
PHOG: Probabilistic Model for Code

Pavol Bielik PAVOL.BIELIK@INF.ETHZ.CH
Veselin Raychev VESELIN.RAYCHEV@INF.ETHZ.CH
Martin Vechev MARTIN.VECHEV@INF.ETHZ.CH

Department of Computer Science, ETH Zürich, Switzerland

Abstract
We introduce a new generative model for
code called probabilistic higher order grammar
(PHOG). PHOG generalizes probabilistic con-
text free grammars (PCFGs) by allowing condi-
tioning of a production rule beyond the parent
non-terminal, thus capturing rich contexts rele-
vant to programs. Even though PHOG is more
powerful than a PCFG, it can be learned from
data just as efficiently. We trained a PHOG
model on a large JavaScript code corpus and
show that it is more precise than existing mod-
els, while similarly fast. As a result, PHOG can
immediately benefit existing programming tools
based on probabilistic models of code.

1. Introduction
Recent years have seen an emerging interest in new kinds
of software tools that learn probabilistic models from large
codebases (e.g., GitHub) and use these models to provide
probabilistic solutions to important programming tasks in-
cluding code completion (Nguyen et al., 2013; Tu et al.,
2014; Raychev et al., 2014; 2016; Nguyen & Nguyen,
2015), statistical deobfuscation (Raychev et al., 2015),
patch generation (Long & Rinard, 2016), translation be-
tween languages (Allamanis et al., 2015b; Gvero & Kun-
cak, 2015a; Karaivanov et al., 2014), and others.

The core component underlying many of these tools is
a probabilistic model of source code used to score the pre-
dictions. So far, most tools have focused on using ei-
ther generic but relatively naive models such as PCFGs
and n-grams (Gvero & Kuncak, 2015b; Raychev et al.,
2014) which can suffer from loss of precision, or have built
task-specific, carefully engineered (usually discriminative)
models, with limited applicability and reuse across tasks
(Long & Rinard, 2016; Raychev et al., 2015).
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This Work We present a generative probabilistic model
of code which addresses a key challenge of coming up with
scalable and precise probabilistic models that are reusable
across different tasks and programming languages. The
model is based on a new concept we call a probabilistic
higher order grammar (PHOG). PHOG cleanly generalizes
PCFGs by conditioning the production rules not only on a
(static) parent non-terminal, but also on a context that is
dynamically obtained by navigating an abstract syntax tree.
This navigation takes place by executing a function on the
current tree, where the function itself is learned from data.
PHOG has a number of benefits:

Efficient Learning: Even though PHOG generalizes
PCFGs, it can be trained just as efficiently as PCFGs
and n-gram models (by simply counting production rules).
PHOG provides a valid probability distribution without an
expensive to compute partition function.

Flexible Representation: Because the rules of PHOG are
parameterized on a (learned) function, it means that for
each program, the representation upon which the prediction
is made is determined dynamically and is not hard-coded
as in prior work (Raychev et al., 2014; Hindle et al., 2012).
This is important, as finding the right program representa-
tion over which the probabilistic model is learned is key
to the overall model precision. That is, at prediction time,
PHOG is able to automatically select the suitable features.

Widely Applicable: As PHOG operates on parse trees it can
be learned over any programming language that provides
a parser and we believe that it has the potential to be useful
even in scenarios beyond programs (e.g., natural language).

We provide a two-step training procedure that first learns
the underlying HOG followed by maximum likelihood es-
timation (via counting) to generate its probabilistic version
(PHOG). We evaluate PHOG on a large and diverse corpus
of JavaScript code containing 150,000 files and find PHOG
to perform better than widely-used state-of-the-art models
by: (i) assigning higher probabilities to existing JavaScript
programs outside our training set, and (ii) achieving lower
error rate on specific tasks (e.g., code completion).
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awaitReset = function() {
...
return defer.promise;

}

...

awaitRemoved = function() {
...
fail(function(error) {

if (error.status === 401) {
...

}
defer.reject(error);

});
return defer.

}
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Figure 1. Example JavaScript code with position at which a probabilistic model for code makes a prediction.

2. PHOG: An Illustration
In this section, we illustrate the intuition behind PHOG
on a running example. In later sections, we provide for-
mal definitions for the various concepts. Consider the
JavaScript code fragment shown in Fig. 1 (a). The code is
parsed by a context-free grammar (CFG) in order to obtain
an abstract syntax tree (AST), shown in Fig. 1 (b). Now,
consider the last statement in Fig. 1 (a) that returns a prop-
erty of the defer object. The JavaScript CFG permits any
valid identifier here, yet not every identifier would produce
a desirable program. In a box akin to a code completion
window, we show some reasonable values for which prop-
erty should be returned along with their probabilities.

The Problem of CFGs and PCFGs Context-free gram-
mars are useful for parsing, but they are less effective when
it comes to assessing program correctness. As a result,
many programs that successfully parse are incorrect and
undesired by users. A probabilistic version of a context-
free grammar (PCFG) takes every production rule of a CFG
and learns the frequency with which it is used in the train-
ing data. In Fig. 1 (c), we show possible learned rules for
object property names along with their probabilities. In the
JavaScript CFG, each rule selects an object property only
based on the fact that it is an object Property without
taking into account any information about the object itself.
As a result, the PCFG probability estimates in Fig. 1 (c) are
poor: the most likely suggestions generate an undesirable
program.

The Need for Better Conditioning To counter this prob-
lem of CFGs, in this work we define a grammar that con-
ditions its production rules not only on the current non-
terminal symbol. In Fig. 1 (d), we show a conditioning that
predicts an object property by finding a place in the code

where it was used in the same context (a return statement
with the same variable), and then including the property
used there as conditioning context (arrows show move-
ment over the AST that leads to computing this context).
Using this insight, we define a new grammar called HOG
where on the left side of the production rule instead of us-
ing only a non-terminal α, we use a non-terminal param-
eterized by context. In Section 3 we show that a HOG
is more powerful than a CFG and can parse languages be-
yond the capabilities of context-sensitive grammars. Then,
we define a probabilistic version of a HOG called PHOG.
Since this new grammar is much better conditioned than
a PCFG, the probability estimates of a PHOG in Fig. 1 (d)
are more realistic and the correct property used in this code
is ranked first in terms of probability.

Finding the Best Conditioning Once we know how to
compute context, training a PHOG is easy and similar to
training a PCFG: counting the ratio of the cases from the
training data in which a production rule with the given
left-hand side was applied. Computing probabilities with
PHOG is also very efficient and involves only a lookup of
this ratio. However, arriving at the insight for how to com-
pute the best context is non-trivial. Previous works have
suggested use of hard-coded models that are a special case
of a PHOG and condition on a fixed, statically determined
context. For example, the (fixed) context can be tokens
preceding the completion position at which the production
rule is applied (Allamanis et al., 2015b) or the API call pre-
ceding this position (Raychev et al., 2014). In this work,
we propose a more general approach, one that searches for
functions from a domain specific language (DSL) which
given a tree, return a conditioning context. The optimiza-
tion problem is then to select a function for which the re-
sulting PHOG maximizes the probability of the dataset.
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During learning, we discover programs that describe how
to effectively condition (as illustrated in Fig. 1 (b,d)) in or-
der to predict any terminal or non-terminal symbols from
a context-free grammar. Thus, our learning procedure ef-
fectively builds a PHOG from a CFG (for a given program-
ming language).

3. Probabilistic Higher Order Grammar
In this section we define a new type of grammar called
a Higher Order Grammar (HOG) and its probabilistic ver-
sion (PHOG). The key concept behind PHOG is to replace
the left side of the production rule: a fixed non-terminal is
replaced by a non-terminal that is parameterized by a con-
text computed as a result of evaluating a function (thus the
term higher-order). This introduces a level of indirection
and allows us to specify rich contexts for a given produc-
tion rule by defining the function appropriately. As we will
see, a standard CFG is a special case in our grammar.

We begin by providing the standard definition of a tree fol-
lowed by partial trees (needed for defining HOG).
Definition 3.1 (Tree). A tree T is a tuple (X,x0, ξ) where
X is a finite set of nodes, x0 ∈ X is the root node and
ξ : X → X∗ is a function that given a node returns a list
of its children. In a tree every node except the root appears
exactly once in all the lists of children.

Let Trees be the set of all trees. Next, we define partial tree
T0..k ∈ Trees as a subtree of T ∈ Trees that includes all
nodes to the left of and above xk in T . To proceed formally,
assume the nodes X of tree T = (X,x0, ξ) are ordered
in a sequence x0, x1, ..., xn−1 where the root is first and
all nodes are sequentially numbered in a depth-first left-to-
right traversal order. Then:
Definition 3.2 (Partial tree). A partial tree T0..k =
(X ′, x0, ξ

′) of a tree T = (X,x0, ξ) (with 0 ≤ k < |X|)
is a tree where X ′ = {x0, x1, ..., xk}, ξ′(x′) = ( x | x ∈
ξ(x′), x ∈ X ′ ), and ξ′(xk) = ε.

Next, we define our higher-order grammar HOG.
Definition 3.3 (HOG). A higher-order grammar (HOG)
is the tuple (N,Σ, s, C,R, p) where N is a set of non-
terminal symbols, Σ is a set of terminal symbols, s ∈ N
is a start symbol, C is referred to as a conditioning set, R
is a set of rules of the form: α[γ]→ β1...βn where α ∈ N ,
γ ∈ C, and βi ∈ N∪Σ for i ∈ [1..n]. Note that there might
be multiple rules with same left hand side (e.g., α[γ] → β
and α[γ]→ β′). Finally, p : Trees → C.

That is, the definition of HOG is the same as a context-free
grammar except that the left hand side of a production rule
is now parameterized with a context γ that is computed by
applying function p on a (partial) tree generated so far. This
function allows us to cleanly condition the expansion of a

production rule on richer information than the parent non-
terminal as in CFGs (learning of the function p is described
in Section 4). Note that we do not require a finite set of
rules R but only that for every choice of α and γ, there is a
finite number of possible outcomes β1...βn (denoted as β).

Example An example of a HOG is shown in Fig. 1 (d)
(ignore the probabilities for now). The figure shows four
rules where the non-terminal is Property and there are
four terminals, one on the right side of each rule. Here,
there is a single context promise (we have not shown the
function p which generated the context for each rule).

The connection between the domain of the function p (i.e.,
partial trees), its result (i.e., a context) and the product rules
is made explicit in the semantics of HOG, described next.

Semantics of HOG We now define what it means for
a HOG to accept a tree. A HOG (N,Σ, s, C,R, p) accepts
a tree T = (X,x0, ξ) with nodes X = {x0, ..., xn} if there
exists a function σ : X → Σ ∪N where for all xk ∈ X:

1. if ξ(xk) = xa1 ...xan (n ≥ 1), then σ(xk) ∈ N such
that: there exists a rule α[p(T0..k)] → β1...βn ∈ R
with σ(xk) = α and ∀i ∈ [1..n]. σ(xai) = βi.

2. if ξ(xk) = ε then σ(x) ∈ Σ.

Informally, the above definition states that an internal node
in the tree is expanded according to the grammar rules
while the leafs are terminals. The expansion of an inter-
nal node is such that first, the function p is evaluated on
the partial tree at that node, obtaining a context then used
to condition the rule. A definition for the standard CFG
semantics is the same as above, except that each rule only
conditions on the parent non-terminal xk and not p(T0..k).

3.1. Expressiveness of HOG

An important property of a HOG is that every tree it ac-
cepts is also accepted by a corresponding CFG from which
the HOG was obtained. This is important because in the
setting of programs we are normally given a CFG of the
programming language and want to make sure that any pro-
gram generated by HOG (and later its probabilistic version)
is parsable by that CFG.

Theorem 1. Let GH = (N,Σ, s, C,R, p) be a HOG. Let
R′ be a set of rules such that for every α[γ]→ β ∈ R there
is a rule α→ β ∈ R′. Then GC = (N,Σ, s, R′) is a CFG
that accepts any tree T = (X,x0, ξ) accepted by GH .

Proof sketch: We must show that the σ function defined for
GH satisfies the similar definition for a CFG GC . The sec-
ond case in the definition of σ is the same for a PHOG and
a CFG. Consider the first case. Then ξ(xk) = xa1 ...xan
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(n ≥ 1) and σ(xk) ∈ N . It follows that there exists
a rule α[p(T0..k)] → β1...βn ∈ R with σ(xk) = α and
∀i ∈ [1..n].σ(xai) = βi. Then α → β1...βn ∈ R′ and the
first condition of σ for GC is also satisfied.

Additionally, we note that HOG is at least as expressive
as context-sensitive grammars since HOG can trivially ex-
press any left context-sensitive language (by simply setting
the conditioning set γ to a prefix of desired length) which
are equivalent to full context-sensitive grammars (Pentto-
nen, 1974). Further, since we do not restrict the function p,
our conditioning allows for HOG grammars that can gen-
erate the anbncndn language, which is outside the class of
context sensitive grammars.

3.2. Probabilistic HOG

We next define PHOG, the probabilistic version of HOG.

Definition 3.4 (PHOG). A probabilistic higher order
grammar is a tuple (G, q) where G = (N,Σ, s, C,R, p)
is a HOG and q : R→ R+ scores rules such that they form
a probability distribution, i.e., ∀α ∈ N, γ ∈ C:∑

α[γ]→β∈R

q(α[γ]→ β) = 1

Here, R+ denotes the set of non-negative real numbers.
The above definition ensures that for a given context, the
available rules at a non-terminal sum to one. Note that if
we eliminate γ, we will obtain the definition of a PCFG.

Example An example of a PHOG is shown in Fig. 1 (d).
Here, each rule is assigned some probability (we do not
show all of the rules for the non-terminal Property and
context promise).

To define the probability of a tree according to PHOG, we
use a helper function ρ : X → R ∪ {⊥} which maps an
internal node to the production rule that expanded it. That
is, ρ(x) returns the rule α → β ∈ R that was applied
in case 1 of defining the semantics of HOG. Then, given
a parse tree T = (X,x0, ξ) and a PHOG (G, q), we define
the probability of a tree T in (G, q) as follows:

Pr(T ) =
∏

xi∈X,σ(xi)∈N

q(ρ(xi))

That is, for all non-terminal nodes, we multiply the proba-
bilities associated with the rules that expanded each node.

Efficient Training An important property of PHOG is
that it can be trained efficiently. That is, despite the added
expressiveness, its training follows the same procedure as
PCFGs: counting the production rules applied to generate
the training data. Counting can be done since the HOG

TCOND ::= ε | WriteOp TCOND| MoveOp TCOND

WriteOp ::= WriteValue | WritePos | WriteType

MoveOp ::= Up | Left | Right | DownFirst | DownLast |

NextDFS | NextLeaf | PrevDFS | PrevLeaf |

PrevNodeType | PrevNodeValue | PrevNodeContext

Figure 2. The TCOND language for extracting context from trees.

production rules are non-ambiguous when the correspond-
ing CFG rules are non-ambiguous. Note, however, that
this training assumes that the production rules are already
given. As opposed to a PCFG where the production rules
are typically provided by an expert, learning the production
rules for a PHOG is a non-trivial task as it involves learn-
ing the parametric part γ of each production rule (which
can range over an infinite set). In the next section, we dis-
cuss how to learn the production rules from data.

4. Learning PHOG
The learning of a PHOG is done in two steps. First, we
learn the function p that parameterizes the HOG and then
we learn the weights of the rules in PHOG. This is in con-
trast to previous n-gram or PCFG models that only perform
the second step of learning rule weights.

4.1. TCOND Language

To learn useful PHOGs we adopt a domain specific lan-
guage called TCOND similar to (Raychev et al., 2016) for
writing programs that describe the conditioning context
function p.

The TCOND language summarized in Fig. 2 is a language
for traversing (partial) trees and accumulating context with
values from the tree during the traversal. The trees we
consider are organized as ASTs for which every node has
a type (essentially the non-terminal symbol) and some of
them have a value – the terminal symbol under it. Such
a tree is shown in Fig. 1 (b) where type and value are sep-
arated by ":". TCOND consists of two basic kinds of in-
structions MoveOp and WriteOp. Move instructions fa-
cilitate tree traversal by moving the current position in the
tree to the parent node (Up), left and right siblings (Left,
Right), first and last child (DownFirst, DownLast),
previous and next node in depth first search traversal or-
der (PrevDFS, NextDFS), previous and next leaf node
(PrevLeaf, NextLeaf), previous node with the same
type or value (PrevNodeType, PrevNodeValue) and
finally to the previous node where the parent and grandpar-
ent have the same type and values (PrevNodeContext).
The write instructions WriteType, WriteValue and
WritePos append facts about the currently visited node
to the accumulated context by writing the type, value and
position of the node in the parent respectively.
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TCOND functions operate on a state defined as 〈t, n, ctx〉 ∈
PartialTree × X × C where t is a partial tree, n is the
current position in the tree and ctx accumulates the context
γ used to parameterize PHOG production rules. The accu-
mulated context γ ∈ C = (N ∪Σ∪N)∗ by a TCOND func-
tion is a sequence of observations on the partial tree where
each observation can be a non-terminal from N , a terminal
from Σ or a natural number from N. Initially, execution
starts with the empty observation list [] ∈ C and instruc-
tions from the function are executed and each WriteOp
instruction appends to the observation list.

Example: Consider the following TCOND function pobj :

PrevDFS PrevNodeContext NextDFS WriteValue

executed on the example in Fig. 1(b). The arrows in Fig. 1
(b) trace the execution of this function. Execution starts at
the position where JavaScript object property is to be pre-
dicted. The first instruction moves to the receiver object
defer, the second instruction moves to the previous loca-
tion where the same receiver is used in a return statement,
the third instruction moves to the property used at this state-
ment and finally, the name of the property (promise) is
recorded in the context used by the PHOG rules.

Note that pobj is good for predicting object properties, but
a different TCOND function may be good for predicting in-
teger constants. Thus, the overall learned function p upon
which a PHOG is parameterized is simply a switch state-
ment on the type of α used in the rules, where each case
in the switch is a function from the TCOND language. As
a result, each rule α[γ]→ β in the grammar uses a different
case of the switch statement of p depending on α.

4.2. From TCOND Function and Data to PHOG

Finally, once a function p ∈ TCOND is given, we can build
a PHOG from p and data that consists of parsed AST trees.
For every production rule α → β at node xk in tree T
of the training data, we compute α[γ] where γ is obtained
as the result of applying p on T0..k starting at position k.
Subsequently we train a PHOG (G, q) by counting as:

q(α[γ]→ β) =
Count(α[γ]→ β)

Count(α[γ])

Smoothing A common issue inherent to learning prob-
abilistic language models is adjusting the maximum like-
lihood estimation by taking into account data sparseness.
This is critical in improving the overall precision of the sys-
tem as otherwise the model becomes overconfident in pre-
dictions based on rarely seen conditioning sets (by assign-
ing them high probability) and conversely can completely
reject unseen contexts (by assigning them zero probabil-
ity). To deal with data sparseness we use both modified
Kneser-Ney smoothing (Chen & Goodman, 1998) as well

as Witten-Bell interpolation smoothing (Witten & Bell,
1991). In both cases the backoff order is the order in which
features were added to the context when executing p.

4.3. Learning of TCOND Functions

To obtain the best PHOG grammar, we learn the respec-
tive TCOND function by solving the following optimization
problem:

pbest = arg min
p∈TCOND

cost(D, p)

where cost(D, p) = −logprob(D, p) + λ · Ω(p). Here
logprob(D, p) is the log-probability of the trained models
on a subset D of the training dataset used for learning the
function and Ω(p) is a regularization that penalizes overly
complex functions in order to avoid over-fitting to the data.
We instantiate Ω(p) to return the number of instructions.

We use a combination of two techniques to solve this op-
timization problem and find p≈best – an exact enumeration
and approximate genetic programming search. Since the
number of functions in enumerative search is exponential
we use it only on short functions with up to 5 instructions.
The resulting functions serve as a starting population for
a follow-up genetic programming search. The genetic pro-
gramming search proceeds in several epochs, where in each
epoch we mutate random instructions in the functions from
the population in order to obtain a new set of candidate
functions added to the population. Candidate functions are
scored and the worst of them are discarded. We do not ap-
ply a cross-over operation in the genetic search procedure.
Overall, this search procedure explores≈ 20, 000 functions
out of which the best one is selected.

Scaling to Large Datasets In order for the learning pro-
cedure to explore large number of candidate programs in
a reasonable time it is important the algorithm scales to
large datasets (in our experiments |D| = 108) without
the need to restrict how much data can be used for learn-
ing. To mitigate this problem, we use the representative
dataset sampling technique (Raychev et al., 2016). The
main idea is to select a small sample |d| � |D| such that
|cost(D, pi) − cost(d, pi)| ≤ ε for all previously gener-
ated programs pi. That is, evaluating programs on a small
dataset d approximates evaluation on the full dataset D
within error ε that is as small as possible.

5. Evaluation
This section provides an experimental evaluation of our
approach. We compare the ability of a PHOG to score
JavaScript programs and to predict program elements in
unseen code. We also evaluate the speed of a PHOG. Ex-
periments were done on a 32-core 2.13 GHz Xeon E7-4830
server with 256GB RAM and running Ubuntu 14.04.



PHOG: Probabilistic Model for Code

Dataset The dataset for our experiments consists of
JavaScript ASTs as defined by the ESTree specification.We
used the Acorn parser to extract parse trees from the
JavaScript files. In our experiments, we use a corpus of
150, 000 de-duplicated and non-obfuscated JavaScript files
from GitHub (Raychev et al., 2016)1. Two thirds of the
data is used for training and the remaining one third is used
only for evaluation. Evaluation data was used as a blind set
– no parameters were tweaked based on evaluation results.

From each JavaScript AST we generate multiple queries
used for training and evaluation, one per AST node, by re-
moving the node (plus its subtree and all nodes to the right
of the query node) from the tree and then attempting to
predict back the node. These queries correspond to various
predictions for code completion in an intelligent IDE – for
example completion of object property names as the devel-
oper types "." is already present in many IDEs. By taking
all AST nodes, however, the queries also include predict-
ing constants, variable names or non-terminal symbols in
the AST. Our dataset consists of 1.07 · 108 queries used for
training and 5.3 · 107 queries used for evaluation.

Evaluation Metrics We use standard metrics to evaluate
different probabilistic models. These metrics also reflect
the performance of a code completion application:

Error rate is the proportion of cases in which the most
likely prediction was not equal to the removed node that
was originally in the AST.

Log-Probability is an average of the base 2 logarithm of the
probability per predicted AST node. Lower absolute value
is better since this metric corresponds to (minus) the num-
ber of bits of information in every prediction. The metric
captures not only the cases when the most probable predic-
tion is correct, but also when the correct result is with high
probability in the list of most likely predictions.

Program ASTs The ASTs include two kinds of nodes
– non-terminals and terminals. There are 44 different
non-terminals for JavaScript such as Identifier or
BinaryExpr. Terminals on the other hand have a much
larger range with 109 unique values in our corpus. A ter-
minal may be any program identifier (e.g.jQuery), literal
(e.g., 99), program operator (e.g., +, -, *), etc. ASTs are
structured such that one (possibly empty) terminal symbol
is attached to every non-terminal symbol. Fig. 1 (b) shows
example pairs of non-terminals and terminals (":" is used
as a separator if the terminal symbol is non-empty). 45%
of the terminals in our corpus are empty, such as terminal
for ReturnStatement as shown in Fig. 1 (b).

To learn a complete PHOG for JavaScript, we learn

1http://www.srl.inf.ethz.ch/js150.php

Table 1. Evaluation of prediction for various JavaScript elements.

MODEL LOG-PROBABILITY ERROR RATE

NON-TERMINALS

PCFG -1.99 48.5%
3-GRAM -1.46 30.8%
10-GRAM -2.55 35.6%
PHOG (this work) -1.09 25.9%

TERMINALS

PCFG -6.32 49.9%
3-GRAM -3.92 28.7%
10-GRAM -4.70 29.0%
PHOG (this work) -2.50 18.5%

TCOND functions that determine on what AST elements to
condition each prediction. To predict node values, we learn
a TCOND function depending on the parent non-terminal
type. This is, we learn one TCOND function for predicting
identifier names, another one for predicting number con-
stants, etc. The final function p is a switch statement on
the type of the parent non-terminal (as described earlier).
For a fair comparison we apply the same procedure for all
other models considered in the evaluation. Later in Table 2
we evaluate these individual predictors separately.

5.1. Model Precision

We start by comparing the precision of PHOG against
the two most widely used probabilistic models of code –
PCFGs and n-grams. Both models can be described by
specific (non-optimal) conditioning TCOND functions as
opposed to the best functions for a PHOG. PCFGs only
condition on the parent non-terminal node. Similarly, n-
gram models condition on the n− 1 previous terminal and
non-terminal symbols in the left-to-right AST traversal as
used in Allamanis et al. (2015b).

Table 1 shows the precision of the n-gram and PCFG
models compared to PHOG. While widely used, PCFGs
make incorrect predictions about both terminals and non-
terminals in about half of the cases. Note that a large
amount (45%) of terminals in the corpus are empty. There-
fore, fewer than 10% of the terminals that are non-empty
are predicted correctly by a PCFG. This is not surprising:
predicting a constant, an object property name or a variable
name can rarely be correct if the prediction is only condi-
tioned on the fact it is a property or a constant.

The n-gram models are more precise than a PCFG and
these models also allow various trade-offs via the model
order parameter n. Increasing the value of n makes predic-
tions to capture more context. However, for large values of
n, the models suffer from data sparseness issues and overall
have worse error rates.

http://www.srl.inf.ethz.ch/js150.php
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Table 2. Detailed breakdown of PHOG error rate when predicting
terminal values of given type. The example completions show
successful predictions made by our code completion system.

VALUE TYPE ERROR RATE EXAMPLE COMPLETION

Identifier 38% contains = jQuery ...

Property 35% start = list.length

String 48% "[" + attrs + "]"

Number 36% canvas(xy[0], xy[1], ...

RegExp 34% line.replace(/(&nbsp;| )+/

UnaryExpr 3% if (!events || ! ...

BinaryExpr 26% while (++index < ...)

LogicalExpr 8% frame = frame || ...

The best PHOG model outperforms the n-grams and PCFG
models on both evaluation metrics: PHOG makes signifi-
cantly fewer errors and assigns higher probabilities to cor-
rect completions. As PHOG generalizes the n-gram and
PCFG models, higher precision for a code completion task
is unsurprising. Our experiments quantify the PHOG im-
provement – reducing the error rates by 5− 10%.

In Table 2, we give detailed breakdown of the error rate for
different completion tasks when performed by a PHOG.
Out of these tasks, string constants and identifier names
tend to be the most difficult to predict. Despite this large
ratio of errors, the results are quite encouraging – the pre-
dictions range from a huge set of values, they are typically
very program specific and a PHOG still manages to cor-
rectly predict more than half of them.

Finally, we also evaluated n-grams based on lexicalized
representation of the program which corresponds to purely
syntactical predictions that disregard any structure con-
tained in the program AST. Such n-gram model achieves
error rate 40.8% compared to error rate 33.5% of PHOG.
Note that here we exclude empty terminal symbols as these
are an artifact of the AST representation and are not present
at syntactic source code level.

5.2. Linear Models Based on Shallow Features

When creating new types of probabilistic models, a natu-
ral question is whether the same or better accuracy can be
achieved by conventional state-of-the-art linear classifiers.
Towards this, for every query in our training and evalua-
tion data, we collected features that correspond to the 10
previous non-terminal and terminal symbols preceding the
completion position in the parse tree.

Then, we trained linear classifiers (for each non-terminal
type) that predict the corresponding terminal and non-
terminal symbols based on these features. We used two

Table 3. Error rate of linear models based on shallow features.

ERROR RATE

MODEL NON-TERMINALS TERMINALS

NAIVE BAYES 41.6% 45.8%
SVM 32.5% 29.5%

Table 4. Training and query time comparison of various models.

MODEL TRAINING TIME QUERIES PER SECOND

PCFG 1 MIN 71, 000

PHOG 162 + 3 MIN 50, 000

N-GRAM 4 MIN 15, 000

NAIVE BAYES 3 MIN 10, 000

SVM 36 HOURS 12, 500

kinds of linear classifiers: Naı̈ve Bayes classifier and Sup-
port Vector Machine (SVM). Since our training data is
large, we used a fast online SVM algorithm. In addition,
to make sure we make a fair comparison, we performed
a grid-search for the parameters controlling regularization
(L∞), the learning rate and the margin of the online SVM.

In Table 3 we summarize the precision of these linear mod-
els for predicting JavaScript code elements. In our exper-
iments, SVMs predict program elements more accurately
than the Naı̈ve Bayes classifier. However, the linear classi-
fiers have higher error rates than our learned PHOG model
both for terminal and non-terminal symbols. The reason
for the better accuracy of the PHOG model is that it was
capable of discovering long distance semantic relationships
between program elements in the source code that cannot
be learned by a linear classifier.

5.3. Performance and Scalability

In Table 4 we summarize the speed for training and query-
ing each of the models we considered. Training most mod-
els except SVM only involves counting the number of ap-
plied production rules (or features) in the training data and
is fast – in fact faster than reading the input. Reading all
1.07 · 108 training samples takes 8 minutes. Additionally,
training a PHOG involves the cost of learning the TCOND
function that parameterizes the HOG, taking another 162
minutes. The SVM was quite slow to train because of
the large number of possible labels – all terminal or non-
terminal symbols are possible labels for the classifier.

Once the learning is done, all models are quite efficient to
query with the PHOG model being about as fast as a PCFG.
Note that, for performance reasons, Naı̈ve Bayes and SVM
do not return probabilities at query time, only the best label
(we use a beam of size 4 since the space of labels is large).
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Summary Overall, our evaluation shows that our best
PHOG model for JavaScript predicts program elements
more accurately than existing PCFGs and n-gram models
while having similar query times. The price paid is another
162 minutes at training time to discover the HOG rules.
As a result, we believe that PHOG can immediately benefit
existing programming tools based on probabilistic models.

6. Related Work
In this section we review existing techniques for building
probabilistic models of code – n-gram models, model based
on probabilistic grammars and log-bilinear models.

N-gram Models The most popular and widely used
probabilistic model of code is the n-gram model, due to
its simplicity and efficient learning (first explored by Hin-
dle et al., (2012) for modelling source code). Although the
model used by Hindle is based on a syntactic representation
of the code (e.g., including tokens such as (,) or ;), it was
a promising first step in finding regularities in natural code.
Shortly after, various improvements of the representation
over which the model is learned were proposed including
structural and data dependencies (Nguyen et al., 2013) and
defining task specific abstractions (Allamanis et al., 2014;
Raychev et al., 2014). Additionally, to address some of
the n-gram limitations, several extensions were developed
such as modeling local and global context (Tu et al., 2014)
or including topic models (Nguyen et al., 2013).

In contrast, this work defines a new probabilistic model that
is more precise than the n-gram model and with a similar
training procedure. This is because the n-gram model can
be seen as a hard-coded TCOND function. Further, we can
easily change the parameterization of PHOG by varying
the choice of the domain specific language. We note that
we can incorporate any of the above n-gram extensions as
these do not require the underlying model to be n-gram.

Probabilistic Grammars Another line of work consid-
ers probabilistic grammars, typically a PCFG, with various
extensions built on top. A close work from the domain of
natural language processing are lexicalized grammars, such
as those produced by annotating the non-terminals with
summaries of decision sequences used to generate the tree
so far (Collins, 2003). Instead, in our work we parametrize
the production rules of the grammar and phrase the task of
finding best parametrization as an optimization problem.

Additionally, several approaches have been developed to
improve the precision specifically in the domain of mod-
elling source code. To capture code idioms, (Allamanis
& Sutton, 2014) use probabilistic tree substitution gram-
mars which extend a PCFG with production rules that allow
tree fragments on the right-hand side. Gvero et al., (2015a)

augment grammar production rules with additional seman-
tic checks that allow picking local variables in the current
scope. Similarly, to model code locality and code reuse,
various extensions were proposed that incorporate the con-
text of the already generated AST by extending a PCFG
with traversal variables (Maddison & Tarlow, 2014) and
using adaptor grammars with a cache (Liang et al., 2010).

These extensions are applicable to PHOG and are mainly
orthogonal to our work. Instead, we focus on a probabilistic
model which can be used as a more precise basic building
block that can replace the PCFG used in the above works.

Log-bilinear Models An alternative model to n-grams
and probabilistic grammars is a log-bilinear model. This
model is especially suited when we have a large set of fea-
tures and the goal is to learn optimal weights per feature
that reveal which features are relevant for the prediction.
Such features are either simply generated (e.g, previous 10
non-terminals and terminals (Allamanis et al., 2015b)) or
manually designed for a given task (e.g., 17 features rele-
vant for name prediction (Allamanis et al., 2015a)).

PHOG is as expressive as log-bilinear models as it can eas-
ily encode any features via additional instructions in the
TCOND language. However, PHOG is orders of magni-
tude faster to train and provides an easy to compute valid
probability distribution. Further, instead of supplying the
features manually, we learn these automatically, which is
especially useful when training generic models of a full
scale programming language. This is important and as il-
lustrated in our experiments, PHOG achieved lower error
rate (by 5% to 10%) compared to models trained on shal-
low features (considered in (Allamanis et al., 2015b)).

7. Conclusion
We presented a new generative probabilistic model of code
called a probabilistic higher order grammar (PHOG). The
key idea behind PHOG is to parameterize the production
rules of the grammar on a powerful context obtained as
a result of executing a function learned from data.

We also presented a two step procedure for learning PHOG
from data. PHOG cleanly generalizes classic PCFGs and
enables more precise predictions, yet is similarly efficient
to use and learn from data.

We evaluated PHOG on a large corpus of JavaScript pro-
grams and showed that PHOG is more precise at predicting
program elements than state-of-the-art probabilistic mod-
els.

As a result, PHOG can be a fundamental building block for
emerging tools based on probabilistic models of code and
beyond, enabling precision not possible otherwise.
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