
Training Neural Machines with Trace-Based Supervision

Matthew B. Mirman 1 Dimitar Dimitrov 1 Pavle Djordjevic 1 Timon Gehr 1 Martin Vechev 1

Abstract
We investigate the effectiveness of trace-based
supervision methods for training existing neural
abstract machines. To define the class of neural
machines amenable to trace-based supervision,
we introduce the concept of a differential neural
computational machine (∂NCM) and show that
several existing architectures (NTMs, NRAMs)
can be described as ∂NCMs. We performed a
detailed experimental evaluation with NTM and
NRAM machines, showing that additional super-
vision on the interpretable portions of these ar-
chitectures leads to better convergence and gen-
eralization capabilities of the learning phase than
standard training, in both noise-free and noisy
scenarios.

1. Introduction
Recently, there has been substantial interest in neural ma-
chines that can induce programs from examples (Graves
et al., 2014; Reed & de Freitas, 2016; Graves et al., 2016;
Zhang et al., 2015; Zaremba & Sutskever, 2015; Kaiser &
Sutskever, 2015; Gaunt et al., 2016; Vinyals et al., 2015;
Feser et al., 2016; 2015; Frankle et al., 2016; Kurach et al.,
2016; Bošnjak et al., 2017). While significant progress has
been made towards learning interesting algorithms (Graves
et al., 2016), ensuring these machines converge to the de-
sired solution during training is challenging. Interestingly
however, even though they differ architecturally, most of
these machines rely on components (e.g., neural memory)
that are more interpretable than typical neural networks
(e.g., an LSTM). This allows one to provide additional su-
pervision and help bias the learning towards the desired
solution.

In this work, we investigate whether (and by how much)

1Department of Computer Science, ETH Zurich,
Switzerland. Correspondence to: Matthew B. Mirman
<matthew.mirman@inf.ethz.ch>, Martin Vechev <mar-
tin.vechev@inf.ethz.ch>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

additional amounts of supervision provided to these inter-
pretable components during training can improve learning.
The particular type of supervision we consider is partial
trace supervision, providing more detailed information, be-
yond input-output examples, during learning. To help de-
scribe the type of architectures our results apply to, we
introduce the notion of a differential neural computational
machine (∂NCM), a formalism which allows to cleanly
characterize the neural machines that can benefit from any
amount of extra trace-based supervision. We show that com-
mon existing architectures such as Neural Turing Machines
(NTMs) and Neural Random Access Machines (NRAMs)
can be described as ∂NCMs. We also explain why other ma-
chines such as the Neural Program Interpreter (NPI) (Reed
& de Freitas, 2016) or its recent extensions (e.g., the Neural
Program Lattice, Li et al. (2017)) cannot be instantiated
as a ∂NCM and are thus restricted to require large (and
potentially prohibitive) amounts of supervision.

We performed an extensive evaluation investigating how
partial trace information affects training of both NTMs and
NRAMs. Overall, our experimental results indicate that ad-
ditional supervision can substantially improve convergence
while leading to better generalization and interpretability,
under both noise-free and noisy supervision scenarios. In-
terestingly, we also show that on a more complex task, the
NRAM architecture trained with additional supervision can
generalize better than more recent architectures such as the
DNGPU (Freivalds & Liepins, 2017) which are difficult to
interpret and thus, provide additional supervision to.

The work closest to ours is the Differentiable Forth of Bošn-
jak et al. (2017), which also investigates the effects of extra
supervision. The main difference between the two works is
the kind of supervision provided. In Bošnjak et al. (2017),
the teacher provides a sketch of the program to be learned.
The machine then needs to fill in the holes of the sketch.
In our work, there is no program sketch: the teacher hints
(part of) the operations that the machine should execute in
specific executions (i.e., hints on specific execution traces).
The machine then has to learn these operations. We believe
that both training methods are interesting and worth investi-
gating in the context of neural machines. We also remark
that both methods have already been investigated in the con-
text of traditional (non-neural) programming, for example
by Lau et al. (2003) and Solar-Lezama et al. (2006).

Training Neural Machines with Trace-Based Supervision

(a) Overfitting & No Traces (b) Generalizing & No Traces (c) Generalizing & Traces

Figure 1. Traces of locations accessed by read/write heads for the Flip3rd task in three different training setups. The y-axis represents
time (descending); the x-axis represents head locations. First, two NTMs are trained without partial trace information. White represents
the distribution of the write head; orange the distribution of the read head; (b) and (c) generalize and are more interpretable than (a); (c)
was trained using partial trace information and is more interpretable than (b).

To intuitively illustrate our approach, consider the task of
training an NTM to flip the third bit in a bit stream (called
Flip3rd) – such tasks have been extensively studied in the
area of program synthesis with noise (Raychev et al., 2016)
and without (Jha et al., 2010). An example input-output pair
for this task could be [0, 1, 0, 0] → [0, 1, 1, 0]. Given a set
of such examples, our goal is to train an NTM that solves
this task. Figure 1c shows an example NTM run (on an
input that is longer than those shown during training) that
demonstrates good generalization and has an understandable
trace. The y-axis indicates time (descending), the x-axis
indicates the accessed memory location, the white squares
represent the write head of the NTM, and the orange squares
represent the read head. As we can see, the model writes the
input sequence to the tape and then reads from the tape in the
same order. However, in the absence of richer supervision,
the NTM (and other neural architectures) can easily overfit
to the training set – an example of an overfitting NTM is
shown in Figure 1a. Here, the traces are chaotic and difficult
to interpret. Further, even if the NTM generalizes, it can do
so with erratic reads and writes – an example is shown in
Figure 1b. Here, the NTM learns to read from the third bit
(circled) with a smaller weight than from other locations,
and also reads and writes erratically near the end of the
sequence. This model is less interpretable than the one in
Figure 1c because it is unclear why the NTM reads the third
bit with less weight, and whether this helps flip it.

In this work we develop systematic ways to guide the train-
ing of a neural machine (e.g., NTM, NRAM) towards more
interpretable behavior 1. For instance, for Flip3rd, pro-
viding partial trace information on the NTM’s read heads for
10% of input-output examples is sufficient to bias learning
towards the NTM shown in Figure 1c 100% of the time.

1All of the code, tasks and experiments are available at:
https://github.com/eth-sri/ncm

2. Neural Computational Machines
We now define the notion of a neural computational machine
(NCM) which we use throughout to formalize our ideas.
We introduce NCMs for two reasons. First, they allow
one to capture the class of neural machines to which our
supervision methods apply and explain why other machines
fall outside this class. That is, the NCM abstraction clearly
delineates end-to-end differentiable architectures such as
NTM (Graves et al., 2014) and NRAM (Kurach et al., 2016),
which can train with little to no trace supervision, from
architectures that are not end-to-end differentiable, such
as NPI (Reed & de Freitas, 2016), and hence require a
certain minimum amount of trace information. In Section 3,
we show how to phrase two existing neural architectures
(NTM and NRAM) as an NCM. Second, it enables us to
cleanly define a general, abstract loss function that captures
different kinds of trace-based supervision at the NCM level
and makes it clear which components of that loss function
need to be instantiated for the particular NCM architecture
(e.g., NTM, NRAM). In Section 4, we show how to specify
the general trace-based loss function at the NCM level and
how to instantiate key components of that loss function for
NTMs and NRAMs.

We note that while NCMs do allow for a clean formalization
of the ideas and help overall understanding, they are not
meant to be a complete neural model where one specifies
the additional supervision only at the NCM level without
any awareness of the details of the underlying architecture.
Indeed, the user still has to be aware of the interpretable
portions of the particular architecture (e.g., NRAM, NTM)
and have some intuition for how a solution to the task at
hand would use those components. We do believe however
that this is a reasonable trade-off to investigate: a little bit
of extra knowledge can enable substantially better results.

https://github.com/eth-sri/ncm

Training Neural Machines with Trace-Based Supervision

I

O

C

B

κ π M

Q

(a) Neural Computational Machine (NCM)

w, r

address

m

r

read

w

e
a

writex

y

Mt

Δw

Δr
controller

(b) Neural Turing Machine (NTM)

READ

ADD

SUB

LT

rt,2

WRITE

rt,1

rt+1,2

rt+1,1

Mt

controllerft

bt,1at,1bt,2at,2bt,3at,3bt,4at,4bt,5at,5ct,1ct,2

(c) Neural Random Access Machine (NRAM)

Figure 2. (a) depicts the generic NCM structure, (b) is a high-level overview of an NTM, and (c) is a high-level overview of an NRAM.
For NRAM, the controller outputs a circuit, which in this case contains the modules READ, ADD, SUB, LT, and WRITE. The controller
encodes the two inputs to the modules as probability vectors, a and b, over the possible choices. Darker colors capture higher probability,
e.g., dark green is the most likely choice. The only input to the controller are the registers r1 and r2.

2.1. NCM design

The design of an NCM mimics classic computational ma-
chines with a controller and a memory. Concretely, an NCM
is a triple of functions: a processor, a controller, and a loss.
We define these components below.

Processor The processor πθ : C×M → B×M performs
a pre-defined set of commands C, which might involve
manipulating memories in M . The commands may produce
additional feedback in B. Also, the processor’s operation
may depend on parameters θ.

Controller Controller κθ : B ×Q× I → C ×Q×O de-
cides which operations the machine performs at each step. It
receives external inputs from I and returns external outputs
in O. It can also receive feedback B from the processor and
command it to do certain operations (e.g., memory read).
The decisions the controller takes may depend on its internal
state in Q. The controller can also depend on additional
parameters θ. For instance, if the controller is a neural
network, then θ gives the network’s weights.

Loss Function The loss function LE : Trace × E → R
indicates how close an execution trace τ ∈ Trace of the
machine (defined below) is to a behavior from a set E.

Plugging the behavior of the machine into the loss, we get:

l(θ;x, e) = LE(τθ(x), e) (1)

Averaging l over a set of input-output examples (x, e) gives
us the loss surface that is being minimized during training.
As standard, we require l to be continuous and piecewise
differentiable w.r.t w for any given example (x, e).

Traces The execution of the machine begins with an input
sequence x = {xt}n1 and initial values of the controller state
q0, memoryM0, and processor feedback b0. At each time
step t = 1 . . . n, controller and processor take turns:

(ct, qt, yt) = κ(bt−1, qt−1, xt)

(bt,Mt) = π(ct,Mt−1) (2)

To avoid clutter, we keep the parameters θ implicit. A trace
τ(x, b0,M0, q0) = {(ct, bt, qt, yt,Mt)}n1 keeps track of
the values of these quantities at every time step. We occa-
sionally write τC , τB , . . . for the trace projected onto one
of its components c, b,

∂NCMs Note that the differentiability conditions we im-
pose on l do not imply the functions π, κ and LE are con-
tinuous or differentiable w.r.t all parameters. They indeed
can be highly discontinuous as in NCMs like Memory Net-
works (Weston et al., 2014), or as in Neural Programmer-
Interpreters (Reed & de Freitas, 2016). In order to ensure

Training Neural Machines with Trace-Based Supervision

the differentiability of l, these architectures train with strong
supervision: in this case the loss function LE requires ex-
amples e ∈ E that provide a value for each discontinuous
quantity in the traces. In contrast, what we call differentiable
neural computational machines (∂NCM), have κ, π and LE
continuous and piecewise differentiable. Then, there is no
need to specify corresponding values in the examples, and
so we can train with as much trace information as available.

3. NTMs and NRAMs as NCMs
We now describe NTMs and NRAMs as ∂NCMs.

NTM as ∂NCM An NTM (Graves et al., 2014) (Fig-
ure 2b) has access to a memoryM∈ Rc×n of c cells of n
real numbers each. We suppose the machine has one read
head and one write head, whose addresses are, respectively,
the probability vectors r, w ∈ [0, 1]{1...c}. At every time
step, the read head computes the expected value m ∈ Rn of
a random cell at index i ∼ r. This value together with the
current input are fed into a controller neural network, which
then decides on the command. The command consists of sev-
eral pieces: (i) a decision on what fraction e ∈ Rn to erase,
(ii) how much a ∈ Rn to add to the cells underneath the
write head, and (iii) an indication of the head movement with
two probability vectors ∆r,∆w ∈ [0, 1]{−1,0,+1}. Finally,
the controller produces the current output value. In terms of
NCMs, NTM variables fall into the following classes:

I/O State Communication

x ∈ I
y ∈ O

q ∈ Q
(r, w,M) ∈M

(e, a,∆r,∆w) ∈ C
m ∈ B

Each of these variables change over time according to cer-
tain equations (found in the supplementary). The processor
π and the controller κ functions for each time step satisfy:

((et, at,∆rt,∆wt), qt, yt) = κ(mt, qt−1, xt) (3)
(mt+1, (rt, wt,Mt)) =

π((et, at,∆rt,∆wt), (rt−1, wt−1,Mt−1)). (4)

That is, the processor computes the new values of the read
and write heads by convolving their old values with ∆r and
∆w, updates the memory by using e, a, the write head w
and the previous value of the memory, and also produces the
output read value by using the memory and the read head r.
Formal details are provided in the supplementary material.

The standard loss function LE for the NTM includes a term,
such as cross-entropy or L2 distance, for the machine output
at every time step. Each of these compare the machine
output to the respective values contained in examples e ∈ E.

NRAM as ∂NCM A Neural Random Access Machine
(NRAM) (Kurach et al., 2016) is a neural machine designed

for ease of pointer access. The NRAM has a memory and
registers that store probability vectors on a fixed set {1 . . . c}.
The memory is, therefore, a matrixM ∈ Rc×c of c cells,
while the register file is a matrix r ∈ Rn×c of n registers.
The controller receives no external inputs, but it takes as
feedback the probability of 0 for each register. It also pro-
duces no external output, except for a halting probability
f ∈ [0, 1] produced at every time step. The “output” of the
run is considered to be the final memory.

At each time step the NRAM can execute several modules
from a fixed sequence. Each module implements a simple
integer operation/memory manipulation lifted to probability
vectors. For example, addition lifts to convolution, while
memory access is as in the NTM. At every time step, the
controller organizes the sequence of modules into a circuit,
which is then executed. The circuit is encoded by a pair of
probability distributions per module, see Figure 2c. These
distributions specify respectively which previous modules
or registers will provide a given module’s first/second argu-
ments. The distributions are stacked in the matrices a and b.
A similar matrix c is responsible for specifying what values
should be written to the registers at the end of the time step.
The NCM instantiation of an NRAM is:

I/O State Communication

{1} = I

ft ∈ O
qt ∈ Q

(rt,Mt) ∈M
(at, bt, ct) ∈ C

rt,−,0 ∈ B

The equations for these quantities are found in the supple-
mentary material. The processor π and the controller κ are:

((at, bt, ct), qt, ft) = κ(r(t−1),−,0, qt−1, 1)

(rt,−,0, (rt,Mt)) = π((at, bt, ct), (rt−1,Mt−1)).
(5)

The NRAM loss is an expectation with respect to the dis-
tribution p of the halting time step, as determined by the
halting probabilities ft (see the supplementary material).
Each example is a vector e ∈ {1 . . . c}c holding the desired
value of each memory cell. The loss considers the negative
log likelihood that the i-th memory cell at time step t equals
the value ei from the example, independently for each i:

LE(τ, e) = −
∑
t<|τ |

pt
∑
i<c

log(Mt,i,ei). (6)

4. Subtrace Supervision of NCMs
Incorporating supervision during training of an NCM-
instantiated machine can be helpful with: (i) convergence:
additional bias may steer the minimization of the loss func-
tion LE away from local minima that do not correspond to
good solutions, (ii) interpretability: the bias can be useful
in guiding the machine towards learning a model that is

Training Neural Machines with Trace-Based Supervision

more intuitive/explainable to a user (especially if the user al-
ready has an intuition how components of the model should
be used), and (iii) generalization: the bias can help with
finding solutions which minimize the loss on more difficult
examples than those seen during training.

The way we provide additional supervision to NCMs is,
for example, by encoding specific commands issued to the
processor into extra loss terms. Let us illustrate how we
can bias the learning with an NTM. Consider the task of
copying the first half of an input sequence {xt}2l1 into the
second half of the machine’s output {yt}2l1 , where the last
input xl from the first half is a special value indicating that
the first half ended. Starting with both heads at position 1,
the most direct solution is to consecutively store the input
to the tape during the first half of the execution, and then
read out the stored values during the second half. In such a
solution, we expect the write/read head positions to be:

ew(t) =

{
one-hot(t) if t = 1 . . . l

one-hot(l) if t ≥ l + 1
(7)

er(t) =

{
one-hot(1) if t = 1 . . . l

one-hot(t− l) if t ≥ l + 1
(8)

Here one-hot(i) denotes the probability vector whose i-th
component equals 1 (the distribution concentrated on i).

To incorporate this information into the training, we add loss
terms that measure the cross-entropy (H) between ew(t) and
wt as well as between er(t) and rt. Importantly, we need not
add terms for every time-step, but instead we can consider
only the corner cases where heads change direction:∑

t=1,l+1,2l

H(ew(t), wt) +H(er(t), rt).

4.1. Generic Subtrace Loss for NCMs

We now describe the general shape of the extra loss terms
for arbitrary NCMs. Since, typically, we can interpret only
the memory and the processor in terms of well-understood
operations, we will consider loss terms only for the memory
state and the communication flow between the controller
and the processor. We leave the controller’s hidden state
unconstrained – this also permits us to use the same training
procedure with different controllers.

The generic loss is expressed with four loss functions for
the different components of an NCM trace:

LC : C × EC → R LB : B × EB → R
LO : O × EO → R LM : M × EM → R (9)

For each α ∈ {C,B,O,M}, we give hints (t, v, µ) that
indicate a time step t at which the hint applies, an example

v ∈ Eα for the relevant component, and a weight µ ∈ R of
the hint. The weight is included to account for hints having
a different importance at different time-steps, but also to
express our confidence in the hint, e.g., hints coming from
noisy sources would get less weight.

A subtrace is a collection σ of hints used for a particular
input-output example e. We call it a subtrace because it typ-
ically contains hints for a proper subset of the states traced
by the NCM. With σα we denote the hints in σ designated
for a loss component α. The net hint loss is the sum of all
losses per hint, weighted and normalized:

Lσ(τ, σ) =

∑
α∈{C,B,O,M}

∑
(t,v,µ)∈σα µLα(τα,t, v)∑

α∈{C,B,O,M}
∑

(t,v,µ)∈σα µ

The total loss for a given input-output example and subtrace
equals the scaled hint loss Lσ plus the original loss LE ,
where the scaling of the hint loss is a hyperparameter λ:

L(τ, (σ, e)) = λLσ(τ, σ) + LE(τ, e). (10)

4.2. Subtraces for NTM

For NTMs, we allow hints on the output y, heads r and w,
and the tapeM. We include extra loss terms for the memory
state only (i.e., except LM , all other loss terms are zero).
For addresses, LM is defined as:

LM ((rt, wt,Mt), (wr, v)) = H(v, wt)

LM ((rt, wt,Mt), (rd, v)) = H(v, rt)
(11)

Unlike addresses, values on the tape are interpreted accord-
ing to an encoding internal to the controller (which emerges
only during training). Forcing the controller to use a specific
encoding for the tape, as we do with NTM output, can have
a negative effect on training (in our experiments, training
diverged consistently). To remedy this, we do not apply
the loss to the tape directly, but to a decoded version of a
cell on the tape. While a decoder might find multiple repre-
sentations and overfit, we found that it forced just enough
consistency to improve the convergence rate. The decoder
itself is an auxiliary network φ trained together with the
NTM, which takes a single cell from memory as input. The
output of the decoder is compared against the expected value
v which should be in that cell:

LM ((−,−,Mt), (tape, i, v)) = H(φ(Mt,i), v). (12)

For all subtraces we provide in our experiments with NTMs,
the hints have the same unit weight.

4.3. Subtraces for NRAM

For NRAMs, we hint which connections should be present
in the circuit the controller constructs at each step, including

Training Neural Machines with Trace-Based Supervision

r0

r1 READ

READ INC

ONE ADD

WRITE

r0

r1

Figure 3. A circuit for the task of adding one to all memory cells.
The arrows for register updates are shown in red. Technically,
modules take two arguments, but some ignore an argument, such
as INC or READ. For them, we show only the relevant arrows.

the ones for register updates. An example circuit is shown
in Figure 3. In terms of an NCM, this amounts to providing
loss for commands and no loss for anything else. We set the
loss to the negative log likelihood of the controller choosing
specific connections revealed in the hint:

LC((at, bt, ct), (module,m, i, j)) =

− log(at,m,i)− log(bt,m,j)

LC((at, bt, ct), (register, r, i)) =

− log(ct,r,i) (13)

Here, m is the module, i is the index of the first argument
(a module or a register); similarly for j for the second argu-
ment. In our experiments, we observed that assigning higher
weight to hints at earlier timesteps is crucial for convergence
of the training process. For a hint at time-step t, we use the
weight µ = (t+ 1)−2. A possible reason for why this helps
is that the machine’s behavior at later time-steps is highly
dependent on its behavior at early time-steps. Thus, the
machine cannot reach a later behavior that is right before it
fixes its early behavior. Unless the behavior is correct early
on, the loss feedback from later time-steps will be mostly
noise, masking the feedback from early time-steps.

Other Architectures The NCM can be instantiated to
architectures as diverse as a common LSTM network or End-
To-End Differentiable Memory Networks. Any program
inducing neural network with at least partially interpretable
intermediate states for which the dataset contains additional
hints could be considered a good candidate for application
of this abstraction.

5. Experimental Evaluation
We evaluated the effects of different kinds of trace-based
supervision on training NTM and NRAM architectures. The
main questions we investigated are: (i) Does trace supervi-
sion help convergence, interpretability, and generalization?
(ii) How much supervision is needed to train successfully?
We focused on algorithmic tasks (mostly from the NTM and
NRAM papers) since these architectures were designed to

Figure 4. Fraction of training instances that generalized out of 10
supervised runs per task for the NTM compared to unsupervised
baseline. We provide a subtrace 100% of the time and use λ = 1.

solve such tasks, but also because the tasks are unambiguous
and supervision can be provided more easily.

Effects on NTMs We measured the frequency of succeed-
ing to train an NTM that generalizes strongly. We consider
a model to generalize strongly if whenever we train with
examples of size ≤ n, the trained NTM achieves perfect ac-
curacy on all tests of size≤ 1.5n, and at least 90% accuracy
on all tests of size ≤ 2n.

Figure 4 reports the average improvement over a baseline
trained with input/output examples. We experimented with
four tasks and various types of hints (see supplementary).
The hint types are: (1) read/write give the respective head
addresses for all time steps; (2) address combines read and
write; (3) corner reveals the heads’ addresses but only when
the heads change direction; (4) value gives a value for a
single cell; (5) addr+val combines address and value hints.

Trace supervision improves generalization in all except 3
cases. Interestingly, among the most challenging tasks, a
small but non-negligible amount of extra supervision (i.e.,
corner hints) lead to greatest improvement. For example,
for RepeatFlip3d the baseline generalizes only 5% of
the time, while corner hints achieve 8-fold improvement,
reaching 40%. Another task with an even larger ratio is
RepeatCopyTwice, where success increases from 15.5%
to 100%. Both results are illustrated in the supplementary.

In addition to this experiment, we performed an extensive
evaluation of different setups, varying the global λ parame-
ter of the loss (10), and providing hints for just a fraction of
the examples. Full results are in the supplementary; here we
provide those for Flip3rd in Figure 5. The results reveal
that the efficacy of our method heavily depends on these
two parameters. The best results in this case are for the
read/corner type of hints for 1

2 or 1
10 of the examples, with

λ ∈ {0.1, 1}. Interestingly, while the type of supervision
which works best varies from task to task, for each task there
exists a trace which can be provided only 1% of the time
and still greatly improve the performance over the baseline.
This suggests that a small amount of extra supervision can

Training Neural Machines with Trace-Based Supervision

density 100 100 100 100 50 50 50 50 10 10 10 10 1 1 1 1

λ 1 0.3 0.1 0.03 1 0.3 0.1 0.03 1 0.3 0.1 0.03 1 0.3 0.1 0.03

baseline 45

addr+val 30 50 50 50 50 50 70 80 60 80 40 40 40 60 40 10

address 0 60 40 40 20 70 80 90 90 70 60 50 50 50 60 60

value 60 50 40 60 80 70 40 10 50 10 40 70 50 30 40 60

read 40 60 70 40 30 80 90 90 100 70 80 50 30 50 60 30

write 0 30 50 20 30 40 60 20 40 40 40 40 20 50 70 50

corner 50 70 80 80 40 40 90 70 80 70 60 40 50 60 60 40

Figure 5. The number of training runs (out of 100) that generalized for Flip3rd. The different supervision types are shown vertically,
while the proportion of examples that receive extra subtrace supervision (density) and the extra loss term weight (λ) are shown horizontally.

(a)

(b)

Figure 6. Execution traces of two NTMs trained on Flip3rd
until generalization. First is baseline (no trace supervision); second
is trained with corner hints. Time flows top to bottom. The first
pane from every pair shows the value written to tape; second shows
head locations. Figures show that a little extra supervision helps
the NTM write sharper 0–1 values and have more focused heads.

improve performance significantly, but the kind of supervi-
sion may differ. This, of course, raises the question of what
the best type and amount of hints are for a given task.

Finally, we observed that in all cases where training with
trace supervision converged, it successfully learned the head
movements/tape values we had intended. This shows that
trace supervision can bias the architecture towards more
interpretable behaviors. In those cases, the NTM learned
consistently sharper head positions/tape values than the base-
line, as Figure 6 shows for Flip3rd.

Effect of subtraces on NRAMs For the NRAM we mea-
sured the average test accuracy over the whole set of trained
models. Unlike the original NRAM paper (Kurach et al.,
2016), we used the more conservative 0–1 loss for testing:
the output gets a score 0 even if it is incorrect in just one
position. We did that because we consider the metric in the
NRAM paper to be too subjective: it reports the fraction of

Figure 7. Error rates for NRAM showing the average number of
errors after training had completed for NRAM with different kinds
of supervision.

incorrect output positions over a manually specified region.

We show the results for four different tasks / types of hints
in Figure 7. The types of hints are: (1) single hint reveals
a random part of the circuit at one random time step; (2)
corner shows the entire circuit at the first and the last time
steps; (3) single time step gives the full circuit at a random
time step; (4) full provides the full circuit at all time steps.
We show examples in the supplementary.

As shown in the figure, the NRAM baseline performed
poorly. We attribute this mainly to the difficulty of training
an NRAM that generalizes well. For example, Neelakantan
et al. (2015) reported that only 5 to 22 out of 100 training
runs succeed over three possible hyperparameter choices.
Thus, it is difficult to find hyperparameters that make the
baseline model generalize well.

Interestingly, however, as seen in the figure, adding extra
supervision dramatically improved the baseline. We trained
with up to 5000 examples. Here, the full supervision led to
good results consistently, unlike the NTM case, where cor-
ner hints were usually better. Also, even though consistent,
full supervision did not always lead to the best improvement:
for the easier tasks, Swap and Increment less supervi-
sion was, in fact, more effective. This again shows that
training is sensitive to the amount and type of supervision.

Training Neural Machines with Trace-Based Supervision

(a) Average generalization of DNGPU (Freivalds & Liepins, 2017)
and NRAM using full hints for Merge.

(b) Permute with noise for NRAM: the distribution of errors to
problem length (one character of noise in 10% of samples).

(c) Increment with NRAM: comparing average generalization
to sequence length (including with noisy hints).

Figure 8. Results comparing (a) NRAM vs. DNGPU (with super-
vision), (b) supervision with noisy training for NRAM, and (c)
generalization for NRAM with different supervision types.

NRAM with Supervision vs. DNGPU We also com-
pared to the DNGPU (Freivalds & Liepins, 2017), a state-of-
the-art architecture, which can often perform better than the
baseline NTM and NRAM architectures on certain tasks, but
which is also much more difficult to interpret, and provide
hints for. Given the gap between the baselines of DNGPU
and NRAM, we were curious whether NRAM with full
supervision can get closer to the DNGPU accuracy. To-
wards that, we compared the NRAM and the DNGPU on
the challenging Merge task, where two sorted lists must be
merged into one sorted list. A maximum of 10000 samples
were used for the DNGPU and 5000 for the NRAM. The
DNGPU was run out of the box from the code supplied by
the authors. 20 runs were averaged for the DNGPU and
38 runs for the NRAM. Again, without extra supervision,
we did not observe the NRAM to generalize. Interestingly,
as can be seen in Figure 8a, the DNGPU performs well on
tests within the training length (20), but on larger lengths its
accuracy drops rapidly and the NRAM with full supervision
outperforms the DNGPU (its accuracy drops less rapidly).

Robustness to Noise Finally, we investigated the effect
of subtrace supervision when training with noise. Towards
that, we performed two experiments: one where noise was
introduced in the training examples and one where noise
was introduced in the extra hints themselves.

For the noisy examples, we corrupted a single character in
10% of the training examples for the Permute task. The
effect is shown in Figure 8b. Without any subtrace hints,
training did not converge within the time limit, whereas with
just corner hints, the test error was around 25%.

For the noisy subtrace hints, we took full supervision
and corrupted a single hint in 20% of the traces for the
Increment task. As seen in Figure 8c, for small enough
sequence lengths, NoisyFull training actually obtained
better performance than full supervision without noise.

6. Conclusion
We investigated the effects of additional trace-based supervi-
sion when training neural abstract machines. The basic idea
was to provide this supervision (called partial trace infor-
mation) over the interpretable components of the machine
and to thus more effectively guide the learning towards the
desired solution. We introduced the ∂NCM architecture
in order to precisely capture the neural abstract machines
to which trace-based supervision applies. We showed how
to formulate partial trace information as abstract loss func-
tions, how to instantiate common neural architectures such
as NTMs and NRAMs as ∂NCMs and concretize the ∂NCM
loss functions. Our experimental results indicate that par-
tial trace information is effective in biasing the learning
of both NTMs and NRAMs towards better convergence,
generalization and interpretability of the resulting models.

Training Neural Machines with Trace-Based Supervision

References
Bošnjak, M., Rocktäschel, T., Naradowsky, J., and Riedel,

S. Programming with a differentiable forth interpreter. In
International Conference on Machine Learning (ICML),
2017.

Feser, J. K., Chaudhuri, S., and Dillig, I. Synthesizing data
structure transformations from input-output examples.
In Proceedings of Programming Language Design and
Implementation (PLDI), 2015.

Feser, J. K., Brockschmidt, M., Gaunt, A. L., and Tarlow,
D. Differentiable functional program interpreters. arXiv
preprint arXiv:1611.01988, 2016.

Frankle, J., Osera, P.-M., Walker, D., and Zdancewic, S.
Example-directed synthesis: a type-theoretic interpre-
tation. In Symposium on Principles of Programming
Languages (POPL), 2016.

Freivalds, K. and Liepins, R. Improving the neural gpu
architecture for algorithm learning. arXiv preprint
arXiv:1702.08727, 2017.

Gaunt, A. L., Brockschmidt, M., Kushman, N., and Tarlow,
D. Lifelong perceptual programming by example. arXiv
preprint arXiv:1611.02109, 2016.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines. arXiv preprint arXiv:1410.5401, 2014.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Dani-
helka, I., Grabska-Barwińska, A., Colmenarejo, S. G.,
Grefenstette, E., Ramalho, T., Agapiou, J., Badia, A. P.,
Hermann, K. M., Zwols, Y., Ostrovski, G., Cain, A., King,
H., Summerfield, C., Blunsom, P., Kavukcuoglu, K., and
Hassabis, D. Hybrid computing using a neural network
with dynamic external memory. Nature, 538(7626), Oct
2016.

Jha, S., Gulwani, S., Seshia, S. A., and Tiwari, A. Oracle-
guided component-based program synthesis. In Inter-
national Conference on Software Engineering (ICSE),
volume 1, 2010.

Kaiser, Ł. and Sutskever, I. Neural gpus learn algorithms.
arXiv preprint arXiv:1511.08228, 2015.

Kurach, K., Andrychowicz, M., and Sutskever, I. Neu-
ral random-access machines. ERCIM News, 2016(107),
2016.

Lau, T., Domingos, P., and Weld, D. S. Learning programs
from traces using version space algebra. In International
Conference on Knowledge Capture (KCAP), 2003.

Li, C., Tarlow, D., Gaunt, A. L., Brockschmidt, M., and
Kushman, N. Neural program lattices. In 5th Interna-
tional Conference on Learning Representations (ICLR),
2017.

Neelakantan, A., Vilnis, L., Le, Q. V., Sutskever, I., Kaiser,
L., Kurach, K., and Martens, J. Adding gradient noise
improves learning for very deep networks. arXiv preprint
arXiv:1511.06807, 2015.

Raychev, V., Bielik, P., Vechev, M. T., and Krause, A. Learn-
ing programs from noisy data. In Symposium on Princi-
ples of Programming Languages (POPL), 2016.

Reed, S. and de Freitas, N. Neural programmer-interpreters.
In 4th International Conference on Learning Representa-
tions (ICLR), 2016.

Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., and
Saraswat, V. Combinatorial sketching for finite programs.
In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), 2006.

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks.
In Advances in Neural Information Processing Systems
(NIPS), 2015.

Weston, J., Chopra, S., and Bordes, A. Memory networks.
arXiv preprint arXiv:1410.3916, 2014.

Zaremba, W. and Sutskever, I. Reinforcement learning
neural turing machines. arXiv preprint arXiv:1505.00521,
2015.

Zhang, W., Yu, Y., and Zhou, B. Structured memory for
neural turing machines. arXiv preprint arXiv:1510.03931,
2015.

Training Neural Machines with Trace-Based Supervision

A. NTM Equations
The controller for the NTM consists of the networks ϕ, ψy ,
ψe, ψa, χr, χw, which operate on the variables:

x – in q – controller state r – read address ∆r – change in r e – erase M – tape
y – out m – read value w – write address ∆w – change in w a – add

(14)

The equations that describe NTM executions are:

∆rt = χr(qt) rt = address(∆rt, rt−1,Mt−1)

∆wt = χw(qt) wt = address(∆wt, wt−1,Mt−1)

yt = ψy(qt) mt = rtMt−1

et = ψe(qt) Mt =Mt−1 − (wt ⊗ et)�Mt−1 + wt ⊗ at
at = ψa(qt) qt = ϕ(xt, qt−1,mt). (15)

B. NRAM Equations
The controller of the NRAM consists of the networks ϕ, ψa,
ψb, ψc, ψf , which operate on the variables:

a – lhs circuit b – rhs circuit c – register inputs o – module outputs
r – register state M – memory tape h – controller state f – stop probability.

(16)

The equations that describe the NRAM execution are:

at = softmax(ψa(qt)) At,i = (r1, . . . , rR, o0, . . . , oi−1)Tat,i ∀i < M

bt = softmax(ψb(qt)) Bt,i = (r1, . . . , rR, o0, . . . , oi−1)T bt,i ∀i < M

ct = softmax(ψc(qt)) rt,i = (r1, . . . , rR, o1, . . . , oQ)T ct,i ∀i < R

ft = ψf (qt) ot,i,k =
∑

0≤a,b<M

At,i,aBt,i,b[mi(a, b) = k] ∀i /∈ {ρ, ω}, k < M

qt = ϕ(qt−1, rt,−,0) ot,ρ =MtAt,ρ

Mt = (J −At,ω)JT · Mt−1 +At,ωB
T
t,ω

(17)

pt = ft
∏
i<t

(1− fi) pT = 1−
∑
i<T

pi (18)

Training Neural Machines with Trace-Based Supervision

C. Setup for NTM
For all our NTM experiments we use a densely connected
feed-forward controller. There are two architectural dif-
ferences from the original NTM (Graves et al., 2014) that
helped our baseline performance: (i) the feed-forward con-
troller, the erase and the add gates use tanh activation, and
(ii) the output layer uses softmax. In the original architec-
ture these are all logistic sigmoids. For the newly introduced
tape decoder (active only during training) we used two alter-
native implementations: a tanh-softmax network, and a
single affine transformation. We tested the NTM’s learning
ability on five different tasks for sequence manipulation,
two of which have not been previously investigated in this
domain. These tasks can be found in Appendix E.

We performed experiments using several combinations of
losses as summarized in Appendix F. The observed train-
ing performance per task is shown in Appendix 10, with
rows corresponding to the different loss setups. The corner
setup differs from the address setup in that the example sub-
traces were defined only for a few important corner cases.
For example in RepeatCopyTwice, the write head was
provided once at the beginning of the input sequence, and
once at the end. Similarly, the read head was revealed at the
beginning and at the end of every output repetition. In all
other setups we provide full subtraces (defined for all time
steps).

The supervision amount can be tuned by adjusting the λ
weight from Equation 10. Further, we can also control the
fraction of examples which get extra subtrace supervision
(the density row in Figure 10). The performance metric
we use is the percentage of runs that do generalize after
100k iterations for the given task and supervision type. By
generalize we mean that the NTM has perfect accuracy on
all testing examples up to 1.5× the size of the max training
length, and also perfect accuracy on 90% of the testing
examples up to 2× the maximum training length.

We used a feed-forwad controller with 2× 50 units, except
for RepeatCopyTwice, which uses 2 × 100 units. For
training we used the Adam optimizer (?), a learning rate of
10−3 for all tasks except RepeatFlip3d and Flip3rd
which use 5 ·10−4. The lengths of the training sequences for
the first four tasks are from 1 to 5, whereas the generalization
of the model was tested with sequences of lengths up to 20.
For Flip3rd and RepeatFlip3d, the training sequence
length was up to 16, whereas the testing sequences have
maximum length of 32.

D. Setup for NRAM
Like in the NTM, we use a densely connected two layer
feed forward controller for our experiments, and use ReLU
as the activation function. We make no modifications to the

original architecture, and use noise with parameter η = 0.3
as suggested by Neelakantan et al. (2015), and curriculum
learning as described by ?. We stop training once we get to
a difficulty specified by the task, and increase the difficulty
once 0 errors were found on a new testing batch of 10
samples. Each training iteration trains with 50 examples of
the currently randomly sampled difficulty. Regardless of
whether the model had converged, training is stopped after
5000 samples were used. Such a low number is used to
replicate the potential conditions under which such a model
might be used. As with the NTM, the Adam optimizer was
used. The specific tasks we use are described in Appendix G,
and the specific kinds of supervision we give are described
in Appendix H. The λ we used here was 40. The system
was implemented using PyTorch.

Training Neural Machines with Trace-Based Supervision

E. NTM Tasks
Every input sequence ends with a special delimiter xE not
occurring elsewhere in the sequence

Copy – The input consists of generic elements,
x1 . . . xnxE . The desired output is x1 . . . xnxE .

RepeatCopyTwice – The input is again a sequence of
generic elements, x1 . . . xnxE . The desired output is
the input copied twice x1 . . . xnx1 . . . xnxE . Placing
the delimiter only at the end of the output ensures
that the machine learns to keep track of the number
of copies. Otherwise, it could simply learn to cycle
through the tape reproducing the given input indefi-
nitely. We kept the number of repetitions fixed in order
to increase baseline task performance for the benefit of
comparison.

DyckWords – The input is a sequence of open and closed
parentheses, x1 . . . xnxE . The desired output is a se-
quence of bits y1 . . . ynxE such that yi = 1 iff the
prefix x1 . . . xi is a balanced string of parentheses (a
Dyck word). Both positive and negative examples were
given.

Flip3rd – The input is a sequence of bits,
x1x2x3 . . . xnxE . The desired output is the
same sequence of bits but with the 3rd bit flipped:
x1x2x̄3 . . . xnxE . Such a task with a specific index
to be updated (e.g., 3rd) still requires handling data
dependence on the contents of the index (unlike say
the Copy task).

RepeatFlip3d – The input is a sequence of bits,
x1x2x3x4x5x5 . . . xE . The desired output is the
same sequence of bits but with every 3rd bit flipped:
x1x2x̄3x4x5x̄6 . . . xE .

F. NTM Subtraces

addr+val

value address/corner

write read

Figure 9. A heirarchy of supervision types (but not quantities) for
NTMs.

value traces provide hints for the memory at every
timestep as explained in Equation 12.

read – provides a hint for the address of the read head at
every timestep.

write – provides a hint for the address of the write head at
every timestep.

address – provides hints for the address of both the read
and the write head at every timestep.

addr+val – provides value, read and write hints for every
timestep.

corner – provides hints for the address of both the read
and the write head at every “important” timestep -
we decided what important means here depends on
which task we are referring to. In general, we con-
sider the first and last timesteps important, and also
any timestep where a head should change direction.
For example, in RepeatCopyTwice for an example
of size n with e repeats, we’d provide the heads at
timesteps 0, n, 2n, 3n . . . , en.

Training Neural Machines with Trace-Based Supervision

G. NRAM Tasks
Below we describe all tasks we experimented with. We
predominantly picked tasks that the NRAM is known to
have trouble generalizing on. We did not introduce any new
tasks, and more detailed descriptions of these tasks can be
found in Kurach et al. (2016).

Swap – Provided two numbers, a and b and an array p,
swap p[a] and p[b]. All elements but that in the last
memory cell are not zero.

Increment – Given an array p, return the array with one
added to each element. All elements but that in the last
cell for the input are not zero. Elements can be zero in
the output.

Permute – Given two arrays p and q return a new array
s such that s[i] = q[p[i]]. The arrays p and q are
preceded by a pointer, a, to array q. The output is
expected to be a, s[0] . . . , s[n], q[0], q[n].

ListK – Given a linked list in array form, and an index k
return the value at node k.

Merge – given arrays p and q, and three pointers a, b, c
to array p, q, and the output sequence (given as zeros
initially), place the sorted combination of p and q into
the output location.

The following table describes the specific NRAM instan-
tiation used for each task. The default sequence (def) is
the one described by Kurach et al. (2016). The number of
timesteps is usually dependent on the length of the problem
instance,M (equivalently the word size or difficulty), and in
the case of ListK, was given with respect to the argument
k. The difficulty (D) was simply the length of the sequence
used. Training began by providing sequences of length Start
D and ended when curriculum learning reached sequences
of length End D.

Task No. Regs Module Sequence Timesteps Learn Rate Start D End D

Swap 5 def 7 0.01 6 10
Increment 2 def + R M + 2 0.01 4 10
Permute 4 R + def + R + W M + 3 0.05 7 12
ListK 6 def k + 5 0.05 9 16
Merge 8 def + def + def M + 3 0.05 13 16

H. NRAM Subtraces
For each of the tasks listed Appendix G, we hand coded a
complete circuit for every module and every timestep we
would provide.

The following subtrace types describe how we provide hints
based on this circuit.

None – provides no hints.

Full – provides the entire circuit.

SingleHint – provides a random hint at a random
timestep.

SingleTimestep – provides the entire circuit at a ran-
dom timestep.

Corner – provides the entire circuit at the first and last
timesteps.

Registers – provides hints for the registers at every
timestep.

Modules – provides hints for the modules at every
timestep.

Training Neural Machines with Trace-Based Supervision

I. NTM Results
Which Details to Reveal for NTM? The first dimension
listed in the rows of the tables of Figure 10 controls the
execution details revealed in a subtrace. We use subtraces
showing either the addresses without the tape values, only
the read heads or the write heads, or even weaker super-
vision in a few corner cases. In tasks Copy (Figure 10a),
RepeatCopyTwice (Figure 10b) and DyckWords (Fig-
ure 10c), it is frequently the case that when the NTM gen-
eralizes without supervision, it converges to an algorithm
which we are able to interpret. For them, we designed the
addr+val traces to match this algorithm, and saw increases
in generalization frequency of at least 45%. It can be con-
cluded that when additionally provided supervision reflects
the interpretable “natural” behavior of the NTM, the learn-
ing becomes significantly more robust to changes in initial
weights. Additionally, for tasks Flip3rd (Figure 10d) and
RepeatFlip3d (Figure 10e), both the baseline and other
supervision types are outperformed by training with read
supervision. It is also notable that corner supervision in
RepeatFlip3d achieves highest improvement over the
baseline, 60% over 5%. In essence, this means that provid-
ing only a small part of the trace can diminish the occurrence
of local minima in the loss function.

How Often to Reveal for NTM? The second dimen-
sion controls the proportion of examples that receive extra
subtrace supervision (the density columns in Figure 10).
For Flip3rd, RepeatCopyTwice and DyckWords
we observed that having only a small number of examples
with extra supervision leads to models which are more ro-
bust to initial weight changes than the baseline, although
not necessarily always as robust as providing supervision
all the time.

A couple of interesting cases stand out. For Flip3rd with
10% corner subtraces and λ = 1, we find a surprisingly
high rate of generalization. Providing address traces 10% of
the time when training RepeatCopyTwice leads to bet-
ter performance all the time. For RepeatFlip3d, write
traces at 1% frequency and λ = 0.1 generalize 30% of the
time vs. 5% for baseline.

While the type of trace which works best varies per task, for
each task there exists a trace which can be provided only
1% of the time and still greatly improve the performance
over the baseline. This suggests that a small amount of
extra supervision can improve performance significantly,
but the kind of supervision may differ. It is an interesting
research question to find out how the task at hand relates to
the optimal kind of supervision.

Training Neural Machines with Trace-Based Supervision

density 100 100 100 100 50 50 50 50 10 10 10 10 1 1 1 1

λ 1 0.3 0.1 0.01 1 0.3 0.1 0.01 1 0.3 0.1 0.01 1 0.3 0.1 0.01

baseline 52.5

addr+val 100 100 100 70 100 100 100 40 60 80 40 30 30 50 60 10

address 100 100 100 50 90 100 90 30 80 90 70 30 50 30 40 50

value 100 100 70 40 80 20 40 10 10 20 40 30 60 40 20 10

read 90 80 70 50 60 20 50 20 40 40 60 20 70 30 40 10

write 60 70 80 60 80 80 40 40 50 70 50 40 50 60 50 40

corner 100 100 100 50 100 90 60 70 70 20 50 30 50 60 20 30

(a) Copy

density 100 100 100 50 50 50 10 10 10 1 1 1

λ 1 0.3 0.03 1 0.3 0.03 1 0.3 0.0 1 0.3 0.03

baseline 15.5

addr+val 90 100 60 90 80 40 80 20 10 10 0 0

address 90 90 90 100 100 40 100 60 0 0 20 30

value 80 70 0 50 50 10 30 30 20 10 30 0

read 50 30 30 20 60 30 20 60 10 10 10 0

write 30 30 20 10 30 40 20 0 10 10 20 20

corner 60 50 40 50 60 10 20 40 20 10 20 0

(b) RepeatCopyTwice

density 100 100 100 100 50 50 50 50 10 10 10 10 1 1 1 1

λ 1 0.3 0.1 0.01 1 0.3 0.1 0.01 1 0.3 0.1 0.01 1 0.3 0.1 0.01

baseline 45

address 70 90 60 80 90 90 90 50 80 50 90 80 100 80 70 70

read 80 90 70 70 100 100 70 50 50 60 70 70 80 70 50 50

corner 60 100 80 80 80 90 90 90 60 60 100 50 90 80 80 50

(c) DyckWords

density 100 100 100 100 50 50 50 50 10 10 10 10 1 1 1 1

λ 1 0.3 0.1 0.03 1 0.3 0.1 0.03 1 0.3 0.1 0.03 1 0.3 0.1 0.03

baseline 45

addr+val 30 50 50 50 50 50 70 80 60 80 40 40 40 60 40 10

address 0 60 40 40 20 70 80 90 90 70 60 50 50 50 60 60

value 60 50 40 60 80 70 40 10 50 10 40 70 50 30 40 60

read 40 60 70 40 30 80 90 90 100 70 80 50 30 50 60 30

write 0 30 50 20 30 40 60 20 40 40 40 40 20 50 70 50

corner 50 70 80 80 40 40 90 70 80 70 60 40 50 60 60 40

(d) Flip3rd

density 100 100 100 100 50 50 50 50 10 10 10 10 1 1 1 1

λ 1 0.5 0.3 0.1 1 0.3 0.1 0.03 1 0.3 0.1 0.03 1 0.3 0.1 0.03

baseline 5

addr+val 30 20 20 40 30 30 10 10 40 10 0 20 10 10 0 10

address 20 50 30 30 30 40 20 40 20 40 20 0 0 0 20 0

value 0 0 20 20 0 0 0 0 10 10 10 0 0 0 0 0

read 30 10 40 20 10 30 20 40 30 10 0 10 20 0 10 20

write 0 0 0 10 0 0 0 0 10 10 0 0 20 20 30 0

corner 40 40 60 20 50 30 10 30 10 10 0 0 0 10 0 10

1 0.5 0.3 0.1 1 0.3 0.1 0.03 1 0.3 0.1 0.031 0.5 0.3 0.1 1 0.3 0.1 0.031 0.5 0.3 0.10.5 0.3 0.1 1 0.3 0.1 0.03 1 0.3 0.1 0.03 1 0.3 0.1 0.030.5 0.3 0.1 1 0.3 0.1 0.03 1 0.3 0.1 0.03 1 0.3 0.1 0.03

(e) RepeatFlip3d

Figure 10. Baselines have generalization on over 40 different initial weights. Other tests use 10.

Training Neural Machines with Trace-Based Supervision

J. NRAM Results

Subtrace Type \Task Permute Swap Increment ListK Merge PermuteNoise
None 36 44 58 41 13 5

SingleHint 24 38 28 22 12 5
Corner 29 23 36 22 9 7

SingleTimestep 21 52 29 28 12 6
Registers 48 58 73 54 - -
Modules 48 58 107 54 - -

Full 26 33 32 44 21 7
NoisyFull - - - 36 - -

Figure 11. The number of runs which completed for each task and subtrace type. The Data in the graphs below is taken by averaging the
results of these runs.

Subtrace Type \Task Permute Swap Increment ListK
None 6290.29 5505.22 3500.13 5880.11

SingleHint 5565.22 3700.64 4318.20 6574.59
Corner 4468.85 6195.75 3199.86 6601.16

SingleTimestep 6259.05 2662.35 4042.18 5076.17
Registers 6618.12 5774.61 3839.18 6185.54

Modules 6523.16 5781.99 2335.99 6183.74
Full 4919.33 4110.14 3758.99 3216.01

Figure 12. The average time (in seconds) to finish training for each task and subtrace type. For most tasks it is clear that Full traces while
introducing extra computations to individual timesteps, reduce the amount of time to finish training over not using supervision.

Subtrace Type \Task ListK Swap Permute Increment Merge PermuteNoise
None 95.08 91.52 99.97 99.91 99.96 99.99

SingleHint 93.61 2.41 57.55 14.86 100.0 56.90
Corner 94.47 99.09 16.40 2.14 100.0 20.79

SingleTimestep 36.91 1.75 47.79 13.77 100.0 33.60
Full 12.77 11.01 7.83 9.89 78.44 23.57

Registers 93.22 93.44 99.97 90.36 - -
Modules 93.70 95.57 86.48 40.87 - -

Figure 13. The average number of errors on the test set for each task and subtrace type once trained.

Training Neural Machines with Trace-Based Supervision

Figure 14. Comparing average generalization to sequence length
for Swap

Figure 15. Comparing average generalization to sequence length
for Increment

Figure 16. Comparing average generalization to sequence length
for Permute

Figure 17. Comparing average generalization to sequence length
for ListK

Figure 18. Comparing average generalization to sequence length
for Merge

Training Neural Machines with Trace-Based Supervision

K. Programming NRAMs
The NRAM is parametrized by one or more straight-line
partial programs, i.e., programs with no branching and no
loops, chosen by register states. The machine runs in a loop,
repeatedly selecting the program for that register state then
executing it. The programs are expressed in a simple single-
assignment imperative language. Each program statement i
invokes one of the modules of the architecture and assigns
the result of the invocation to a local variable xi. That vari-
able cannot be changed later. The final program statement
is a parallel-assignment that modifies the machine registers
r1 . . . rk. The values that appear in assignments/invocations
can be: variables in scope, machine registers, or holes ?.
These values are not used directly during execution: the
actual values needs to be supplied by the NRAM controller.
The values are only used as hints for the controller during
training, with the whole ? denoting no hint. We can describe
the language in an EBNF-style grammar:

Fn ::= modules of arity n (19)
Vi ::= r1 | · · · | rk | ? | x1 | . . . | xi−1 (20)
Si ::= xi ← Fn(Vi, . . . , Vi︸ ︷︷ ︸

n

) (21)

Ri ::= rj1 , . . . , rjn ← Vi, . . . Vi︸ ︷︷ ︸
n

(22)

P1 ::= S1 Pi ::= Pi−1;Si (23)
P ::= P1;R1 | P2;R2 | . . . (24)

An example program for the Increment task would be the
following:
x1 ← 1;
x2 ← READ(r1);
x3 ← ADD(x2, x1);
x4 ←WRITE(r1, x3);
x5 ← ADD(r1, x1);
r1 ← x5

Here, the controller is encouraged to read the memory at
the location stored in the first register r1, add one to it, then
store it back, and then increment the first register.

An alternative to the trace-based approach is to make the
controller produce values only for the holes, and use directly
the specified variable/register arguments. This way, only the
unspecified parts of the program are learned. This is, for ex-
ample, the approach taken by ∂Forth (?). There, programs
are expressed in a suitably adapted variant of the Forth pro-
gramming language, which is as expressive as the language
discussed above, but less syntactically constrained.

The drawback of this alternative is that whenever an argu-
ment other than a whole is specified, one must also specify
the time steps to which it applies in all possible executions
and not just the training ones. That is why, typically, these

values are specified either for all or for none of the time
steps.

In the following examples, we will describe the register
states using “0”, “!0” and “-” meaning respectively that a
register has 0, that it contains anything but zero, or that it
can contain anything.

Training Neural Machines with Trace-Based Supervision

L. NRAM Permutation Program
For any register pattern.
x1 ← READ(r0);
x2 ←WRITE(0, x1);
x3 ← READ(r1);
x4 ← ADD(x3, x1);
x5 ← READ(x4);
x6 ←WRITE(r1, x5);
x7 ← INC(r1);
x8 ← DEC(x1);
x9 ← LT(x7, x8);
r0 ← 0;
r1 ← x7;
r2 ← x9;
r3 ← 0;

Training Neural Machines with Trace-Based Supervision

M. NRAM ListK Program
When the registers are [0,!0,!0,-,-]:
x1 ← READ(r0);
x2 ← ADD(x1, 2);
x3 ←WRITE(0, x1);
r0 ← 1;
r1 ← 1;
r2 ← 1;
r3 ← x2;

When the registers are [!0,!0,!0,-,-]:
x1 ← READ(r1);
x2 ← ADD(x1, 2);
x3 ←WRITE(r1, x1);
r0 ← 1;
r1 ← 0;
r2 ← 1;
r3 ← r3;
r4 ← x2;

When the registers are [!0,0,!0,-,-]:
x1 ← READ(r3);
x2 ←WRITE(r3, x1);
r0 ← 1;
r1 ← 0;
r2 ← 0;
r3 ← x1;
r4 ← 4;

When the registers are [!0,0,0,-,-]:
x1 ← READ(r4);
x2 ←WRITE(r4, r3);
r0 ← 1;
r1 ← 1;
r2 ← 0;
r3 ← x1;

When the registers are [0,!0,0,-,-]:
x1 ← READ(r2);
x2 ← ADD(x1, 2);
x3 ←WRITE(x2);
r0 ← 0;
r1 ← 1;
r2 ← 0;

Training Neural Machines with Trace-Based Supervision

N. NRAM ListK Program
Timestep 0:
x1 ← READ(r0);
x2 ← INC(x1);
x3 ← 0;
x4 ←WRITE(x3, x1);
r0 ← r1;
r1 ← r1;
r2 ← r2;
r3 ← x2;
r4 ← r4;
r5 ← r5;

Timestep 1:
x1 ← READ(r1);
x2 ←WRITE(r1, x1);
x3 ← 0;
r0 ← r0;
r1 ← x1;
r2 ← r2;
r3 ← r3;
r4 ← x3;
r5 ← r5;

Timestep 2:
x1 ← READ(r2);
x2 ←WRITE(r2, x1);
x3 ← 0;
r0 ← r0;
r1 ← r1;
r2 ← x1;
r3 ← r3;
r4 ← x3;
r5 ← x3;

Timestep 3 to 3 + k - 1:
x1 ← READ(r0);
x2 ← INC(x1);
x3 ← 0;
x4 ← DEC(x1);
x5 ←WRITE(r0, x1);
r0 ← x1;
r1 ← x4;
r2 ← r2;
r3 ← x2;
r4 ← x3;
r5 ← x3;

Timestep 3 + k:
x1 ← READ(r3);
x2 ←WRITE(r2, x1);
x3 ← 0;
x4 ← 1;
r0 ← r0;

r1 ← r1;
r2 ← r2;
r3 ← x1;
r4 ← x4;
r5 ← x3;

Rest:
x1 ←WRITE(r2, r3);
x2 ← 1;
x3 ← 0;
r0 ← r0;
r1 ← r1;
r2 ← r2;
r3 ← r3;
r4 ← x2;
r5 ← x3;

