
Robustness Certification with Generative Models

Matthew Mirman
Department of Computer Science

ETH Zurich
Zürich, Switzerland

matthew.mirman@inf.ethz.ch

Alexander Hägele
Department of Computer Science

ETH Zurich
Zürich, Switzerland
ahaegele@ethz.ch

Pavol Bielik
Department of Computer Science

ETH Zurich
Zürich, Switzerland

pavol.bielik@inf.ethz.ch

Timon Gehr
Department of Computer Science

ETH Zurich
Zürich, Switzerland

timon.gehr@inf.ethz.ch

Martin Vechev
Department of Computer Science

ETH Zurich
Zürich, Switzerland

martin.vechev@inf.ethz.ch

Abstract

Generative neural networks are powerful models capable
of learning a wide range of rich semantic image transfor-
mations such as altering person’s age or head orientation.
In this work, we advance the state-of-the-art in verification
by bridging the gap between (i) the well studied but limited
norm-based and geometric transformations, and (ii) the rich
set of semantic transformations used in practice. This prob-
lem is especially hard since the generated images lie on a
highly non-convex manifold, preventing the use of existing
verifiers, which often rely on convex relaxations. We present
a new verifier, called GenProve, capable of certifying the
rich set of semantic transformations of generative models.
GenProve provides both sound deterministic and probabilis-
tic guarantees, by capturing non-convex sets of distributions
over activation states, while scaling to realistic networks.

CCS Concepts: • Security and privacy;

Keywords: Verification, Deep Learning, Adversarial Attacks

ACM Reference Format:

Matthew Mirman, Alexander Hägele, Pavol Bielik, Timon Gehr,
and Martin Vechev. 2021. Robustness Certification with Generative
Models. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation
(PLDI ’21), June 20–25, 2021, Virtual Event, Canada. ACM, New York,
NY, USA, 18 pages. https://doi.org/10.1145/3453483.3454100

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’21, June 20–25, 2021, Virtual Event, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8391-2/21/06. . . $15.00
https://doi.org/10.1145/3453483.3454100

Our Work

certify images from interpolations in
the generative model’s latent space

Convex Relaxation Analysis

analyzes non-realistic images from pixel-wise interpolation

Figure 1. Example of generated latent space images () our
work certifies compared to naive pixel-wise interpolation ().

1 Introduction

While there has been much progress on certifying deep neu-
ral networks for norm-constrained pixel perturbations [10,
11, 14, 17, 19, 36, 37, 39, 44, 45, 48] and geometric trans-
formations [1, 9, 28, 40], these works only capture a re-
stricted subset of natural changes that can occur in prac-
tice. At the same time, to train state-of-the-art deep models,
a wide range of rich semantic transformations are often be-
ing used to improve accuracy via data augmentation. As
such transformations are hard to specify manually, they are
often learned directly from data via generative networks
[12, 13, 29, 35, 46, 49]. As a concrete example, a generative
network can be trained so that interpolating between the en-
codings of the flipped head produces images of intermediate
head orientations, as in Figure 1. While generative networks
provide a compelling framework to express such semantic
transformations, they have so far eluded certification due to
the scale of non-convexity that they introduce.

This work. The goal of this work is to advance the state-
of-the-art in verification by bridging the gap between the
norm-based and geometric transformations supported by ex-
isting verifiers and the rich set of semantic transformations
used in practice. In particular, our verifier can certify a num-
ber of rich semantic transformations such as: (i) robustness
to addition or removal of image features (e.g., changing shoe
color or adding mustache), (ii) baldness is robust to all head

https://doi.org/10.1145/3453483.3454100
https://doi.org/10.1145/3453483.3454100

PLDI ’21, June 20–25, 2021, Virtual Event, Canada Matthew Mirman, Alexander Hägele, Pavol Bielik, Timon Gehr, and Martin Vechev

Encode Decode Classify with nA

E1

E2

x1,1

x1,2

nD
x2,1

x2,2

ReLU

ReLU

x3,1

x3,2

0.5

0.5
1

−0.25

−1 1 2

1
2
3
4

e1

λ
=
1

e2
E1

E2

(a)

nE

nE

−1 1 2 3

1
2

4

.2
.2

.2 .4

x1,1

x1,2

(b)

n#D

1 2 3

1
2

4

.1

.1.2

.1
.1

.4

x2,1

x2,2

(c)

ReLU#

1 2 3

1
2
3
4 .4

.6

x2,1

x2,2

(d)

Relax

3

1
2
3
4

.4
.6

x3,1

x3,2

(e)

MatMul#

Figure 2. Using GenProve to find probability bounds for latent space interpolation of flipped images. Blue chains represent
activation distributions at each layer exactly. The orange boxes represent the relaxation that GenProve creates, obviating the
need to keep track of the segments it covers. Each segment or box’s associated probabilities are shown in red. The inference
shown here is faithful to the weights of the toy network in the top row. We provide pseudocode for GenProve in Appendix A.

orientations, and (iii) robustness to higher dimensional spec-
ifications that use norm-based perturbations but are applied
over the latent space of generative models.

The key technical challenge we address is efficiently han-
dling the non-convexity inherent to generative models, while
producing accurate bounds and scaling to large networks.
We address this by introducing tight approximations when
necessary to otherwise exact bound computation. Further,
we develop a technique for verifying probabilistic properties,
allowing us to produce tight deterministic bounds on the
probability of a probabilistic specification being satisfied. As
we will see in our evaluation, this is a critical component for
certifying complex generative specifications for which the
equivalent deterministic specification holds only rarely.

Main contributions. Our key contributions are:

• A relaxation technique that handles non-convex be-
haviors (Section 3.1) which allows us to scale to large
networks with ≈ 200k neurons.
• The first application of probabilistic abstract interpre-
tation [6] to neural networks, which allows us to pro-
duce tight deterministic bounds on the probability of
a probabilistic specification being satisfied (Section 4).
• A verifier, GenProve, supporting rich semantic trans-
formations including novel specifications using para-
metric curves (Section 4.2) and higher dimensional
specifications (Section 5.3).
• A thorough evaluation that shows the practical usabil-
ity and hardness of the problem –we adapted a number
of existing verifiers (Zonotope [14], DeepZono [39],
ExactLine [42]) but show they either do not scale to
complex settings or their bounds are too imprecise.

2 Overview of GenProve

We start by describing the terminology used throughout our
work. Let N : Rm → Rn be a neural network which classifies
an input x ∈ Rm (in our case an image) to argmaxi N (x)i .

Specification. A robustness specification is a pair (X,Y)
where X ⊆ Rm is a set of input activations and Y ⊆ Rn is
a set of permissible outputs for those inputs.

Deterministic robustness. Given a specification (X,Y),
a neural network N is said to be (X,Y)-robust if ∀x ∈ X, we
have N (x) ∈ Y. In the adversarial robustness literature, X
is usually an l2- or l∞-ball, and Y is a set of outputs corre-
sponding to a specific classification. In our case, X will be
represented as a segment (or a parametric curve) connecting
two encodings e1e2 produced by a generative model.

Probabilistic robustness. A limitation of deterministic
robustness properties is that the result is always binary –
the property either fully holds or does not. While useful
for certifying single images, when combined with complex
generative models it becomes too restrictive. Instead, we
would like to compute a lower bound on the robustness of
complex transformations (e.g., a lower bound for different
head orientations is 0.9) for cases when existing deterministic
techniques only output that the specification does not hold.

Formally, given a distribution µ over X (e.g., uniform dis-
tribution), we call the bounds on the robustness probability
Prx∼µ [N (x) ∈ Y] the probabilistic [robustness] bounds.

GenProve overview. In Figure 2 we illustrate how Gen-
Prove computes exact and probabilistic bounds for the ro-
bustness of a classifier based on a latent space image transfor-
mation. In this example, the goal is to verify that a classifica-
tion networknA is robust (i.e., does not change its prediction)
when presented with images of a head from different angles,
produced by interpolating encodings in the latent space of an
autoencoder. To represent this specification, we first use the
encoder,nE , to produce encodings e1 and e2 from the original
image and that image flipped horizontally. It is a common
technique to use the decoder nD to get a picture of a head
at an intermediate angle, on an interpolated point e , taken
from the segment e1e2 = {e1 + α · (e2 − e1) | α ∈ [0, 1]}.

Robustness Certification with Generative Models PLDI ’21, June 20–25, 2021, Virtual Event, Canada

Decodings for e1 and e2 can be seen in Figure 2(b). Our goal
is to check the property for all possible encodings on e1e2
(not only points e1 and e2).

To accomplish this, we propagate lists of line segments and
interval (box) constraints through the decoder and classifier,
starting with e1e2. At each layer, we adaptively relax this list
by combining segments into interval constraints, in order
to reduce the number of points that need to be managed
in downstream layers. This relaxation is key, as without
it, the number of tracked points could grow exponentially
with the number of layers. While Sotoudeh and Thakur [42]
demonstrated that this is not a significant concern when
propagating through just classifiers, for generative models
or decoders, the desired output region will be highly non-
convex (with better models producing more segments). One
may think of the number of segments produced by the model
in such a case as the model’s “generative resolution.”

Example of inference with overapproximation. Con-
sider the simple (instructive) two dimensional input classifier
network shown in Figure 2, with inputs x1,1 and x1,2. The
possible inputs to this network we would like to consider
are the points in the region described by the blue polygonal
chain in Figure 2(b), whose axes are x1,1 and x1,2. The chain
has coordinates (1, 2), (−1, 3), (−1, 3.5), (1, 4.5), (3.5, 2) with
(1, 2) representing nD (e1) and (3.5, 2) representing nD (e2).
The segments of the chain are annotated with weights λ =
0.2, 0.2, 0.2, 0.4. These weights are such that the distribution
produced by picking segment j with probability λ (j) and then
picking a point uniformly on that segment is the same as the
distribution of nD (e) given e ∼ U (e1e2) where U (S) is the
uniform distribution on S .

After applying the ReLU layer to this chain (marked with
ReLU#), one can observe in Figure 2(c) that the first and
third segment of this chain are split in half, resulting in 6
segments, which is 50% more than there were originally. As
the segments represent uniform distributions, the weights of
the new segments is the proportional weight of that part on
the pre-ReLU segment. Here, each part of the new segment
obtains half the pre-ReLU segment’s weight.

Because a 50% increase is significant, we now consolidate,
moving from exact to approximate yet sound analysis. Here,
we use a heuristic (labeled Relax), to choose segments to
subsume that are small and close together. As they are quite
close together, we pick the first 5 segments, replacing them
by the (orange) box that has the smallest corner at (0, 2) and
largest corner at (1, 4.5). This box, introduced in Figure 2(d),
is assigned a weight equivalent to the sum 0.6, of the weights
of all removed segments. Whereas each segment represents
a uniform distribution, the new box represents a specific but
unknown distribution with all its mass in the box. As a box
is represented by two points (maximum and minimum), only
four points are maintained, a significant reduction.

The last step performs matrix multiplication. As this oper-
ation is linear, segments can be transformed by transforming
their nodes, without adding new points. Box constraints
can be transformed using interval arithmetic, also without
adding points. The weights of the regions are preserved, as
the probability of selecting each region has not changed,
only the regions themselves.

Computing probabilistic bounds. LetA′ (j) for j = 1 . . .k
represent the regions (either the box and segment, or all 6
segments) shown in Figure 2(e), each with weight λ (j) . Letting
[H] be the indicator for predicate H , we bound the proba-
bility Pt,e1e2 = Pre ∈e1e2[argmaxi nD (e)i = t] of class t = 1
being selected by classifier nA as follows:

l ≤ Pt,e1e2 ≤ u where
l =

∑
j [∀x3 ∈ A′ (j) .x3,1 > x3,2]λ (j)

u =
∑

j [∃x3 ∈ A′ (j) .x3,1 > x3,2]λ (j)

As an example, we compute the lower bound for the case
where we used relaxations. Here, the entirety of the orange
box lies within the region where x3,1 > x3,2, so its indicator
is 1 and we use its weight. On the other hand, the segment
contains a point where x3,1 = 2.75 and x3,2 = 3 which vio-
lates this condition, so its indicator is 0 and its weight is not
used. We can thus show a probabilistic lower bound of 0.6.
Note that it is possible to provide an exact lower bound by
computing the fraction of the segment that satisfies the con-
dition (as described formally in Section 4). We now observe
that all of the regions which would have been preserved
using the exact procedure (in blue) would have contributed
the same amount to the lower bound, as they all entirely
satisfy the constraint. Exact inference would produce the
same lower bound, but uses 50% more points.

3 Certification of Deterministic Properties

We review concepts from prior work [14] and define Gen-
Prove for deterministic properties. Our goal is to automati-
cally show that images x from a given set X of valid inputs
are mapped to safe outputs from a set Y. We write this prop-
erty as f [X] ⊆ Y. For example, f might be a decoder, X
a line segment in latent space and Y the images for which
a given classifier detects a desired attribute.

Such properties compose: If we want to show that h[X] ⊆
Z for h(x) = д(f (x)), it suffices to find a set Y for which we
can show f [X] ⊆ Y and д[Y] ⊆ Z. For example, f could be
a decoder and д an attribute detector, where Z describes the
output activations that lead to an attribute being detected.
We assume that we can decompose our neural network

f as a sequence of l layers: f = Ll−1 ◦ · · · ◦ L0. To show
a property f [X] ⊆ Y, we will try to find sets A0, . . . ,Al
such that X ⊆ A0, Li [Ai] ⊆ Ai+1 for 0 ≤ i < l and Al ⊆ Y.
We determine the sets in order: We pick A0 based on X

such that X ⊆ A0 and then for each 0 ≤ i < l , we pick Ai+1
such that Li [Ai] ⊆ Ai+1. At the end, we check if we have

PLDI ’21, June 20–25, 2021, Virtual Event, Canada Matthew Mirman, Alexander Hägele, Pavol Bielik, Timon Gehr, and Martin Vechev

Al ⊆ Y. If so, the verification succeeds and the property
holds. Otherwise, our procedure fails to prove the property.

Abstract interpretation. We automate this analysis us-
ing abstract interpretation [5]: we choose the setsA0, . . . ,Al
such that they admit a simple symbolic representation in
terms of real parameters. An abstract domain is a set of such
symbolic representations. We writeAn to denote an abstract
domain where each element represents a member of P (Rn).
In our case, each abstract element a ∈ An represents a set
of vectors of n neural network activations. The concretiza-
tion function γn : An → P (R

n), which is specific to each
abstract domain, maps a symbolic representation a ∈ An to
its concrete interpretation as a set A ∈ P (Rn) of neural net-
work activation vectors. We will sometimes drop subscripts
indicating dimensionality when they are irrelevant or clear
from context. Our procedure will compute abstract elements
a0, . . . ,al such that Ai = γ (ai) for all 0 ≤ i ≤ l .

An abstract transformer T #
f : Am → An transforms sym-

bolic representations to symbolic representations, overap-
proximating the function f : Rm → Rn , which means it has
to satisfy the soundness property f [γm (a)] ⊆ γn (T

#
f (a)) for

all a ∈Am . We will compute ai+1 =T #
Li
(ai). The soundness

property of the abstract transformer ensures that we have
Li [Ai]⊆Ai+1, as this is equivalent to Li [γ (ai)]⊆γ (T #

Li
(ai)).

By composing abstract transformers for all layers Li of
the neural network f in this fashion, we obtain an abstract
transformer T #

f = T #
Ll−1
◦ · · · ◦ T #

L0
. Abstract interpretation

provides a sound, typically incomplete method to certify
properties: To show that a neural network f : Rm → Rn
satisfies f [X] ⊆ Y, it suffices to show that γn (T #

f (a)) ⊆ Y,
for some abstract element a ∈ Am with X ⊆ γm (a).

Box domain. If we pick A0 as a bounding box of X, we
can compute sets Ai for 1 ≤ i ≤ l by evaluating the layers
Li using interval arithmetic. The analysis computes a range
of possible values for each network activation, i.e., the sets
Ai are boxes. At the end, we check if Al ’s bounds place it
inside Y.
This interval analysis is an instance of abstract interpre-

tation. An element of the box domain Bn is a box: a pair of
vectors (a,b) where a,b ∈ Rn . The concretization function
is γn (a,b) =

∏n
l=1[al ,bl]. Abstract transformers for the box

domain propagate bounds using interval arithmetic. While
fast, this is imprecise and often fails to prove true properties.

Union domains. A list a = (a (1), . . . ,a (k)) of abstract
elements (potentially from multiple different abstract do-
mains) can be interpreted as a union with concretization
γ (a) =

⋃k
j=1 γ (a

(j)). Among other possibilities, we can ob-
tain a union domain abstract transformer T #

f by propagating
each element of the union independently using an abstract
transformer for its abstract domain:

T #
f (a) = (T # (1)

f (a (1)), . . . ,T # (k)
f (a (k))).

Soundness follows directly from soundness of the component
abstract transformers.

For example, we can cover the set X with boxes and then
propagate them through the network independently using
interval arithmetic for each box. In the end, we have to show
that all resulting boxes are within Y.

Relaxation. At any point in the analysis, we can choose
to replace an abstract element ai by an abstract element a′i
where γ (ai) ⊆ γ (a′i). This can increase precision or reduce
the number of parameters needed to represent ai .

3.1 GenProve for Deterministic Properties

GenProve for deterministic properties is an analysis with an
union domain where each component a (j) represents either a
box or a line segment. Letni denote the number of neurons in
layer i . Formally,γ (ai) =

⋃ki
j=1 γ (a

(j)
i), where for each j either

γ (a (j)
i) =

∏ni
l=1[al ,bl] is a box with given lower bounds a and

upper bounds b, or γ (a (j)
i) = x1x2 is a segment connecting

the given points x1 and x2 in Rni . We represent ai as a list of
bounds of boxes and a list of pairs of endpoints of segments.
Like Sotoudeh and Thakur [42], we focus on the case

where the setX of input activations is a segment. Thework of
Sotoudeh and Thakur [42] discusses how to split a given seg-
ment into multiple segments that cover it, such that a given
neural network is an affine function on each of the new
segments. Essentially, it determines the points where the
segment crosses decision boundaries of piecewise-linear acti-
vation functions and splits it at those points. In order to com-
pute an abstract element ai+1 such that Li [γ (ai)] ⊆ γ (ai+1),
we first split all segments according to this strategy applied
to only the current layer Li . Then, we map the endpoints of
the resulting segments to the next layer by applying Li to all
of them. This is valid and captures exactly the image of the
segments under Li , because due to the splits, Li , restricted
to any one of the segments, is always an affine function.
Further, we propagate the boxes through Li by applying in-
terval arithmetic. Note that if we propagate a segment x1x2
using this strategy alone for all layers, this analysis produces
the exact image of X, which is equivalent to performing the
analysis using Sotoudeh and Thakur [42]’s method.

Relaxation. Before applying layer Li , we may apply re-
laxation operators to turn ai into a′i , such that γ (ai) ⊆ γ (a′i).
We use two kinds of relaxation operators: bounding box oper-
ators remove a single segment cd . The removed segment is
replaced by its bounding box

∏ni
l=1[min(cl ,dl),max(cl ,dl)].

Merge operators replace multiple boxes by their common
bounding box. By carefully applying the relaxation operators,
we can explore a rich tradeoff between pure instantiation
of Sotoudeh and Thakur [42] and pure interval arithmetic.
Our analysis generalizes both: if we never apply relaxation
operators, the analysis reduces to Sotoudeh and Thakur [42]

Robustness Certification with Generative Models PLDI ’21, June 20–25, 2021, Virtual Event, Canada

and will be exact but potentially slow. If we relax the ini-
tial segment into its bounding box, the analysis reduces to
interval arithmetic and will be imprecise but fast.

Relaxation heuristic. We define the following heuris-
tic, applied before each convolutional layer. The heuristic
is parameterized by a relaxation percentage p ∈ [0, 1] and
a clustering parameter k ∈ N. Each chain of connected seg-
ments with t > 1000 nodes is traversed in order, and each
segment is turned into its bounding box, until the chain ends,
the total number of different segment endpoints visited ex-
ceeds t/k or we find a segment whose length is strictly above
the p-th percentile, computed over all segment lengths in
the chain prior to applying the heuristic. All bounding boxes
generated in one such step (from adjacent segments) are
then merged, the next segment (if any) is skipped, and the
traversal is restarted on the remaining segments of the chain.

4 Certification of Probabilistic Properties

We now define GenProve for the probabilistic case. This set-
ting is particularly useful when it is not possible to prove the
property deterministically (or it does not hold). Our goal here
is to automatically show that images x drawn from a given
input distribution µ map to desirable outputs D with a prob-
ability in some interval [l ,u]. We can write this property as
Prx∼µ [d (x) ∈ D] ∈ [l ,u]. For example, we can choose d as
a decoder, µ as the uniform distribution on a line segment
in its latent space, D as the set of images for which a given
classifier detects a desired attribute and [l ,u] = [0.95, 1]. The
property then states that for at least a fraction 0.95 of the in-
terpolated points, the classifier detects the desired attribute.
Unlike with the deterministic setting, such probabilistic

properties do not compose naturally. We therefore reformu-
late them by defining setsX andY of probability distributions
and a distribution transformer f , in analogy to deterministic
properties. Let d∗ be the pushforward of d , formally defined
below (intuitively, the pushforward allows a distribution to
be mapped through a deterministic function). We letX = {µ},
Y = {ν | Pry∼ν [y ∈ D] ∈ [l ,u]} and f = d∗. That is, f maps
a distribution of inputs to d to the corresponding distribu-
tion of outputs of d . Our property again reads f [X] ⊆ Y
and can be decomposed into properties (Li)∗[Ai] ⊆ Ai+1
talking about each individual layer. We again overapproxi-
mate X with A0 such that X ⊆ A0 and push it through each
network layer, computing sets A1, . . . ,Al . The sets Ai now
contain distributions over activation vectors. We automate
this analysis using probabilistic abstract interpretation.

Probabilistic abstract interpretation. We denote asDn
the set of probability measures overRn . Probabilistic abstract
interpretation is a variant of abstract interpretation where
instead of deterministic points from Rn , we abstract prob-
ability measures from Dn . That is, a probabilistic abstract
domain [6] is a set of symbolic representations of sets of

measures over program states. We again use subscript nota-
tion to determine the number of activations: a probabilistic
abstract domain An has elements that each represent an
element of P (Dn). The probabilistic concretization function
γn : An → P (Dn) maps each abstract element to the set of
measures it represents.
For a measurable function d : Rm → Rn , the correspond-

ing pushforward d∗ : Dm → Dn maps each measure µ ∈ Dm
to a measure ν ∈ Dn , given by

ν (Y) = Pr
x∼µ

[d (x) ∈ Y] = µ (d−1 (Y)),

where Y ranges over measurable subsets of Rn .
A probabilistic abstract transformer T #

f : Am → An ab-
stracts the pushforward f∗ in the standard way: it satisfies
f∗[γm (a)] ⊆ γn (T

#
f (a)) for all a ∈ Am , analogous to the

deterministic setting.
Probabilistic abstract interpretation gives a sound method

to compute bounds on robustness probabilities. Namely, to
show that Prx∼µ [N (x) ∈Y] ∈ [l ,u], it suffices to show that
ν (Y) ∈ [l ,u] for each ν ∈γn (T #

N (a)) for some a with µ ∈γm (a).

Lifting. Note that we can reuse a deterministic abstract
domain directly as a probabilistic abstract domain, by ig-
noring probabilities. More concretely, consider a determin-
istic abstract domain An with deterministic concretization
function γn : An → P (R

n). We can interpret An as a prob-
abilistic abstract domain by simply defining a probabilistic
concretization functionγ ′n : An → P (D

n). Namely, for some
abstract element a ∈ An representing a set A = γn (a) of
(deterministic) activation vectors, we let γ ′n (a) be the set of
all probability measures whose support is a subset of A.1

The analysis then just propagates abstract elements with
the same abstract transformers it would use in the determin-
istic setting. For example, if we run probabilistic analysis
with the box domain, γ (ai) is the set of all probability mea-
sures on the box ai , and the analysis propagates the box
constraints using interval arithmetic. Of course, such an
analysis is rather limited, as it can at most prove properties
with l = 0 or u = 1. For example, it would be impossible to
prove that a probability is between 0.6 and 0.8 using only this
kind of lifted analysis. However, interval arithmetic, lifted
in this fashion, is a powerful component of GenProve for
probabilistic properties, detailed below.

Convex combination domains. A formal convex com-
bination a =

∑k
j=1 λ

(j) · a (j) of abstract elements (potentially
from multiple different abstract domains) can be interpreted
as an abstract element whose concretization γ (a) contains
all probability measures of the form

∑ki
j=1 λ

(j)
i · µ

(j) , where
each µ (j) is some probability measure chosen from the cor-
responding γ (a (j)). For example, if the abstract elements a (j)

represent disjoint boxes, then a represents all probability

1This is subject to some technical constraints: For example, all deterministic
concretizations have to be measurable sets.

PLDI ’21, June 20–25, 2021, Virtual Event, Canada Matthew Mirman, Alexander Hägele, Pavol Bielik, Timon Gehr, and Martin Vechev

measures for which the probability of each box is the corre-
sponding weight λ (j) . In general, we can think of γ (a) as the
set of distributions generated by a set of random processes:
Each process first randomly selects an index j according to
the probabilities λ (j) and then samples from some fixed proba-
bility measure µ (j) ∈ γ (a (j)). For each 1 ≤ j ≤ k , this measure
is fixed in advance for each of the random processes.
Similar to unions, we can apply abstract transformers to

each abstract element a (j) independently and to form the
convex combination of the results using the same weights:

T #
f (a) =

k∑
j=1

λ (j) ·T # (j)
f (a (j)).

This is sound because pushforwards are linear functions.

4.1 GenProve for Probabilistic Properties

Probabilistic GenProve is an analysis with a convex combi-
nation domain where each component a (j)

i represents either
a lifted box or a single probability measure on a segment.
Formally, this means
γ (ai) =

{∑ki
j=1λ

(j)
i · µ

(j) ��� µ
(1) ∈ γ (a (1)

i), . . . , µ (ki) ∈ γ (a (ki)
i)

}
,

where for each j , the concretization γ (a (j)
i) is either the set of

probability measures supported at most on a box
∏ni

l=1[al ,bl]
with lower bounds a and upper bounds b, or γ (ai) (j) = {ν },
where ν is a distribution on a segment x1x2 with endpoints
x1 and x2 in Rni . To automate analysis, we represent γ (ai)
as a list of bounds of boxes with associated weights λ (j)

i , and
a list of segments with associated distributions and weights
λ (j)
i . If, as in our evaluation, we consider a restricted case,

where distributions on segments are uniform, it suffices to
associate a weight to each segment. The weights should be
non-negative and sum up to 1.
The element ai can be propagated through layer Li to

obtain ai+1 in a similar fashion as in deterministic analysis.
However, when splitting a segment, we now also need to
split the distribution associated to it. For example, if we
want to split the segment L = cd with distribution ν and
weight λ into two segments L′ = ce and L′′ = ed with
L′∪L′′ = L, we have to form distributions ν ′,ν ′′ and weights
λ′, λ′′ where λ′ = λ · Prx∼ν [x ∈ L′], λ′′ = λ · Prx∼ν [x ∈
L′′ \ L′], ν ′ is ν conditioned on the event L′ and ν ′′ is ν
conditioned on the event L′′. If distributions on segments are
uniform, this would result in the weight being split according
to the relative lengths of the new segments. To propagate
a lifted box, we apply interval arithmetic, preserving the
box’s weight. In practice, this is the same computation used
for the deterministic propagation of a box.
We focus on the case where we want to propagate a sin-

gleton set containing the uniform distribution on a segment
L = x1x2 through the neural network. In this case, each dis-
tribution on a propagated segment will remain uniform, and
it suffices to store a segment’s weight without an explicit

representation for the corresponding distribution, as noted
above. As in the deterministic case, if we apply the analysis
to the uniform distribution on a segment without relaxation,
the analysis will compute an exact representation of the out-
put distribution. I.e., Al will contain only the distribution
of outputs obtained when the neural network is applied to
inputs distributed uniformly at random on L.

Relaxation. As this does not scale, we again apply re-
laxation operators. Similar to the deterministic setting, we
can replace a probabilistic abstract element ai by another
probabilistic abstract element a′i with γ (ai) ⊆ γ (a′i).

Relaxation heuristic. Here, we use the same heuristic
described for the deterministic setting. When replacing a seg-
ment by its bounding box, we preserve its weight. When
merging multiple boxes, their weights are added to give the
weight for the resulting box.

Computing bounds. Given the abstract element, al , de-
scribing a superset of the possible output distributions of the
network, we compute bounds on the robustness probabilities
P = {Pry∼ν [y ∈ D] | ν ∈ γ (al)}. The part of the distribution
tracked using segments has all its probability mass in deter-
mined locations, while the probability mass in a box can be
located anywhere within it. We compute bounds as:

(l ,u) = (minP,maxP) = *.
,
e +

∑
j ∈L

λ(j)l , e +
∑
j ∈U

λ(j)l
+/
-
,

where e is the probability of the output being on a segment.
If D is given as a set of linear constraints, we compute e
by splitting the segments to not cross the constraints and
summing up all weights of resulting segments contained in
D. L is the set of indices of lifted boxes contained in D and
U is the set of indices of lifted boxes that intersect with D.

4.2 Generalization to Parametric Curves

The approaches presented so far relied on a number of op-
erations on line segments: We needed to form their image
under affine transformations, we had to determine splitting
points based on ReLU decision boundaries, and we had to
be able to split a line segment into multiple segments whose
union is the original segment. For the probabilistic case, we
additionally tracked probability measures on those segments.
Therefore, we develop GenProveCurve which general-

izes our analysis to handle other one-dimensional shapes for
which these operations can be supported. Let γ : [l ,u]→ Rn
be a continuous function given by

γ (t) = a (0) +

k∑
i=1

a (i) · η (i) (t),

for one-dimensional continuous functions η (i) : [l ,u] → R
and vectors a (i) ∈ Rn . The function γ represents the curve
γ [[l ,u]] in Rn . For the probabilistic case, we additionally
consider a probability measure µ on [l ,u] describing the

Robustness Certification with Generative Models PLDI ’21, June 20–25, 2021, Virtual Event, Canada

CelebA
same

attributes

Zappos50k
same

subcategory

source
nE (x1) = e1

target
nE (x2) = e2

generative interpolations
e1e2

Figure 3. Example of a generative specification used in our work. Here, x1 and x2 are original images with corresponding
embeddings e1 and e2, respectively. For this specification, the images are chosen such that they contain the same attributes
(for CelebA) or belong to the same subcategory (for Zappos50k). The goal is to verify, deterministically or probabilistically,
that the network under test does not change its prediction when presented with the interpolated images e1e2.

distribution of the curve parameter. (The probability measure
in Rn describing our probabilistic curve is then implicitly
given by ν (X) = µ (γ−1 (X)).)

We can symbolically form the image of the shape γ [[l ,u]]
under an affine transformation f (x) = A · x + b as the set
f [γ [[l ,u]]] = (f ◦ γ)[[l ,u]], where f ◦ γ is given by

f (γ (t)) = A · γ (t) + b = (A · a (0) + b) +
k∑
i=1

(A · a (i)) · η (i) (t).

I.e., to apply an affine transformation to our curve, it suffices
to transform the coefficient vectors a (i) .

To find splitting points for ReLU decision boundaries, we
need to solve the equation γ (t)j = 0 for t for each compo-
nent j ∈ {1, . . . ,n}. For example, if we consider quadratic
parametric curves γ : [l ,u]→ Rn of the form

γ (t) = a (0) + a (1) · t + a (2) · t2,

we have to solve a quadratic equation for each component,
yielding at most two splitting points per component, where
we ignore solutions outside [l ,u]. We can split the curve at
those points by restricting it to segments between subse-
quent splitting points in sorted order. In the probabilistic
case, we further restrict the measure to the same segments
and associate the resulting measures to the new curves.

5 Evaluation

In this section, we demonstrate the benefits of GenProve
and the techniques presented in our work. In particular, our
goal is to answer the following three research questions:

RQ1 Is probabilistic abstract interpretation necessary for
handling complex generative specifications (as com-
pared to traditional abstract interpretation)?

RQ2 Does GenProve produce tight bounds and scale to
realistic large networks (unlike existing methods)?

RQ3 What novel specifications can be verified using
GenProve (beyond what is currently possible)?

We first answer RQ1 by showing that our application
of probabilistic abstract interpretation is key for analysing
generative specifications. Concretely, we demonstrate that:
(i) using deterministic verification is a limiting factor for
all non-trivial benchmarks and networks, (ii) probabilistic
interpretation proposed in our work improves the fraction
of samples for which tight bounds can be computed from
0.5% to up to 76.2%, and (iii) our combination of probabilistic
analysis with relaxations can produce non-trivial verified
bounds for 100% of samples.
We then answer RQ2 by demonstrating that GenProve

scales to realistically large networks with 200k neuronswhile
producing bounds that are very tight and close to zero (e.g.,
5.7 · 10−5). In contrast, we show that all prior methods fail
– either because they are imprecise and produce extremely
loose bounds close to 1, or they exhaust the ample GPU
memory and crash. Note that, as we will show later in this
section, only increasing the GPU memory is not a scalable
solution and a fundamentally different approach, like the
one proposed in our work, is needed.
To answer RQ3, we show the versatility of GenProve

in certifying the novel class of generative specifications in
five ways: (i) we show how GenProve can be used to cer-
tify and specify the higher dimensional specification where
a generative network defines a continuous set of images that
a classifier should categorize correctly under any possible
L∞ attack (ii) certifying robustness to different head orien-
tations, (iii) certifying attribute independence via adding
previously absent attributes (e.g., changing the hair color as
illustrated in Figure 3), (iv) certifying attribute independence
over input regions that curve through areas with previously
absent attributes. and finally (v) certifying out of distribution
detection with non-uniform specifications.

Experimental setup. We certify robustness of generative
models using a variety of different approaches:

PLDI ’21, June 20–25, 2021, Virtual Event, Canada Matthew Mirman, Alexander Hägele, Pavol Bielik, Timon Gehr, and Martin Vechev

Table 1. Comparing deterministic analysis with probabilistic analysis. The number is the percentage of 100 samples evaluated
on average consistency Ĉ that did not return the full interval l = 0 and u = 1. We note that the poor performance of BaseLine
on ConvMed is due to out of memory errors, where the full interval is returned.

% of samples w/ non-trivial verified bounds

Exact Verification Verification with Relaxations

(Deterministic) (Probabilistic) (Deterministic) (Probabilistic)

Dataset Network BaseLine GenProve0 GenProveDet0.02100 GenProve0.02100

CelebA
ConvSmall 91.2%

+8.8%
−−−−−→ 100% 78.6%

+21.4%
−−−−−−→ 100%

ConvMed 9.5%
+0.5%
−−−−−→ 10% 23.8%

+76.2%
−−−−−−→ 100%

Zappos50k
ConvSmall 56%

+44%
−−−−→ 100% 56%

+44%
−−−−→ 100%

ConvMed 8%
+3%
−−−→ 11% 58%

+42%
−−−−→ 100%

Prior Work Our Work

• GenProvepk which implements both the probabilistic
and deterministic (denoted as GenProveDet) verifier
proposed in our work. Here, p is the relaxation per-
centage and k is the clustering parameter. Note that
setting the relaxation percentage to zero (denoted as
GenProve0) instantiates our approach without relax-
ations, thus producing exact results.
• BaseLine is the deterministic approach proposed by
Sotoudeh and Thakur [42], producing exact results.
We note that we use our own, more scalable and GPU-
optimized, implementation of this approach. The orig-
inal implementation supports only computations on
CPUs and takes prohibitively large amounts of time
when run on the large networks we use for evaluation.
• A wide range of existing convex abstract domains for
neural networks: Box [14], Zonotope [14], DeepZono
[39], and HybridZono [33]. We adapted all of them to
certification of generative models by representing the
initial segment e1e2. Note that for every domain but
Box, this step is exact and does not lose precision.

We implement GenProve in the DiffAI [33] framework,
taking advantage of the GPU parallelization provided by
PyTorch [34]. Our implementation will be made available on
GitHub along with all the models used for testing.
For a fair comparison of the runtime and scalability, all

the verifiers used are also implemented with GPU support.
All of our experiments are performed on a machine with
a Titan RTX GPU with 24 GB of GPU memory.

Generative models. We use 3 datasets of increasing com-
plexity – MNIST [24], Zappos50k [50, 51], and CelebA [31].
For each dataset, we trained a VAE [22] autoencoder with the
architectures and training schemes described in full detail
in Appendix B. For all datasets, the decoder and generator
have each 74 128 neurons, unless otherwise specified.

Target networks. For each dataset, we trained a variety
of attribute detectors or classifiers:

• CelebA: We trained attribute detectors on the scaled
64×64 images with three different architectures – Con-
vSmall, ConvMed, and ConvLarge, with 24 676, 63 804
and 123 180 neurons respectively. The attribute detec-
tors are trained to recognize the 40 attributes provided
by CelebA (e.g., bald, bangs) [31]. Here, an attribute i
is detected in the image if the i-th component of the
network output is strictly positive.
• Zappos50k: We trained classifiers on the 64×64 images
with the same three architectures as for CelebA. The
classifiers are trained to recognize the 21 subcategories
(e.g. heels, boots) from the Zappos50k dataset [50, 51].
• MNIST : We used a classifier with 175 816 neurons
trained with three different techniques to recognize
digits [24]. Specifically, we used the publicly available
ConvBiggest architecture from [33] and trained it us-
ing standard training, using Box with DiffAI, as well
as FGSM [16] with ϵ = 0.1.

Evaluation metrics. We show the precision of our sys-
tem by verifying that a given model (denoted as nA for an
attribute detector, and nC for a classifier) is robust to the
transformations learned by the generative model.

We formalize this concept with a metric called consistency:
for a point picked uniformly between the encodings e1 and
e2 of ground truth inputs, we determine the probability that
its decoding (computed by a decoder nD) will have (or not)
the same attribute. As a concrete example, Figure 3 shows
generative interpolations for both CelebA and Zappos50k.
Formally, consistency is defined for attribute detectors as

Ci,nA,nD (e1,e2) = Pr
e∼U (e1e2)

[signnA (nD (e))i = t],

Robustness Certification with Generative Models PLDI ’21, June 20–25, 2021, Virtual Event, Canada

Table 2. Scalability and precision of our method compared to wide range of existing convex abstract domains. For a fair
comparison, all methods are lifted probabilistically. We report average consistency Ĉ bound widths (lower is better).

average consistency Ĉ bound width (u − l)

(≈25k neurons) (≈64k neurons) (≈123k neurons)

Dataset Domain ConvSmall ConvMed ConvLarge Precise Scalable

CelebA

Prior Work

Box [14] 0.98 0.98 0.98 - ✓

HybridZono [33] 0.97 0.97 0.97 - ✓

DeepZono [39] 1.0 1.0 1.0 - -
Zonotope [14] 1.0 1.0 1.0 - -

Our Work
GenProve0 0.0 0.9 0.95 ✓ -
GenProve0.02100 1.8 · 10−5 1.1 · 10−4 1.6 · 10−4 ✓ ✓

Zappos50k

Prior Work

Box [14] 1.0 1.0 1.0 - ✓

HybridZono [33] 1.0 1.0 1.0 - ✓

DeepZono [39] 1.0 1.0 1.0 - -
Zonotope [14] 1.0 1.0 1.0 - -

Our Work
GenProve0 0.0 0.89 0.99 ✓ -
GenProve0.02100 3.3 · 10−5 4.5 · 10−5 5.7 · 10−5 ✓ ✓

and for classifiers as
CnC ,nD (e1,e2) = Pr

e∼U (e1e2)
[argmax

i
nC (nD (e))i = t].

Suppose P is a set of pairs {a,b} from the data and it holds
that signaA,i = signbA,i for every attribute, where aA,i is
the label of attribute i for a. We compute bounds on the aver-
age consistency as ĈP = meana,b ∈P,i Ci,nA,nD (nE (a),nE (b))
for attribute detectors, and ĈP = meana,b ∈P CnC ,nD (nE (a),nE (b))
for classifiers, where nE is the encoding network.

We compute a probabilistic bound, [l ,u], for each method
in our evaluation such that l ≤ Ĉ ≤ u. We call u − l its width.

5.1 RQ1 - Probabilistic Abstract Interpretation

We start by addressing RQ1 and demonstrate that while
traditional deterministic verification methods may be precise
for deterministic specifications, they are of limited utility
when tasked with verifying probabilistic specifications. To
understand why, recall that for the deterministic domains,
there are only three possible outputs for the lower and upper
bounds: [0, 0] meaning that none of the specification was
correct, [1, 1] meaning that the specification was entirely
correct, or least usefully, the full interval [0, 1] implying that
the technique was unable to verify one way or the other how
much of the specification was correct. This severely limits
the usefulness of the verification, especially for cases with
imperfect networks and imperfect specifications.

Table 1 demonstrates the limited applicability of determin-
istic domains. Here, we report the fraction of specifications
where the bounds were strictly tighter than [0, 1]. Based on
the results, we can immediately see that GenProve provides

useful bounds for 100% of the specifications for every net-
work and dataset. At the same time, the deterministic meth-
ods BaseLine and GenProveDet rarely return useful bounds
for the consistency specification. In particular, BaseLine
proves at best 91.2%, and at worst 8% of the specifications.
This is because even on the large network, GenProve0 and
BaseLine run out of memory. One should also observe that
GenProve0 performs better than BaseLine and when it does
not run out of memory, performs better than GenProveDet.
We note that GenProve not only always provides useful re-
sults, but is also precise and achieved an average width (u−l)
of at worst 0.0001 for CelebA (ConvMed). In comparison,
the next-best domain (BaseLine on ConvSmall) produced
a width of at best 0.1748 (not shown in Table 1), which is a
full four orders of magnitude worse on a smaller network.

5.2 RQ2 - Precision and Scalability

Next, we address RQ2 by comparing the precision and scal-
ability of probabilistic GenProve to a variety of existing
convex abstract domains, as well as sampling. To study the
scalability of all domains, we certify the robustness of three
networks of increasing complexity – ConvSmall with ≈25k
neurons, ConvMed with ≈64k neurons and ConvLarge with
≈123k neurons. Further, to provide variety, we certify robust-
ness using two datasets: CelebA and Zappos50k.

Precision. Table 2 shows the result of running the veri-
fiers using the same |P | = 100 pairs of images with either
matching attributes (for CelebA) or the same class (for Zap-
pos50k). We report the bound [0, 1] if memory is exhausted.

PLDI ’21, June 20–25, 2021, Virtual Event, Canada Matthew Mirman, Alexander Hägele, Pavol Bielik, Timon Gehr, and Martin Vechev

Table 3. Comparison of the memory usage and runtime of our GenProve with and without relaxations.

peak GPU memory in GB / OOM (%) runtime in seconds

Dataset Domain ConvSmall ConvMed ConvLarge ConvSmall ConvMed ConvLarge

CelebA
GenProve0 7 GB / 0% 22.7 GB / 90 % 23.1 GB / 95 % 11 sec OOM OOM
GenProve0.02100 3.5 GB / 0 % 6.8 GB / 0 % 9.4 GB / 0 % 13 sec 25 sec 41 sec

Zappos50k
GenProve0 6.5 GB / 0 % 22.7 GB / 89 % 23.6 GB / 99 % 11 sec OOM OOM
GenProve0.02100 6.4 GB / 0 % 6.6 GB / 0 % 7.1 GB / 0 % 15 sec 25 sec 32 sec

Table 4. Comparison of the precision of our method to sam-
pling. Our method not only provides results that are guaran-
teed to be sound, but also leads to tighter bounds. Note that
the runtime of both methods (not shown) is the same.

bound width (u − l)

Domain CelebA Zappos50k

Verified Correctness GenProve0.02100 1.6 · 10−4 5.7 · 10−5

99.999% Confidence Sampling 2.1 · 10−4 1.5 · 10−3

One can first observe that Box, HybridZono, Zonotope,
and DeepZono are unable to certify any samples as they
almost always produce a probabilistic interval with width
1. We posit that this is due to non-convexity being highly
important for these kinds of specifications. Zonotope and
DeepZono run out of memory for all the samples, even for
the smallest network ConvSmall.
While GenProve0 is theoretically complete, it also pre-

dominantly failed to provide useful bounds as it frequently
ran out of GPU memory. However, we can see that for the
small network ConvSmall, where it does scale, it does pro-
duce exact results: the width of all bounds is 0.
GenProve0.02100 is the only approach that is both scalable

and precise. The bounds are tight even for the largest net-
work ConvLarge: 5.7 · 10−5 for Zappos50k for example.
Significantly, the bounds remain tight as the network size
increases. For example, when the network size increased
by 500% (from ConvMed to ConvLarge), the bound width
increased from 3.3 · 10−5 only to 5.7 · 10−5.
While the speed of each method can be seen in Table 8

in the appendix, these numbers can be misleading: despite
Box and HybridZono’s apparent speed, they fail to provide
any useful information for any specifications due to afore-
mentioned imprecision. Similarly, Zonotope, DeepZono and
GenProve0 also appear very fast while failing to provide
useful information. These fail however due to running out
of GPU memory. In contrast, GenProve takes 41.4 seconds
on the most complicated specification and network here, but
produces extremely tight and useful bounds in every case.

Scalability. Table 3 shows the average runtime, peak
GPU memory, and the fraction of samples that resulted in
out-of-memory (OOM) errors. For the CelebA dataset, while
the network size increased 5×, the memory usage of Gen-
Prove0.02100 increased only 2.7×. The improvement in memory
usage is even better for the Zappos50k dataset, where in-
creasing the size 2× leads to an increase in memory usage
of only 1.08×. This shows that the relaxation technique pro-
posed in our work successfully reduces the memory usage
while still achieving tight bounds. The results for runtime are
similar: runtime increases sublinearly depending on network
size. Overall, the verification is fast and takes on average
≈40 seconds for ConvLarge and ≈11 seconds for ConvSmall.
The results in Table 3 also detail why GenProve0 does

not scale: the needed GPU memory increases significantly
with network size. For complex specifications, the number of
segments that must be tracked often increases exponentially.
To improve the scalability of both GenProve0 and Gen-

Prove0.02100 further, it is possible to split the specification into
smaller parts. In our case, this corresponds to partitioning
the initial segment (or other one-dimensional shapes) into
multiple smaller segments that are verified sequentially and
then merged together. However, while useful for avoiding
the memory limitations, it comes at the cost of increased
runtime. Given that the number of segments can grow expo-
nentially with the network size, we believe that developing
and incorporating techniques like the relaxation proposed in
our work is critical for scaling to state-of-the-art networks.

Comparison to sampling. In our next experiment, shown
in Table 4, we compare to a sampling method, where sam-
ples are drawn from the uniform distribution over the initial
segment. We report the Clopper-Pearson interval with a con-
fidence of 99.999%. Notably, the probabilistic bound returned
by sampling is only guaranteed to be correct 99.999% of the
time (in cases it reaches the desired confidence), whereas for
other analyses it is guaranteed to always be correct.

The results show that the sampling does scale and also pro-
duces bound widths with a reasonable precision. However,
not only doesGenProve produce bounds that are guaranteed
to be correct, it also produces bounds are up to two orders of
magnitude tighter (i.e., by up to ≈ 2500%). These results were

Robustness Certification with Generative Models PLDI ’21, June 20–25, 2021, Virtual Event, Canada

Table 5. An illustration of the various specifications we support and what we are able to certify about them. This is in addition
to the specifications shown in Figure 3 and certification of adversarial regions around a generative specification (not shown).

Specification Type Illustration Certified Result

(a) head orientation
bound width (u − l)

1.0 · 10−4

(b) adding "brown hair"
robust attributes

32/40

(c) quadratic curve
robust attributes

29/40

consistent across all the networks and datasets we evaluated,
the full version of which is included in Appendix D.

5.3 RQ3 - Verifying Novel Generative Specifications

So far, we have demonstrated that GenProve can verify
generative specifications like those shown in Figure 3, which
interpolate between two images with identical attributes. We
now address RQ3 and demonstrate how our method applies
to five additional generative specifications.

Certifying robustness to head orientation. As shown
by Dumoulin et al. [7], VAEs can generate images of in-
termediate poses from flipped images. An example of this
transformation is shown in Table 5 (a). We evaluated line
specifications between encodings of horizontally flipped im-
ages. For a head, ideally the intermediate reconstructions
will be of the intermediate 3D orientations. As pose is not
a provided CelebA attribute, the attribute detector should
recognize the same attributes for all interpolations. We eval-
uated GenProve0.02100 on images from CelebA dataset and
successfully produced tight bounds for all evaluated images.
The average bound width was only 1.0 · 10−4, with average
lower bound l = 0.8433 and average upper boundu = 0.8434.
That is, we verified that on average, the target network is
robust to 84% of the generated interpolations. The results
for other method follow the results shown in Table 2, that is,
they either do not scale or provide bound width close to 1.

Certifying attribute independence for CelebA. We use
GenProve to demonstrate that attribute detection for one
feature is invariant to transformation of an independent
feature. Specifically, we verify for a single image the effect
of adding a different hair color, as shown in Table 5 (b). To
achieve this, we find the attribute vectorm for “BrownHair“
using the 80k training images in the manner described by
[23], and compute probabilistic bounds for Cj (nE (o),nE (o)+
3m,oA, j) for j , 11 and the image o. Here, we used the
ConvMed attribute detector. Using GenProve we are able to

prove that 32 out of the 40 attributes are entirely robust to
brown hair addition, and 8 of them were not robust. Among
the attributes which can be proven to be robust was i = 39 for
“young“ for example. We are able to find that attribute i = 9
for “BlondHair” is not entirely robust to the addition of the
BrownHair vector, which is expected. Here, our approach is
able to find tight lower and upper bounds on the robustness
probability of [0.6038, 0.6039] for that attribute. The average
interval width for all attributes was 7.87 · 10−6. One can
observe in Table 5 (b) that this matches visually what the
interpolated images show: the first 6 or so reconstructions
appear to have blond hair, whereas the rest have brown hair.

Certifying curved specifications. We demonstrate the
first exact analysis (both deterministic and probabilistic) of
a non-convex smooth input for neural networks. Given three
encoding vectors, e0,e1,e1, we create the following quadratic
curve that passes through them at t = 0, 0.5, 1 respectively:

γ (t) = e0 + (4e1 − e2 − 3e0) · t + 2(e2 + e0 − 2e1) · t2.
We use the encoding of an image of a head for e0, the encod-
ing of the flipped head for e2, and the midpoint of these two
encodings perturbed by a scaled moustache attribute vector,
m (found as described earlier for the BrownHair attribute
vector, but for attribute 22) for e1 := 0.5(e0 + e2) + 4m. We
visualize this specification in Table 5 (c).

We used GenProveCurve to demonstrate attribute inde-
pendence for 29 out of the 40 different attributes. As Gen-
ProveCurve is exact, it produced a bound width of 0. The
average probability of attribute consistency is 0.85. Here, we
used a smaller generator architecture, DecoderSmall with
only 41 160 neurons, the usual ConvSmall attribute detector.
Even though it is exact, GenProveCurve was able to verify
the non-linear specification in only 12.6 seconds.

Certifying adversarial regions around generative out-

put. Unlike any other pre-existing methods, GenProve can

PLDI ’21, June 20–25, 2021, Virtual Event, Canada Matthew Mirman, Alexander Hägele, Pavol Bielik, Timon Gehr, and Martin Vechev

Table 6. Average number of fully verified images for interpolations of images in the same MNIST class using adversarial
region width ϵ = 0.1 for ConvBiggest with 175 816 neurons trained in three ways.

verification of adversarial generative interpolations

Training Scheme standard accuracy adversarial accuracy (PGD [32]) provable accuracy (Box) bound width (u − l)

Standard training 99.2% 54.5% 0.0% 0.9999
Adversarial with FGSM [16] 99.5% 97.1% 0.0% 1.0
Adversarial with DiffAI [33] 99.1% 97.7% 92.5% 0.0990

Table 7. Using an interpolation specification with an arcsin distribution between unrelated images to compare the realism of
images produced by various generative models. We compute an upper bound on the probability that the out-of-distribution
detector (in this case a GAN discriminator) successfully determines that the generated image is fake.

Model Interpolation Upper Bound Bound Width

(a) VAE
0.4528 0

(b) FactorVAE
0.32 3.5 × 10−5

(c) ACAI
0.29 8.8 × 10−5

be easily applied to higher-dimensional specifications. Specif-
ically, we use generative models to construct a base specifica-
tion, which we additionally want to be adversarially robust.
We define the adversarial consistency Cadvϵ,i,nA,nD (e1,e2) as:

Pre∼U (e1e2)[∀a ∈ B∞,ϵ (nD (e)). argmaxi nA (a)i = t].
Here, B∞,ϵ (nD (e)) refers to the L∞ adversarial region of size
ϵ around the output of the generator. To handle this we
propagate the interval using GenProve through the decoder
nD to produce a list of segments and boxes. We compute
a box around each segment, and then enlarge each box in
the entire list, in every dimension, by ϵ . We then propagate
the boxes through nA. Crucially, these operations all fall
under the framework developed in our work, and so this
specification can be seen as an instance of GenProve.

Because no other method is both capable of handling gen-
erative specifications without adversarial regions, or easily
extensible to handle this specification, we only use Gen-
Prove to demonstrate the benefit of DiffAI training. Table 6
shows the result of applying GenProve to solve this speci-
fication on regularly trained networks, FGSM-trained net-
works [16], and DiffAI-trained networks [33] for the MNIST
dataset. We report, in addition to the standard accuracy, the
accuracy against the PGD adversary [32] with 5 iterations,
and the provability using Box. We finally report the bound

width on the generative adversarial specification using Gen-
Prove. One can see that on a DiffAI-trained network, we are
able to provide tight bounds on the adversarial consistency.

Certifying complex specifications. Finally, we demon-
strate the full capabilities of GenProve for certifying non-
uniform specifications involving naive out-of-distribution de-
tection using a GAN discriminator, and autoencoders specifi-
cally trained for disentanglement and interpolation as shown
in Table 7. Here, we trained two more VAEs on CelebA: (i)
ACAI [2] which is designed specifically to produce realistic
encoding interpolations, and (ii) FactorVAE [20] which is
designed to learn a latent encoding where each dimension
represents an independent disentangled feature. For out-
of-distribution detection, we used the discriminator from
a vanilla GAN [15]. Each has been modified to use MSE as
their reconstruction loss to avoid sigmoids. We use Decoder
for all decoders, Encoder for the encoders and the ACAI
critic, and EncoderSmall for the GAN discriminator. Further,
FactorVAE uses a small feedforward network 5 layers deep
(each layer has 100 neurons) as its factorization critic. Each
network was trained for 100 epochs, with a batch size of 64.
The autoencoders used 64 latent dimensions while the GAN
used 128. All other hyperparameters are as in the respective
papers.

Robustness Certification with Generative Models PLDI ’21, June 20–25, 2021, Virtual Event, Canada

To demonstrate non-uniform distributions, we use the arc-
sine distribution over the interpolation specification. Table 7
compares the upper bound of an interpolation specification
between two unrelated images. A small number means that
the discriminator was fooled by the generator in question.
We can see that the most successful generator is ACAI, which
is specifically trained to produce realistic interpolations.

6 Related work

Next, we review work most closely related to ours.

Certifying generative models. Dvijotham et al. [9] veri-
fies lower bounds on a probabilistic property for all inputs in
a specification for variational autoencoders with a latent ran-
dom variable using a dual approach. In contrast, GenProve
finds tight upper and lower bounds on the probability that a
property is satisfied given a distribution over a specification.
Further, our approach scales to networks that are orders of
magnitude larger – we successfully certify CelebA networks
with nearly 200k neurons compared to a network with 3
hidden layers of 64 units each used in Dvijotham et al. [9].

Convex relaxations. PROVEN [47] proposes a technique
to infer confidence intervals on the probability of misclas-
sification from prexisting convex relaxation methods that
find linear constraints on outputs. In our evaluation, we
show that for interpolations of generative models, convex
relaxation methods are unable to prove meaningful bounds.
This implies that the linear lower bound function used by
PROVEN would be bounded above by 0, and thus because
F Lдt (0.5) ≥ F L0 (0.5) and F

L
0 (0.5) = 1, the lower bound,γL , that

their system should derive would be γL = 0. This is because
even the most precise convex relaxation over the generated
images might include many images that are not realistic. For
example, the convex hull includes the pixel-wise average of
the generated endpoint images, as in Figure 1.

Adversarial defenses. Another line of work, smoothing,
provides a defense with statistical guarantees [3, 4, 25, 26, 30].
In our evaluation, we compared to a variant of this technique,
sampling, and demonstrated that GenProve computes two
orders of magnitude tighter bounds across all the datasets
and models. Further, our work provides provable guarantees
compared to sampling whose bounds are correct only with
some probability (e.g., with 99% confidence).

At the same time, a number of recent adversarial defences
started to incorporate generative models as core component
or their approach [27, 38, 41]. For all of those, incorporat-
ing techniques presented in our work is a natural next step
required to certify that the defence is provably correct.

Certifying line segments. Of particular note, the work
of Sotoudeh and Thakur [42] also restricts the network in-
puts to line segments. They used this method to certify non

norm-based properties [18] and to improve Integrated Gradi-
ents [43]. In our workwe build on the results of Sotoudeh and
Thakur [42] and extend them in several major aspects by: (i)
computing tight deterministic bounds on the probability of
a probabilistic specification, (ii) introducing relaxations that
enable scaling to large networks, (iii) ensuring the correct-
ness of the probabilistic guarantees in the presence of these
relaxations, and (iv) exploring novel specifications including
parametric curves and higher dimensional specifications.

7 Discussion

In this work, we developed GenProve and demonstrated its
use to certify transformations given by generative models.
While generative models are intended to represent the un-
derlying data distribution, physical limitations imply they
actually generate slightly different distributions. Unfortu-
nately, it is usually not possible to deterministically certify
how much a given generative model differs from the ground
truth. This is because for most real-world applications, the
ground truth is only approximated from data. In such cases,
our domain is useful for either verifying that the generative
model satisfies some property given by a trusted downstream
classifier, or verifying that the downstream classifier obeys
a property specified by a trusted generator. In this work,
we predominantly consider verifying classifiers based on a
trusted generator. The experiment shown in Table 7 is an
example where one might consider the converse case: we
can evaluate the generator against a trusted classifier that
judges whether the produced images appear to be real.

8 Conclusion

We presented GenProve, a scalable non-convex relaxation
approach to certify neural network properties when sub-
jected to transformations learned by generative models. Our
method supports both deterministic and probabilistic certi-
fication and is able to verify, for the first time, interesting
visual transformation properties based on latent space inter-
polation, beyond the reach of prior work.

References

[1] Mislav Balunovic, Maximilian Baader, Gagandeep Singh, Timon Gehr,
and Martin Vechev. 2019. Certifying Geometric Robustness of Neural
Networks. In NeurIPS.

[2] David Berthelot, Colin Raffel, Aurko Roy, and Ian Goodfellow. 2018.
Understanding and Improving Interpolation in Autoencoders via an
Adversarial Regularizer. In ICLR.

[3] Xiaoyu Cao andNeil ZhenqiangGong. 2017. Mitigating evasion attacks
to deep neural networks via region-based classification. In ACSAC.

[4] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. 2019. Certified adver-
sarial robustness via randomized smoothing. In ICML.

[5] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a
unified lattice model for static analysis of programs by construction
or approximation of fixpoints. In POPL.

[6] Patrick Cousot and Michael Monerau. 2012. Probabilistic Abstract
Interpretation. In Programming Languages and Systems, Helmut Seidl
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 169–193.

PLDI ’21, June 20–25, 2021, Virtual Event, Canada Matthew Mirman, Alexander Hägele, Pavol Bielik, Timon Gehr, and Martin Vechev

[7] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro,
Alex Lamb, Martin Arjovsky, and Aaron Courville. 2017. Adversarially
learned inference. In ICLR.

[8] Vincent Dumoulin and Francesco Visin. 2016. A guide to convolution
arithmetic for deep learning. arXiv preprint arXiv:1603.07285 (2016).

[9] Krishnamurthy Dvijotham, Marta Garnelo, Alhussein Fawzi, and Push-
meet Kohli. 2018. Verification of deep probabilistic models. arXiv
preprint arXiv:1812.02795 (2018).

[10] Krishnamurthy Dvijotham, Sven Gowal, Robert Stanforth, Relja Arand-
jelovic, Brendan O’Donoghue, Jonathan Uesato, and Pushmeet Kohli.
2018. Training verified learners with learned verifiers. arXiv preprint
arXiv:1805.10265 (2018).

[11] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A
Mann, and Pushmeet Kohli. 2018. A Dual Approach to Scalable Verifi-
cation of Deep Networks.. In UAI.

[12] Akshat Gautam, Muhammed Sit, and Ibrahim Demir. 2020. Realistic
River Image Synthesis using Deep Generative Adversarial Networks.
arXiv preprint arXiv:2003.00826 (2020).

[13] Yixiao Ge, Zhuowan Li, Haiyu Zhao, Guojun Yin, Shuai Yi, Xiaogang
Wang, et al. 2018. Fd-gan: Pose-guided feature distilling gan for robust
person re-identification. In NeurIPS.

[14] Timon Gehr, Matthew Mirman, Petar Tsankov, Dana Drachsler Cohen,
Martin Vechev, and Swarat Chaudhuri. 2018. AI2: Safety and Robust-
ness Certification of Neural Networks with Abstract Interpretation. In
S&P.

[15] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron C Courville, and Yoshua Bengio.
2014. Generative Adversarial Nets. In NeurIPS.

[16] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Ex-
plaining and harnessing adversarial examples. In ICLR.

[17] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel,
Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli.
2018. On the Effectiveness of Interval Bound Propagation for Training
Verifiably Robust Models. arXiv preprint arXiv:1810.12715 (2018).

[18] Kyle D Julian, Mykel J Kochenderfer, and Michael P Owen. 2018. Deep
neural network compression for aircraft collision avoidance systems.
Journal of Guidance, Control, and Dynamics 42, 3 (2018), 598–608.

[19] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochen-
derfer. 2017. Reluplex: An efficient SMT solver for verifying deep
neural networks. In CAV.

[20] Hyunjik Kim and Andriy Mnih. 2018. Disentangling by factorising. In
ICML.

[21] Diederik P Kingma and Jimmy Ba. 2015. Adam: Amethod for stochastic
optimization. In ICLR.

[22] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational
bayes. In ICLR.

[23] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle,
and Ole Winther. 2016. Autoencoding beyond pixels using a learned
similarity metric. In ICML.

[24] Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST
handwritten digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist 2 (2010).

[25] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu,
and Suman Jana. 2019. Certified robustness to adversarial examples
with differential privacy. In S&P.

[26] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. 2018.
Second-order adversarial attack and certifiable robustness. arXiv
preprint arXiv:1809.03113 (2018).

[27] Yingzhen Li, John Bradshaw, and Yash Sharma. 2019. Are Generative
Classifiers More Robust to Adversarial Attacks?. In ICML.

[28] Chen Liu, Ryota Tomioka, and Volkan Cevher. 2019. On Certifying
Non-uniform Bound against Adversarial Attacks. In ICML.

[29] Jinxian Liu, Bingbing Ni, Yichao Yan, Peng Zhou, Shuo Cheng, and
Jianguo Hu. 2018. Pose transferrable person re-identification. In CVPR.

[30] Xuanqing Liu, Minhao Cheng, Huan Zhang, and Cho-Jui Hsieh. 2018.
Towards robust neural networks via random self-ensemble. In ECCV.

[31] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep
Learning Face Attributes in the Wild. In ICCV.

[32] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. 2018. Towards deep learning models resis-
tant to adversarial attacks. In ICLR.

[33] Matthew Mirman, Timon Gehr, and Martin Vechev. 2018. Differen-
tiable Abstract Interpretation for Provably Robust Neural Networks.
In ICML.

[34] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. 2017. Automatic differentiation in PyTorch. (2017).

[35] Xuelin Qian, Yanwei Fu, Tao Xiang, Wenxuan Wang, Jie Qiu, Yang
Wu, Yu-Gang Jiang, and Xiangyang Xue. 2018. Pose-normalized image
generation for person re-identification. In ECCV.

[36] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. 2018. Certified
Defenses against Adversarial Examples. In ICLR.

[37] Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan
Zhang. 2019. A convex relaxation barrier to tight robustness verifica-
tion of neural networks. In NeurIPS.

[38] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. 2018. Defense-
GAN: Protecting Classifiers Against Adversarial Attacks Using Gener-
ative Models. In ICLR.

[39] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel,
and Martin Vechev. 2018. Fast and effective robustness certification.
In NeurIPS.

[40] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev.
2019. An abstract domain for certifying neural networks. In POPL.

[41] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate
Kushman. 2018. PixelDefend: Leveraging Generative Models to Un-
derstand and Defend against Adversarial Examples. In ICLR.

[42] Matthew Sotoudeh and Aditya V Thakur. 2019. Computing Linear Re-
strictions of Neural Networks. arXiv preprint arXiv:1908.06214 (2019).

[43] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic
attribution for deep networks. In ICML.

[44] Vincent Tjeng, Kai Xiao, and Russ Tedrake. 2019. Evaluating Robust-
ness of Neural Networks with Mixed Integer Programming. In ICLR.

[45] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman
Jana. 2018. Efficient formal safety analysis of neural networks. In
NeurIPS.

[46] Xinlong Wang, Zhipeng Man, Mingyu You, and Chunhua Shen. 2017.
Adversarial generation of training examples: applications to mov-
ing vehicle license plate recognition. arXiv preprint arXiv:1707.03124
(2017).

[47] Tsui-Wei Weng, Pin-Yu Chen, Lam M Nguyen, Mark S Squillante, Ivan
Oseledets, and Luca Daniel. 2019. PROVEN: Certifying Robustness of
Neural Networks with a Probabilistic Approach. In ICML.

[48] Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter.
2018. Scaling provable adversarial defenses. NeurIPS.

[49] Xin Yi, Ekta Walia, and Paul Babyn. 2019. Generative adversarial
network in medical imaging: A review. Medical image analysis (2019).

[50] A. Yu and K. Grauman. 2014. Fine-Grained Visual Comparisons with
Local Learning. In CVPR.

[51] A. Yu and K. Grauman. 2017. Semantic Jitter: Dense Supervision for
Visual Comparisons via Synthetic Images. In ICCV.

Robustness Certification with Generative Models PLDI ’21, June 20–25, 2021, Virtual Event, Canada

A GenProve Propogation Pseudocode

And Example

Here we show the pseudocode for the full propogation algo-
rithm for GenProve, and provide an example of propogation
using it. Here, we only show linear probabilistic computa-
tion, and do not demonstrate how the final output is verified
against a constraint.
We will walk through Algorithm 1 using an example be-

ginning with a line segment in two dimensions a = (1, 0) and
b = (0, 1), and a 1 layer neural network with the following
weights and biases:

M1 =

(
2 2 3
−1 1 0

)
B1 = (−1, 0, 1)

The algorithm first constructs a listD containing the single
line segment froma tob withweight one. In the first iteration
of the loop, there is only one iteration of first inner loop,
where i = 1, and thus D1 is a segment so we proceed there.
We create new start and end nodes for this segment, a :=
Di,3M1 + B1 and b := Di,4M1 + B1. Specifically,

a = (1, 0)
(
2 2 3
−1 1 0

)
+ (−1, 0, 1) = (1, 2, 4)

b = (0, 1)
(
2 2 3
−1 1 0

)
+ (−1, 0, 1) = (−1, 1, 1).

We then fill a T with sorted zero-axis intersection times,
starting with 0 and 1. Specifically, for each dimension d we
calculate the time td such that (bd − ad)td + ad = 0. We can
compute this as td = −ad/(bd−ad). We only include this time
if td is strictly between 0 and 1. In the example, we compute
T = [0, 0.5, 1] as the intersection times for dimension d = 2
and d = 3 fall outside of 0 and 1.
For each time in this list, we compute the start, ã, and

end nodes, b̃ for a new segment, and the probability p cor-
responding to that segment. The nodes of the segments are
computed by interpolating between a and b using the times
in T whereas the probability for each segment is the dif-
ference between the times of the nodes, multiplied by the
probability of the original segment between a and b. As T
has three nodes we calculate two segments. The first from
(1, 2, 4) to (0, 1.5, 2.5) with p = 0.5 and the second from
(0, 1.5, 2.5) to (−1, 1, 1) with p = 0.5. We apply ReLU to each
dimension of the nodes of the segments, and add these to
a currently empty list, or domain element, D̃, of segments
produced at that layer:

D̃ = [(Segment, 0.5, (1, 2, 4), (0, 1.5, 2.5)),
(Segment, 0.5, (0, 1.5, 2.5), (0, 1, 1))].

Next, the algorithm determines which segments to merge
using some Relax heuristic, which returns a list of relaxed
boxes. Pedagogically, assume this returns a single box which
contains both segments entirely. This is a box that goes from
a minimal point (0, 1, 1) to a maximal point (1, 2, 4), or as we

work with in the algorithm, has a center point (0.5, 1.5, 2.5)
and radius (0.5, 0.5, 1.5). Finally, we delete the segments that
are contained within this box. We add this box to the list
D̃ with associated probability equivalent to the sum of the
deleted elements probabilities. We note that this process also
applies to merging boxes that are already part of D̃.

Algorithm 1 Pseudocode for inference with GenProve
Input: k network layers with weights and biases Mi ,Bi ,
and a line segment a,b in the input space.
Output: D a list of boxes and segments describing the
probabilities of possible regions of the output space.
D = [(Segment, 1,a,b)].
for l = 1 to k − 1 do
D̃ = []
for i = 1 to |D | do

if Di == Segment then

a = Di,3Ml + Bl
b = Di,4Ml + Bl
T = [0, 1]
for d = 1 to |bl | do
td =

−ad
|(b−a)d |

if 0 < td < 1 then
T .push(td)

end if

end for

T .sort()
for t = 2 to |T | do
p = Tt −Tt−1
ã = (b − a) ∗Tt−1 + a
b̃ = (b − a) ∗Tt + a
D̃.push((Segment,Di,2 ∗ p,ReLU (ã),ReLU (b̃)))

end for

else

c = Di,3Ml + bl
r = Di,4 |Ml |p
c̃ = ReLU (c + r) + ReLU (c − r)
r̃ = ReLU (c + r) − ReLU (c − r)
D̃.push((Box,Di,2, 0.5 ∗ c̃, 0.5 ∗ r̃))

end if

end for

P̃ =Relax(D̃)
for p = 1 to |P̃ | do
for i = 1 to |D̃ | do
if γ (D̃i) ⊆ γ (P̃p) then

P̃p,2 = P̃p,2 + D̃i,2
delete Di

end if

end for

end for

D = D̃ + P̃
end for

PLDI ’21, June 20–25, 2021, Virtual Event, Canada Matthew Mirman, Alexander Hägele, Pavol Bielik, Timon Gehr, and Martin Vechev

B Network Architectures

Our experiments use two different encoder architectures
(Encoder and EncoderSmall), two decoder architectures (De-
coder and DecoderSmall), and four different classifier/at-
tribute detector architectures (ConvSmall, ConvMed, Con-
vLarge, ConvBiggest). These are described in detail here.

Here we use ConvsC ×W × H to denote a convolution
which producesC channels, with a kernel width ofW pixels
and height of H , with a stride of s and padding of 1. FC n is a
fully connected layer which outputs n neurons. ConvTs,pC×
W × H is a transposed convolutional layer [8] with a kernel
width and height ofW and H respectively and a stride of s
and padding of 1 and out-padding of p, which produces C
output channels. l refers to the number of latent dimensions,
and o refers to either the number of attributes or number of
classes. For CelebA and Zappos50k use 64 latent dimensions,
while the VAE for MNIST uses 50 latent dimensions.

• EncoderSmall is a standard convolutional neural net-
workwith 74128 neurons. It is used for encodingMNIST
and Zappos50k. It is trained with Adam [21] with a
learning rate of 0.001 and a batch size of 128. The net-
work was trained for 300 epochs for Zappos50k and
20 epochs for MNIST.

x → Conv216 × 4 × 4 → ReLU
→ Conv232 × 4 × 4 → ReLU
→ FC 100
→ l .

• Encoder is also a standard convolutional neural net-
work, but significantly larger with 246784 neurons,
used only for encoding CelebA. It is trained with Adam
with a learning rate of 0.0001 and a batch size of 100
for 20 epochs.

x → Conv132 × 3 × 3 → ReLU
→ Conv232 × 4 × 4 → ReLU
→ Conv164 × 3 × 3 → ReLU
→ Conv264 × 4 × 4 → ReLU
→ FC 512 → ReLU
→ FC 512
→ l .

• Decoder is a transposed convolutional network which
has 74128 neurons used for decoding every dataset in
nearly every experiment, unless otherwise specified.
Of course, the training parameters are the same as the
respective encoders.

l → FC 400 → ReLU
→ FC 2048 → ReLU
→ ConvT2,116 × 3 × 3 → ReLU
→ ConvT1,03 × 3 × 3
→ x .

• DecoderSmall is a smaller transposed convolutional
network which has 41160 neurons used for decoding

CelebA for testing GenProveCurve. The training pa-
rameters are the same as the respective encoders.

l → FC 200 → ReLU
→ FC 2048 → ReLU
→ ConvT2,18 × 3 × 3 → ReLU
→ ConvT1,03 × 3 × 3
→ x .

• ConvSmall is a convolutional network which has 24676
neurons. The convolutions use a padding of 1. It is only
used for a toy parameter comparison on CelebA. It was
trained for 300 epochs with a batch size of 100 using
Adam with a learning rate of 0.0001. It had a test-set
accuracy of 89.87%.

x → Conv216 × 4 × 4 → ReLU
→ Conv232 × 4 × 4 → ReLU
→ FC 100
→ o.

• ConvMed is a convolutional network which has 63804
neurons. Here, the convolutions use a padding of 1.
This is used as a classifier and attribute detector for
Zappos50k and CelebA experiments. For both exper-
iments it was trained with a batch size of 128 using
Adam with a learning rate of 0.001. For Zappos50k it
was trained for 5 epochs and acheived a test-set accu-
racy of 79.40%. For CelebA it was trained for 10 epochs
and acheived a test-set accuracy of 89.87%.

x → Conv112 × 4 × 4 → ReLU
→ Conv216 × 4 × 4 → ReLU
→ FC 500
→ FC 200
→ FC 100
→ o.

• ConvLarge is a convolutional networkwhich has 123180
neurons. Here, the convolutions use a padding of 1.
This is used as a classifier and attribute detector for
Zappos50k and CelebA experiments. For both exper-
iments it was trained with a batch size of 128 using
Adam with a learning rate of 0.001. For Zappos50k it
was trained for 5 epochs and acheived a test-set accu-
racy of 82.20%. For CelebA it was trained for 10 epochs
and acheived a test-set accuracy of 89.86%.

x → Conv116 × 3 × 3 → ReLU
→ Conv216 × 4 × 4 → ReLU
→ Conv132 × 3 × 3 → ReLU
→ Conv232 × 4 × 4 → ReLU
→ FC 200
→ FC 100
→ o.

• ConvBiggest is a convolutional network which has
175816 neurons. Here, the convolutions use a padding
of 1. This is used as a classifier detector for MNIST
experiments. When trained with DiffAI the training

Robustness Certification with Generative Models PLDI ’21, June 20–25, 2021, Virtual Event, Canada

schedule suggested by Gowal et al. [17] is used. Each
method trains it for 30 epochs.

x → Conv164 × 3 × 3 → ReLU
→ Conv164 × 3 × 3 → ReLU
→ Conv2128 × 3 × 3 → ReLU
→ Conv1128 × 3 × 3 → ReLU
→ Conv1128 × 3 × 3 → ReLU
→ FC 200
→ o.

C GenProve Refinement Schedule

While many refinement schemes start with an imprecise
approximation and progressively tighten it, we observe that

being only occasionally memory limited and rarely time
limited, it conserves more time to start with the most pre-
cise approximation we have determined usually works, and
progressively try less precise approximations as we deter-
mine that more precise ones can not fit into GPU memory.
Thus, we start searching for a probabilistic robustness bound
with GenProvepN and if we run out of memory, try Gen-
Provemin(1.5p,1)

max(0.95N ,5) for schedule A, and GenProvemin(3p,1)
max(0.95N ,5)

for schedule B. This procedure is repeated until a solution is
found, or time has run out.

D Detailed Experimental Output

PLDI ’21, June 20–25, 2021, Virtual Event, Canada Matthew Mirman, Alexander Hägele, Pavol Bielik, Timon Gehr, and Martin Vechev

Table 8. Average consistency Ĉ bound widths, runtime, and memory usage. For these metrics, lower values are better.
Additionally, the percentage of runs which ran out of memory is reported as OOM. Unnacceptably large widths, which mean
the analysis failed to provide useful bounds, are written in red.

GPU Memory

Dataset Network Neurons Domain Width (u − l) Seconds OOM (%) Peak (GB)

CelebA

ConvSmall 24676

Prior Work

Box 0.98 0.0031 0 0.07
HybridZono 0.9703 0.0042 0 0.07
DeepZono 1.0 1.3485 100 23.62
Zonotope 1.0 1.3345 100 23.62

Our Work
GenProve0 0.0 10.7657 0 7.05
GenProve0.02100 1.78 × 10−5 12.7403 0 3.51

99.999% Confidence Sampling 3.73 × 10−4 14.7877 0 0.62

ConvMed 63804

Prior Work

Box 0.98 0.0046 0 0.16
HybridZono 0.97 0.0059 0 0.16
DeepZono 1.0 1.6848 100 23.62
Zonotope 1.0 1.5015 100 23.62

Our Work
GenProve0 0.9 1.2914 90 22.77
GenProve0.02100 1.10 × 10−4 25.3728 0 6.83

99.999% Confidence Sampling 3.11 × 10−4 26.4949 0 0.70

ConvLarge 123180

Prior Work

Box 0.98 0.0040 0 0.08
HybridZono 0.97 0.0202 0 0.08
DeepZono 1.0 0.9907 100 23.62
Zonotope 1.0 0.9560 100 23.62

Our Work
GenProve0 0.95 0.7649 95 23.14
GenProve0.02100 1.61 × 10−4 41.3746 0 9.38

99.999% Confidence Sampling 2.06 × 10−4 42.2111 0 0.71

Zappos50k

ConvSmall 24676

Prior Work

Box 1.0 0.0039 0 0.04
HybridZono 1.0 0.0048 0 0.04
DeepZono 1.0 1.3525 100 23.62
Zonotope 1.0 1.3428 100 23.62

Our Work
GenProve0 0.0 11.1377 0 6.54
GenProve0.02100 3.26 × 10−5 14.8033 0 6.39

99.999% Confidence Sampling 1.59 × 10−3 15.2826 0 0.59

ConvMed 63804

Prior Work

Box 1.0 0.0053 0 0.13
HybridZono 1.0 0.0380 0 0.13
DeepZono 1.0 1.3513 100 23.62
Zonotope 1.0 1.3402 100 23.62

Our Work
GenProve0 0.89 3.4067 89 22.67
GenProve0.02100 4.53 × 10−5 25.1927 0 6.61

99.999% Confidence Sampling 1.13 × 10−3 27.0847 0 0.67

ConvLarge 123180

Prior Work

Box 1.0 0.005 0 0.046
HybridZono 1.0 0.038 0 0.046
DeepZono 1.0 1.359 100 23.623
Zonotope 1.0 1.350 100 23.623

Our Work
GenProve0 0.99 0.414 99 23.581
GenProve0.02100 5.7 × 10−5 32.058 0 7.160

99.999% Confidence Sampling 1.53 × 10−3 32.124 0 0.679

	Abstract
	1 Introduction
	2 Overview of GenProve
	3 Certification of Deterministic Properties
	3.1 GenProve for Deterministic Properties

	4 Certification of Probabilistic Properties
	4.1 GenProve for Probabilistic Properties
	4.2 Generalization to Parametric Curves

	5 Evaluation
	5.1 RQ1 - Probabilistic Abstract Interpretation
	5.2 RQ2 - Precision and Scalability
	5.3 RQ3 - Verifying Novel Generative Specifications

	6 Related work
	7 Discussion
	8 Conclusion
	References
	A GenProve Propogation Pseudocode And Example
	B Network Architectures
	C GenProve Refinement Schedule
	D Detailed Experimental Output

