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ABSTRACT
We present a technique for automatically verifying atomicity of
composed concurrent operations. The main observation behind our
approach is that many composed concurrent operations which oc-
cur in practice are data-independent. That is, the control-flow of
the composed operation does not depend on specific input values.
While verifying data-independence is undecidable in the general
case, we provide succint sufficient conditions that can be used to
establish a composed operation as data-independent. We show that
for the common case of concurrent maps, data-independence re-
duces the hard problem of verifying linearizability to a verification
problem that can be solved efficiently with a bounded number of
keys and values.

We implemented our approach in a tool called VINE and evalu-
ated it on all composed operations from 57 real-world applications
(112 composed operations). We show that many composed opera-
tions (49 out of 112) are data-independent, and automatically verify
30 of them as linearizable and the rest 19 as having violations of
linearizability that could be repaired and then subsequently auto-
matically verified. Moreover, we show that the remaining 63 oper-
ations are not linearizable, thus indicating that data independence
does not limit the expressiveness of writing realistic linearizable
composed operations.

Categories and Subject Descriptors:
D.2.4 [Software/Program Verification]; D.1.3 [Concurrent Pro-
gramming]

General Terms:
Verification

Keywords:
concurrency, linearizability, verification, composed operations, data-
independence, collections
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1 A t t r i b u t e r e m o v e A t t r i b u t e ( S t r i n g name ) {
2 A t t r i b u t e v a l = a t t r . g e t ( name ) ;
3 i f ( v a l != n u l l ) {
4 v a l = a t t r . remove ( name ) ;
5 }
6 r e t u r n v a l ;
7 }

Figure 1: Linearizable version of a composed operation taken
from Apache Tomcat [4]. This operation is not supported by
the enriched Java library [1]. This composed operation’s se-
mantics is equivalent to attr.remove(name), however, it
is more efficient in the general case due to Java’s Concurren-
tHashMap internal locking mechanism.

1. INTRODUCTION
Modern programming languages such as Java and C# provide

efficient concurrent library implementations that allow developers
to build scalable applications. The basic intention is to free the
programmer from having to deal with complex concurrency issues
by providing a well-defined interface to commonly used operations.

However, applications using modern libraries often require func-
tionality which involves a combination of several library opera-
tions. This functionality is typically achieved by building a new
operation which is intended to behave atomically, with the new
operation built of several existing library operations. Ironically,
well-designed libraries are more likely to increase the number of
complex composed concurrent operations as more applications are
using the library.

Unfortunately, building correct and efficient composed concur-
rent operations is tricky and error-prone. A recent study of com-
posed operations found in real-world applications reported a large
number of atomicity violations [27]. This study influenced the in-
terface of Java concurrent collections, which are being enriched to
avoid common programming pitfalls [1, 2]. While the library in-
terface can be extended to support certain common composed op-
erations, it is impossible to include all possible combinations (the
set is potentially infinite). Hence, despite the best of intentions by
library designers, the fundamental problem of building correct and
efficient application-specific composed operations is unlikely to go
away. Indeed, the example shown in Figure 1, taken from Apache
Tomcat [4] is a custom composed operation that is atomic and is
unsupported by the enriched library [1].

Our Approach.
We have built a tool, called VINE, which verifies atomicity (lin-

earizability) of composed operations. For instance, our tool verifies
that the operation in Figure 1 is linearizable. Our tool enables pro-
grammers to use the existing library interface by ensuring that the
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composed operation is linearizable. We show that for most practi-
cal composed operations, our tool is able to verify the correctness
of the composed operation in seconds. This is surprising as check-
ing linearizability is generally considered a hard problem [11].

The key observation behind our approach is that in practice, many
composed concurrent operations are data-independent. That is, the
control-flow of the composed operation is independent of specific
input values. While verifying data-independence is generally un-
decidable, we provide succinct sufficient conditions which ensure
that the composed operation is data-independent.

Further, we conducted an empirical study using code search en-
gines [8] and discovered that the majority of composed operations
are based on concurrent maps. To address this case, we present
a novel reduction-based verification approach for linearizability of
data-independent composed operations build on-top-of concurrent
maps. The basic idea of our approach is to show a reduction from
an operation that can use arbitrary keys and values to an operation
that uses a bounded number of keys and values. That is, if we ver-
ify the operation with some keys and values, our method guarantees
that it will be correct for any keys and values. The actual bounded
verification of linearizability for data-independent composed oper-
ations can be done using standard techniques (e.g. [27]).

Evaluation.
We used static analysis to extract composed operations from ap-

plications and prove that they are data-independent. Our lineariz-
ability verifier is implemented in Promela, and verifies the extracted
operations using the SPIN model checker [24]. We also imple-
mented the composed operations extractor using the WALA [10]
static analyzer. We extracted 112 composed operations from 57
applications and atomatically checked which of these satisfy the
data-independence requirement. We found that 63(56%) of these
are not data-independent and cannot be handled with our technique.
However, a close inspection revealed that these 63 operations are in
fact non-linearizable! Of the 49 operations that can be handled by
our technique, 44 are data-independent and 5 depend on fixed input
keys. SPIN checked the extracted models for these 49 operations
in less than a second each, verifying correctness of 30 operations
and identifying a linearizability violation in the remaining 19 oper-
ations. We manually fixed the linearizability violations in these 19
operations and our tool then successfully proved all of the repaired
operations linearizable.

Contributions.
The contributions of this paper are as follows:

• We define a notion of data-independence for composed op-
erations. This notion is inspired by Wolper [31] and can be
established via a simple static analysis.

• We conduct a thorough empirical study proving that many
realistic composed operations are indeed data-independent
and all of the data-dependent composed operations are non-
linearizable.

• We proved that for data-independent composed operations,
checking linearizability can be performed by using a single
key and two values. In particular, for programs with finite
local state, verifying linearizability becomes decidable.

• We show that in practice checking linearizability for data-
independent composed operations can be performed efficiently
(in about a second).

The rest of this paper is organized as follows: Section 2 moti-
vates the problem by showing a linearizable data-independent com-
posed operation taken from [3]. Section 3 describes a data centric
checking for linearizaibility of composed operations. Section 4 de-
fines data-independent composed operations and shows that prov-
ing linearizability of data-independent composed operations can be
done with fixed map entries. Section 5 describes our implementa-
tion and a classification of real-world composed operations. Sec-
tion 6 reviews related work and Section 7 concludes.

2. MOTIVATION
Figure 2 shows a composed operation taken from Apache Ser-

viceMix [3] named getLock. This operation uses the underlying
ConcurrentHashMap locks to memoize the ReentrantLock al-
located at line 4. When the value for a given id is cached in the col-
lection it is returned immediately; when the ReentrantLock for a
given id is not available, it is allocated and inserted into the collec-
tion. This function handles concurrency in an optimistic manner.
The code in lines 5–8 guarantees that even if the update fails when
other threads succeed in the update, the return value of the opera-
tion is consistent.

This implementation is correct but tricky. It is worth noting that
this implementation is not conflict-serializable [20] since there ex-
ists an execution of the operation with two memory accesses at lines
2 and 6 and an intervening operation by another thread that mutates
the environment.

The method getLock appears to occur automically to clients i.e.,
it is linearizable according to [23]. There are two cases that can oc-
cur. The first case, handled on line 2, is when locks.get(id) re-
turns a non-null value (“id” is in locks) as then getLock returns
the value extracted from locks. In the second case, handled at line
5, if putIfAbsent returns null (indicating the update succeeded)
then lock is returned, and otherwise, the current collection value
corresponding to id is assigned to oldLock, which is then assigned
to lock at line 8 and returned. Checking any safety properties of
such operations is potentially hard due to the unbounded number
of potential collection values. Moreover, concurrency drastically
increases the state space that must be considered.

Interestingly, we observed that composed operations in the real-
world follow a common control structure. Indeed, these are “es-
sentially finite-state programs” in the sense that linearizability can
be proven by investigating a fixed number of input values. Next,
we briefly summarize the main ideas which enable verification of
linearizability for composed operations.

Data Independent Composed Operations.
We first formulate the notion of data-independence, inspired by

Wolper [31]. Informally, Wolper requires that the control-flow of
the composed operation does not depend on its input values and
provides syntactic notions which guarantee data-independence. Un-
fortunately, in practice, Wolper’s notion of data-independence is
too restrictive for composed operations. An analysis of 112 com-
posed operations shows that none of them are data-independent ac-
cording to Wolper’s definition.

To address this issue, we define a notion of data-independence
which takes into account the meaning of the collection (i.e., a map).
We define a class of composed operations such that their control
flow is independent of the actual collection values being manip-
ulated. We refer to this class of programs as Singleton Collection
Methods (SCM). The operation getLock is an example of an SCM:
it takes as input an id, which is used only as a key inside the locks
collection. The return value from the locks operations is checked
in getLock only for equality with null, meaning whether there
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1 p u b l i c Lock ge tLock ( S t r i n g i d ) {
2 Lock l o c k = l o c k s . g e t ( i d ) ; / / @LP l o c k != n u l l
3 i f ( l o c k == n u l l ) {
4 l o c k = new R e e n t r a n t L o c k ( ) ;
5 Lock oldLock =
6 l o c k s . p u t I f A b s e n t ( id , l o c k ) ; / / @LP
7 i f ( o ldLock != n u l l ) {
8 l o c k = oldLock ;
9 }

10 }
11 r e t u r n l o c k ;
12 }

Figure 2: Linearizable data-independent composed operation
taken from Apache ServiceMix [3]

exists a key id inside locks. Further, all branches are of the same
kind (equality with null). Note that according to Wolper, this op-
eration is not data-independent since its control flow is dependent
on the results of operations at lines 3 and 7.

Bounding the number of inputs.
We prove that data-independent composed operations that are

linearizable w.r.t one input key must be linearizable with respect to
any input key. In getLock this means that if getLock is lineariz-
able for a specific id, then it is linearizable for any input id. Thus,
the specific choice of input key is irrelevant to the verification. Our
results also extend to operations which depend on a fixed number
of input keys.

Bounding the global state size.
Finally, we also prove that the number of map entries needed

to expose linearizability violations in data-independent composed
operations is bounded. Thus, for programs with bounded local
states such as getLock, checking linearizability is actually de-
cidable even though it potentially manipulates unbounded inputs
(String id), number of map entries, and number of threads.

3. THREAD-CENTRIC LINEARIZABILITY
CHECKING

In this section, we describe a simple thread-centric procedure for
checking linearizability of composed concurrent operations, taken
from [27].

A local state l ∈ L describes the values of the local variables.
For simplicity we assume that there is an extra local variable pc
denoting the current program location. We also assume that the
stack is part of the local state.

Let C be the set of base collection values and let A be the set of
values for actual arguments and return values of the collection. Let
Σ = L × C denote the set of program states.

Let C.M be a composed operation in the custom map C. We say
that a method of C is a base method if it is not C.M. We use Stmt
to denote the set of possible program statements.

3.1 Transition Relation
Given a method of interest C.M, we define the transition relation

Π ⊆ Σ × Stmt × Σ as a small-step operational semantics. We
define two kinds of transitions:

• Local Transition:

〈l, c〉 s−→ 〈l′, c〉

That is, executing a local statement in C.M on state 〈l, c〉
yields a state 〈l′, c〉. It is essential that the stack be part of

the local state. Here, s can be any statement except those that
invoke C methods.

• Collection Transition: This transition always invokes base
methods of C. We assume that invocation (calling and re-
turning) of a base method is atomic. Depending on how the
local state is affected and who performs the transition, we
define two kinds of collection transitions:

– Main Transition:

〈l, ci〉
x=C.b(args)−−−−−−−−→ 〈l[pc 7→ q, x 7→ r], co〉

Here, x=C.b(args) is always a statement of C.M
at 〈l, ci〉 and the statement is followed by a label q in
C.M. Thus, executing the transition from state 〈l, ci〉
involves: (i) evaluating args to a in l; (ii) invoking
method b with a, which produces a new collection co;
and (iii) setting return value r ∈ A to the local variable
x. Note that main transitions always invoke methods
that return a value.

– Environment Transition:

〈l, ci〉
C.b(args)−−−−−−→ 〈l, c′i〉

An environment transition does not access local state
and always modifies the collection state, i.e., ci 6= c′i.
An environment transition is enabled if:

∗ ∃co, c′o ∈ C and ∃l′, l′′ ∈ L s.t. the following two
main transitions exist:

〈l, ci〉
x=C.bi(args)−−−−−−−−→ 〈l′, co〉

〈l, c′i〉
y=C.bj(args)−−−−−−−−→ 〈l′′, c′o〉

where r1 is the return value of bi’s invocation, r2
is the return value of bj’s invocation, and bi=bj .
∗ r1 6= r2.

Note that the environment transition C.b(args) influences the
return value of x=C.bi(args) (bi = bj) in state ci. For example,
if ci = ∅ and x=C.bi(args) is x=C.get(2) then C.b(args)
could be a C.put(2,4).

3.2 Traces and Exploration Procedure
A trace π = 〈l0, c0〉

s−→ 〈l1, c1〉 . . .
s−→ 〈ln, cn〉 is a sequence of

transitions such that:

• 〈l0, c0〉 is an initial state.

• ∀i.0 ≤ i<n.〈li, ci〉
s−→ 〈li+1, ci+1〉 ∈ Π.

• 〈ln−1, cn−1〉
return e−−−−−→ 〈ln, cn〉 is a main transition (denot-

ing completion of C.M).

We denote the set of traces as [[Π]].
A program trace is sequential if does not include environment

transitions. The following provides a constructive linearizability
check performed directly on traces.
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DEFINITION 3.1 (LINEARIZABLE TRACE).
A trace 〈l0, c0〉 . . . 〈li, ci〉

s−→ 〈li+1, ci+1〉 . . . 〈ln, cn〉 is lineariz-
able iff there exists a unique i s.t. the only possible update of
the collection by a main transition occurs in transition 〈li, ci〉

s−→
〈li+1, ci+1〉, and for every sequential run πs starting in a state
〈l0, ci〉 and ending with a state 〈l′, c′〉 it is the case that c′ = ci+1

and the return values of πs and π are equal.

We refer to 〈li, ci〉
s−→ 〈li+1, ci+1〉 from Definition 3.1 as lineariza-

tion point.

Checking vs. Verification.
In [26], the authors show that for the map interface, a composed

operation using only put, get, and putIfAbsent operations is
non-linearizable if and only if there exists a non-linearizable run of
the presented approach. Unfortunately, while useful for checking,
the procedure cannot be used to verify linearizability of an arbitrary
C.M. The reason is that for verification, one needs to explore an un-
bounded number of inputs and unbounded number of environment
operations, clearly infeasible.

In the next section, we show that verifying linearizability of a
data-independent method C.M can be done by only considering
a bounded number of inputs and a bounded number of collection
sizes.

4. DATA-INDEPENDENT COMPOSED OP-
ERATIONS

In this section we define data-independent classes of composed
operations. The advantage of such restricted operations is that they
can be verified for linearizability by considering a bounded number
of inputs and a bounded number of collection entries. While veri-
fying data-independence is undecidable in general [31], we provide
simple sufficient restrictions that can establish a composed opera-
tion as data-independent.

The main idea is to restrict the inputs and the control-flow of
the composed operation C.M to guarantee that the operation treats
all keys uniformly. First, we limit the parameters of C.M to a key
parameter and an optional value parameter. Then, we restrict the
effect of these parameters on the control flow inside C.M. Since the
control flow should not depend on specific input values, we also
limit how the return values of basic operations are used. Finally,
we preclude certain basic operations such as replace(k,v,v’)

and remove(k,v), whose effect depends on v and the state of the
collection. Later, we relax some of these restrictions to capture a
wider set of composed operations.

In this section we define data-independent composed operations
and a set of restrictions that guarantee data-independence. We start
by defining the notion of trace renaming.

DEFINITION 4.1 (TRACE RENAMING). Given a composed op-
eration C.M with key and value parameters, a trace π of C, and
values k, v, and v′ 6= v, we define a trace π[k,v,v′] obtained from
π by: (i) replacing the input key for each operation in π by k;
(ii) replacing the input value for the C.M operation and for each
base operation of a main transition in π by v; (iii) replacing the
input value for each base operation of the environment transition
in π by v′; (iv) calculating the return value of operations using the
specification of C ; (v) calculating the local transitions using C.M.

4.1 Singleton Collection Method (SCM)
We start by defining the class of data-independent composed op-

erations referred to as Singleton Collection Methods (SCM). This
is the class of operations that is most prevalent in practice.

DEFINITION 4.2 (SCM). A composed operation C.M with pa-
rameter k and optional parameter v, is SCM data-independent
(from now on referred to as SCM) if:

1. k is used as a key in all basic collection operations.

2. k and v are immutable: no statement in C.M can assign to k
or v.

3. C.M can only invoke the following methods on C : get(k),
put(k,val), remove(k), and putIfAbsent(k,val) (here,
k is the parameter k, but val need not be the v).

4. if a return value r of a collection operation is used in a con-
dition, then the condition can only check the (in)equality of r
to null (this also applies when the return value is assigned
to other variables).

5. exit statements such as return and throw can only de-
pend on the return value of collection operations.

Restrictions 1 and 2 guarantee that the composed operation only
accesses a single key in the map and in a uniform way. Restriction
3 limits the basic operations used in composed operations. The
effect on the state and the return value of operations put(k,val),
get(k), remove(k), and putIfAbsent(k,val) does not depend
on a specific value (regardless of the input value, the operation be-
haves identically). Note that putIfAbsent(k,v) depends only on
the existence of k in the map and does not depend on a specific
value. The challenge is to guarantee that these operations are com-
posed in a way that preserves data-independence. This motivates
restrictions 4 and 5 limit control-flow decisions to those that de-
pend on the existence of a value in the collection without referring
to a specific value.

Examples.
Table 1 shows a composed operation, named compute, and a

composed operation named Replace, together with their update
and return value. Both the update and return value of compute
do not depend on a specific value. However, in Replace, both
the update and return value depend on the input argument v′. In-
deed, compute satisfies the restrictions from Definition 4.2, while
Replace does not satisfy Restriction 4 due to condition get(k)

== v’ inside the if statement.
Consider again the getLock operation in our running exam-

ple in Figure 2. This composed operation meets all of the con-
ditions of Definition 4.2 and is therefore an SCM. The operation
uses the underlying ConcurrentHashMap locks to memoize the
ReentrantLock allocated at line 4. When the value for a given
id is cached in the collection it is returned immediately; when the
ReentrantLock for a given id is not available, it is allocated and
inserted into the collection. . It has a single input id which is used
only as a key in the ConcurrentHashMap locks. And the return
value of the collection operation is only checked for (in)equality to
null (lines 3 and 7).

Next, based on the restrictions from Definition 4.2, the map spec-
ification, and the non-commutativity specification of maps, we state
the main reduction theorem. We use the simple case of SCM where
k is used as a key and v is used as a value in all operations. The-
ories for composed operations satisfying other restrictions can be
stated and proved in a similar way. Due to space limitation we omit
the proofs from the paper. The full details can be found in [26].

THEOREM 4.1. If C is a collection where C.M is an SCM op-
eration, and π is a linearizable trace of C, then for any input key k
and values v, v′ 6= v, π[k,v,v′] is a linearizable trace of C.
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Table 1: Sample composed operations and their specifications. compute is an SCM operation and Replace is not an SCM operation.
M : N→ N denotes the content of the map.

Operation Updated Map Value Return Value
compute(k, v){
nv = get(k);
if(nv 6= null){
nv = putIfAbsent(k, v);
if(nv = null)
nv = v;
}
return nv;
}

{
M M(k) 6= null
M [k 7→ v] o/w

{
M(k) M(k) 6= null
v o/w

Replace(k, v, v′){
if(get(k) == v′){
return replace(k, v, v′);
returnfalse;
}

{
M M(k) 6= v′

M [k 7→ v] o/w

{
false M(k) 6= v′

true o/w

1 V doubleNonLin (K) {
2 v a l = m. g e t (K ) ;
3 i f ( v a l == n u l l ) {
4 nv = K∗2;
5 m. p u t I f A b s e n t (K, nv ) ;
6 }
7 v a l = m. g e t (K ) ;
8 r e t u r n v a l ;
9 }

(a)

1 V d o u b l e L i n (K) {
2 v a l = m. g e t (K ) ;
3 i f ( v a l == n u l l ) {
4 nv = K∗2;
5 v a l =m. p u t I f A b s e n t (K, nv ) ;
6 i f ( v a l == n u l l )
7 v a l = nv ;
8 }
9 r e t u r n v a l ;

10 }

(b)
Figure 3: (a) an example of a non-linearizable method
inspired by bugs from Adobe BlazeDS, Vo Urp and
Ehcache-spring-annotations. (b) a possible lineariz-
able fix for the example from (a). Both examples are SCMs.

The theorem combined with the map semantics imply the fol-
lowing corollary.

COROLLARY 4.2. Checking linearizability of SCM operations
can be done using a fixed set of map entries.

Note that for programs in which these are the only infinite values,
the problem becomes decidable.

Also note that Theorem 4.1 shows that verification of lineariz-
ability of SCM composed operations can be done using any key
and any value. Therefore, verifying linearizability of SCM opera-
tions can be done by exploring all traces generated by the transition
relation from Section 3 using a single input key and a single input
value and checking whether the specification from Definition 3.1
holds for these traces. This can be accomplished using a standard
bounded model checker such as SPIN.

4.2 Example
We now show a non-linearizable example, together with a trace

generated using our algorithm, showing a linearizability violation.
We also show a possible fix to the example and demonstrate the
runs generated by our algorithm on the fixed linearizable example.

Figure 3a shows a non-linearizable method doubleNonLin in-
spired by bugs from Ehcache-spring-annotations, BlazeDS,
and Vo Urp. The method uses an underlying concurrent collection
m to memoize the value K*2 for each K. When the value for a given
key is cached in the collection it is read and returned; when the
value for a given key is not available, it is computed and inserted
into the collection and then read and returned.

Figure 4a shows a trace exposing a linearizability violation of
doubleNonLin that was generated using our algorithm. In this
figure, a state is represented by a box, a linearization point is repre-
sented by a black box (recall that the term linearization point was
defined earlier: a transition in the execution where the operation

takes effect), a state of the sequential run is represented by a cir-
cle, arrow represents a transition, and a dashed arrow represents an
environment transition together with its operation.

Our algorithm generated the trace as follows: The run starts at
the initial state 〈pc = 1,K = 1, C = ∅〉 and runs sequentially
until state 〈pc = 7, C = {(1, 2)}〉. This state is a linearization
point, therefore, at this point, a sequential run starts from the state
〈pc = 1,K = 1, C = ∅〉. While pc = 1,K = 1 is the local initial
state of doubleNonLin (K is the input argument),C = ∅ is copied
from the state previous to the linearization point. The sequential run
continues without intervening environment operations until termi-
nation (sequential trace represented by circles). Upon termination,
the map entries at the sequential trace’s last state and at the lin-
earization point’s state are compared and in this case are equivalent
(otherwise, a linearization violation was found). At this point, the
run continues and an environment operation, m.put(1,3), that in-
fluences the next to come operation m.get(3) is performed. Then,
the run continues until the return statement. In this trace, the lin-
earizability violation is revealed due to a different return value at
the concurrent trace’s last state(val = 3) and at the last sequential
trace’s state(val = 2).

Method doubleLin, presented at Figure 3b, is a corrected ver-
sion of the method doubleNonLin from Figure 3a. Figure 4b
shows all the runs generated by our algorithm on doubleLin. Be-
cause doubleLin is SCM, we used only a single input to verify
the linearizability of the custom collection built by doubleLin.
In addition, we restricted the environment to write a single value
other than the one calculated by doubleLin, in this case the value
3 was used. It is easy to see that in each trace the return value is the
same as the return value returned by the sequential trace. Therefore,
since all runs generated by our algorithm using a single input key
meet the condition of Definition 3.1, we conclude that doubleLin
is linearizable.

4.3 Value Collection Method (VCM)
We generalize the definition of SCM to deal with composed op-

erations containing the operation replace(k,v,v’). We refer to
this class as Value Collection Methods (VCM). In VCM, the op-
eration replace(k,v’,v) is allowed to appear in the composed
operation as long as v’ is a value returned by a get(k) operation.

Figure 5 shows an example of a composed operation inc taken
from OpenJDK [9]. This operation implements an increment action
for a concurrent histogram (as a map of counters). This operation is
not an SCM because it has a replace(k,v’,v) operation at line
8. However, this composed operation is VCM because the value i
used as v’ in line 8 is extracted from the collection at line 3.

Note that Theorem 4.1 can be generalized to deal with VCM
operations which therefore can be verified as linearizable using any
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Figure 4: Runs generated by our algorithm. A state is represented by a box, a linearization point is represented by a black box, A
state of the sequential run is represented by a circle, arrow represents a transition, and a dashed arrow represents an environment
transition together with its operation. (a) shows a run, generated by our algorithm, of doubleNonLin method from Figure 3a showing
a linearizability violation. The violation revealed by the different return value (val) at the end of the sequential trace. (b) shows all
the traces, generated by our algorithm, for doubleLin method from Figure 3b.

1 vo id i n c ( Class <?> key ) {
2 f o r ( ; ; ) {
3 I n t e g e r i = g e t ( key ) ;
4 i f ( i == n u l l ) {
5 i f ( p u t I f A b s e n t ( key , 1 ) == n u l l )
6 r e t u r n ;
7 } e l s e {
8 i f ( r e p l a c e ( key , i , i + 1 ) )
9 r e t u r n ;

10 }
11 }
12 }

Figure 5: VCM example, taken from OpenJDK [9]

key and any value. Verifying linearizability of VCM operations, as
SCM, can be done by exploring all traces generated by the transi-
tion relation from Section 3 using a single input key and a single
input value and checking whether the specification from Defini-
tion 3.1 holds for these traces.

4.4 Fixed Collection Method (FCM)
We also generalize the class of SCM operations to deal with pro-

grams that are dependent on a finite number of values. We refer to
this more general class as Fixed Collection Methods (FCM). We
generalize SCM by weakening the restriction that exit statements
and collection operations are not control-dependent on expressions
using k. In FCM, exit statements and collection operations may
be control-dependent on expressions using k when the expression
compares k to a constant value. We use these expressions to build
a set of inputs I for the FCM by adding all constants, as well as,
one additional value that is not in I .

1 Andro idToo l s fo rOsFami ly ( S t r i n g osFami ly ) {
2 Andro idToo l s i n s t a n c e = a n d r o i d T o o l s . g e t ( osFami ly ) ;

4 i f ( i n s t a n c e == n u l l ) {
5 Andro idToo l s n e w I n s t a n c e = n u l l ;
6 i f ( o sFami ly . e q u a l s ( " windows " ) ) {
7 n e w I n s t a n c e = new WindowsAndroidTools ( ) ;
8 } e l s e i f ( osFami ly . e q u a l s ( " un i x " ) ) {
9 n e w I n s t a n c e = new UnixAndro idTools ( ) ;

10 } e l s e {
11 th row new
12 U n s u p p o r t e d O p e r a t i o n E x c e p t i o n ( " . . . " ) ;
13 }

15 i n s t a n c e =
16 a n d r o i d T o o l s . p u t I f A b s e n t ( osFamily , n e w I n s t a n c e ) ;
17 i f ( i n s t a n c e == n u l l )
18 i n s t a n c e = n e w I n s t a n c e ;
19 }

21 r e t u r n i n s t a n c e ;
22 }

Figure 6: FCM example, taken from AutoAndroid [5]
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1 FxValueRendere r g e t I n s t a n c e ( FxLanguage l a n g u a g e ) {
2 i f ( l a n g u a g e == n u l l ) {
3 r e t u r n r e n d e r e r s . g e t (DEFAULT ) ;
4 }
5 i f ( ! r e n d e r e r s . c o n t a i n s K e y ( l a n g u a g e ) ) {
6 r e n d e r e r s . p u t I f A b s e n t ( l anguage ,
7 new FxValueRendere r Impl ( l a n g u a g e ) ) ;
8 }
9 r e t u r n r e n d e r e r s . g e t ( l a n g u a g e ) ;

10 }

Figure 7: A data-dependent method example, taken from fleX-
ive [7]

Figure 6 shows a composed operation forOsFamily taken from
Autoandroid [5]. This operation returns an instance of Android-
Tools suitable for the given operating system. This operation ei-
ther returns a new instance and updates the ConcurrentHashMap
androidTools or returns an existing instance extracted from the
map. AutoAndroid supports only tools for the “unix” and “win-
dows” operating systems, therefore, lines 6 – 13, check whether
the input string is either “unix” or “windows” and throws an excep-
tion otherwise.

Clearly, this function is not an SCM because there is an ab-
normal exit statement (throw at line 11) that is control depen-
dent on the input key osFamily (lines 6 and 8). However, the
input key osFamily is only compared to the constants “unix” and
“windows”. Moreover, forOsFamily meets all the other SCM re-
quirements. Therefore, osFamily is an FCM and the fixed input
set is the set { “unix”, “windows”, X} s.t. X is any value other than
“unix” and “windows”.

Note that Theorem 4.1 can also be generalized to deal with FCM
operations. Unlike SCM and VCM, FCM operations are depen-
dent only on a fixed set of inputs. Therefore, they can be verified
as linearizable by exploring all traces generated by the transition
relation from Section 3 using this fixed set of inputs. Verifying
forOsFamily for example, can be done using the set of input
{“unix”, “windows”, “*”}, where “*” can be replaced with any
string different that “unix” and “windows”.

4.5 Example of a Data-Dependent Composed
Operation

Figure 7 shows part of a composed operation getInstance taken
from fleXive [7]. This opeartion takes an input language and
when the input is null returns a predefined FxValueRenderer

corresponding to the key DEFAULT in the ConcurrentHashMap

renderers (lines 2 – 3). Otherwise, the method either returns a
new object FxValueRenderer and updates the renderers or re-
turns an existing FxValueRenderer from renderers (lines 5 –
9).

This composed operation is not linearizable, but can be repaired
to be linearizable, as shown in Figure 8. However, even its lineariz-
able version is neither SCM nor FCM. The reason is that in line
3 there is an access to renderers with the key DEFAULT which
might be other that the value of language.

5. EXPERIMENTAL EVALUATION
In this section we outline the implementation of our tool and

evaluate its effectiveness for checking linearizability of composed
operation on a wide range of real-world applications. Using our
approach, we show that all linearizable real-world composed oper-
ations we identified can be categorized as one of SCM, VCM, or
FCM and can be handled by our technique. We also classify those
operations which do not fall in these classes (we refer to those op-

1 FxValueRendere r g e t I n s t a n c e ( FxLanguage l a n g u a g e ) {
2 i f ( l a n g u a g e == n u l l ) {
3 r e t u r n r e n d e r e r s . g e t (DEFAULT ) ;
4 }

6 FxValueRendere r oldV = r e n d e r e r s . g e t ( l a n g u a g e ) ;

8 i f ( oldV == n u l l ) {
9 FxValueRendere r V = new FxValueRendere r Impl ( l a n g u a g e ) ;

10 oldV = r e n d e r e r s . p u t I f A b s e n t ( l anguage , V ) ;

12 i f ( oldV == n u l l )
13 oldV = V;
14 }
15 r e t u r n oldV ;
16 }

Figure 8: The data-dependent getInstance method, taken
from fleXive [7], fixed to be linearizable.

erations as data-dependent).

5.1 Implementation
An outline of the tool implementation is shown in Figure 9. The

programmer provides a multithreaded program to the Composed

Operation Extractor (referred to as CO Extractor). The CO
Extractor uses the WALA [10] static analyzer to identify com-
posed operations which include multiple base collection operations.

The extracted composed operation (CO) is then provided to the
VERIFIER module. This module checks whether the given composed
operation is SCM, FCM or VCM. If it is either of these three, then
it is considered to be data-independent, otherwise the operation is
considered data-dependent. If it is an FCM, the VERIFIER module
also provides a set of inputs. Further, to simplify checking, our tool
takes as input additional specification in the form of (potentially
conditional) linearization points of the composed operation. When
VERIFIER returns a data-dependent result the composed operation is
returned to the user since it cannot be handled by our approach.

When the VERIFIER returns an SCM, an FCM, or a VCM, we au-
tomatically generate Promela models, which are fed to the SPIN
model checker in order to verify linearizability. This can be done
for composed operations with primitive keys and values. However,
for composed operations with more complex keys or values (e.g.
of type String), we require that the programmer provides an input
driver for generating the actual values for keys and values. In ad-
dition, in this case, the user provides an influence driver that gets
an input object and returns a single different object. This driver is
used by the environment of our technique.

Note that for SCM, the input driver needs to provide only an
arbitrary key and an arbitrary value and the influence driver needs
to provide another value which differs from the one provided by
the input driver. Also note that the sequential specification we used
for checking linearizability is by executing the custom collection
operations in an atomic manner.

5.2 Applications
Table 2 lists 57 real-world applications using Java’s concurrent

collections. In many applications, concurrent collections were in-
troduced to address observed scalability problems, replacing man-
ual locking of a sequential map. Each of the applications contains
at least one method that was extracted and tested by our tool. In
33 out of the 112 extracted methods, the CO Extractor identified
a composed operation inside a large method and we manually ex-
tracted and generated the composed operation. The extracted meth-
ods together with explanations for each method can be found at [6].
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Table 2: 57 applications used for experiments
Program LOC Description
Adaptive Planning 1,103,453 Automated budgeting tool
Adobe BlazeDS 180,822 Server-based Java remoting
Amf-serializer 4,553 AMF3 messages serializa-

ton
Annsor 1,430 runtime annotation proces-

sor
Apache Cassandra 54,470 Distributed Database
Apache Derby 618,352 Relational database
Apache MyFaces 201,130 JSF framework
Apache ServiceMix 78,340 Enterprise Service Bus
Apache Struts 110,710 Java web apps framework
Apache Tomcat 165,266 Java Servlet
Apache Wicket 142,968 Web application framework
ApacheCXF 311,285 Services Framework
Autoandroid 19,764 Tools for automating an-

droid projects
Beanlib 42,693 Java Bean library
Carbonado 53,455 Java abstraction layer
CBB 16,934 Concurrent Building Blocks
Clojure 25,421 dynamic programming lan-

guage for the JVM
cometdim 5,571 A web IM project
Daisy 334,337 Content and information

management
DWR 26,094 Ajax for Java
dyuproject 26,593 Java REST framework
Ehcache Annota-
tions for Spring

3,184 Automatic integration of
Ehcache in spring projects

Ektorp 6,261 Java API for CouchDB
EntityFS 79,820 OO file system API
eXo 13,298 Portal
FindBugs 106,031 Static analysis tool
fleXive 910,780 Java EE 5 content repository
GlassFish 260,461 JavaServer faces
Granite 28,932 Data services
gridkit 8,746 Kit of data grid tool and libs
GWTEventService 17,113 Remote event listening for

GWT
Hazelcast 59,139 Data grid for Java
Hudson 14,991 Automatic build system
hwajjin 4,371 A Struts plugin for Java
ifw2 54,888 Web application framework
Jack4j 4,477 Interface to Jack library
JBoss AOP 1,013,073 Aspect oriented framework
Jetty 64,039 Java HTTP servlet server
Jexin 11,024 functional testing platform
JRipples 148,473 Program analysis
JSefa 27,208 Object serialization library
keyczar 4,720 Cryptography Toolkit
memcache-client 4,884 Memcache client for Java
Module Glassfish 745 Module for Glassfish
OpenEJB 191,918 Server
OpenJDK 1,634,818 JDK 7
P-GRADE 1,154,884 P-GRADE Grid Portal
Project Tammi 163,913 Java development frame-

work
Project Track 5,160 Example application
RESTEasy 81,586 Java REST framework
Retrotranslator 27,315 Automatic compatibility

tool
Streamy 483,418 Audio/video recorder
Tersus 165,160 Visual Programming Plat-

form
torque-spring 2,526 Torque support classes
Vo Urp 24,996 UML data models translator
WebMill 57,161 CMS portal
Xbird 196,893 XQuery processor
Yasca 326,502 Program analysis tool

Figure 9: Technique overview

5.3 Results
We tested 112 methods in 57 applications. All of our experi-

ments were carried out using an AMD Opteron 2.4Ghz dual hyper
threaded CPUs, 8GB RAM platform running on a 64 bit Linux.
The runtime for analyzing each method was less than a second.

Figure 10 (a) shows that 49 methods are data-independent. Out
of these, 43 are SCM, 1 is VCM, and 5 depend on fixed input keys
(FCM). Furthermore, 30 methods were verified as linearizable, and
a linearizability violation was detected in the other 19 methods. We
then manually fixed the linearizability violations in all of these 19
methods and verified their fixed versions are linearizable.

Figure 10 (a) also shows that 63(56%) of the tested methods
are data-dependent. The data-dependent methods cannot be veri-
fied by our technique. However, a close inspection revealed that
all the data-dependent methods are non-linearizable. Moreover, it
is not obvious if these methods can be rewritten as equivalent lin-
earizable methods because, as Section 5.3.1 shows, the results of
most of these methods depend on the values of global variables.
In summary, all of the linearizable methods were verified with our
technique.

Figure 10 (b) shows the distribution of the data-independent meth-
ods that are linearizable, or can be fixed to be linearizable in each of
our benchmarks. In 21 out the 57 application we automatically ver-
ified the linearizability of all composed operations. The remaining
36 applications also include data-dependent methods that cannot be
verified by our technique.

5.3.1 Benchmark Classification
Figure 11 shows the classification of our 63 data-dependent com-

posed operations according to the rules they falsify. The largest
group, marked “Globals”, has 43 operations that use global vari-
ables and are therefore not encapsulated. These operations are non-
linearizable in an open environment. Moreover, it is not obvious
whether these methods can be rewritten as equivalent linearizable
methods because the result of these methods depends on the values
of the globals. For example, Figure 12 shows a method from the
Granite benchmark, where the result depends on the global vari-
ables _proxy, and _noproxy(note the condition in line 10). An
environment that changes the value of _proxy affects the value of
destination, calculated in line 12.

In 2 of the data-dependent operations there is a remove(k,v)

operation (marked as “Remove”), 6 may exit not based on col-
lection result (marked as “Exit”), and 3 access the map with two
different keys (marked as “Keys”). An example of the last case
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Figure 10: Benchmark results. (a) classification of 112 benchmark methods into SCM, VCM, FCM, and data dependent methods,
and classification of the 49 data-independent methods into linearizable and non-linearizable. The rest 63 data-independent methods
are non-linearizable (b) data-independent methods that are either linearizable or can be fixed to be linearizable in each one of our
benchmarks.

1 p u b l i c H t t p D e s t i n a t i o n g e t D e s t i n a t i o n ( Address remote , b o o l e a n s s l ) t h ro ws UnknownHostException , IOExcep t i on
2 {
3 i f ( r emote == n u l l )
4 th row new UnknownHostExcept ion ( " Remote s o c k e t a d d r e s s c a n n o t be n u l l . " ) ;

6 H t t p D e s t i n a t i o n d e s t i n a t i o n = _ d e s t i n a t i o n s . g e t ( remote ) ;
7 i f ( d e s t i n a t i o n == n u l l )
8 {
9 d e s t i n a t i o n = new H t t p D e s t i n a t i o n ( t h i s , remote , s s l , _maxConnec t ionsPe rAddres s ) ;

10 i f ( _proxy != n u l l && ( _noProxy == n u l l | | ! _noProxy . c o n t a i n s ( remote . g e t H o s t ( ) ) ) )
11 {
12 d e s t i n a t i o n . s e t P r o x y ( _proxy ) ;
13 i f ( _ p r o x y A u t h e n t i c a t i o n != n u l l )
14 d e s t i n a t i o n . s e t P r o x y A u t h e n t i c a t i o n ( _ p r o x y A u t h e n t i c a t i o n ) ;
15 }
16 H t t p D e s t i n a t i o n o t h e r = _ d e s t i n a t i o n s . p u t I f A b s e n t ( remote , d e s t i n a t i o n ) ;
17 i f ( o t h e r != n u l l ) d e s t i n a t i o n = o t h e r ;
18 }
19 r e t u r n d e s t i n a t i o n ;
20 }

Figure 12: A non-linearizable composed operation from GRANITE. The result of the operation depends on the global variables _proxy
and _noProxy.
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Figure 11: Classification of our 112 data-dependent and data-
independent composed operations according to the rules they
falsify or satisfy.

is the function getInstance shown in Figure 7. This method
accesses the DEFAULT key in line 3 and the language key at
lines 6 and 10. Finally, in 2 of the data-dependent composed op-
erations there exists a branch on collection return value other than
null (“Branch”), 4 have a size (“Size”), and in 3 the composed
operation has more than two input arguments (“Inputs”).

6. RELATED WORK
Next, we survey some of the work that is most closely related to

our approach.

6.1 Dynamic Analysis of Linearizabilty
Dynamic atomicity checkers such as [20, 19] check for viola-

tions of conflict serializability. As noted earlier, conflict-serializability
is inappropriate in our setting as typically the underlying base col-
lection is linearizable and programmers simply want to add other
linearizable methods. Hence, we focus on checking linearizability.

Linearizability checking tools have proven quite effective in find-
ing bugs. Line-Up [14] is a dynamic linearizability checker that
learns the sequential specification dynamically and then checks it
for linearizability. [27] is a dynamic tool for checking linearizabil-
ity of composed collection operations.

All of the above techniques can effectively find bugs in general
programs, however, these methods may produce false negatives. In
this paper, we focus on data-independent programs manipulating
maps and present a procedure that can prove linearizability for that
class.

6.2 Linearizability Verification
A manual proof of correctness of several interesting concurrent

data structure implementations using rely-guarantee reasoning is
presented in [29].

The PVS system has been successfully used to semi-automatically
verify linearizability [18, 16, 21] of several programs. These proofs
provide crucial insights on essential points of the algorithm. How-
ever, this is a very time consuming task that needs to be repeated for
each new program. In contrast, our approach works on a restricted
class of programs but is much more automatic.

The work of [12] introduced the idea of using abstract interpre-
tation [17] to develop an automatic over-approximation for check-
ing linearizability. Thus, the algorithm can prove linearizability in
certain programs but may fail due to overly conservative abstrac-
tion. The algorithm assumes that the concurrent and sequential runs

differ by at most one element, thereby drastically simplifying the
task of checking linearizability. The work in [13, 25] generalizes
[12] using a thread-centric approach to verify programs with an un-
bounded number of threads. In [28], the idea of bounded difference
is combined with rely guarantee reasoning and shape abstractions
to perform fast linearizability checks. In contrast, the work in this
paper is not only sound but also guaranteed to be complete for data
independent collection manipulations. Note that we prove that lin-
earizability violations can be observed using maps with at most one
key which implies bounded differences.

Works such as [30] focus on model checking individual collec-
tions. Our work operates at a higher level, as a client of already ver-
ified collections, and leverages the specifications of the underlying
collections and the composed operation’s data-independent charac-
teristics to reduce the search space. Also, we bound the global state
without using any approximation.

In [15] is shown that checking linearizability is decidable for pro-
grams with simple linked-list manipulations. We focus on collec-
tions that hide the internal representation and use data-independence
to show that the state space reduces to the state space of the local
state. This implies decidability for finite-state local states and is ef-
fective for all the data-independent programs we have encountered.

6.3 Effective Techniques for State Space Re-
duction

This paper uses data-independence which was inspired by [31]
to bound the size of the global state space.

Partial order reduction techniques, such as [22], utilize com-
mutativity of individual memory operations to filter out execution
paths which cannot lead to new violations. While this technique has
proven to be very effective for drastically reducing the state space
in explicit state model checking, it is in general difficult to infer
commutativity for real life software. This paper uses the fact that
the abstract interface of the collection is known at library design
time to build a tool which incorporates commutativity checking.

7. CONCLUSION AND FUTURE WORK
Proliferation of concurrent libraries combined with desire for

increased performance has led to the current situation where pro-
grammers build applications that create custom composed concur-
rent operations. These composed concurrent operations consist of
multiple invocations of underlying library operations and are meant
to be linearizable. Unfortunately, implementing such composed
concurrent operations correctly and efficiently has proven to be
quite difficult.

In this paper, we identified a class of data-independent composed
concurrent operations that frequently arises in practice. Then, we
presented a novel automatic linearizability verification procedure
for that class. The basic insight is to leverage the restricted struc-
ture of the composed concurrent operations by defining a reduction
procedure which enables us to verify the composed operation by
only considering a small bounded number of values. We imple-
mented the reduction in a tool and used it to prove linearizability of
practical composed collections which were automatically extracted
from a large variety of open source projects.

As future work, we plan to extend the class of data-independent
composed operations as well as to study their use in other program-
ming languages.
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