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Adversarial Examples

N(x) = “panda” N(x + 0.007e) = “gibbon”

x e x + 0.007・e
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ℓ∞-robustness
A neural network N is ε ℓ∞-robust around an image x, if for all images x’ having ℓ∞-distance 
to x of at most ε, it holds that N(x) = N(x´). 
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Goal: Prove N(x) = N(x´) for all x´



ℓ∞-robustness certification via Interval analysis

A common method to prove ℓ∞-robustes is linear relaxation to intervals ([2], [3], [4]). Interval 
analysis is the fastest non probabilistic certification method (~4x slower than classification 
time), can scale to large networks and when used for training produces state-of-the-art 
results ([3], [4]).

However, interval analysis loses precision -- it can induce too large of an over-approximation 
of the actual values. 

[2] Gehr et al. AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation. IEEE S&P 2018.
[3] Mirman et al. Differentiable Abstract Interpretation for Provably Robust Neural Networks. ICML 2018.
[4] Gowal et al. On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models. arXiv 2018.



Certification with Interval Analysis
Example: Assume we have a 2 pixel image x = (0.6, 0.7), ε=0.1. The intervals for x1 and x2 are 
[0.6-ε, 0.6+ε] = [0.5,0.7] and [0.7-ε, 0.7+ε] = [0.6,0.8] respectively. 

Let the network N be:
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Certification with Interval Analysis
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Certification with Interval Analysis

0.6

0

0

0

[0.5,0.7]

[0.6,0.8]

1

1

1

-1

2

1

1 -2

y1 ∈ [1.7,2.8]

y2 ∈ 
[0,0.8]

[1.1, 1.4]

[0.3, 0.7] [1.7,2.8]

[0, 0.8]

We can prove y1 > y2, thus classification is robust.



Key challenge
Neural networks trained to be amenable to certification with interval analysis often have 
unsatisfactory accuracy (< 60%) and certifiability (< 40%, ε=8/255) on standard datasets 
(CIFAR-10). This is unfortunate as intervals scale to large networks.

Fundamental Question
Do interval-certifiable networks actually exist, which approximate any continuous function?

Implication: If yes, it can mean that there may actually be hope in using interval analysis for creating 

accurate and provable large neural networks!



Classical Universal Approximation is insufficient:
Two networks can approximate the same function f, but they behave different under interval 
analysis:

Here, we cannot prove N1([0,1]) ⊆ [0,1], but N2([0,1]) ⊆ [0,1] although N1(x) = N2(x) for all x in 
ℝ. 

N1 N2



In this work we prove:
Theorem: Let f : [0,1]m ➝ ℝ be a continuous function. 

For all δ > 0 exists a ReLU network N such that for all x ∈ [0,1]m and for ε > 0 interval 
analysis can prove that N approximates f up to δ. 

Specifically if l = min f([x-ε, x+ε]) and u = max f([x-ε, x+ε]) then N#([x-ε,x+ε]) satisfies

[l + δ, u - δ] ⊆ N#([x-ε, x+ε]) ⊆ [l - δ, u + δ].

ReLU networks can interval provably approximate continuous functions!

Future work: optimize the construction and study interval training in depth


