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Abstract

We present DL2, a system for training and query-
ing neural networks with logical constraints. Us-
ing DL2, one can declaratively specify domain
knowledge constraints to be enforced during train-
ing, as well as pose queries on the model to find
inputs that satisfy a set of constraints. DL2 works
by translating logical constraints into a loss func-
tion with desirable mathematical properties. The
loss is then minimized with standard gradient-
based methods. We evaluate DL2 by training
networks with interesting constraints in unsuper-
vised, semi-supervised and supervised settings.
Our experimental evaluation demonstrates that
DL2 is more expressive than prior approaches
combining logic and neural networks, and its loss
functions are better suited for optimization. Fur-
ther, we show that for a number of queries, DL2
can find the desired inputs in seconds (even for
large models such as ResNet-50 on ImageNet).

1. Introduction
With the success of neural networks across a wide range
of application domains, an important emerging challenge
is creating better, more flexible mechanisms for experts
to interact with the network. For example, one may wish
the network to capture certain background knowledge not
easily available as labeled training data or to inquire how the
network’s decision changes under particular domain-specific
inputs. Fundamentally, to cleanly capture such interactions,
one needs some form of logical reasoning and a way to
combine this reasoning with the neural network’s training
and decision making procedures. Indeed, recent work (Hu
et al., 2016; Xu et al., 2018) has started investigating novel
combinations of neural and logical reasoning. However,
while promising, as we show later, these approaches lack
generality and cannot capture important use cases.
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We introduce a new method and system, called DL22

(acronym for Deep Learning with Differentiable Logic),
which can be used to: (i) query networks for inputs meeting
logical constraints, and (ii) train networks to meet logical
specifications, all in a declarative way. Our constraint lan-
guage can express rich combinations of comparisons over
inputs, neurons and outputs of neural networks using nega-
tions, conjunctions, and disjunctions. Thanks to its expres-
siveness, DL2 enables users to easily incorporate domain
knowledge during training and to interact with the network
using queries in order to inquire about its decision making.

Technically, DL2 translates logical constraints into non-
negative loss functions with two key properties: (i) the loss
is zero exactly if the constraints are satisfied, and (ii) the
loss is differentiable almost everywhere. Combined, these
properties enable us to train and query with constraints by
minimizing a loss with off-the-shelf optimizers.

Training with DL2 To make optimization tractable, we
extract constraints on inputs that capture certain kinds of
convex sets and use them as optimization constraints instead
of including them in the optimization goal. We then op-
timize with projected gradient descent (PGD), which has
already been shown successful in training with robustness
constraints (Madry et al., 2018). The expressiveness of DL2
along with tractable optimization with PGD enables us to
train with new, interesting constraints. For example, we can
declaratively express constraints over quantities which are
not explicitly computed by the network, such as

pθ(x)people < ε ∨ pθ(x)people > 1− ε.

This constraint on the output activations of a CIFAR-100
classifier pθ says that for a network input x, the probability
of people, denoted pθ(x)people, is either very small or very
large. As CIFAR-100 does not have a class people, we
define it as a function of other output activations:

pθ(x)people = pθ(x)baby + pθ(x)boy + pθ(x)woman + · · ·

We show that DL2 can make misclassifications less severe
(e.g., a boy is misclassified as a man instead of as a bicy-
cle) and it can even increase the accuracy of CIFAR-100
networks in the semi-supervised setting.
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Beyond classification tasks, DL2 can capture constraints
arising in regression tasks. For example, Galaxy-
GAN (Schawinski et al., 2017), a generator of galaxy im-
ages, requires the network to respect constraints imposed by
the underlying physical systems, e.g., flux: the sum of input
activations should equal the sum of output activations. In-
stead of hardcoding such a constraint into the network in an
ad hoc manner, this can be expressed with DL2 declaratively
as sum(x) = sum(GalaxyGAN(x)).

Global Training An important feature of DL2 is its abil-
ity to train with constraints that place restrictions on inputs
outside the training set. Most prior work on training with
constraints (e.g., Xu et al., 2018) focuses on the given train-
ing set to locally train the network to meet the constraints.
With DL2, we can query for inputs outside the training set
which violate the constraints, and use them to globally train
the network. Prior work that trained on examples outside the
training set was tailored either to specific constraints (Madry
et al., 2018) or network types (Minervini et al., 2017). Our
approach splits the task of global training between: (i) an op-
timizer, which trains the network to meet the constraints for
the given inputs, and (ii) an adversary, which provides the
optimizer with new inputs that aim to violate the constraints.
To illustrate, consider the following Lipschitz condition:

∀z ∈ Bε(x), z′ ∈ Bε(x′). ‖f(z)−f(z′)‖2 < L‖z−z′‖2

Here, for two inputs from the training set (x and x′), any
pair of points in their respective ε-neighborhoods (z and
z′) must satisfy the condition. This constraint is inspired
by recent works (e.g., Gouk et al., 2018; Balan et al., 2017)
which have shown that neural networks are more stable if
they satisfy the Lipschitz condition.

Querying with DL2 We also designed an SQL-like lan-
guage which enables users to interact with the model by
posing declarative queries. For example, consider the recent
work of Song et al. (2018) which shows how to generate
adversarial examples with AC-GANs (Odena et al., 2017).
The generator is used to create images from a certain class
(e.g., 1) which fool a classifier (to classify as, e.g., 7). With
DL2, this can be phrased as the following query:

f i n d n[100]
where n in [-1, 1],

c l a s s(M_NN1(M_ACGAN_G(n, 1))) = 7
re turn M_ACGAN_G(n, 1)

This query looks for an input n ∈ R100 to the generator sat-
isfying two constraints: its entries are between −1 and 1 (a
domain constraint) and it results in the generator producing
an image which it believes to be classified as 1 (enforced
by M_ACGAN_G(n, 1)), but is classified by the network
(M_NN1) as 7. DL2 automatically translates this query to a

DL2 loss and optimizes it with an off-the-shelf optimizer (L-
BFGS-B) to find solutions. Our language captures various
prior works at the declarative level, including finding neu-
rons responsible for a given prediction (Olah et al., 2018),
inputs that differentiate two networks (Pei et al., 2017), and
adversarial examples (e.g., Szegedy et al., 2014).

Main Contributions The main contributions are:

• An approach for training and querying neural networks
with logical constraints, which translates constraints
into a loss function with desirable properties.

• A training procedure which extracts constraints on in-
puts that capture convex sets and includes them as PGD
constraints, making optimization tractable.

• A declarative language for querying neural network
inputs, outputs, and internal neurons. Queries are com-
piled into a loss and optimized with L-BFGS-B.

• An extensive evaluation demonstrating that DL2 is
effective for querying and training neural networks.
Among other experimental results, DL2 is shown to
successfully train networks with constraints on inputs
outside the training set.

2. Related Work
Constraints and Continuous Reasoning Several works
integrate logical constraints and continuous reasoning. The
closest ones to our setting are Probabilistic Soft Logic
(PSL) (Kimmig et al., 2012; Hu et al., 2016), Xu et al.
(2018), XSAT (Fu & Su, 2016), and Bach et al. (2017). We
discuss these works in comparison to DL2 in Section 3.1.

Adversarial Examples and Training Adversarial exam-
ple generation (Pei et al., 2017; Goodfellow et al., 2015) can
be seen as a fixed query on the network, while adversarial
training (Madry et al., 2018) aims to enforce a specific con-
straint. Both can be expressed in DL2. Most works aiming
to train networks with logic impose soft constraints, often
using additional loss terms (Pathak et al., 2015; Xu et al.,
2018); Márquez-Neila et al. (2017) show that hard con-
straints have no empirical advantage over soft constraints.
Similar to our training algorithm (Section 4), Minervini &
Riedel (2018) find adversarial examples violating logical
rules and incorporate them into a network’s training. Un-
like our approach, theirs is specific to Natural Language
Inference and uses discrete search to find counterexamples.

Knowledge Bases and Neural-Symbolic Approaches
Combinations of neural networks and symbolic methods
(Besold et al., 2017) as well as embedding logical relations
into vector spaces for completion and querying have been
studied extensively. Rocktäschel et al. (2015) translates
logical rules into a loss in order to derive an embedding
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for logical relations. Other works extend this approach to
knowledge graphs (Guo et al., 2016) and scale to larger
numbers of implication rules (Demeester et al., 2016). Guu
et al. (2015) performs knowledge base queries by translat-
ing logical path queries into numerical computation over
a learned model. Rocktäschel & Riedel (2017) introduces
Neural Theorem Provers, which are neural networks that
learn to prove basic theorems over (incomplete) knowledge
bases. Yang et al. (2017) introduces Neural Logic Program-
ming, a model able to learn logical rules for reasoning in a
differentiable manner. Evans & Grefenstette (2018) show a
similar approach, while thoroughly investigating underlying
loss translations and showing robustness to noisy data.

3. From Logical Constraints to Loss
We now present our constraint language and show how to
translate logical constraints into a (non-negative) loss.

Logical Language Our language of logical constraints
consists of boolean combinations of comparisons between
terms. A term t is defined over variables x and neural net-
work parameters θ. In our translation, terms are translated
to themselves. Therefore, a term can be any real-valued
function that might appear as a subexpression of a loss func-
tion, such as a constant or an output activation pθ(x)i of a
neural network. We require terms to be differentiable almost
everywhere, in both x and θ.

Two terms can be combined to form comparison constraints.
For two terms t and t′, we can obtain constraints t = t′,
t ≤ t′, t 6= t′ and t < t′.

A constraint ϕ is either a comparison constraint, a conjunc-
tion ϕ′ ∧ ϕ′′ or a disjunction ϕ′ ∨ ϕ′′ of two constraints ϕ′

and ϕ′′, or a negation ¬ϕ of a constraint ϕ.

We write ϕ(x, θ) to evaluate a constraint at values x and θ.

Translation into Loss To each constraint ϕ, we associate
a corresponding non-negative loss function L(ϕ). We con-
struct L(ϕ) such that it is differentiable in x and θ almost
everywhere and such that we have L(ϕ)(x, θ) = 0 if and
only if ϕ(x, θ) is satisfied.

We define L(ϕ) recursively, based on the different possi-
ble shapes of ϕ. We first consider the case where ϕ is a
comparison constraint t ≤ t′ or t 6= t′:

L(t ≤ t′) := max(t− t′, 0),
L(t 6= t′) := ξ · [t = t′].

Here, ξ > 0 is a parameter to our translation and [t = t′] is
an indicator function. Note that our definition ofL(t 6= t′) is
canonical, but there are other possible choices for L(t ≤ t′).

Comparison constraints t = t′ and t < t′ are rewritten into

logically equivalent constraints before translation into loss:

L(t = t′) := L(t ≤ t′ ∧ t′ ≤ t),
L(t < t′) := L(t ≤ t′ ∧ t 6= t′).

We next consider the case where ϕ is a boolean combination
of constraints ϕ′ ∧ ϕ′′ or ϕ′ ∨ ϕ′′:

L(ϕ′ ∧ ϕ′′) := L(ϕ′) + L(ϕ′′),
L(ϕ′ ∨ ϕ′′) := L(ϕ′) · L(ϕ′′).

Note that L(ϕ′ ∧ ϕ′′) = 0 if and only if L(ϕ′) = 0 and
L(ϕ′′) = 0, which by construction is true if ϕ′ and ϕ′′

are satisfied, and similarly L(ϕ′ ∨ ϕ′′) = 0 if and only if
L(ϕ′) = 0 or L(ϕ′′) = 0.

If ϕ is a negation ¬ψ, it is rewritten into a logically equiva-
lent constraint before translation into loss:

L(¬(t = t′)) := L(t 6= t′),
L(¬(t ≤ t′)) := L(t′ < t),
L(¬(t 6= t′)) := L(t = t′),
L(¬(t < t′)) := L(t′ ≤ t),
L(¬(ψ′ ∧ ψ′′)) := L(¬ψ′ ∨ ¬ψ′′),
L(¬(ψ′ ∨ ψ′′)) := L(¬ψ′ ∧ ¬ψ′′),
L(¬(¬ϕ′)) := L(ϕ′).

By construction, we obtain the following theorem:

Theorem 1 L(ϕ) = 0 if and only if ϕ is satisfied.

3.1. Comparison of DL2 with Prior Works

We next discuss the works most closely related to ours,
and contrast them with DL2. Probabilistic Soft Logic
(PSL) (Kimmig et al., 2012) translates logical constraints
into continuous almost-everywhere differentiable loss func-
tions over [0, 1]. However, using this loss to find satisfying
assignments with gradient methods can be futile, as the
gradient may be zero. To illustrate, consider the toy ex-
ample ϕ(x) := (x = ( 11 )). PSL translates this formula
into the loss LPSL(ϕ)(x) = max{x0 + x1 − 1, 0} (it as-
sumes x0, x1 ∈ [0, 1]). Assuming optimization starts from
x = ( 0.20.2 ) (or any pair of numbers with x0 + x1 − 1 ≤ 0),
the gradient is ∇xLPSL(ϕ)(x) = ( 00 ), which means the
optimization cannot continue from this point, even though
x is not a satisfying assignment to ϕ. In contrast, with our
translation, we obtain L(ϕ)(x) = |x0 − 1|+ |x1 − 1|, for
which the gradient for the same x is ∇xL(ϕ)(x) =

(−1
−1
)
.

Evans & Grefenstette (2018) also analyse different standard
choices (t-norms) encodings for boolean combinations and
find multiplication to be best suited for gradient descent.

Hu et al. (2016) build on PSL and present a teacher-student
framework which distills rules into the training phase. The
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idea is to formulate rule satisfaction as a convex problem
with a closed-form solution. However, this formulation is
restricted to rules over inputs and output classes, and cannot
express rules constraining the numerical values of output
activations. In contrast, DL2 can express such constraints,
e.g., p1 > p2, which requires that the output activation for
class 1 is greater than for class 2. Also, the convexity and
existence of a closed-form solution stem from the linearity
of the rules in the network’s output, meaning that non-linear
constraints (e.g., Lipschitz condition, expressible with DL2)
are fundamentally beyond the reach of this method. The
work of Xu et al. (2018) similarly is restricted to constraints
over output probabilities and is intractable for large con-
straints in many variables. Unlike DL2, both of these works
do not support constraints for regression tasks.

XSAT (Fu & Su, 2016) reduces the satisfiability of floating-
point formulas to numerical optimization. To this end,
XSAT also translates logical constraints into numerical loss.
However, its atomic constraints are translated into a dis-
crete, nowhere-differentiable loss based on floating-point
representation, unamenable to gradient-based optimization.

Bach et al. (2017) introduce max(`(x), 0) as a soft version
of the hard linear constraint `(x) ≤ 0. DL2 uses the same
approach for this type of constraint. However, DL2 is more
general: it allows arbitrary boolean combinations of pos-
sibly non-linear constraints over variables with domain R,
while Bach et al. (2017) only consider conjunctions of linear
constraints over variables with domain [0, 1].

4. Constrained Neural Networks
In this section, we present our method for training neural
networks with constraints.

Training with Constraints For a distribution D, a set A
and a constraint ϕ, we consider the maximization problem

argmax
θ

Pr
x∼D

[∀z ∈ A. ϕ(x, z, θ)] .

In other words, we want to find neural network weights
θ such that the probability that the constraint ϕ(x, z, θ) is
satisfied for all z is as large as possible. (We write ϕ(x, z, θ)
for ϕ(y, θ), where y is the concatenation of x and z.) In
practice, x usually describes one or more independent data
set samples, and the set A is Rn for some n.

Formulation as Nested Optimization We can equiva-
lently minimize the probability that there is a counterex-
ample violating the constraint ϕ:

argmin
θ

Pr
x∼D

[∃z ∈ A. ¬ϕ(x, z, θ)] .

If it exists, a counterexample can be found by maximizing
the indicator function [¬ϕ(x, z, θ)]:

argmin
θ

E
x∼D

[
max
z∈A

[¬ϕ(x, z, θ)]
]
.

Assume that for each given x and θ, we can find an optimal
solution z∗(x, θ) to the inner maximization problem:

z∗(x, θ) = argmax
z∈A

[¬ϕ(x, z, θ)]. (1)

Using z∗(x, θ), we can rephrase the original problem as

argmax
θ

Pr
x∼D

[ϕ(x, z∗(x, θ), θ)]. (2)

The advantage of this formulation is that it splits the problem
into two subproblems. The optimization can now be seen as
a game between an optimizer that proposes neural network
weights (2) and an adversary that finds counterexamples (1).

Approximate Solutions based on Loss We approxi-
mately solve (1) and (2) by translating logical constraints
into loss functions, as shown in Section 3. Using Theorem 1,
we can show that the inner maximization problem (1) can
be solved by minimizing the translated loss L(¬ϕ):

z∗(x, θ) = argmin
z∈A

L(¬ϕ)(x, z, θ). (3)

For a given z∗(x, θ), we approximate the outer optimization
problem (2) as

argmin
θ

E
x∼T

[L(ϕ)(x, z∗(x, θ), θ)] . (4)

Here, x is an uniform sample from the training set T , which
approximatesD. We optimize the loss using Adam (Kingma
& Ba, 2015).

Constrained Optimization The loss in (3) can some-
times be difficult to optimize. To illustrate, assume that
the random samples are input-label pairs (x, y) and con-
sider the constraint

ϕ((x, y), z, θ) = ‖x− z‖∞ ≤ ε =⇒ logitθ(z)y > δ,

where we write logitθ(z)y for the pre-softmax activation of
the neural network parameterized by weights θ for class y
when given input z. Our translation of this constraint to a
loss produces L(¬ϕ)((x, y), z, θ) equal to

max(0, ||x− z||∞ − ε) + max(0, logitθ(z)y − δ).

This function is difficult to minimize because the magni-
tude of the two terms is different. This causes first-order
methods to optimize only a single term in an overly greedy
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f i n d i[32, 32, 3]
where i in [0, 255],

c l a s s(NN(i)) = 9,
‖i - deer‖∞ < 25,
‖i - deer‖∞ > 5

(a) Adversarial example.

f i n d i[32, 32, 3]
where i in [0, 255],

c l a s s(NN(i)) = 4,
‖i - deer‖∞ < 25,
NN(i).l1[0, 1, 1, 31] = 0

(b) Neuron deactivated.

f i n d i[28, 28]
where i in [0, 1],

c l a s s(NN1(i)) = 8,
c l a s s(NN2(i)) = 9,
i[0:9,:] = nine[0:9,:]

(c) Diffing networks.

Figure 1. DL2 queries enable to declaratively search for inputs satisfying constraints over networks.

manner, as reported by Carlini & Wagner (2017). However,
some constraints have a closed-form analytical solution, e.g.,
max(0, ||x− z||∞ − ε) can be minimized by projecting z
into the L∞ ball with radius ε around x. We identify logi-
cal constraints which restrict the variables z to convex sets
that have an efficient algorithm for projection, e.g., line seg-
ments, L2, L∞ or L1 balls (Duchi et al., 2008). We exclude
such constraints from ¬ϕ and add them as constraints of the
optimization. We thus rewrite (3) as

z∗(x, θ) = argmin
z∈B

L(ψ)(x, z, θ). (5)

Here, B is the respective convex set and ψ is ¬ϕ without
the respective constraints. To solve (5) in our setting, we
employ Projected Gradient Descent (PGD) which has been
shown to have strong performance in the case of adversarial
training with L∞ balls (Madry et al., 2018).

Algorithm 1 Training with constraints.
Input: Training set T , network parameters θ,

constraint ϕ(x, z, θ)
Extract convex set B and constraint ψ from constraint ϕ.
for epoch = 1 to nepochs do

Sample mini-batch of vectors x ∼ T .
Using PGD, compute
z∗ ≈ argminz∈B L(ψ)(x, z, θ) for each x.
Perform GD update with∇θL(ϕ)(x, z∗, θ).

end for

Training procedure Algorithm 1 shows our training pro-
cedure. We first form a mini-batch of random samples from
the training set T . And then an approximate solution for (3)
using the formulation in (5). This solution is given to the
optimizer, which improves the network weights to optimize
(4). Note that if z is 0-dimensional, the adversary becomes
trivial and the loss can be computed directly.

5. Querying Networks
Building on DL2, we design a declarative language for
querying neural networks. Interestingly, many questions
investigated by prior work can now be phrased as DL2
queries: neurons responsible for a prediction (Olah et al.,

2018), inputs that differentiate networks (Pei et al., 2017),
and adversarial examples (e.g., Szegedy et al., 2014). We
support the following class of queries:

f i n d z1[m1], . . . ,zk[mk]

where ϕ(z1, . . . ,zk)
[ i n i t z1 = c1, . . . ,zk = ck]
[re turn t(z̄)]

Here, the find clause defines a number of variables with a
shape given in parentheses. The where clause defines the
constraint. The init clause defines initial values for (part or
all of) the variables, and the return clause defines a target
term to compute at the end of search; if missing, z1, . . . ,zk
are returned. Neural networks and constants can be defined
outside of the queries. They are then automatically loaded
at query time. The constraints are equally expressive as the
fragment described in Section 3, but our language supports
additional features for improved convenience. For example,
the user can specify and manipulate tensors. In queries, we
write comma (,) for conjunction (∧); in for box constraints
and class for returning the network’s output label on a given
input, i.e., the class with the maximum probability.

The constraint class (NN(x)) = y is equivalent to∧k
i=1,i6=y p(x)i < p(x)y, where p(x)i denotes the proba-

bility which NN returns for class i out of k classes.

Examples Figure 1 shows a few interesting queries. The
first two are defined over networks trained for CIFAR-10,
while the last is for MNIST. The first query attempts to find
an adversarial example i of shape (32, 32, 3), classified as a
truck (class 9) where the distance of i to a given deer image
(deer) is between 5 and 25, with respect to the infinity
norm. The second query attempts to find an i which is clas-
sified as a deer, while a specific neuron in a convolutional
layer (accessed by indices) is deactivated. The last query
attempts to find an i classified differently by two networks
where part of i is fixed to pixels of the image nine.

Solving Queries As with training, we compile the con-
straints into a loss. The loss is minimized either until it
reaches zero or until timeout. Unlike training, we perform
optimization with L-BFGS-B, which is slower but more
sophisticated than standard gradient descent. We can afford
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this because the optimized loss function does not depend on
an entire batch of training samples.

Query Optimization Here, we discuss how loss compila-
tion can be optimized for L-BFGS-B. While our translation
is defined for arbitrarily large constraints, in general, it is
hard to optimize for a loss with many terms. Thus, we make
the loss smaller by extracting box constraints out of the
expression. The loss is then compiled from the remaining
constraints. Extracted box constraints are passed to the L-
BFGS-B solver which is then used to find the minimum of
the loss. This enables us to exclude a dominant part of ϕ
from the loss, making our loss amenable to optimization.

To illustrate this benefit, consider the query in Figure 1a.
Its box constraint, i in [0,255], is syntactic sugar for a
conjunction with 2 · 32 · 32 · 3 = 6, 144 atomic constraints
(two for each variable, i.e., for every index j, we have ij ≥ 0
and ij ≤ 255). In contrast, the second constraint consists of
9 atomic constraints (one for each possible class different
from 9), and the third and fourth constraints are already
atomic. By excluding the box constraints from the loss,
the obtained loss consists of only 11 terms, making it more
amenable to gradient-based optimization. If a solution is
not found after a certain time, we restart L-BFGS-B and
reinitialize the variables using MCMC sampling.

To prevent numerical issues, constraints using the class key-
word are implemented using logits rather than probabilities.

Further, we translate L∞-constraints such as ‖a‖∞ < b
into

∧
i |ai| < b. This type of constraint often appears

in adversarial example queries. The original formulation
only provides gradient information for the largest element
of a, while the new one provides information to potentially
all. This allows for much faster optimization of these types
of queries. The ultimate loss is very similar to the one in
(Carlini & Wagner, 2017), which employs a similar trick.

6. Experimental Evaluation
We now present a thorough experimental evaluation showing
the effectiveness of DL2 for querying and training neural net-
works with logical constraints. Our system is implemented
in PyTorch (Paszke et al., 2017) and evaluated on an Nvidia
GTX 1080 Ti and Intel Core i7-7700K with 4.20 GHz.

6.1. Training with DL2

We evaluated DL2 on various tasks (supervised, semi-
supervised and unsupervised learning) across four datasets:
MNIST, FASHION (Xiao et al., 2017), CIFAR-10, and
CIFAR-100 (Krizhevsky & Hinton, 2009). In all experi-
ments, we added a cross-entropy term to our loss, to opti-
mize for high prediction accuracy. For each experiment, we
describe the additional logical constraints.

Table 1. Semi-supervised training.
Method Accuracy (%) Constraint Accuracy (%)

Baseline 45.20 74.80
DL2 47.40 90.85

Table 2. Unsupervised learning.
Approach MSE

Supervised (regression) 0.0895
Unsupervised (baseline) 0.6680
Unsupervised (with DL2) 0.1030

Semi-supervised Learning For semi-supervised learn-
ing, we focus on the CIFAR-100 dataset, and split the train-
ing set into labeled, unlabeled and validation set in the ratio
20/60/20. In the spirit of the experiments of Xu et al. (2018),
we consider the constraint which requires that the probabili-
ties of groups of classes have either very high probability or
very low probability. A group consists of classes of a similar
type (e.g., the classes baby, boy, girl, man, and woman are
part of the people group), and the group’s probability is the
sum of its classes’ probabilities. Formally, our constraint
consists of 20 groups and its structure is

(ppeople < ε∨ppeople > 1−ε)∧...∧(ptrees < ε∨ptrees > 1−ε),

for a small ε. Each group includes classes that belong to a
similar family, for example ppeople = pbaby + pboy + pgirl +
pman + pwoman. The intuition is that we want to constrain the
neural network to put (almost) all probability mass into one
group (e.g. people). Note that this constraint is beyond the
reach of prior works (for reasons discussed in Section 3.1).

We train a network with the normal cross-entropy loss on
the labeled data and the DL2 encoding of the constraint on
the unlabeled data (weighted by a parameter λ). For further
implementation details, see Appendix A.

Table 1 shows the prediction and constraint accuracies on
the test set of our approach and a baseline that trains only
with cross-entropy. We found that training with our loss
yields a significantly higher constraint accuracy. Further, the
information from the DL2 constraint on the unlabeled data
allows the model to obtain 2.2% higher prediction accuracy.

Unsupervised Learning We next consider a regression
task in an unsupervised setting. The task is training an MLP
(multilayer perceptron) to predict the minimum distance
from a source node to every node in an unweighted graph
G = (V,E). Assuming the source node is 0, the minimum
distance is a function with certain properties, which can be
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Table 3. Supervised learning, P/C is prediction/constraint accuracy.
MNIST FASHION CIFAR-10

Baseline DL2 Baseline DL2 Baseline DL2

RobustnessT P 99.57 98.26 92.33 88.13 92.11 89.46
C 97.90 99.41 94.50 98.36 91.39 95.46

RobustnessG P 99.56 99.60 92.56 92.93 92.18 92.18
C 00.00 99.96 00.00 99.91 00.00 99.95

LipschitzT P 99.54 97.90 92.66 89.08 91.39 90.57
C 09.65 99.90 05.62 99.78 05.00 99.41

LipschitzG P 99.62 99.56 92.79 81.10 92.11 92.05
C 00.00 100.00 00.00 98.64 00.00 99.55

C-similarityT P - - - - 91.69 91.91
C - - - - 93.67 99.68

C-similarityG P - - - - 91.89 88.99
C - - - - 50.47 99.42

SegmentG P 98.27 97.60 88.58 87.77 - -
C 17.58 42.19 21.24 53.16 - -
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Figure 2. P/C Accuracy during training.

encoded into the following logical constraint:

d(0) = 0 ∧
∧
v∈V

d(v) ≥ 0 ∧

 ∨
(v,v′)∈E
v′ 6=0

d(v′) = d(v) + 1


∧

 ∧
(v,v′)∈E

d(v′) ≤ d(v) + 1

 .

We train the model in an unsupervised fashion with the DL2
loss. We generate random connected graphs with 15 vertices
and split them into training (300), validation (150) and test
(150) sets. As an unsupervised baseline, we consider a
model which always predicts d(v) = 1. We also train
a supervised model with the mean squared error (MSE)
loss. Table 2 shows the MSE of each approach. Results
indicate that our approach obtains an error very close to the
supervised model, despite not using any labels.

Supervised Learning We consider two types of con-
straints for supervised learning: global constraints, which
have (possibly more than one) universally quantified vari-
able z, and training set constraints, where all variables refer
to samples from the training set (no quantified variable z).
Note that no prior work applies to global constraints, in gen-
eral. Furthermore, because of limitations of their encoding,
as explained in Section 3.1, prior work is not able to han-
dle the complex training set constraints considered in our
experiments (e.g., comparisons between output activations).
We write random samples as x and y, to denote inputs from
the training set with their corresponding label.

For local robustness (Szegedy et al., 2014), the training set
constraint says that if two random inputs from the dataset

are close (their distance is less than a given ε1, with respect
to the L2 norm), then the KL-divergence of their respective
output activations is smaller than ε2:

‖x− x′‖2 < ε1 =⇒ KL(pθ(x)||pθ(x′)) < ε2
(RobustnessT)

Our global robustness constraint requires that for any input
x with a classification y, inputs in its ε neighborhood which
are valid images (pixels are between 0 and 1), have a high
probability for y. For numerical stability, instead of directly
checking the probability, we check that the corresponding
log-probability is larger than a given threshold δ:

∀z ∈ Bε(x) ∩ [0, 1]d. log pθ(z)y > δ (RobustnessG)

Here, Bε(x) is an L∞-ball around x with radius ε.

Similarly, we have two definitions for the Lipschitz condi-
tion. The training set constraint requires that for random
input pairs from the training set, the distance between their
output logits is less than the Lipschitz constant L times the
distance between the inputs:

‖logitθ(x)− logitθ(x
′)‖2 < L‖x− x′‖2 (LipschitzT)

The global version poses the same constraint for valid im-
ages in the neighborhood of x and x′:

∀z ∈ Bε(x) ∩ [0, 1]d, z′ ∈ Bε(x′) ∩ [0, 1]d.

‖logitθ(z)− logitθ(z
′)‖2 < L‖z − z′‖2

(LipschitzG)

We also consider C-similarity, a training set constraint pro-
viding additional domain knowledge to CIFAR-10 networks.
The constraint requires that inputs classified as a car have a
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where i in [-1,1],
c l a s s(N1(G(i)))=c1,
N1(G(i)).p[c1]> 0.3,
c l a s s(N2(G(i)))=c2,
N2(G(i)).p[c2]> 0.3

Figure 3. (left) The average execution time per query in seconds. Unsuccessful queries reached a timeout of 120s. (right) The template for
query 15. N1, N2 denote a classifier neural network, c1, c2 are classes (c1 6= c2), and G is a generator neural network.

higher activation for the label truck than for the label dog:

y = car =⇒ logitθ(x)truck > logitθ(x)dog + δ
(C-similarityT)

The global constraint is similar but applied for valid images
in the ε-neighborhood of x:

∀z ∈ Bε(x) ∩ [0, 1]d. y = car =⇒
logitθ(z)truck > logitθ(z)dog + δ (C-similarityG)

Finally, we consider a Segment constraint which requires
that if an input z is on the line between two inputs x and
x′ with interpolation parameter λ ∈ [0, 1], then its output
probabilities are on the line between the output probabilities
with the same interpolation parameter λ:

∀z. z = λ · x+ (1− λ) · x′ =⇒
H(pθ(z), λ · pθ(x) + (1− λ) · pθ(x′)) < δ (SegmentG)

Here,H denotes cross-entropy. We note that the constraints
for C-similarity and SegmentG are shortened versions of
the evaluated ones. The full constraints are provided in
Appendix A.

Table 3 shows the prediction accuracy (P) and the constraint
accuracy (C) when training with (i) cross-entropy only (CE)
and (ii) CE and the constraint. Results indicate that DL2 can
significantly improve constraint accuracy (from 0% to 99%
for LipschitzG), while prediction accuracy slightly decreases.
This decrease is expected in light of a recent work by Tsipras
et al. (2018), which shows that adversarial robustness comes
with decreased prediction accuracy. We suspect that we
observe a similar phenomenon here. Figure 2 shows how the
prediction and constraint accuracies change during training,
for two constraints, on the FASHION dataset.

In terms of run-time overhead, training set constraints (T)
only incur a small overhead per epoch (roughly 2x), while
global constraints (G) incur a higher overhead (roughly 10x)
as the projection steps can be expensive. Detailed run-times
are provided in Table 4, Appendix A.

6.2. Querying with DL2

Next, we evaluate DL2 on the task of querying with con-
straints. We considered five image datasets, each with differ-
ent well-established neural network architectures. For each,
we considered at least two classifiers; and for some a gener-
ator and a discriminator (trained using GAN, Goodfellow
et al., 2014) — Table 6, Appendix B, provides details about
these networks. Our benchmark consists of 18 template
queries (provided in Appendix B), which are instantiated
with different networks, classes, and images. Figure 3 (right)
shows a template query, which attempts to search for an in-
put to a generator G such that its output is classified into two
different classes c1 and c2 by classifiers N1 and N2. For each
dataset, we instantiate each query template into 10 queries.
The queries run until a correct solution is found or until a 2
minute timeout is reached. Figure 3 (left) shows the average
run-times of each query template and a dataset. The results
show that our system usually finds solutions, and usually
completes within 40 seconds. It is unknown whether queries
that were not solved in fact do have a solution. We conclude
that successful executions terminate relatively quickly and
that DL2 scales well to multiple large networks (e.g., for
ImageNet). Appendix B and Appendix C provide further
details and experiments.

7. Conclusion
We presented DL2, a method and system for training and
querying neural networks with logical constraints. DL2
supports expressive logical constraints and provides trans-
lation rules into a differentiable-almost-everywhere loss,
which is zero exactly for those inputs that satisfy the con-
straints. To make training tractable, we handle input con-
straints which capture convex sets through PGD. We also
introduce a declarative language for querying networks utilz-
ing the translation from logic to loss. Experimental results
indicate that DL2 can be used effectively for both training
and querying neural networks with additional constraints.
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Rocktäschel, T. and Riedel, S. End-to-end differentiable
proving. In Guyon, I., von Luxburg, U., Bengio, S.,
Wallach, H. M., Fergus, R., Vishwanathan, S. V. N.,
and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on Neu-
ral Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pp. 3791–3803, 2017.
URL http://papers.nips.cc/paper/6969-
end-to-end-differentiable-proving.
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Here, we describe implementation details and hyperparame-
ters for our experiments. In all experiments, we used ξ = 1,
but we found the value not to have a large impact.

A. Details for Training Experiments
Supervised Learning For our experiments with super-
vised learning, we used a batch size of 128 and the Adam
optimizer with learning rate 0.0001. All experiments were
run for 200 epochs and the reported values in Table 3 are
for the model with the highest constraint accuracy times
prediction accuracy within the last 25 epochs. The average
time for one epoch is given in Table 4. All other parameters
are listed in Table 5. Additionally, for the CIFAR-10 experi-
ments, we used data augmentation with random cropping
and random horizontal flipping. Experiments with the Seg-
ment constraints were done by first embedding images in
40-dimensional space using PCA. In this lower dimensional
space, it is sensible to consider linear interpolation between
images which is not the case otherwise. This experiment
was not performed for CIFAR-10 because we did not ob-
serve good prediction accuracy with baseline model using
lower dimensional embedding. This is likely because the
dimensionality of CIFAR-10’s images is much higher than
that of MNIST or FASHION.

We used ResNet-18 (He et al., 2016) for the experiments on
CIFAR-10 and convolutional neural network (CNN) with 6
convolutional and 2 linear layers for MNIST and FASHION
(trained with batchnorm after each convolutional layer). The
layer dimensions of the CNN are (1, 32, 5x5) - (32, 32,
5x5) - (32, 64, 3x3) - (64, 64, 3x3) - (64, 128, 3x3) - (128,
128, 1x1) - 100 - 10 where (in, out, kernel-size) denotes a
convolutional layer and a number n denotes a linear layer
with n neurons.

We have implemented the SegmentG constraint as

∀z. ((z = λ · x+ (1− λ) · x′)
∧ (‖x− x′‖2 < ε)

∧ (y 6= y′)) =⇒
H(pθ(z), λ · pθ(x) + (1− λ) · pθ(x′)) < δ.

Which in addition to the constraint in the paper, only consid-

ers training samples that are close together (‖x−x′‖2 < ε)
and that have different labels (y 6= y′).

For the C-Similarity constraint we use the formulation as
in the body of the paper, but we not only apply it to the car-
truck-dog labels, but also deer-horse-ship, plane-ship-frog,
dog-cat-truck and cat-dog-car.

Semi-supervised Learning For this experiment, we use
the VGG-16 architecture (Simonyan & Zisserman, 2014)
and optimize the loss using Adam with learning rate 0.001
and a batch size of 128. For each labeled batch, we also
sampled one unlabeled batch and combined the losses before
back-propagating. We trained for 1600 epochs, although
stable results were observed after around 400 epochs. We
used λ = 0.6 as the weighting factor for the DL2 loss.

Unsupervised Learning Our model is the multilayer per-
ceptron with N ·N input neurons, three hidden layers with
1000 neurons each and an output layer of N neurons. N is
the number of vertices in the graph, in our case 15. The in-
put is the adjacency matrix of the graph and the output is the
distance for each node. The network uses ReLU activations
and dropout of 0.3 after each hidden layer. The network is
optimized using Adam with learning rate 0.0001.

B. Additional Details for Section 6.2
Here, we provide statistics on the networks and queries
used in the experiments of Section 6.2. Table 6 summarizes
the networks that we used, their architecture, and accuracy.
Each row shows the dataset, the type of the network (clas-
sifier, generator, or discriminator), the network signature,
and the architecture of the network. For example, the first
row describes a classifier that takes as input images of size
28 × 28 pixels, each ranging between 0–1, and returns a
probability distribution over ten classes.

Figure 4 shows the query templates, where the template
parts are colored in blue. In the queries, we use the fol-
lowing names for the template parts. Networks are named
N, N1, N2 for classifiers, G for generator, and D for dis-
criminator. A variable denoting an input image (e.g., deer
in Figure 1a) is var. Classes are c, c1, c2 or cv to
refer to the (known) class of a variable var. Masks are de-
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Table 4. Average time per epoch in seconds for the supervised training experiments in Table 3.
MNIST FASHION CIFAR-10

Baseline DL2 Baseline DL2 Baseline DL2

RobustnessT 7.34 13.11 7.24 12.58 40.04 100.97
RobustnessG 14.23 866.19 13.9 533.41 40.78 418.62
LipschitzT 7.37 12.45 7.53 12.13 40.63 75.72
LipschitzG 12.2 67.79 7.58 401.4 40.02 287.64
C-similarityT - - - - 40.13 83.85
C-similarityG - - - - 39.87 423.82
SegmentG 15.16 101.55 13.5 30.62 - -

Table 5. Hyperparameters used for supervised learning experiment
MNIST, FASHION CIFAR-10

λ PGD Iterations Params λ PGD Iterations Params

RobustnessT 0.2 - ε1 = 7.8, ε2 = 2.9 0.04 - ε1 = 13.8, ε2 = 0.9
RobustnessG 0.2 50 ε = 0.3, δ = 0.52 0.1 7 ε = 0.3, δ = 0.52
LipschitzT 0.1 - L = 1.0 0.1 - L = 1.0
LipschitzG 0.2 50 Lmnist = 0.1, Lfashion = 0.3, ε = 0.3 0.1 5 L = 1.0, ε = 0.3
ClassesT - - - 0.2 - δ = 0.01
ClassesG - - - 0.2 10 δ = 1.0, ε = 0.3
SegmentG 0.01 5 ε = 100, δ = 1.5 - - -

noted by mask and their complementary mask by nm. Pixel
constraints (e.g., i in [0,255]) are pix_con, and their
range (e.g., [0,255]) is range. The shape of a variable
(e.g., 28, 28 for MNIST) is shape, and a constant denoting
a distance is dist.

The tested queries enable us to study various aspects of the
DL2 system. The first query runs a neural network on a
given input, which allows us to gauge the overheads of our
system (without the optimizer). This includes parsing, query
setup time and the call to PyTorch to run the neural network.
Queries 2-4 look for inputs satisfying constraints without an
init clause, while queries 5-11 look for adversarial exam-

ples. Queries 12-18 aim to find inputs classified differently
by the two networks, whereas queries 14-15 leverage gen-
erators and discriminators for this task. Table 7 shows the
average run-time and success rate of different queries.

C. Additional Query Experiments
Here, we provide further experiments to investigate the scal-
ability and run-time behavior of DL2. For all experiments,
we used the same hyperparameters as in Section 6.2.

Experiment I: Number of Variables We first study the
run-time behavior of DL2 as a function of the number of
variables. For this, we consider a simple toy query:

f i n d i[c]
where 1000 < sum(i), sum(i) < 1001
r e t u r n i

with different integer values for c. We execute this query for
a wide range of c values – 10 times for each value – and we
report the average run-time in Figure 5a. All runs completed
successfully and returned a correct solution. We observe
constant run-time behavior for up to 213 variables, and a
linear run-time in the number of variables afterwards.

Experiment II: Opposing Constraints We next study
the impact of (almost) opposing constraints. For this, we
consider another toy query:

f i n d i[1]
where i[0] < −c ∨ c < i[0]
r e t u r n i

for an integer c. This query requires optimizing two oppos-
ing terms until one of them is fulfilled. The larger c, the
more opposed the two objectives are – in the extreme case,
for c → ∞, we obtain an unsatisfiable objective. All runs
completed successfully and returned a correct solution. Fig-
ure 5b shows the average run-time over 10 runs for different
values of c.

Experiment III: Scaling to Many Constraints Lastly,
we study the scaling of DL2 as a function of the number of
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Table 6. The datasets and networks used to evaluate DL2. The reported accuracy is top-1 accuracy and it was either computed by the
TorchVision library (#), or by us (†).

Dataset Type Network Architecture Accuracy

MNIST

C M NN1: [0, 1]28×28 7→ [0, 1]10 small CNN, PyTorch Examples 0.990†

C M NN2: [0, 1]28×28 7→ [0, 1]10 small FFNN, PyTorch Examples 0.979†

G M G: [−1, 1]100 7→ [0, 1]28×28 DC-GAN -
D M D: [0, 1]28×28 7→ [0, 1] DC-GAN -
G M ACGAN G: [−1, 1]100 × {0, . . . , 9} 7→ [0, 1]28×28 AC-GAN -
D M ACGAN D: [0, 1]28×28 7→ [0, 1]× [0, 1]10 AC-GAN -

Fashion
MNIST

C FM NN1 : [0, 1]28×28 7→ [0, 1]10 same as M NN1 0.876†

C FM NN2 : [0, 1]28×28 7→ [0, 1]10 same as M NN2 0.860†

G FM G: [−1, 1]100 7→ [0, 1]28×28 DC-GAN -
D FM D : [0, 1]28×28 7→ [0, 1] DC-GAN -

CIFAR

C C NN1 : [0, 1]32×32×3 7→ [0, 1]10 VGG-16 0.936†

C C NN2 : [0, 1]32×32×3 7→ [0, 1]10 Resnet-18 0.950†

G C G : [−1, 1]100 7→ [0, 1]32×32×3 DC-GAN -
D C D : [0, 1]32×32×3 7→ [0, 1] DC-GAN -

GTSRB C G NN1 : [0, 1]32×32×3 7→ [0, 1]10 VGG-16 0.985†

C G NN2 : [0, 1]32×32×3 7→ [0, 1]10 Resnet-18 0.995†

G G G : [−1, 1]100 7→ [0, 1]32×32×3 DC-GAN -
D G D : [0, 1]32×32×3 7→ [0, 1] DC-GAN -

ImageNet
C I V16 : [0, 1]224×224×3 7→ [0, 1]1000 VGG-16 from PytTorch Vision 0.716#

C I V19 : [0, 1]224×224×3 7→ [0, 1]1000 VGG-19 from PytTorch Vision 0.7248#

C I R50 : [0, 1]224×224×3 7→ [0, 1]1000 ResNet-50 from PytTorch Vision 0.764#

constraints. For this, we consider the following query which
looks for an adversarial example:

f i n d p[28, 28]
where c l a s s (M_NN1(clamp(p + M_nine,

0, 1))) = c
r e t u r n clamp(p + M_nine, 0, 1)

The query looks for an adversarial perturbation p to a given
image of a nine (M_nine) such that the resulting image
gets classifies as class c. The query returns the found per-
turbation and the resulting image. The clamp(I, a, b)
operation takes an input I and cuts its values such that they
are between a and b.

Additionally, we impose constraints on the rows and
columns of the image. For a row i, we want to enforce
that the values of the perturbation vector are increasing
from left to right:

p[i, 0] < p[i, 1],
p[i, 1] < p[i, 2],
p[i, 2] < p[i, 3], . . .

For one row this yields 27 constraints. We further consider
a similar constraint for a column j:

p[0, j] < p[1, j],
p[1, j] < p[2, j],
p[2, j] < p[3, j] . . .

We apply these constraints on the first k rows and columns
of the image independently and jointly. We vary the value

of k, and for each we execute the query over all possible
target classes c ∈ {0, . . . , 8}. We report the average time in
Table 8. Most queries could be solved. For Row & Column
constraints where k = 20 and k = 28, only 6 out of 9 and
1 out of 9 could be solved receptively. These queries hit the
300 s timeout. Figure 6 shows a resulting image.
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Query

1 e v a l N(var)

2 f i n d i[shape]
where c(N(i))=c

3 f i n d i[shape]
where c(N(i))=c,
pix con

4 f i n d i[shape]
where c(N(i))=c,
N(i).p[c] > 0.8,
pix con

5 f i n d i[shape]
where c(N(i))=c
i n i t i=var

6 f i n d i[shape]
where c(N(i))=c,
pix con,
‖i - var‖∞ < dist
i n i t i=var

7 f i n d i[shape]
where c(N(i))=c,
pix con
i n i t i=var

8 f i n d i[shape]
where c(N(i))=c,
i[mask] in range,
i[nm]=var[nm]
i n i t i=var

9 f i n d i[shape]
where c(N(i))=c,
pix con,
N(i).p[c] > 0.8
i n i t i=var

Query

10 f i n d i[shape]
where c(N(i))=c,
pix con,
N(i).p[c] > 0.8,
N(i).p[cv] < 0.1
i n i t i=var

11 f i n d i[shape]
where c(N(i))=c,
pix con,
N(i).p[c] > 0.8,
N(i).p[cv] < 0.1,
‖i−var‖∞ < dist
i n i t i=var

12 f i n d i[shape]
where pix con,
c(N2(i))=c2,
c(N1(i))=c1

13 f i n d i[shape]
where pix con,
c(N2(i))=c,
‖i - var‖∞ < dist,
c(N1(i))=cv,
i n i t i=var

14 f i n d i[shape]
where c(N1(i))=c1,
c(N2(i))=c2,
N1(i).p[c1] > 0.5,
N2(i).p[c1] < 0.1,
N2(i).p[c2] > 0.5,
N1(i).p[c2] < 0.1,
pix con,D(i) < 0.1

Query

15 f i n d i[100]
where i in [-1,1],
c(N1(G(i)))=c1,
N1(G(i)).p[c1]> 0.3,
c(N2(G(i)))=c2,
N2(G(i)).p[c2]> 0.3

16 f i n d i[shape]
where c(N1(i))=cv,
c(N2(i))=c,
i[mask] in range,
i[nm]=var[nm]
i n i t i=var

17 f i n d i[shape]
where c(N1(i))=c1,
c(N2(i))=c2,
N1(i).p[c1] > 0.5,
N1(i).p[c2] < 0.1,
pix con

18 f i n d i[shape]
where c(N1(i))=c1,
c(N2(i))=c2,
N1(i).p[c1] > 0.6,
N1(i).p[c2] < 0.1,
N2(i).p[c2] > 0.6,
N2(i).p[c1] < 0.1,
pix con

Figure 4. The template queries used to evaluate DL2. N1, N2 denote classifier neural networks, var an example input from the correspond-
ing dataset, c, c1, c2 are classes and c1 6= c2, pix con is a box constraint for pixels to be in the proper input range, D is a discriminator
neural network and G is a generator neural network.
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Table 7. Results for queries: (#3) number of completed instances (out of 10),	 is the average running time in seconds, and	3the
average running time of successful runs (in seconds).

MNIST FASHION CIFAR-10 GTSRB ImageNet

Nr. #3 	 	3 #3 	 	3 #3 	 	3 #3 	 	3 #3 	 	3

1 10 0.03 0.03 10 0.03 0.03 10 0.03 0.03 10 0.03 0.03 10 0.04 0.04
2 10 0.16 0.16 10 0.15 0.15 10 0.39 0.39 10 0.30 0.30 10 5.71 5.71
3 10 0.21 0.21 10 0.19 0.19 10 0.43 0.43 10 0.54 0.54 10 9.58 9.58
4 10 0.31 0.31 10 0.21 0.21 10 0.61 0.61 10 0.69 0.69 10 18.81 18.81
5 10 0.15 0.15 10 0.15 0.15 10 0.19 0.19 10 0.53 0.53 10 2.95 2.95
6 10 6.38 6.38 10 1.76 1.76 10 6.59 6.59 9 40.94 32.15 1 109.20 12.01
7 10 0.18 0.18 10 0.18 0.18 10 0.33 0.33 10 0.54 0.54 10 8.30 8.30
8 10 1.39 1.39 10 0.24 0.24 10 0.34 0.34 9 12.52 0.57 10 11.83 11.83
9 10 0.20 0.20 10 0.21 0.21 10 0.31 0.31 10 0.96 0.96 10 8.75 8.75

10 10 0.22 0.22 10 0.22 0.22 10 0.41 0.41 9 12.71 0.79 10 10.21 10.21
11 9 13.57 1.74 10 6.32 6.32 10 5.58 5.58 9 33.18 23.53 1 109.22 12.17
12 10 0.38 0.38 10 0.34 0.34 10 0.96 0.96 10 0.80 0.80 10 20.52 20.52
13 10 7.23 7.23 10 2.33 2.33 10 7.04 7.04 8 55.68 39.61 0 120.00 0.00
14 10 0.53 0.53 10 0.53 0.53 10 1.92 1.92 10 1.93 1.93 - - -
15 10 3.17 3.17 8 34.53 13.16 10 11.15 11.15 4 91.90 49.74 - - -
16 9 13.95 2.16 10 0.52 0.52 10 1.33 1.33 10 1.21 1.21 10 18.39 18.39
17 10 0.63 0.63 10 0.35 0.35 10 1.14 1.14 10 1.67 1.67 9 47.43 39.37
18 10 0.71 0.71 10 0.37 0.37 10 1.27 1.27 10 1.24 1.24 10 33.69 33.69
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(a) Run-time for experiment 1. Runs up to 213 variables
take less than 0.01 s and don’t show increase with number of
variables.
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(b) Run-time for experiment 2. All runs up to c = 212 take
less than 0.01 s.

Figure 5. Experimental results for Experiments 1 and 2. Results are averaged over 10 runs with different random seed. All runs succeed.
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Table 8. Run-times for additional constraints on adversarial perturbation. #3is the number of successful runs out of 9 and	3is the
average run-time over the successful runs in seconds. k row or column constraints corresponds to 27 individual constraints in DL2 each.
Thus, the right most column adds 756 constraints for the first two settings and 1512 for the last.

Row constraints

k 0 1 3 5 10 20 28
	3 [s] 0.02 1.24 3.25 6.36 24.82 67.25 101.49
#3 9 9 9 9 9 9 9

Column constraints

k 0 1 3 5 10 20 28
	3 [s] 0.02 1.00 3.22 5.83 21.44 71.87 270.83
#3 9 9 9 9 9 9 9

Row & Column constraints

k 0 1 3 5 10 20 28
	3 [s] 0.02 1.89 6.14 11.06 89.02 213.30 270.83
#3 9 9 9 9 9 6 1

(a) The found perturbation p, scaled such that −0.3 corresponds
to black and 0.3 to white.

(b) The resulting image.

Figure 6. Found results for the full 28 row & column constraints and target class 6.


