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Abstract

We introduce ACTIONS, a framework and pro-
gramming environment to facilitate the imple-
mentation of tool-augmented language models
(LMs). Concretely, we augment LMs with the
ability to call actions (arbitrary Python functions),
and experiment with different ways of tool discov-
ery and invocation. We find that, while previous
works heavily rely on few-shot prompting to teach
tool use, a zero-shot, instruction-only approach is
enough to achieve competitive performance. At
the same time, ACTIONS zero-shot approach also
offers a much simpler programming interface, not
requiring any involved demonstrations. Building
on this, we show how ACTIONS enables LLMs
to automatically discover and combine multiple
tools to solve complex tasks. Overall, we find
that inline tool use as enabled by ACTIONS, out-
performs existing tool augmentation approaches,
both in arithmetic reasoning tasks and text-based
question answering. Our implementation extends
the open source LMQL programming language for
LM interaction (Beurer-Kellner et al., 2023) and is
available at ANONYMIZED (upon publication).

1. Introduction
State-of-the-art Large Language Models (Large LMs -
LLMs) offer powerful conversational abilities (Brown et al.,
2020; Rae et al., 2021; Chowdhery et al., 2022; Touvron
et al., 2023; Bommasani et al., 2021). However, they have
been shown to struggle with symbolic reasoning, informa-
tion look-up and consistency (Gao et al., 2023).

Tool-Augemented LMs To address this, researchers took
inspiration from the idea of System-1-System-2 dichotomy
in human cognition (Kahneman, 2011), where System 1 is
fast intuitive reasoning, prone to errors, and System 2 is
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1 argmax
2 """Q: What is the population of
3 Germany and the US combined?
4 A: Let's think step by step.[REASONING]
5 Therefore the answer is[ANSWER]"""
6 from
7 "openai/text-davinci-003"
8 where
9 inline_use(REASONING, [wiki, calc])

Model Output

Q: What is the population of Germany and the US combined?

A: Let’s think step by step.

First, let’s find the population of Germany and the US. We can
use the wiki tool to search for the population of each country.

For Germany, <<wiki("Population of Germany") | The

demography of Germany is monitored by the Statistisches

Bundesamt (Federal Statistical Office of Germany).

According to the most recent data, Germany’s population is

84,270,625...>>

For the US, <<wiki("Population of the United States") | The

United States had an official estimated resident

population of 333,287,557 ...>>

Now, let’s use the calc tool to add the two populations
together. The population of Germany and the US combined is
<<calc("84270625 + 333287557") | 417558182>>.

Therefore the answer is 417558182.

Figure 1: Example of ACTIONS usage within a LMQL query
(top). In the output (bottom) we show the full output and
highlight tool usage in orange boxes and input in the blue.

slow, structured logical reasoning. By treating the LM as a
System 1 reasoning agent, and augmenting it with System 2
tools, researchers hope to improve LLM reasoning abilities
(Mialon et al., 2023; OpenAI; Schick et al., 2023; Gao et al.,
2023; Chen et al., 2022; Shuster et al., 2022; Nakano et al.,
2021; Thoppilan et al., 2022; Komeili et al., 2022; Lazaridou
et al., 2022; Cobbe et al., 2021; Yao et al., 2022), using a
wide range of different techniques and approaches.

This Work In this work we systemize these existing ap-
proaches and discover two crucial aspects to all of them: (i)
tool discovery, i.e. teaching the LM which tools are avail-
able and what their interfaces are, and (ii) tool execution, i.e.
how the LM invokes the tool and incorporates its output.

Based on this, this work introduces ACTIONS, a framework
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for tool-augmented LMs supporting multiple strategies for
tool discovery and execution. ACTIONS provides an acces-
sible interface, allowing users to easily expose any Python
function to the LM reasoning process, without the need for
manual guidance or few-shot demonstrations. We imple-
ment ACTIONS on top of the LMQL language for scripted
prompting (Beurer-Kellner et al., 2023) (see §2).

We showcase ACTIONS in Fig. 1. Given a simple natu-
ral language prompt, we can use ACTIONS to expose the
Python functions wiki and calc to the LM reasoning pro-
cess. During generation, the LM can then simply invoke the
functions using a demonstrated calling convention, where
execution is handled transparently by ACTIONS. We refer
to this tool usage pattern as inline usage, as the LM can in-
voke tools at any time during the generation process. While
ACTIONS supports multiple tool discovery paradigms, it
focuses on a zero-shot instruction-based approach. To this
end, internally, ACTIONS uses a dynamically generated in-
structive prompt to teach the LM about tools and handles all
tool execution by constraining and guiding LLM generation.
Users can also specify different tool use paradigms, such as
program-aided (Gao et al., 2023) or ReAct (Yao et al., 2022),
simply by relying on respective ACTIONS functions like
inline_use in Fig. 1. For this, no further adaptation of the
tool implementations or the user prompt is required.

We demonstrate the utility of ACTIONS in several case stud-
ies and carry out a quantitative comparison of different tool
use paradigms. We find that inline tool use as shown in Fig. 1
outperforms existing tool augmentation approaches, both
on arithmetic reasoning tasks and text-based question an-
swering. ACTIONS is competitive with few-shot prompted
tool usage approaches, while being much easier to use and
implement, not requiring any few-shot demonstrations or
training. This greatly facilitates multi-tool usage, where
(domain-specific) tools can be added and removed as re-
quired and model guidance and tool execution is handled
transparently by ACTIONS.

Key Contributions To summarize, our contributions are:

• A review and systematization of existing tool-
augmented LMs, identifying the tool discovery and
tool execution phases as crucial to tool use (§3).

• ACTIONS, a novel framework for tool-augmented LMs,
implementing both the tool discovery and tool execu-
tion phases. ACTIONS focuses on zero-shot inline tool
use, which is effective with state-of-the-art LLMs, but
also easy to use and implement (§4).

• A thorough evaluation showcasing use cases for AC-
TIONS and a quantitative comparison of different tool
use paradigms in and outside of ACTIONS (§5).

1 argmax
2 "Hey!"
3 "2 + 2 = [ANSWER]"
4 from
5 "jeffwan/vicuna-13b"
6 where
7 INT(ANSWER)

(a) Constrained decoding with integers.

1 argmax
2 "Q: From which countries did the Norse
3 originate?\n"
4 "Action: Let's search Wikipedia for the
5 term '[TERM]\n"
6 result = await wikipedia(TERM)
7 "Result: {result} \n"
8 "Final Answer:[ANSWER]"
9 from

10 "openai/text-davinci-003"
11 where
12 STOPS_AT(TERM, "'")

(b) Searching Wikipedia during LM reasoning.

Figure 2: Two examples of simple LMQL programs.

2. Background: Scripted Prompting
Recently, Beurer-Kellner et al. (2023) introduced the idea of
scripted prompting, which extends natural language prompts
with (Python) scripting capabilities and logical constraints.

We provide a brief demonstration of LMQL in Fig. 2, with two
example queries. The first, Fig. 2a, asks a locally hosted
Vicuna model (Chiang et al., 2023) to perform a simple
mathematical operation while constraining the output to
be a number. Here, argmax denotes the decoding strategy
(others would be sample or beam). The subsequent block is
an arbitrary Python program. Each top-level string is part
of the prompt fed to the LM, where [VARIABLE] denotes a
variable to be filled in. All text up to the variable is given to
the LM as a prompt. The model then completes the sequence
and assigns the result to the variable in the context of the
query program. In addition to this prompting mechanic, the
where block specifies constraints on the variables. Shown
here is a constraint INT(ANWER), which restricts the model
to only generate tokens that form a valid integer number.
For a more detailed disucssion of constraints we refer to
Beurer-Kellner et al. (2023).

Fig. 2b showcases a more advanced query program where
an (OpenAI) LM responds to a general knowledge question,
but scripting logic first looks up an LM-determined term on
Wikipedia and adds the result to the prompt. To prevent the
running on issue Beurer-Kellner et al. (2023) when generat-
ing TERM, we enforce a stopping phrase on TERM. Since LMQL

is a superset of Python, wikipedia can be a standard Python
function that will automatically be called during generation.
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Thought: Lets find the population of German.

Action: wiki("Population of Germany")

Observation: The demography of Germany is . . .

Figure 3: Example of the thought-action-observation tem-
plate in REACT.

3. Tool Augmentation
The idea of augmenting an LM with tools has been explored
in several recent works. Here we provide a brief overview
of these approaches and and systematize them.

ChatGPT Plugins (OpenAI) is a proprietary system by Ope-
nAI for models accessed through their API. The LLM is
provided with textual descriptions and an HTTP API end-
point for a tool. These tools are executed server-side and
only the result is visible to the user.

PAL (Gao et al., 2023) and Chen et al. (2022), both, rather
than augmenting an LM with inline tools propose to let the
LM generate a python program (with text and reasoning as
comments) to answer the prompt rather than reply in natural
language. This program is then executed and the result is
returned to the user. PAL has also been extended to use
symbolic reasoning libraries (He-Yueya et al., 2023).

Schick et al. (2023) formalize tool-usage for language mod-
els, in a way similar to what we consider inline use in
ACTIONS, however, they require tool-specific training. The
trained models then output special syntax that stops the de-
coder, executes a tool and inserts the result into the currently
decoded sequence.

REACT (Yao et al., 2022) prompts a model with a specific
template interleaving reasoning ("thoughts" by the LLM)
and actions and observations from a task-specific action
space. The common ReAct template with example actions
and observations is shown in Fig. 3.

With respect to tools, the most common use cases are vari-
ants of search, text or knowledge retrieval, usually in di-
alogue systems or for question answering (Shuster et al.,
2022; Nakano et al., 2021; Thoppilan et al., 2022; Komeili
et al., 2022; Lazaridou et al., 2022; Cobbe et al., 2021).

All these methods share two key components: (i) a way for
the LM to discover the tool and (ii) a way for the LM to use
the tool. We discuss them in more detail in in the following.

3.1. Tool Discovery

Before an LM can use a tool, it needs to know about its
availability and how to use it.

Training or fine-tuning with a dataset can be used to train
an LM aware of the set of available tools, as used in Schick
et al. (2023)’s TOOLFORMER. This approach requires a

dataset of tool usage examples, which can be expensive
to collect, though Schick et al. (2023) also provide an ap-
proach to automatically generate such datasets. A downside,
however, is that the set of tools is fixed at training time and
cannot be changed at a later point without retraining.

Few-Shot Prompting Here the syntax for using tools is
shown in a few-shot prompt before the actual LM reason-
ing begins. This allows the LM to discover the invocation
and expected output of tools. By seeing which tools have
been used in the few-shot prompts the LM can learn and
adapt to a broad set of tools. While reasonably flexible, this
approach can become problematic as the number of tools
increases and few-shot prompts have to be very long and
comprehensive to cover all tools and combinations.

Instruction As an alternative to few-shot prompting, Chat-
GPT Plugins (OpenAI) use a set of instructions to describe
the available tools. This approach is very flexible and al-
lows to add new tools at inference time. However, to be
effective it requires a large-scale model trained to follow
and understand complex instructions.

3.2. Tool Usage

Next, we briefly summarize the different ways LLM tool
use can be implemented.

Post Hoc PAL (Gao et al., 2023) and Chen et al. (2022) let
the LM generate a Python program and evaluate the result-
ing snippet of code with a python interpreter. This approach
is flexible and enables powerful, symbolic reasoning, how-
ever, the LM must possess significant planning capabilities
to generate a correct program. Further, deferring tool use
until after the program was generated means that the LM
cannot use the tool output or intermediate results to guide
its generation process.

Template As an alternative, REACT (Yao et al., 2022)
prompts an LM with a specific template where tool use is
admitted only in designated syntactic locations. To enable
multiple consecutive tool uses, REACT relies on an inter-
pretation loop that alternates LLM thoughts and actions
(i.e., tool use). This approach is flexible and allows to use
multiple tools in sequence. However, the template syntax is
limited and does not allow to use tools in arbitrary locations.

Ad Hoc or inline tool usage is the most flexible and power-
ful way to use tools in LMs. Once a specific syntax for tool
use is emitted by the model during generation, the specified
tool is evoked, the result inserted into the prompt, and text
generation continues. This approach is used by Schick et al.
(2023) and ChatGPT Plugins (OpenAI).
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Instructions: In your reasoning, you can use the following 
tools:  - wiki: Search wikipedia using <<wiki(...)..

Q: What is the population of Germany and the US combined?
A: Let’s think step by step.

For Germany, <<wiki("Population of Germany") | The
demography of Germany is monitored by the Statistisches
Bundesamt (Federal Statistical Office of Germany).
According to the most recent data, Germany’s population is
84,270,625...>>

For the US, <<wiki("Population of the United States") | 
The
United States had an official estimated resident
population of 333,287,557 ...>>

Now, let’s use the calc tool to add the two populations
together. The population of Germany and the US combined is
<<calc("84270625 + 333287557") | 417558182>>.

def wiki(q: str)

def calc(q: str)

argmax

   """Q: What is the population of

         Germany and the US combined?

      A: Let's think step by 

step.[REASONING]

         Therefore the answer is[ANSWER]"""

from

   "openai/text-davinci-003"

where

   inline_use(REASONING, [wiki, calc])

Python Tools

LMQL Query

Tool Discovery

Tool Execution

Language 
Model

Dynamic
Instructive

Prompt

Full Tool-Augmented 
Prompt

Figure 4: ACTIONS implements a framework handling both tool discovery via dynamic instructive prompt as well as tool
invocation, issueing multiple consecutive LLM calls to interleave tool use with LM reasoning.

4. ACTIONS: A framework for
tool-augmentated LM reasoning

Based on existing tool augmentation approaches, we intro-
duce ACTIONS, a programmatic framework for tool aug-
mentation with LMs. By default, ACTIONS is an instruction-
based, zero-shot approach, that allows ad-hoc tool use in
arbitrary locations. It is implemented on top of the LMQL

query language, and offers a lightweight and simple in-
terface to augment existing LMs with tools (OpenAI and
transformers models).

We provide an overview of the ACTIONS framework in
Fig. 4. In ACTIONS, any ordinary Python function can be
exposed as a tool. For tool discovery, ACTIONS relies on a
dynamically constructed instructive prompt, that is inserted
right before the model generates output in response to a user
prompt (cf. Fig. 4, right). To use ACTIONS, users employ
designated constraints in the where clause of an LMQL query,
to expose functions as LLM tools. This enables precise
scoping of tool use, allowing users to limit tool access only
to specific parts of the LM output or use different tools
across different parts of a prompt.

Tool Discovery ACTIONS automatically derives the de-
scription and a simple demonstration from the docstring1

of a tool function, as shown in Fig. 5. This allows users to
expose any Python function as a tool, without requiring any
additional annotations. If desired, users can provide addi-
tional few-shot samples to aid discovery, disabling dynamic
instructions if needed. ACTIONS is also compatible with
LMs trained for tool use, as it operates during inference only.
All these options are non-exclusive and can be combined.

1https://peps.python.org/pep-0257/

Transient Instructions In LMQL queries with more than
one variable, the variable-specific, dynamic tool discovery
prompt is automatically removed, once tool usage in a given
variable has completed. This keeps tool-specific instruc-
tive prompts local to the tool use, and avoids interference
with the reasoning process on other variables. For instance,
in Fig. 4, when query execution has finished tool use in
REASONING and moves on to decode ANSWER next, the instruc-
tive prompt of REASONING is removed and the model is only
shown tool results interleaved with its reasoning, without
any tool instructions (full opacity parts in Fig. 4). This
also allows users to use different tools in different variables,
without any interference on the instruction level.

Tool Use in ACTIONS On the tool execution level, AC-
TIONS provides support for three core modes, but can also
be extended to new forms. The core modes are:

• inline_use(VAR, actions) refers to inline action use as
showcased in Fig. 1. Here the LM is allowed to call
functions provided as actions at any point during rea-
soning, simply by emitting << followed by the function
name and the arguments. Based on this calling con-
vention, the corresponding tool is then invoked, where
the pipe character |, result and >> are inserted by the
ACTIONS runtime.

• inline_code(VAR) Inline code execution treats every
line emitted by the model (as part of VAR) as Python
code, evaluates it, and appends the evaluation result at
the end of the line. This provides the LM with real-
time feedback during code generation, and can be seen
as a special case of inline_use(VAR, actions) where
the only action is a python interpreter.

4
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• react(VAR, actions) refers to REACT-style action use
where the model is instructed to reason based on a
template with designated lines for Thought, Action and
Observation, as introduced by Yao et al. (2022).

We note that the simple post-hoc tool use like PAL (Gao
et al., 2023) is not supported explicitly, as it can be trivially
written in standard LMQL and does not need any additional
support. We showcase this in App. A.

Summary To summarize, ACTIONS is a way to enable
the simple use of tools in LMs. In particular, it aims to be an
instruction-centered inline-use framework but also supports
other paradigms, like different forms of tool execution and
few-shot demonstrations.

The only other instruction based, inline-use currently is Ope-
nAI, which is only available through a commercial interface
with few models. In contrast, ACTIONS aims to support this
paradigm for any model and tool within the realm of the
existing LMQL query language, is open source and research-
friendly, allowing for easy experimentation and extension.

5. Experimental Evaluation
We evaluate ACTIONS with case studies in §5.1 and §5.2 and
additionally carry out a quantitative comparison of different
tool use paradigms in §5.3, comparing unassisted chain-of-
thought, program-aided reasoning (Gao et al., 2023) and the
inline modes of ACTIONS. We first describe the experimen-
tal setup and then present the results.

Model We use OpenAI’s text-davinci-003 InstructGPT
model (Wei et al., 2022b) for all our experiments, because
of its strong zero-shot capabilities (Kojima et al., 2022). We
also experimented with the smaller text-curie-001 model,
but, overall, find that its instruction following capabilities
are insufficient for zero-shot tool use.

Datasets To assess the effectiveness of tool use during
reasoning, we focus on object tracking, factual knowledge
tasks and arithmetic reasoning. More specifically, we asses
performance with the Tracking Shuffled Objects benchmark
(Srivastava et al., 2022), the fact checking benchmark Fever
(Thorne et al., 2018), and the hard arithmetic benchmarks
GSM-Hard (Gao et al., 2023) and the ALGEBRA (He-Yueya
et al., 2023). We specifically choose the latter two over
GSM8K, which has been found out to be of low complexity
with respect to the numbers in use (Gao et al., 2023; Madaan
& Yazdanbakhsh, 2022).

Sample Size In our quantitative evaluation, we choose to
limit our evaluation to 50 samples per dataset, and allocate
our compute budget more towards a comparison of different
prompting and tool use strategies.

1 room = [
2 Person("Alice", 28, "data scientist"),
3 Person("Bob", 81, "student"),
4 Person("Aunty", 45, "CEO"),
5 ]
6

7 def people():
8 """
9 Returns a list of people

10

11 Example: people()
12 Result: "Peter", "Bob", "Alice"
13 """
14 return ", ".join([p.name for p in room])
15

16 def attr(person: str, attribute: str):
17 """
18 Get an attribute of a person.
19

20 Example: attr("Alice", "age")
21 Result: 27
22 """
23 assert attribute == "age"
24 p = [p for p in room if p.name == person][0]
25 return getattr(p, attribute)
26

27 argmax
28 "Q: What is the average age of people
29 in the room?\n"
30 "A: Let's think step by step\n"
31 "[REASONING]"
32 from
33 "openai/text-davinci-003"
34 where
35 inline_use(REASONING, [people, attr, calc])

Model Output

Q: What is the average age of people in the room?

A: Let’s think step by step

First, let’s get a list of all the people in the room using the
people() tool. <<people() | Alice, Aunty, Bob>> Alice, Aunty,
Bob are the people in the room.

Next, let’s get the age of each person using the attr() tool.
<<attr("Alice", "age") | 28>> 28 is Alice’s age.
<<attr("Aunty", "age") | 45>> 45 is Aunty’s age.
<<attr("Bob", "age") | 81>> 81 is Bob’s age.

Finally, let’s calculate the average age of the people in the
room using the calc() tool. <<calc("(28+45+81)/3") | 51.33>>
51.33 ✓ is the average age of the people in the room.

Figure 5: Using multiple tools at once with ACTIONS and
text-davinci-003. A room of people of different age is
exposed purely via a tool-based interface, where the LLM
successfully operates across all tools, to answer a question
about the average age of people in the room.

Few-Shot Prompts Although ACTIONS is a zero-shot
framework by default, we also compare with few-shot
prompting instead of using an instructive prompt. For this,
we use the few-shot examples provided in Gao et al. (2023).
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Q: What is the average age of people in the room?

A: Let’s think step by step

Instructions: In your reasoning, you can use the following tools:

- people: Returns a list of people Usage: <<people() | "Peter", "Bob",
"Alice">>

- attr: Get an attribute of a person. Usage: <<attr("Alice", "age") | 27>>

- calc: Evaluate the provided arithmetic expression in Python syntax. Usage:
<<calc("1+2*3") | 7>>

You can also use the tools multiple times in one reasoning step.

Reasoning with Tools: [...]

Figure 6: The dynamically generated instructive prompt for
tool discovery in Fig. 5.

5.1. Case Study: Multi-Tool Use

ACTIONS allows users to easily expose arbitrary Python
functions to the LLM. To demonstrate this, consider the
example given in Fig. 5. There, we define two simple actions
people and attr as Python functions of the same name. The
former returns a list of people in the room, the latter returns
attributes of a given person (e.g., age). Exposing these two
actions and the previously shown calc via ACTIONS, we
can equip an LM to reason about people in the room and
their attributes. Note, how attr in Fig. 5 even has multiple
arguments to specify person and attribute name separately.

Instructive Prompt To enable tool discovery, we rely
on inline action usage (cf. inline_use), which automati-
cally inserts a corresponding instructive prompt before the
REASONING step. The dynamically generated prompt is shown
in Fig. 6. As shown in the snippet, the instructive prompt
includes descriptions of all available tools, including the
standard action calc and the user actions people and attr.

Model Behavior We ask the model to compute the aver-
age age of all people in the room. As shown in Fig. 5, the
successfully discovers and uses the provided actions, first
obtaining a list of all people in the room via people and then
determining the age of each person via attr(<p>, "age"), to
finally calculate their average via calc.

Baseline Comparison We also construct an analogous
chain-of-thought prompt, first listing all Person objects, then
asking the model to compute the average age. Even though
the model is able to parse age information from the data
objects, it fails to compute the average age correctly, as it
cannot resort to a robust arithmetic tool. Further, more com-
plex data with more attributes could also be challenging for
the model to parse. Including all information in the prompt
in this way, may also not be feasible with large amounts of
data. In contrast, tool use and ACTIONS allow the LLM to
guide the data selection process, actively deciding which
information to include and which to ignore. Overall, this
lowers token usage and enables more focused reasoning.

1 kvstore = {}
2 def store(key, value):
3 """
4 Store a key-value mapping.
5

6 Example: store("A", "has B")
7 Result: A -> has B
8 """
9 kvstore[key] = value

10 return f"{key} -> {value}"
11 def swap(key1, key2):
12 """
13 Swap the values of key1, key2.
14

15 Example: swap("A", "B")
16 Result: None
17 """
18 temp = kvstore[key1]
19 kvstore[key1] = kvstore[key2]
20 kvstore[key2] = temp
21 def load(key):
22 """
23 Get the stored value of a key-value mapping.,
24

25 Example: load("A")
26 Result: "has B"
27 """
28 return kvstore[key]
29

30 argmax
31 "Q: Alice, Bob, and Claire are playing a game.
32 At the start of the game, they are each holding
33 a ball: Alice has a black ball, Bob has a brown
34 ball, and Claire has a blue ball. \n\nAs the game
35 progresses, pairs of players trade balls. First,
36 Bob and Claire swap balls. Then, Alice and Bob
37 swap balls. Finally, Claire and Bob swap balls.
38 At the end of the game, what ball does Alice have?"
39 "A: Let's think step by step\n"
40 "[REASONING]"
41 from
42 "openai/text-davinci-003"
43 where
44 inline_use(REASONING, [store, load, swap])

Model Output
...

A: Let’s think step by step

At the start of the game, Alice has a black ball, Bob has a
brown ball, and Claire has a blue ball. <<store("Alice",
"black") | Alice -> black>> Alice -> black, <<store("Bob",
"brown") | Bob -> brown>> Bob -> brown, <<store("Claire",
"blue") | Claire -> blue>> Claire -> blue.

Bob and Claire swap balls. <<swap("Bob", "Claire") |

None>> None, <<load("Bob") | blue>> blue,
<<load("Claire") | brown>> brown.

Alice and Bob swap balls. <<swap("Alice", "Bob") | None>>
None, <<load("Alice") | blue>> blue, <<load("Bob") |

black>> black.

Claire and Bob swap balls. <<swap("Claire", "Bob") |

None>> None, <<load("Claire") | black>> black,
<<load("Bob") | brown>> brown.

At the end of the game, Alice has a blue ball. ✓.

Figure 7: A simple key-value store for LM use via
inline_use. Using the operators store, load and swap, the
LLM can manage state for improved object tracking.

5.2. Case Study: Stateful Tool Use

Since ACTIONS tools are standard Python functions, the
surrounding program context can be leveraged to enable
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Table 1: Comparing standard and tool-assisted LLM task accuracy with ACTIONS-assisted task accuracy.

Task

Unassisted Post-Hoc ACTIONS (ours)

Chain-Of-Thought Program-Aided reAct inline_use inline_code

GSM-Hard (Gao et al., 2023)
Zero-Shot 0.12 0.56 0.24 0.40 0.58

3-Shot 0.26 0.68 - 0.56 0.68

ALGEBRA (He-Yueya et al., 2023)
Zero-Shot 0.50 0.56 0.46 0.54 0.62

3-Shot 0.64 0.70 - 0.58 0.66

FEVER (Thorne et al., 2018)
Zero-Shot 0.82 - 0.84 0.92 -

stateful behavior. To demonstrate this, we consider the
object tracking task, as included in the BIG benchmark
collection for LLMs (Srivastava et al., 2022). An example
task is shown in line 31 in Fig. 7. Here, the model is tasked
with tracking a number of objects that are exchanged among
a group of people.

To support this with ACTIONS, we implement a simple key-
value storage data structure, with three operators. store to
save a key-value mapping, load to recover the value of a
given key, and swap to swap the value between entries. We
show the full implementation in Fig. 7.

As shown, stateful behavior can simply be implemented us-
ing a global kvstore variable, keeping track of state across
different tool calls. We then prompt the model to solve a sim-
ple object tracking task and show the model output and tool
usage over time at the bottom of snippet Fig. 7. As shown
in the output, the model successfully uses the provided tools
to track object state across several transactions.

Baseline Comparison We again run the same sample
with unassisted Chain-Of-Thought reasoning, and find that
the model again fails to solve the task correctly. Further
inspection reveals that already after the first object swap,
the model loses track of object state, and is unable to re-
cover. In contrast, with stateful ACTIONS as implemented
here, we observe robust state tracking across all transactions,
eventually resulting in the correct solution.

5.3. Quantitative Evaluation

We also evaluate how tool use with ACTIONS relates to
traditional prompting and non-interleaved tool assistance.
For this, wee compare to the following baselines:

• Unassisted Chain-Of-Thought (CoT) As the fun-
demantal baseline, we consider unassisted chain-of-
thought prompting Wei et al. (2022a). This baselines

helps us assess the effectiveness of tool use in general,
i.e. the benefit external tools provide on top of purely
LLM-based reasoning.

• Program-Aided Language Models (pal) As a second
baseline, we consider program-aided language mod-
els, i.e. the idea of prompting an LLM to generate
a program which on execution computes the solution
to the task (Gao et al., 2023; He-Yueya et al., 2023).
This baseline helps us assess the effectiveness of inline
tool use, i.e. the benefit of interleaving tool use with
reasoning, as supposed to using a tool, here a program
interpreter, only after the LLM has finished reasoning.

We evaluate CoT, pal and ACTIONS both in a zero-shot and
3-shot setting. When providing ACTIONS with few-shot
samples, we do not provide any tool usage instructions. We
prompt text-davinci-003 to solve 50 samples each from the
GSM-Hard, the ALGEBRA and Fever benchmark datasets.
We report our results in Table 1.

Main Results Overall we find, that ACTIONS clearly out-
performs unassisted CoT reasoning for all datasets. In par-
ticular code-based ACTIONS (i.e. line-by-line execution of
LLM-generated code), appears to be beneficial to the LLM
reasoning process. With fact checking dataset Fever, we
even observe a 10 percentage point increase in accuracy,
where we only provide a simple wikipedia action to the
model using ACTIONS.

Tool Use Paradigms We also compare the different
paradigms of tool use, namely post-hoc PAL, inline ReAct,
inline action usage and inline code execution. We find that
inline ReAct performs the weakest across all datasets, even
though it outperforms Cot. Inline code execution performs
best on artihmetic reasoning task, whereas inline action us-
age performs best on the more text-based fact checking task.
Manual inspection reveals that code reasoning as in PAL
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and inline code execution elicits more formal reasoning in
the form of intermediate variables and formulas, whereas
inline action usage does not provoke such behavior with
arithmetic reasoning. However, inline actions still exhibit
the best performance on Fever, also outperforming REACT,
where code-based reasoning is not applicable. We compare
the concrete reasoning styles of CoT, ReAct and inline_use

with factual data in App. C.

Zero-Shot, Few-Shot and PAL In a zero-shot setting,
ad-hoc tool use with ACTIONS outperforms post-hoc PAL,
especially with inline code execution. This is not surprising,
as inline code execution is essentially an eagerly evaluated
variant of PAL, which provides the LLM with intermediate
results during code generation.

In a few-shot setting PAL closes this performance gap, and
we observe simlar performance as inline code execution.
More detailed inspection shows that PAL is a very strong
baseline on arithmetic reasoning tasks, as it can leverage
loops and branching to generate programmatic solutions.
Inline code execution on the other hand only works with
code that is executable on a line-per-line basis, which does
not work well with loops, as each line may produce multiple
outputs. Nonetheless we observe that ACTIONS still remains
largely competitive with PAL. We compare concrete model
output with PAL, inline_use and inline_code in App. B.

Discussion Overall, ACTIONS strong zero-shot perfor-
mance suggests that in practice, it may not be necessary to
provide few-shot samples for specific domains and tools,
and that a simple zero-shot instructive prompt may be suffi-
cient with modern LLMs. This can be a benefit in practice,
where collecting or constructing suitable few-shot samples
for specific domains can be cumbersome and expensive.
Further, this directly enables LMs to utilize existing (well
documented) Python functions.

6. Future Work
ACTIONS offers a simple and flexible framework for tool-
augmented language models. Our results show that AC-
TIONS can be used to solve complex tasks, such as arith-
metic reasoning and text-based question answering, by com-
bining multiple tools and that a zero-shot, instruction-only
approach is enough to achieve competitive performance.
Nonetheless there are several limitations that we aim to
focus on in future work on ACTIONS.

Typed Actions While ACTIONS supports multiple func-
tion arguments, parameter types are currently limited to
primitive str and int values. Future LLM tool use, how-
ever, may entail actions with more complex parameter types
like lists or entire object hierarchies. To accommodate this,

we plan to extend ACTIONS to support more complex pa-
rameter types, e.g. by using type annotations in the action
definition and by relying on LMQL’s constrained decoding
(Beurer-Kellner et al., 2023) abilities, to strictly enforce
parameter types. Particularly constrained decoding offers
an elegant way to enforce parameter types, as it allows to
restrict the LM to only generate tokens that are valid for
a given type, again, without having to provide involved
demonstrations, which will would be even more involved
when dealing with complex parameter types.

Safety and Scope Another concern with tool-augmented
LLMs is safety and action scope. State-of-the-art LLMs can
still be prone to hallucinations, which in some cases can lead
to an attempt to call an action that is not defined. To mitigate
this, we plan to extend ACTIONS to constrain the scope of
actions to a predefined scope of actions using constrained
decoding. This would enable safe interfacing but also offers
a much more robust and safe framework, when it comes to
e.g. prompt injection (Greshake et al., 2023), as the LM can
only call actions that are explicitly exposed.

Programming Language Primitives Our evaluation
demonstrates how ACTIONS can be used to implement state-
ful tool behavior, e.g. by updating a key-value storage.
Building on this, we plan to investigate object state, expos-
ing simple object-oriented programming primitives to the
LLM in addition to just function calls. This would enable
more complex tool behavior, allowing the LLM to track
and separate state in a semantically meaningful way, e.g.,
by instantiating several Person objects and tracking their
individual state. Going beyond this, LLM-based interfacing
with programming systems may also require the community
to revisit the design of programming languages in general,
e.g. by introducing language abstractions more suitable for
LLMs and less focused on human readability.

Automatic Action Discovery LMs have shown remark-
able ability in code synthesis, particularly for popular lan-
guages such as Pythons. Thus a direction we are excited to
explore with ACTIONS is to equip the LM with the ability
to generate further tools.

7. Conclusion
We introduced ACTIONS, a framework and program-
ming environment to facilitate the implementation of tool-
augmented language models (LMs). Our evaluation shows
that our zero-shot, instruction-only approach is competitive
with previous few-shot tool use paradigms, while offering a
much simpler interface. In future work, we want to extend
ACTIONS further, adding types, constrained tool use and by
exposing more programmatic primitives to the LM, going
beyond simple function calls.
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A. Program-Aided Language Models (PALs) in LMQL

Since LMQL is a superset of Python, we can easily implement any post-hoc tool use like PAL (Gao et al., 2023) using the exec

function, as shown in Listing 1.

1 argmax
2 """Q: Eliza's rate per hour for the first 40 hours she works each week is USD 1616598. She also receives
3 an overtime pay of 1.2 times her regular hourly rate. If Eliza worked for 45 hours this week, how much
4 are her earnings for this week?
5

6 # solution in Python (a solution() function that returns the result)
7 [CODE]
8 """
9 interpreter_environment = {}

10 exec(CODE, interpreter_environment)
11 solution_fct = interpreter_environment["solution"]
12 "Execution Result: {solution_fct()}"
13 from
14 "openai/text-davinci-003"
15 where
16 STOPS_AT(CODE, "\n\n")

Listing 1: Implementing program-aided LLM reasoning in LMQL.

B. Comparing PAL, inline_use and inline_code with arithmetic reasoning
Below we compare the model output for the same question with PAL, inline_use and inline_code. We can see that both
ACTIONS based methods leverage tools and code to obtain correct intermediate results and eventually the correct answer.

Post-hoc PAL on the other hand produces a full program without any intermediate results, which in this case leads to the
wrong answer. In PAL we can also observe that the model attempts to perform inline execution of the code, but fails to do so
correctly (the model predicted output is very different from the actual output when the solution function is executed). This
examples demonstrates how model reasoning can benefit greatly from inline tool use and that intermediate results indeed
can help the model to reason better.
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C. Comparing Chain-Of-Thought, ReAct and inline_use with text-based question answering
Below, we compare the model output for the same question with Chain-Of-Thought, ReAct and inline_use on the fact
checking dataset Fever (Thorne et al., 2018). We can see that both ACTIONS based methods leverage tools and code to
obtain correct intermediate results and eventually the correct answer.

Chain-Of-Thought prompting on the other hand hallucinates background information on the provided claim, simply assuming
the correctness of the evidently wrong time frame of 687 BCE, as opposed to the correct time frame of 681 BCE.
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