory allocation. Under PSO a single
fence was inferred, and under TSO no fences are required.

Idempotent Work-Stealing The reference placement in [19] is
phrased only in terms of constraints, and requires 5 constraints.
Under RMO, FENDER produced 4 constraints which are a
subset of those 5. The one constraint not inferred is, again,
only required because of possible speculation.

Dekker’s Algorithm It is well known that Dekker’s algorithm
requires a fence in the entry section and a fence at the end of
the section (to preserve semantics of critical section). In our
experiments, FENDER successfully inferred the required fences.
Under RMO and PSO both fences were inferred, and under
TSO, the tool inferred only the entry section fence. This is
consistent with the reference placement appearing in Appendix
J of [11].

C. Discussion

In our experiments, we observe that the fences inferred by
FENDER are quite tricky to get manually. For some of the
algorithms, there are known correct fence assignments, and
for these we show that FENDER derives all necessary fences
for our memory models with a small number of clients driving
the algorithm. For most of our benchmarks, a bound on the
execution buffer was not required. In the two cases where it
was required, all fences were obtained with a small bound.

A recurring theme in our results was that several
different maximally permissive constraint sets could be



Initial Client |E| RMO PSO TSO SC
Bound States Edges #C States Edges #C States Edges #C States Edges

MSN empty e|d ∞ 1219 2671 2 455 743 1 228 316 0 146 180
empty e|e ∞ 4934 12670 1 2678 6354 1 586 994 0 252 328
empty ee|dd ∞ 24194 61514 3 7025 13689 2 1724 2512 0 1029 1325
empty ed|ed ∞ 86574 242822 2 15450 35362 2 2476 3972 0 1538 2126
empty ed|de ∞ 59119 167067 4 11023 24362 2 2570 4010 0 1541 2073
empty e|e|d ∞ 233414 653094 3 51990 119050 2 9638 16822 0 4928 7632

Chase-Lev empty pppt(tpt|sss) ∞ 386283 1030857 - 74533 256613 - 12348 20004 - 4961 6740
WSQ empty tttt(ptt|sss) ∞ 1048498 2819355 - 124455 255390 - 6418 9380 - 3101 4069

empty pppt(ttp|sss) ∞ 281314 878880 - 66960 241814 - 10564 16317 - 4199 5700
empty tttt(tpp|sss) ∞ 1325858 4150650 - 361855 1080835 - 9878 13956 - 3473 4537
empty tttp(tptp|ss) ∞ 280396 698398 - 29573 54696 - 9197 14499 - 4760 6455

”LIFO” 2/2 tp|ss ∞ 2151 3190 2 882 1171 1 676 852 0 570 694
WSQ 2/2 tpt|ss ∞ 9721 16668 2 3908 5811 1 2256 3116 0 1410 1786

2/2 ptp|ss ∞ 89884 195246 3 31289 64133 3 4045 5688 0 2317 3007
2/2 ptt|ss ∞ 85104 198353 4 29920 62020 3 4130 5987 0 2198 2866
1/1 ptt|ss ∞ 23913 48997 4 9976 18002 3 2353 3269 0 1314 1654

Dekker - - 1 1388 2702 2 1388 2702 2 489 674 1 388 490
- - 10 7504 14477 2 7504 14477 2 2560 3750 1 388 490
- - 20 13879 26422 2 13879 26422 2 4845 7115 1 388 490
- - 50 33004 62257 2 33004 62257 2 11770 17210 1 388 490

Treiber empty p|t ∞ 71 93 2 71 93 2 43 48 0 36 38
empty pt|tp ∞ 3054 6190 2 3041 6167 2 407 609 0 392 482
empty pp|tt ∞ 1276 2250 2 1276 2250 2 325 407 0 270 323

VYSet empty ar|ra 10 4079 6247 2 4079 6247 2 1088 1308 0 1088 1308
empty aa|rr 10 20034 31623 2 20034 31623 2 1168 1411 0 1168 1411
empty ar|ar 10 6093 9905 2 6093 9905 2 1671 1968 0 1671 1968
empty aaa|rrr 10 41520 66533 2 41520 66533 2 3311 4072 0 3311 4072

TABLE III
EXPERIMENTAL RESULTS FOR DIFFERENT MEMORY MODELS

derived from the constraint formula. However, in all
cases, all of those sets represented one “natural” so-
lution. The reason for the appearance of those ap-
parently different solutions involves data dependencies.

1 STORE Z = 1
2 LOAD R = X
3 STORE Y = R

Consider the simple example program shown
on the right. Assume that the constraint
[l1 ≺ l3] must be enforced in any execution.
However, if [l1 ≺ l2] is enforced, then it is
impossible to reorder l3 with l1. Due to a data
dependency, l2 must come before l3, and we
get the order σ1

l2−→ σ2
l3−→ σ3

l1−→ σ4 in which the first
transition violates [l1 ≺ l2]. Thus, our constraint formula will
necessarily contain the disjunction [l1 ≺ l2] ∨ [l1 ≺ l3]. It is
an interesting question whether there exists an input algorithm
which permits several substantially different constraint sets.

As expected, when we ran the tool with more restricted
memory models, the number of required fences decreases. For
example, the move from PSO to TSO disables reordering of
independent stores and hence all constraints between stores to
different locations are not required.

VI. RELATED WORK

Earlier we discussed work directly related to fence infer-
ence, that is [7], [8]. Additional related work includes:

Explicit-State Model Checking The works closest to ours in
the way they explore the state space for a weak memory model
are [15] and [24]. Both describe explicit-state model checking
under the Sparc RMO model, but neither uses it for inference.

Delay Set Analysis A large body of work relies on the concepts

of delay set and conflict graph of [25] for reasoning about
relaxed memory models. In particular, the Pensieve project
[26], [27], [28] implements fence synthesis based on delay
set analysis. This kind of analysis is, however, necessarily
more conservative than ours since it prevents any potential
specification violations due to non-SC execution, and is not
appropriate for highly concurrent algorithms.

Verification Approaches In [29] and [30] algorithms are pre-
sented that can find violations of sequential consistency under
the TSO and PSO memory models. Those algorithms find
violations based purely on sequentially consistent executions,
thus making them very efficient. However, just like delay
set analysis, this is often needlessly conservative. Another
approach to verification is to try to establish a property which
ensures the program remains correct under relaxed models.
The most common such property is data-race freedom, as for
data-race free programs the “fundamental property of memory
models” [31] ensures that there can be no sequentially
inconsistent executions. In our work we deal with programs
that do not satisfy such properties. Further, none of those
works supports fence inference for programs that are found
to violate SC.

Inference of Synchronization In [32], [22], a semi-automated
approach is used to explore a space of concurrent garbage
collectors and linearizable data-structures. These works do not
support weak memory models. In [33] a framework similar to
ours is used to infer minimal synchronization. However the
technique used there enumerates traces explicitly, which does
not scale in our setting and thus cannot be applied as-is.



Effect Mitigation Several works have been published on
mitigating the effect of memory fences [34], [35] and making
synchronization decisions during runtime [36]. Those archi-
tectural improvements are complementary to our approach.

VII. SUMMARY AND FUTURE WORK

We presented a novel fence inference algorithm and demon-
strated its practical effectiveness by evaluating it on various
challenging state-of-the-art concurrent algorithms. In future
work, we intend to improve the tool’s scalability and add
support for more memory models. Another direction we intend
to pursue is memory model abstraction and fence inference
under abstraction. This will allow us to avoid bounding the
execution buffer and make our algorithm more suitable for
more general input programs.
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