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Formal verification of neural networks is critical for their safe adoption in real-world applications. However,

designing a precise and scalable verifier which can handle different activation functions, realistic network

architectures and relevant specifications remains an open and difficult challenge.

In this paper, we take a major step forward in addressing this challenge and present a new verification

framework, called Prima. Prima is both (i) general: it handles any non-linear activation function, and (ii) precise:

it computes precise convex abstractions involving multiple neurons via novel convex hull approximation

algorithms that leverage concepts from computational geometry. The algorithms have polynomial complexity,

yield fewer constraints, and minimize precision loss.

We evaluate the effectiveness of Prima on a variety of challenging tasks from prior work. Our results show

that Prima is significantly more precise than the state-of-the-art, verifying robustness to input perturbations

for up to 20%, 30%, and 34% more images than existing work on ReLU-, Sigmoid-, and Tanh-based networks,

respectively. Further, Prima enables, for the first time, the precise verification of a realistic neural network for

autonomous driving within a few minutes.

CCS Concepts: • Theory of computation→ Abstraction; Program verification; • Computing method-

ologies→ Neural networks.

Additional Key Words and Phrases: Robustness, Convexity, Polyhedra, Abstract Interpretation

ACM Reference Format:

Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin Vechev. 2022. PRIMA:

General and Precise Neural Network Certification via Scalable Convex Hull Approximations. Proc. ACM

Program. Lang. 6, POPL, Article 43 (January 2022), 33 pages. https://doi.org/10.1145/3498704

1 INTRODUCTION

The growing adoption of neural networks (NNs) in many safety critical domains highlights the

importance of providing formal, deterministic guarantees about their safety and robustness when

deployed in the real world [Szegedy et al. 2014]. While the last few years have seen significant
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Fig. 1. Illustration of the tightness of different abstraction strategies, for a layer of four neurons (grey dots).
Strong interdependencies between neurons that can be captured directly or indirectly are shown as solid
or dashed lines, respectively. Individual single-neuron, multi-neuron or optimal convex abstractions are
illustrated in blue and the resulting overall layer-wise abstraction in green.

progress in formal verification of NNs, existing deterministic methods (see Urban and Miné [2021]

for a survey) still either do not scale to or are too imprecise when handling realistic networks.
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Fig. 2. Convex single-neuron approximation (blue)
of a ReLU (black) with bounded inputs 𝑥 ∈ [𝑙𝑥 , 𝑢𝑥 ].

Key challenge: handling non-linearities. Neural

networks interleave affine and non-linear activa-

tion layers (e.g., ReLU, Sigmoid), leading to highly

non-linear behaviours. Because affine layers can

be captured exactly using linear constraints, the

key challenge in neural network verification rests

in designing methods that can handle the effect

of these non-linear activations in a precise and

scalable manner.

Exact verification, e.g., [Anderson et al. 2019, 2020; Bunel et al. 2020b; Ehlers 2017; Katz et al.

2017; Singh et al. 2019c; Tjeng et al. 2019; Wang et al. 2018, 2021], has, in the worst-case, exponential

complexity in the (large) number of non-linear activations due to a combinatorial blow-up of

case distinctions (e.g., for ReLUs) and complex shapes for general activations (e.g., for Sigmoids).

Therefore exact verifiers typically only handle piecewise linear activations and do not scale to

larger networks.

To overcome this limitation, state-of-the-art verifiers, e.g., [Singh et al. 2019a,b; Tjandraatmadja

et al. 2020; Weng et al. 2018; Xu et al. 2020; Zhang et al. 2018], often sacrifice completeness for

scalability and leverage abstract interpretation [Cousot 1996] to over-approximate the effect of each

activation layer with convex polyhedra. Naturally, the scalability and precision of these incomplete

methods are tied to the particular polyhedral fragment they utilize.

Below, we contrast different state-of-the-art abstraction approaches with our work by comparing

the strong inter-neuron dependencies they can capture directly or indirectly, illustrated as solid

or dashed lines, respectively, in Figure 1 for a layer of four neurons. Individual abstractions are

visualized in blue and the resulting layer-wise shape in green.

Optimal convex approximation. Assume a layer of 𝑛 neurons, each applying the scalar, univariate,

non-linear activation function 𝑓 : R → R and the most precise polyhedral abstraction P of the

layer’s inputs 𝒙 . The most precise convex abstraction of the layer output is then given by the convex

hull of all input-output vector pairs conv({(𝒙,𝒇 (𝒙)) | 𝒙 ∈ P ⊆ R𝑛}), illustrated in Figure 1 (d),

where all interactions are fully captured. Computing this 2𝑛-dimensional convex hull, however, is

intractable due to the exponential cost O(𝑛𝑣 log(𝑛𝑣) +𝑛
𝑛
𝑣 ) [Chazelle 1993] in the number of neurons

𝑛, where the number of vertices 𝑛𝑣 = O(𝑛
𝑛
𝑐 ) of the input polytope P is at worst also exponential in

𝑛 [Seidel 1995] (𝑛𝑐 is the number of constraints of the input polytope P).
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Single-Neuron approximation. Most incomplete verifiers are fundamentally based on single-

neuron convex abstractions, i.e., activations are approximated separately. The tightest single-neuron

abstractions maintain upper and lower bounds 𝑙𝑥 , 𝑢𝑥 for each input 𝑥 and compute convex hulls of

all input-output tuples: conv({(𝑥, 𝑓 (𝑥)) | 𝑥 ∈ [𝑙𝑥 , 𝑢𝑥 ] ⊆ R}), as illustrated in Figure 2 for a ReLU.

The union of the obtained constraints is the final abstraction of the layer. Geometrically, it is the

Cartesian product of the convex hulls for each ReLU. This abstraction is significantly larger in

volume (exponential in 𝑛) than the optimal convex hull discussed earlier, the key reason being that

the interdependencies between neurons in the same layer are ignored, as illustrated in Figure 1 (a).

Thus, the approximation error can grow exponentially with each layer, accumulating significant

imprecision.

Multi-Neuron approximation. To mitigate this limitation for ReLU networks, recent works [Palma

et al. 2021; Singh et al. 2019a; Tjandraatmadja et al. 2020] introduced multi-neuron abstractions as

a first compromise between the optimal but intractable layer-wise and the imprecise but scalable

neuron-wise abstraction. Singh et al. [2019a] partition the neurons of an activation layer into

small sets of size 𝑛𝑠 ≤ 5, form groups of 𝑘 ≤ 3 neurons for each partition, approximate the

group’s input with octahedra [Clarisó and Cortadella 2007], and then compute exact convex hulls

jointly approximating the output of 𝑘 ReLUs for this input. These exact convex hull computations

are computationally expensive and yield complex constraints, limiting the approach to only a

few, mostly disjoint neuron groups, and restricting the number of captured dependencies, see

Figure 1 (b). Tjandraatmadja et al. [2020] and Palma et al. [2021] merge the activation layer with

the preceding affine layer and compute a convex approximation over the resulting multivariate

activation layer for a hyperbox approximation of its input. This coarse input abstraction effectively

restricts their approach to interactions over a single affine layer at a time. While both approaches

currently yield state-of-the-art precision, they are limited to ReLU activations and lack scalability

as they require small instances of the NP-hard convex hull problem to be solved exactly or large

instances to be solved partially. They also do not address the problem of capturing enough neuron-

interdependencies within a layer to come as close as possible to the optimal convex abstraction.

This work: precise multi-neuron approximations. In this work, we present the first general verifi-

cation framework for networks with arbitrary, bounded, multivariate activation functions called

Prima (PRecIse Multi-neuron Abstraction). Prima builds on the group-wise approximations from

Singh et al. [2019a] and leverages the key insight that most interdependencies between neurons

can be captured by considering a large number of relatively small, overlapping neuron-groups.

While not achieving the tightness of the optimal convex approximation, Prima yields much tighter

layer-wise approximations than previous methods, as shown in Figure 1 (c).

The key technical contributions of our work are: (i) PDDM (Partial Double Description Method)

ś a general, precise, and fast convex hull approximation method for polytopes that enables the

consideration of many neuron groups, and (ii) SBLM (Split-Bound-Lift Method) ś a novel decompo-

sition approach that builds upon the PDDM to quickly compute multi-neuron constraints. While

we combine these methods with abstraction refinement approaches in Prima, we note that they

are also of general interest (beyond neural networks) and can be used independently of each other.

Prima can be applied to any network with bounded, multivariate activation functions and

arbitrary specifications expressible as polyhedra such as individual fairness [Ruoss et al. 2020b];

global safety properties [Katz et al. 2017]; and acoustic [Ryou et al. 2020], geometric [Balunovic

et al. 2019], spatial [Ruoss et al. 2020a], and ℓ𝑝 -norm bounded perturbations [Gehr et al. 2018]. Our

experimental evaluation shows that Prima achieves state-of-the-art precision on the majority of

our ReLU-based classifiers while remaining competitive on the rest. For Sigmoid- and Tanh-based

networks, Prima significantly outperforms prior work on all benchmarks. Further, Prima enables,

for the first time, precise and scalable verification of a realistic architecture for autonomous driving
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containing > 100k neurons in a regression setting. Finally, while Prima is incomplete, it can be

used for boosting the scalability of state-of-the-art complete verifiers [Singh et al. 2019c; Wang

et al. 2021] for ReLU-based networks that benefit from more precise convex abstractions.

Main contributions. Our key contributions are:

(1) PDDM, a precise method for approximating the convex hull of polytopes, with worst-case

polynomial time- and space-complexity and exactness guarantees in low dimensions.

(2) Split-Bound-Lift Method, a technique which efficiently computes joint constraints over

groups of non-linear functions, by decomposing the underlying convex hull problem into

lower-dimensional spaces.

(3) Prima, a novel verifier combining these approaches with a sparse neuron grouping technique

and abstraction refinement, to obtain the first multi-neuron verifier for arbitrary, bounded,

multivariate non-linear activations (e.g., ReLU, Sigmoid, Tanh, and MaxPool).

(4) An evaluation of Prima on a range of activations and network architectures (e.g., fully

connected, convolutional, and residual). We show that Prima is significantly more precise

than state-of-the-art, with gains of up to 20%, 30%, and 34% for ReLU-, Sigmoid-, and Tanh-

based networks, while being effective in a regression setting, scaling to large networks, and

enabling verification in real-world settings such as autonomous driving.

We release our code as part of the open-source framework ERAN at https://github.com/eth-sri/eran.

2 BACKGROUND

In this section, we establish the terminology we use to discuss polyhedra, neural networks (NNs)

and their verification.

Notation.We use lower case Latin or Greek letters 𝑎, 𝑏, 𝑥, . . . , 𝜆, . . . for scalars, bold for vectors

𝒂, capitalized bold for matrices 𝑨, and calligraphic A or blackboard bold A for sets. Similarly, we

denote scalar functions as 𝑓 : R𝑑 → R and vector valued functions bold as 𝒇 : R𝑑 → R𝑘 .

Neural networks. We focus our discussion on networks 𝒉(𝒙) : X → R |Y | that map input samples

(images) 𝒙 ∈ X to numerical scores 𝒚 ∈ R |Y | . For a classification task, the network 𝒉 classifies an

input 𝒙 by applying argmax to its output: 𝑐 (𝒙) = argmax𝑗 𝒉(𝒙)𝑗 . While our methods can refine the

abstraction of activation functions in arbitrary neural architectures [Xu et al. 2020], for simplicity,

we discuss a feedforward architecture which is an interleaved composition of affine functions

𝒈(𝒙) = 𝑾𝒙 + 𝒃 , such as normalization, linear, convolutional, or average pooling layers, with

non-linear activation layers 𝒇 (𝒙) such as ReLU, Tanh, Sigmoid, or MaxPool:

𝒉(𝒙) = 𝒈𝐿 ◦ 𝒇𝐿 ◦ 𝒈𝐿−1 ◦ ... ◦ 𝒇1 ◦ 𝒈0 (𝒙).

2.1 Neural Network Verification

Prima is an optimization-based verification approach and supports any safety specification (pre- and

post-condition) which can be expressed as a convex polyhedron. Examples of such specifications

include but are not limited to individual fairness [Ruoss et al. 2020b], global safety properties [Katz

et al. 2017], acoustic [Ryou et al. 2020], geometric [Balunovic et al. 2019], spatial [Ruoss et al. 2020a],

and ℓ𝑝 -norm bounded perturbations [Gehr et al. 2018].

At its core, Prima is based on accumulating linear constraints encoding the whole network for a

given (convex) pre-condition, defining a linear optimization objective representing the property to

be verified, and finally using an LP solver to derive a bound on this objective. If this bound satisfies

a predetermined threshold (that depends on the property), the property is verified.

While all affine layers (e.g., linear, convolutional, and normalization layers) can be encoded

exactly using linear constraints, non-linearities have to be over-approximated via constraints in

their input-output space. That is, for an activation layer 𝒇 : R𝑛 → R𝑑 and a given set of inputs

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 43. Publication date: January 2022.
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Pin ⊆ R
𝑛 , we need to derive sound output constraints, that represent a set Pin-out ⊆ R

𝑑+𝑛 which

includes all possible input-output pairs that can be obtained by applying 𝒇 to the inputs in Pin.

We show an over-approximation for a single ReLU in Figure 2. In the concrete, the ReLU maps

input 𝑥 to 𝑦 = max(0, 𝑥). If the bounds 0 > 𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥 > 0 are known, the best convex

approximation is given by the blue triangle. In this work we present novel methods to compute

tighter shapes by considering multiple neurons jointly in a higher dimensional space.

2.2 Overview of Convex Polyhedra

We now introduce the necessary background on polyhedra. A polyhedron can be represented as the

convex hull of its extremal points, called the vertex- orV-representation, or as the subspace satisfy-

ing a set of linear constraints, called the halfspace constraint orH -representation. Simultaneously

maintaining both representations of the same polyhedron is called double description.

Vertex representation. A polyhedron P ⊆ R𝑑 is the closed convex hull of a set of generators called

vertices R = {𝑥𝑖 ∈ R
𝑑 }:

P = P(R) =

{

∑

𝑖

𝜆𝑖𝒙𝑖 | 𝒙𝑖 ∈ R,
∑

𝑖

𝜆𝑖 = 1, 𝜆𝑖 ∈ R
+
0

}

,

where R+0 are the positive real numbers including 0. A polyhedral cone P ⊆ R𝑑 is the positive

linear span of a set of generators called rays R = {𝑥𝑖 ∈ R
𝑑 } and always includes the origin:

P = P(R) =

{

∑

𝑖

𝜆𝑖𝒙𝑖 | 𝒙𝑖 ∈ R, 𝜆𝑖 ∈ R
+
0

}

.

Halfspace representation. Alternatively, a polyhedron can be described as the set P ⊆ R𝑑 satisfying

a system of linear inequalities (or constraints) defined by 𝑨 ∈ R𝑚×𝑑 and 𝒃 ∈ R𝑚 :

P = P(𝑨, 𝒃) ≡ {𝒙 ∈ R𝑑 |𝑨𝒙 ≥ 𝒃}.

Geometrically, P is the intersection of𝑚 closed affine halfspacesH𝑖 = {𝑥 ∈ R
𝑑 | 𝒂𝑖𝒙 ≥ 𝑏𝑖 } with

𝒂𝑖 ∈ R
𝑑 and 𝑏𝑖 ∈ R. For a polyhedral cone we have 𝒃 = 0. For convenience, a polyhedron P(𝑨, 𝒃)

can be equivalently described in so-called homogenized coordinates 𝒙 ′ = [1, 𝒙], where it can be

expressed as P(𝑨′) = {𝒙 ′ ∈ R𝑑+1 | 𝑨′𝒙 ′ ≥ 0} with the new constraint matrix 𝑨′ = [−𝒃,𝑨].

A 𝑘-face F of a 𝑑-dimensional polyhedron is a 𝑘-dimensional subset F ⊆ P satisfying 𝑑 − 𝑘

linearly independent constraints1 with equality. We call a 0-face a vertex and a (𝑑 − 1)-face a facet

[Edelsbrunner 2012]. The rank of a ray or vertex in a 𝑑-dimensional polyhedron is the number of

linearly independent constraints it satisfies with equality. We call a ray of rank 𝑑 − 1 and a vertex of

rank 𝑑 extremal. A ray of rank 𝑑 − 𝑛 can be represented as the positive combination of 𝑛 extremal

rays and a vertex of rank 𝑑 − 𝑛 as the convex combination of 𝑛 + 1 extremal points.

Double description. Polyhedra static analysis [Fukuda and Prodon 1995; Motzkin et al. 1953; Singh

et al. 2017] usually maintains both representations (H and V) in a pair (𝑨′,R), called double

description. This is useful as computing the convex hull in theV-representation is trivial (union of

generator sets), but computing intersections is NP-hard. Conversely, computing intersections in

theH -representation is trivial (union of constraints), but computing the convex hull is NP-hard.

The transformation from theV- to theH -representation is called the convex hull problem and the

reverse the vertex enumeration problem. Both are NP-hard in general.

Inclusion. We define the inclusion of a polytope Q in a polytope P as: Q ⊆ P or equivalently,

∀𝒙 ∈ Q, 𝒙 ∈ P. In this setting, we say P over-approximates Q and Q under-approximates P.

1We call a set of constraints 𝒂𝑖𝒙 ≥ 𝑏𝑖 linearly independent, if the 𝒂𝑖 are linearly independent.
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3 OVERVIEW OF PRIMA

We now present an overview of Prima, our framework for faster and more precise verification

of neural networks with arbitrary, bounded, multivariate, non-linear activations. We provide a

complete formal description of its main components PDDM and SBLM in Sections 4 and 5, and of

Prima in Section 6. In our explanations, we follow the setup outlined in Section 1: an activation

layer consisting of 𝑛 neurons representing non-linear activations 𝑓 (𝑥) (e.g., ReLU, Tanh, Sigmoid).

Computing a convex approximation of a whole layer. Conceptually, given an 𝑛-dimensional

polytope S constraining the input to the activation layer, Prima computes a set of multi-neuron

constraints, forming a convex over-approximation of this layer, as follows:

(1) Group decomposition: Decompose the set of 𝑛 activations in the layer into overlapping groups

(subsets) of size 𝑘 .

(2) Octahedral projection: For each such group 𝑖 , compute an octahedral over-approximation P𝑖

of the projection of S to the input-space of group 𝑖 .

(3) Split-Bound-Lift Method (SBLM): Then, for each polytope P𝑖 , compute a joint convex over-

approximationK𝑖 of the group output in theH -representation using our novel SBLMmethod.

This method decomposes the problem into lower dimensions and leverages our novel Partial

Double DescriptionMethod (PDDM)with polynomial complexity to compute fast and scalable

convex hull approximations. Both SBLM and PDDM are also key to making Prima applicable

to non-piecewise-linear activations.

(4) Combine constraints: Finally, take the intersection of all output constraints K𝑖 (a union of all

constraints) to obtain an over-approximation of the entire layer output.

Verification is performed by solving an LP problem which combines the generated multi-neuron

constraints with an LP encoding of the whole network (evaluated in Section 7). We now explain

the basic workings of each step and illustrate the key concepts on a running example.

Group decomposition. Computing convex hulls for large sets of activations (e.g., a whole layer) is

infeasible. Thus, we consider groups of size 𝑘 , typically 𝑘 = 3 or 4. The key idea here is to capture

dependencies between activation inputs and outputs ignored by neuron-wise approximations

and thus achieve tighter approximations. The tightness increases with the number of groups and,

importantly, the degree of overlap between them. Considering all possible
(𝑛
𝑘

)

groups for every

layer is too expensive; thus we define the parameters partition size 𝑛𝑠 and group overlap 𝑠 for

tuning the cost and precision of our approximations. We first partition the activations of a layer

into sets of size 𝑛𝑠 (sorting by volume of the single neuron abstraction) and then for every set2

choose a subset of all
(𝑛𝑠
𝑘

)

groups that pairwise overlap by at most 𝑠 , 0 ≤ 𝑠 < 𝑘 .

Exact Input
Polytope S

(Approximate)

Projection P𝑖

𝑥1

𝑥2

𝑥3

𝑥1

𝑥2

Fig. 3. Exact projection ofS ∈ R3 (left)
to 𝑘 = 2 variables (green) and its octa-
hedral over-approximation P𝑖 (blue).

Octahedral projection. Projecting the layer-wise input poly-

tope S onto the input dimensions of every group is generally

intractable due to the high dimensionality and large number

of constraints. Therefore, we follow the idea of [Singh et al.

2019a] and over-approximate the projection. Empirically we

find that multidimensional octahedra [Clarisó and Cortadella

2007], yielding 3𝑘 −1 input constraints per group of 𝑘 neurons,

provide a good trade-off between accuracy and complexity.

Such a projection is illustrated in Figure 3 for a layer of 𝑛 = 3

neurons and 𝑘 = 2.

2For piecewise-linear activations, typically 𝑛𝑠 is chosen large enough such that there is only one set.
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Input Polytope P𝑖
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K′2
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Splitting
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Liftingsplit convex
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K2

K

𝑥1

𝑥2

𝑦2

Output Constraints K𝑖

𝑥1 + 𝑥2 − 2𝑦1 − 2𝑦2 ≥ −2

0.375𝑥2 − 𝑦2 ≥ −0.75

−𝑥1 + 𝑦1 ≥ 0

.

.

.

Fig. 4. Illustration of the Split-Bound-Lift Method for a group of 𝑘 = 2 neurons and a ReLU activation.

3.1 Split-Bound-Lift Method

The next and most demanding step takes a 𝑘-dimensional input polytope for a given 𝑘-activation

group, and computes a 2𝑘-dimensional convex over-approximation of the output of the correspond-

ing 𝑘 activations. We introduce a new technique, called Split-Bound-Lift Method, and illustrate

its workings in Figure 4 on an example. We assume ReLU activations, group size 𝑘 = 2, and an

octahedral input polytope P𝑖 (left panel in Figure 4) described by

P𝑖
= {𝑥1 + 𝑥2 ≥ −2, −𝑥1 + 𝑥2 ≥ −2, 𝑥1 − 𝑥2 ≥ −2,−𝑥1 − 𝑥2 ≥ −2, −𝑥2 ≥ −1.2}.

Our method has three main components explained next.

Split the input polytope.We first split P𝑖 into regions, which we call quadrants, for which tight

or even exact, linear bounds of the activation functions are available. Choosing the right splits is

essential for ensuring tight approximations. For piecewise-linear activation functions (like ReLU),

splitting into their linear regions even yields exact bounds in every quadrant, leading to the

tightest approximations. For our example with ReLU activations, this corresponds to splitting

along hyperplanes where the input variables 𝑥1 and 𝑥2 are 0. We (randomly) choose the ordering

{𝑦1, 𝑦2} of output variables and split P𝑖 (in the following we omit the superscript 𝑖) along the

corresponding hyperplanes. That is, we first intersect P with the halfspaces {𝒙 ∈ R2 | 𝑥1 ≥ 0}

and {𝒙 ∈ R2 | 𝑥1 ≤ 0}, obtaining P1 and P2, and then P1 and P2 with {𝒙 ∈ R2 | 𝑥2 ≥ 0} and

{𝒙 ∈ R2 | 𝑥2 ≤ 0}. These intersections generate a tree of polytopes visualized in the first three

columns in the central panel of Figure 4 with the quadrants as leafs (third column). For brevity, we

only follow the bottom half. There, the two quadrants P2,1 and P2,2 are described by

P2,1 = {𝑥1 − 𝑥2 ≥ −2, −𝑥1 ≥ 0, −𝑥2 ≥ −1.2, 𝑥2 ≥ 0},

P2,2 = {𝑥1 + 𝑥2 ≥ −2, −𝑥1 ≥ 0, −𝑥2 ≥ 0}.

In the second part of the algorithm, we lift these quadrants step-by-step from the space of only

their inputs to the space of both their inputs and outputs. We will now describe one step of lifting

consisting of extending, bounding and computing a convex hull.

Extend and bound the quadrants. We extend3 the quadrants one output variable at a time, which,

as we will see later, enables significant gains in speed while reducing the approximation error. In

our example, we first trivially extend all quadrants from the (𝑥1, 𝑥2)-space to the (𝑦2, 𝑥1, 𝑥2)-space

(fourth column in Figure 4). Next, we bound the quadrants in the added dimension using the linear

bounds (parametrically defined, see Section 5) corresponding to applying (an approximation of) the

activation in the quadrant. Here, 𝑦2 ≤ 𝑥2 and 𝑦2 ≥ 𝑥2 for the quadrant P2,1 (since 𝑥2 ≥ 0) and 𝑦2 ≤ 0

and 𝑦2 ≥ 0 for the quadrant P2,2 (since 𝑥2 ≤ 0). Note that in this case the bounds we apply on every

3Extending a 𝑑-dimensional polytope by a variable defines it in the 𝑑 +1-dimensional space, where it is (initially) unbounded

in the dimension of the added variable.
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quadrant are exact, yielding the two polytopes (fifth column) with 0 volume in their 3𝑑-space (in

general, the bounds need not be exact):

K ′2,1 = {𝑥1 − 𝑥2 ≥ −2, −𝑥1 ≥ 0, −𝑥2 ≥ −1.2, 𝑥2 ≥ 0, 𝑥2 − 𝑦2 ≥ 0, −𝑥2 + 𝑦2 ≥ 0},

K ′2,2 = {𝑥1 + 𝑥2 ≥ −2, −𝑥1 ≥ 0, −𝑥2 ≥ 0, −𝑦2 ≥ 0, 𝑦2 ≥ 0}.

2-neuron single-neuron

𝑥1

𝑥2

𝑦2

𝑥1

𝑥2

𝑦2

Fig. 5. Comparison of 2-neuron and 1-neuron
constraints projected into 𝑦2-𝑥1-𝑥2-space for
a ReLU activation, given input polytope P𝑖 .

Approximate convex hull. Next, we compute the con-

vex hull of K ′2,1 and K ′2,2. Instead of using an exact

method, we utilize our PDDM to compute precise over-

approximations, leveraging the concept of duality, ideas

from computational geometry and our novel PDD poly-

hedron representation (explained below and in more

detail in Section 4). Note that because the considered

quadrants are only extended one variable at a time,

the computation takes place in 3𝑑 despite the group-

output being in the 4𝑑 (𝑦1, 𝑦2, 𝑥1, 𝑥2)-space. This yields

two main benefits: (i) precision ś directly computing 2𝑘-dimensional convex hulls with PDDM

will lose more precision than our decomposed method, because PDDM is exact for polytopes of

dimension up to three and loses precision only slowly for higher dimensions, and (ii) speed ś a

lower-dimensional polytope with fewer constraints and generally also fewer vertices significantly

reduces the time required for the individual convex hull computations.

Importantly, our approximate method scales quadratically as O{𝑛4𝑎 · 𝑛𝑣 + 𝑛
2
𝑎 log(𝑛

2
𝑎)} in the

number of input constraints 𝑛𝑎 and linear in the number of vertices 𝑛𝑣 (see Theorem 4.5) while

optimal exact methods are in O(𝑛𝑣 log(𝑛𝑣) +𝑛
⌊𝑑/2⌋
𝑣 ) [Chazelle 1993], i.e., exponential in the number

of dimensions and superlinear in the number of input vertices.

Note that for non-piecewise-linear functions (e.g., Tanh or Sigmoid), the number of vertices

doubles when extending by a dimension. This makes exact methods intractable and approximate

methods not using the decompositional SBLM approach (that is, extending by all dimensions at the

same time) slow (see our evaluation in Section 7).

We now obtain the convex hull (sixth column) of the two polytopes K ′2,1 and K
′
2,2 which is exact

in our 3𝑑 case:

K2 = {𝑥1 + 𝑥2 − 2𝑦2 ≥ −2,−𝑥1 ≥ 0, 0.375𝑥2 − 𝑦2 ≥ −0.75,−𝑥2 + 𝑦2 ≥ 0, 𝑦2 ≥ 0}.

We compute K1 analogously, thus completing the first step of lifting. The next and in this case

final step of lifting starts with extending K1 and K2 by 𝑦1 into the (𝑦1, 𝑦2, 𝑥1, 𝑥2)-space, where we

apply bounds on 𝑦1 yielding (in 4𝑑 and thus not illustrated as figure)

K ′1 = { − 𝑥1 + 𝑥2 − 2𝑦2 ≥ −2, 𝑥1 ≥ 0, 0.375𝑥2 − 𝑦2 ≥ −0.75,

− 𝑥2 + 𝑦2 ≥ 0, 𝑦2 ≥ 0, 𝑥1 − 𝑦1 ≥ 0, −𝑥1 + 𝑦1 ≥ 0},

K ′2 = {𝑥1 + 𝑥2 − 2𝑦2 ≥ −2,−𝑥1 ≥ 0, 0.375𝑥2 − 𝑦2 ≥ −0.75,

− 𝑥2 + 𝑦2 ≥ 0, 𝑦2 ≥ 0, −𝑦1 ≥ 0, 𝑦1 ≥ 0}.

Completing the second and final step of lifting by computing their convex hull yields the final tight

2-neuron constraints:

K = {𝑥1 + 𝑥2 − 2𝑦1 − 2𝑦2 ≥ −2, 0.375𝑥2 − 𝑦2 ≥ −0.75,

− 𝑥1 + 𝑦1 ≥ 0, −𝑥2 + 𝑦2 ≥ 0, 𝑦1 ≥ 0, 𝑦2 ≥ 0}.
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(a) Constraints - 𝑨 (b) Generators - R (c) Unsound V-representation (d) Sound V-representation (e) A-irredundant a) (f) A-irredundant b)

Fig. 6. Illustration of the Partial Double Description. Input constraints 𝑨 (a), exact vertex enumeration
R𝐷𝐷 (b), unsound partial vertex enumeration violating the PDD definition (c), partial or approximate vertex
enumeration R𝑃𝐷𝐷 (d), and A-irredundant versions of the partial vertex enumeration (e).

Naturally, the regionK is tighter than the tightest single-neuron approximations (triangle relaxation,

discussed earlier). We illustrate this point by comparing their projections into the (𝑦2, 𝑥1, 𝑥2)-space

in Figure 5.

3.2 Partial Double Description Method (PDDM)

We now introduce the new PDDM for computing fast, precise, and sound over-approximations of

the convex hull of two polyhedra. This is in contrast to existing approximation methods, which

either optimize for closer approximations [Bentley et al. 1982; Khosravani et al. 2013; Sartipizadeh

and Vincent 2016; Zhong et al. 2014] but sacrifice the soundness required for verification, or have

exponential complexity [Xu et al. 1998], making them too expensive for our application.

Double description method. The well-known Double Description Method (DDM) [Fukuda and

Prodon 1995; Motzkin et al. 1953] for computing the convex hull of two polyhedra in Double

Description works as follows: (i) translate both polyhedra to their dual representation (explained

in Section 4), (ii) intersect them in dual space by adding the constraints of one to the other, one-

at-a-time, computing full Double Descriptions at every intermediate step, and (iii) translate the

result back to primal space. Every step of adding an additional constraint generates quadratically

many new vertices, leading to an overall increase exponential in the number of constraints (in dual

space).

Partial double description. We introduce the Partial Double Description (PDD), which guarantees

soundness and also allows an approximate much cheaper intersection in dual space. We com-

bine an exact H -representation, as their intersection is trivial, with an under-approximating4

V-representation, as their exact intersection carries exponential cost. We illustrate this in Fig-

ure 6, where we show the constraints 𝑨 describing a polytope in (a), the corresponding exact

V-representation in (b), an unsound approximateV-representation in (c), and three sound ones in

(d), (e), and (f). Note that this definition of the PDD allows many differentV-representations for a

givenH -representation (see (d), (e), and (f) in Figure 6) some of which are quite imprecise (see (e)

and (f)).

Partial double description method. Now, we define the PDDM to compute approximate convex

hulls in PDD leveraging two key ideas: (i) instead of intersecting in dual space by adding the

constraints of one polytope to the other one-at-a-time (as per DDM), we add them all in a single

step. Crucially, this leads to an overall number of vertices at most quadratic (instead of exponential)

in the number of original vertices (in dual space), and (ii) this single-step approach is asymmetric and

we can greatly increase the intersection accuracy, by performing it in both directions and combining

the resulting vertices. Overall, our approach yields a polynomial complexity (see Theorem 4.5)

algorithm for sound convex hull approximations (see Theorem 4.1), guarantees exactness for low

4An under-approximation in dual space corresponds to an over-approximation in primal space, due to inclusion reversion.
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primal dual adding constraints ray shooting combine vertices A-irredundancy primal

Partial Double Description Method

Fig. 7. Partial Double Description Method for a 2-dimensional example. The input polytopes (1st column)

are translated to their dual representation (2nd column), then all their constraints are added to the other

dual polytope (3rd column). The points are separated based on whether they are included in the intersection
of theH -representations. Now ray-shooting is used to discover vertices on the rays between points in the
intersection (blue points) to those outside (red points) by intersecting the rays with the constraints added

in the previous step (4th column). The vertices of bothV-representations are then combined (5th column)

before A-irredundancy is enforced (6th column) and the result is translated back to primal space (7th column).

dimensions (see Theorem 4.4), and empirically is two orders of magnitude faster for the challenging

cases in our experiments (see Figure 16c), while losing precision only slowly as dimensionality

increases (see Figure 16b). We illustrate the Partial Double Description Method in Figure 7 and

provide more technical details in Section 4.

3.3 Layerwise Abstraction

So far we have seen how to compute the multi-neuron convex approximation for a single group

of 𝑘 activations. To compute the final abstraction of the whole activation layer, we combine the

constraints forming theH -representations of the computed output polyhedra of each group, thereby

obtaining theH -representation of the polytope describing the layerwise over-approximation.

4 THE PARTIAL DOUBLE DESCRIPTION METHOD

Primal
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to
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𝑥1

𝑥2

−1.5𝑥1 − 𝑥2 ≥ −0.75

−1.5𝑥1 + 𝑥2 ≥ −0.75

−𝑥1 + 𝑥2 ≥ −1.5

𝑥1 − 𝑥2 ≥ −1.5

5𝑥1 − 𝑥2 ≥ −5.5

5𝑥1 + 𝑥2 ≥ −5.5

0.75𝑥0 − 1.5𝑥1 − 𝑥2 ≥ 0

0.75𝑥0 − 1.5𝑥1 + 𝑥2 ≥ 01.5𝑥0 − 𝑥1 + 𝑥2 ≥ 0

1.5𝑥0 + 𝑥1 − 𝑥2 ≥ 0

5.5𝑥0 + 5𝑥1 − 𝑥2 ≥ 0

5.5𝑥0 + 5𝑥1 + 𝑥2 ≥ 0

𝑥0 = 1

Fig. 8. Top: polytope in primal (left) and dual (right) space. Bottom:
equivalent polyhedral cones in homogenized coordinates. In red:
the plane the cone can be intersected with to recover the polytope.

In this section, we explain our PDDM

for computing convex hull approxi-

mations in greater detail. First, we in-

troduce the needed notion of duality

and our novel Partial Double Descrip-

tion (PDD) representation for polyhe-

dra. Then, we explain the PDDM step

by step as illustrated in Figure 7.

The PDDM computes the convex

hull of two 𝑑-dimensional polytopes

P1 = P(𝑨1, 𝒃1) and P2 = P(𝑨2, 𝒃2),

but uses the equivalent homogenized

representation (see Section 2.2) of

(𝑑 + 1)-dimensional cones P ′1 =

P(𝑨′1) and P
′
2 = P(𝑨′2). Vertices in the original polytope now correspond to rays in the cone.

In the following explanations we will use either term, depending on convenience. The original

polytope can be recovered from the cone, by intersecting it with the hyperplane 𝑥 ′0 = 1 in primal,

or with 𝑥 ′0 = −1 in dual space (explained next) as visualized in Figure 8.

Duality. The dual P of a polytope P with a minimal set (containing no redundancy) of extremal

vertices R enclosing the origin but not containing it in its boundary (to ensure a bounded dual) is

defined as
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P = {𝒚 ∈ R𝑑 | 𝒙⊤𝒚 ≤ 1 ∀𝒙 ∈ P} =
⋂

𝑥 ∈R

{𝒚 ∈ R𝑑 | 𝒙⊤𝒚 ≤ 1}, (1)

and for polyhedral cones P ′ as [Genov 2015]

P ′ = {𝒚′ ∈ R𝑑+1 | 𝒙 ′⊤𝒚′ ≤ 0 ∀𝒙 ′ ∈ P ′}. (2)

Figure 8 shows an example of the dual of a polytope. Important for the remaining section are

four properties of the transform between primal and dual. 1) The dual of a polyhedron is also a

polyhedron. 2) It is inclusion reversing: P ⊂ Q if and only if Q ⊃ P, 3) theV-representation of

the dual corresponds to theH -representation of the primal and vice versa: P = P(𝑨′,R ′) implies

P = P(R ′⊤,𝑨′⊤), where (·)⊤ denotes transpose (note that this implies that the vertices of the

primal correspond to the supporting hyperplanes of the dual and vice-versa), and 4) the dual of the

dual of a polyhedron is the original primal polyhedron P = P.

Partial double description.We leverage these duality properties in two ways: We translate the

convex hull problem in primal space to an intersection problem in dual space (only involving a

transpose given a DD or PDD) where we compute aV-representation under-approximating the

intersection in dual space to obtain anH -representation over-approximating the convex hull in

primal space (using inclusion reversion). To compute these intersections efficiently, we introduce

the Partial Double Description (PDD) as a relaxation of the Double Description (DD) (Section 2.2)

as discussed in the overview.

Formally, the PDD of a (𝑑 + 1)-dimensional polyhedral cone is the pair of constraints and

rays (𝑨′,R ′) with 𝑨′ ∈ R𝑚×(𝑑+1) and R ′ ∈ R𝑛×(𝑑+1) where the V-representation is an under-

approximation of theH -representation or more formally, where for any row 𝒓 ∈ R ′ and constraint

𝒂 ∈ 𝑨′, 𝒂𝒓 ≥ 0 holds.

We call constraints 𝒂 𝑗 ∈ 𝑨
′ active for a given ray 𝒓𝑖 ∈ R

′, if they are fulfilled with equality, that

is 𝒂 𝑗 𝒓𝑖 = 0. We store this relationship as part of the PDD in what we call the incidence matrix

I ∈ {0, 1}𝑛×𝑚 : I𝑖, 𝑗 = 1 if 𝒂 𝑗 𝒓𝑖 = 0 and I𝑖, 𝑗 = 0 otherwise. Further, we define the partial ordering on

I: I𝑖 ⊆ I𝑗 iff I𝑖,𝑘 ≤ I𝑗,𝑘 , ∀ 1 ≤ 𝑘 ≤ 𝑚. Intuitively this corresponds to a row in the incidence matrix

being only lesser than another if the set of active constraints of the associated ray is a strict subset

of that of the other. Next, we describe PDDM as illustrated in Figure 7.

4.1 Conversion to Dual

Given the two polyhedral cones P1 and P2 in PDD representation (𝑨′1,R
′
1) and (𝑨

′
2,R

′
2) (1

st column

in Figure 7), the first step of the PDDM is to convert them to their dual space representations

(R ′⊤1 ,𝑨′⊤1 ) and (R
′⊤
2 ,𝑨′⊤2 ) [Fukuda 2020] (2

nd column).

4.2 Intersection

The next step in the PDDM is the intersection in dual space (columns 3 to 5 in Figure 7). Recall that

the standard approach (DDM) for the intersection of polyhedra in DD is to sequentially add the

constraints of one polytope to the other, computing exactV-representations at every step. This

however can increase the number of vertices quadratically in every step resulting in an exponential

size of the intermediate representation. Instead, we add all constraints jointly in one step, leveraging

our PDD. In the following description of the intersection, we adopt the polytope (not cone) view

and consider a general polytope (𝑨,R).

Batch intersection. To intersect a polytope (𝑨,R) in PDD with a batch of constraints represented

by the matrix 𝑨 and inducing the polyhedron P(𝑨), we separate the vertices in R into three sets

depending on whether they satisfy all to-be-added constraints with inequality (R+), some only
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(a) Adding Multiple Constraints (b) Exact Result (c) Discovered Vertices (d) A-Irredundant

Fig. 9. Adding a batch of three constraints (blue thick lines) to a polytope in PDD. Vertices are separated into
R ′+ (black), R

′
0 (none), and R

′
− (red). Ray-shooting discovers new vertices R ′∗ (blue), avoiding the superfluous

green points, but missing an extremal vertex (yellow) (a). Exact intersection (b), result of joint constraint
processing (c), and under-approximation after enforcing A-irredundancy (d).

(a) Input PDDs (b) First Intersection (c) Second Intersection (d) Combining Intersections (e) Enforcing A-Irredundancy

Fig. 10. Boosting intersection precision by combining both directions of batch intersection. Input polytopes
in PDD with exactH -representation (black) and approximateV-representation (P1 green and P2 red) (a),
batch intersection of P1 with theH -representation of P2 (b), batch intersection in the opposite direction (c),
combining both intersections (d), and applying A-irredundancy (e).

with equality (R0), or violate at least one (R−). This corresponds to these points lying inside, on

the boundary of, or outside of the polyhedron P(𝑨). An example is shown in Figure 9(a): the three

added constraints are shown in blue and the vertices in R ′+ (black), R
′
0 (none), and R

′
− (red).

Now we employ a technique called ray-shooting [Maréchal and Périn 2017] and shoot a ray −−−→𝒓+𝒓−
from a vertex 𝒓+ ∈ R+ inside the intersection P(𝑨∩𝑨) to a vertex 𝒓− ∈ R− outside the intersection.

We record the first hyperplaneH = {𝒙 ∈ R𝑑 | �̃�𝑖𝒙 = 0} corresponding to one of the new constraints

�̃�𝑖 ∈ 𝑨 that intersects with the ray −−−→𝒓+𝒓−. We add the point 𝒓∗ at which
−−−→𝒓+𝒓− intersectsH to the set

of discovered points R∗. Doing so for all combinations of (𝒓+, 𝒓−) ∈ R+ ×R− yields the set of points

R∗ = {𝒓∗ =
−−−→𝒓+𝒓− ∩H | (𝒓+, 𝒓−) ∈ R

′
+ × R

′
−}.

TheV-representation of the resulting intersection is now the union R+ ∪ R0 ∪ R∗. In Figure 9 (a)

the rays −−−→𝒓+𝒓− are dashed lines from all black to all red vertices and discover new vertices R∗ (blue).

Only using the first intersections, immediately discards the green points, however, we also do

not discover the yellow point, which is an extremal vertex of the exact intersection (b), obtaining

instead the under-approximation (c).

Boosting precision. Batch intersection is asymmetric: The PDD of one polytope is intersected with

theH -representation of another, to obtain an exactH -representation and under-approximatingV-

representation of the intersection (compare Figure 10 (b) and (c)). By performing it in both directions,

i.e., intersecting (R ′⊤1 ,𝑨′⊤1 ) with (R
′⊤
2 ,𝑨′⊤2 ) and vice-versa in our example, we obtain two different

under-approximations of the intersection (see Figure 10 (b) and (c)). Their convex hull (obtained

by the union of vertices) is still a sound under-approximation of the exact intersection and more

precise than the individual under-approximations. This is illustrated in Figure 10, where the exact
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intersection (blue in (d)) of the twoH -representations (grey in (a)) is recovered despite the union of

the inputV-representations (green and red in (a)) not covering it. This is due to the synergy between

PDD and PDDM: the under-approximateV-representation of the first polytope is intersected with

the exactH -representation of the second one and vice versa. We see the same behaviour in Figure 7,

where both uni-directional intersections (4th column) are under-approximations, but their union is

exact (5th column).

Empirically we find that this is crucial to minimize the precision loss due to using approximations.

Further, the intersection results are exact for small dimensions 𝑑 ≤ 4 of cones (see Theorem 4.4).

4.3 Enforcing A-Irredundancy

Despite using batch intersection, the number of vertices can grow quickly when computing multiple

convex hulls sequentially in the Split-Bound-Lift Method. Therefore, some notion of redundancy is

needed to efficiently reduce the representation size. The standard definitions of irredundancy are:

1) the set of unique extremal rays of the cone P(𝑨′) are irredundant, and 2) a ray 𝒓𝑖 is irredundant

if removing it leads to a different cone P(R ′) ≠ P(R ′ \ 𝒓𝑖 ). For an exact DD, an irredundant

representation does not lose precision and can be computed by retaining only rays with rank 𝑑 − 1

(which can be cheaply computed using the incidence matrix I). However, a PDD (𝑨′,R ′) usually

does not include all or even any extremal rays of the cone P(𝑨′). Consequently, enforcing the

first irredundancy definition could remove all rays. Enforcing the second definition is expensive

to compute in the absence of a full set of extremal rays, as the full convex hull problem has to be

solved to assess the removal af a ray.

Therefore, we propose A-irredundancy requiring for all rays 𝒓𝑖 ∈ R
′ that there may not be

another generator 𝒓 𝑗 ∈ R
′ with a larger (by inclusion) active constraint set. Formally and using the

partial ordering defined above, we require for an A-irredundant PDD:

I𝑖 ⊈ I𝑗 , for all 𝑖, 𝑗 ∈ {1, ..., 𝑛}, 𝑖 ≠ 𝑗 .

Any ray fulfilling a subset (including the same) constraints with equality as another ray, is removed

until the above definition is satisfied to obtain an A-irredundant representation. Extremal rays will

always be retained as they have the maximum number of active constraints and there are never

two with the same active set. Intuitively, this enforces that no two rays lie in the interior of the

same face of the polyhedron.

We illustrate the effect of enforcing A-irredundancy once in Figure 10 where we use it to obtain

the polytope 10 (e) from 10 (d) and see that all extremal rays are retained and no precision is lost.

In Figure 9 we apply it to polytope 9 (c) where the PDD misses one extremal vertex to obtain 9 (d)

and see that here the resulting reduction in generator set size can come at the cost of a precision loss.

Enforcing A-irredundancy in the 6th column of Figure 7 (removing the red vertices), recovers the

minimal set of extremal rays. Note that for rays of equal incidence there are multiple possibilities

which to retain, as is illustrated in Figure 6 (e) and (f).

4.4 Conversion to Primal

Translating the A-irredundant PDD obtained as described above, back to primal space concludes

the PDDM and yields the (generally) approximate convex hull of P1 and P2 illustrated in the 7th

column of Figure 7.

4.5 Formal Guarantees

In this subsection, we first show that the PDDM is sound and exact in low dimensions, before

analysing its worst-case complexity.
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Algorithm 1: Batch Intersection

Result: Intersected polytope (𝑨′,R ′𝑝 )

Input: polytope (𝑨𝑝 ,R𝑝 ), constraint matrix 𝑨𝑞

Initialize R−,R0,R+,R∗ = ∅, ∅, ∅, ∅

for 𝑟 in R𝑝 do

if 𝑚𝑖𝑛(𝑨𝑞𝒓) < 0 then
Add 𝑟 to R−

else if 𝑚𝑖𝑛(𝑨𝑞𝒓) > 0 then
Add 𝑟 to R+

else
Add 𝑟 to R0

for 𝑟+ in R+ do

for 𝑟− in R− do
Compute 𝑟∗ via ray-shooting from 𝑟+ to 𝑟−
Add 𝑟∗ to R∗

Construct new PDD (𝑨𝑝 ∪𝑨𝑞,R0 ∪ R+ ∪ R∗)

Make PDD A-irredundant

return PDD

Soundness guarantee. Computing a

sound over-approximation of the convex

hull of two polytopes in primal space, by

inclusion-inversion, is equivalent to com-

puting a sound under-approximation of

the intersection of their dual space rep-

resentations. Since the primal-dual con-

version employed in the PDDM is exact,

a sound under-approximation of the in-

tersection of two polytopes in PDD in

dual space implies overall soundness. En-

forcing A-irredundancy on a polytope P

to yield Q can only remove generators,

yielding Q ⊆ P. It follows directly that

Q is a sound under-approximation, if P

is. If both polytopes P ′𝑞 and P
′
𝑝 generated

by the vertex sets obtained for the two

directions of batch intersection are sound

under-approximations of the true inter-

section of the exact H -representations,

it follows that their union P ′ is also a sound under-approximation. Hence, the soundness of the

PDDM follows from the soundness of the batch intersection step:

Theorem 4.1. The batch intersection P ′𝑝 = (𝑨′,R ′𝑝 ) of a polytope P in PDD (𝑨𝑝 ,R𝑝 ) with the

exact constraints 𝑨𝑞 of a polytope Q computed as described above and detailed in Algorithm 1, is a

sound under-approximation of the intersection of the two exactH -representations 𝑨𝑝 and 𝑨𝑞 :

{𝒙 ∈ R𝑑 |𝑨′𝒙 ≥ 0} = {𝒙 ∈ R𝑑 |𝑨𝑝𝒙 ≥ 0 ∧𝑨𝑞𝒙 ≥ 0},
{

∑

𝒓𝑖 ∈R
′
𝑝

𝜆𝑖𝒓𝑖 |
∑

𝑖

𝜆𝑖 ≤ 1, 𝜆𝑖 ∈ R
+
0

}

⊆ {𝒙 ∈ R𝑑 |𝑨𝑝𝒙 ≥ 0 ∧𝑨𝑞𝒙 ≥ 0}.

Proof. Recall that a PDD consists of an exact H -representation and an under-approximate

V-representation. The intersection of two polytopes inH -representation is simply the union of all

constraints, allowing for an exact intersection of theH -representations. Hence, it remains to show

that the resultingV-representation R ′𝑝 is a sound under-approximation of theH -representation

𝑨′. For this, it is sufficient to show that, by construction, every vertex 𝒓 ∈ R ′𝑝 satisfies all constraints

in 𝑨′. Recall that R ′𝑝 is the union of three groups of vertices (see Section 4.2 or Algorithm 1):

R+ vertices of the generating set R𝑝 that satisfy all constraints in 𝑨𝑞 strictly,

R0 vertices of the generating set R𝑝 that satisfy all constraints in 𝑨𝑞 , at least one with equality,

R∗ the first intersections 𝒓∗ of rays from a vertex in 𝒓+ ∈ R+ to a vertex in 𝒓− ∈ R− (vertices in R𝑝
not satisfying all constraint in 𝑨𝑞) with the hyperplanes defined by 𝑨𝑞 . Since 𝒓− lies outside

Q while 𝒓+ lies inside, an intersection 𝒓∗ is guaranteed to exist and lie between the two. By

convexity of P, 𝒓∗ satisfies all constraints of 𝑨𝑝 . Further, since 𝒓∗ is the first intersection of

the ray with a constraint in 𝑨𝑞 as seen from 𝒓+, which satisfies all constraints in 𝑨𝑞 , 𝒓∗ also

satisfies all constraints in 𝑨𝑞 .

Consequently, all vertices in the generating set R ′𝑝 satisfy all constraints of both P and Q. It follows

that R ′𝑝 ⊆ Q ∩ P and hence that the generated polytope is a sound under-approximation. □
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Algorithm 2: PDDM Intersection

Result: Intersected polytope (𝑨𝑝 ∪𝑨𝑞,R
′)

Input: polytope (𝑨𝑝 ,R𝑝 ) and (𝑨𝑞,R𝑞)

Compute (𝑨′,R ′𝑝 ) = (𝑨𝑝 ∪𝑨𝑞,R𝑝 ) with Alg.1

Compute (𝑨′,R ′𝑞) = (𝑨𝑝 ∪𝑨𝑞,R𝑞) with Alg.1

Construct new PDD (𝑨′,R ′𝑝 ∪ R
′
𝑞)

Make PDD A-irredundant

return PDD

Exactness guarantee. Further, we can show

that for relatively low dimensional polyhe-

dra in Double Description, as they are often

encountered during the first step of lifting

in the SBLM, the PDDM as described above

is not only sound but actually exact. To this

end, let us first show the following guaran-

tee for the intersection of a cone in DD with

a matrix of constraints:

Theorem 4.2. Given a Double Description (𝑨𝑝 ,R𝑝 ) of a polyhedral cone and the constraint matrix

𝑨𝑞 , adding all constraints jointly as per Algorithm 1 is guaranteed to yield a double description

(𝑨𝑝 ∪𝑨𝑞,R
′
𝑝 ) enumerating all extremal rays 𝑟 ′ of the𝑨𝑝 ∪𝑨𝑞-induced cone with one of the following

properties:

(1) 𝑟 ′ is extremal (rank 𝑑 − 1) in the 𝑨𝑝 -induced cone.

(2) 𝑟 ′ is of rank 𝑑 − 2 in the 𝑨𝑝 -induced cone.

Proof. We can formally divide the rays of the new PDD R ′ into the two non-overlapping sets:

• R+ ∪ R0: Rays in R𝑝 not violating any constraint 𝑎 ∈ 𝑨𝑞

• R∗: Rays discovered by ray-shooting

Since (𝑨𝑝 ,R𝑝 ) is a DD of the 𝑨𝑝-induced cone it enumerates all extremal rays. If 𝑟 ′ is extremal

in both the 𝑨-induced and the 𝑨𝑝 ∪ 𝑨𝑞-induced cones, it is included in R𝑝 and does not violate

any constraints. Therefore, it is included in the first group above and will be part of R ′𝑝 , which

concludes the proof of the first point. Any ray of rank 𝑑 − 2 can, by definition, be represented as

a positive combination of two extremal rays, that is rays of rank 𝑑 − 1. As we assume ray 𝑟 ′ to

be extremal in the 𝑨𝑝 ∪ 𝑨𝑞-induced cone and therefore have rank 𝑑 − 1, it necessarily intersects

at least one constraint 𝒂 ∈ 𝑨𝑞 and is extremal to the 𝑨𝑝 ∪ 𝒂-induced cone. Consequently exactly

one of the extremal rays used to construct it has to lie on either side of thy hyperplane induced by

constraint 𝒂. Therefore, they will be included in the sets R+ and R− and the intersection will be

discovered as part of the ray-shooting, concluding the proof of the second point. □

Using this result, we can proof the following guarantee for intersections of two cones in DD using

our batch intersection and precision boosting approach, described in Section 4.2 and Algorithm 2:

Theorem 4.3. Given the double descriptions (𝑨𝑝 ,R𝑝 ) and (𝑨𝑞,R𝑞) of two polyhedral cones, their

intersection computed as per Algorithm 2 is guaranteed to be a partial double description (𝑨𝑝 ∪𝑨𝑞,R
′)

enumerating all extremal rays 𝑟 ′ of the (𝑨𝑝 ∪𝑨𝑞)-induced cone with one of the following properties:

(1) 𝑟 ′ is extremal in the 𝑨𝑝 -induced cone.

(2) 𝑟 ′ is extremal in the 𝑨𝑞-induced cone.

(3) 𝑟 ′ is of rank 𝑑 − 2 in the 𝑨𝑝 -induced cone.

(4) 𝑟 ′ is of rank 𝑑 − 2 in the 𝑨𝑞-induced cone.

Proof. The proof follows directly from applying Lemma 4.2 to both applications of Algorithm 1,

the insight that every extremal ray discovered by either will be included in the final generating set

R ′ and the observation that the intersection of the exactH -representations, trivially is the union

of their respective constraints, leading to a valid partial double description. □

Using these results, we can in turn proof that the intersection of two polyhedral cones of up to

dimension 4 in DD using the approach described above is exact:
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Theorem 4.4. Given the Double Descriptions (𝑨𝑝 ,R𝑝 ) and (𝑨𝑞,R𝑞) of two polyhedral cones P

and Q of dimension 𝑑 ≤ 4, the PDD of their intersection (𝑨𝑝 ∪𝑨𝑞,R
′) computed as described above

and detailed in Algorithm 2 is an exact DD with an irredundant generating set R ′.

Proof. For briefness sake, we will only show the proof for 𝑑 = 4 here. Let R∗ be the set of

extremal rays of the (𝑨𝑝 ∪ 𝑨𝑞)-induced polyhedral cone. Consequently 𝒓∗ ∈ R∗ has the rank

𝑑 − 1 = 3 in this cone and therefore it fulfills 3 linearly independent constraints in 𝑨𝑝 ∪𝑨𝑞 with

equality. This leads to the following four exhaustive options:

(1) all 3 constraints are part of 𝑨𝑝 , 𝒓
∗ is extremal in P𝑝 ,

(2) all 3 constraints are part of 𝑨𝑞 , 𝒓
∗ is extremal in P𝑞 ,

(3) 2 constraints are part of 𝑨𝑝 and 1 of 𝑨𝑞 , 𝒓
∗ is of rank 𝑑 − 2 = 2 in P𝑝 ,

(4) 2 constraints are part of 𝑨𝑞 and 1 of 𝑨𝑝 , 𝒓
∗ is of rank 𝑑 − 2 = 2 in P𝑞 .

All of those are enumerated by Algorithm 4.3. Hence, R ′ will include all extremal rays of the

(𝑨𝑝 ∪𝑨𝑞)-induced cone. In this case A-irredundancy is equivalent to irredundancy. □

Complexity analysis. Finally, we can show that computing an over-approximation of the convex

hull of two 𝑑-dimensional, bounded polytopes in PDD using the PDDM has polynomial complexity:

Theorem 4.5. Given the PDD of two 𝑑-dimensional, bounded polytopes with aV-representation

of at most 𝑛𝑣 vertices and an H -representation of at most 𝑛𝑎 constraints, computing a sound over-

approximation of their convex hull using the PDDM as described above and detailed in Algorithm 2

has a worst-case time complexity of O(𝑛𝑣 · 𝑛
4
𝑎 + 𝑛

2
𝑎 log(𝑛

2
𝑎)).

Proof. The PDDM can be broken down into its six components illustrated in Figure 7:

(1) Conversion from primal to dual representation (Section 4.1)

(2) Adding the constraints of one polytope to the other, or more concretely separation of vertices

into the three sets R+, R0, and R− (Section 4.2 or first half of Algorithm 1)

(3) Discovery of new vertices via ray-shooting (Section 4.2 or second half of Algorithm 1)

(4) Combining the vertices of the two intersection directions (Section 4.2 or Algorithm 2)

(5) Enforcing of A-irredundancy (Section 4.3 or Algorithm 2)

(6) Conversion from dual to primal representation (Section 4.1)

Primal-dual conversions and combining of vertices can be computed in constant time, as this only

involves computing the transpose and concatenation which can be done implicitly by changing

the indexing of the corresponding matrices. Therefore, we will focus on the remaining three steps,

which are all conducted in dual space.

In the following we assume the setting, of two 𝑑-dimensional, bounded polytopes which in

dual-space are defined by P = (𝑨𝑝 ,R𝑝 ) and Q = (𝑨𝑞,R𝑞). For convenience’s sake, we assume the

number of vertices to be 𝑛𝑣 = max( |R𝑝 |, |R𝑞 |) and number of constraints 𝑛𝑎 = max( |𝑨𝑝 |, |𝑨𝑞 |).

Note that their roles are reversed compared to a primal space representation.

Adding constraints and separating vertices. Recall that in dual space we compute the intersection

of the two polytopes P and Q. The first step of intersecting P with Q is to split all points in R𝑝 into

the three groups R+, R0, and R− defined in Section 4.2 depending on whether the lie inside, on the

border of or outside the polytope defined by 𝑨𝑞 as per the first half of Algorithm 1. This requires

(at worst) evaluating 𝒂𝑖𝒓 𝑗 − 𝑏𝑖 {>,=, <}0 for all 𝒓 𝑗 ∈ R𝑝 and 𝒂𝑖 , 𝑏𝑖 ∈ 𝑨𝑞 . Where the addition and

comparison are dominated by the 𝑑-dimensional dot-product between 𝒂𝑖 and 𝒓 𝑗 , leading to a total

complexity of this step of order O(𝑑 · 𝑛𝑎 · 𝑛𝑣). Note that incidence matrix columns corresponding

to the new constraints are added and populated without any extra computation with 0s for the

vertices in R+ and 1s for vertices in R0.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 43. Publication date: January 2022.



PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations 43:17

Ray-shooting. Recall that to discover new generating vertices, the first intersections between the

rays shot from all generating vertices of P lying inside Q, 𝒓+ ∈ R+, to all vertices lying outside Q,

𝒓− ∈ R−, and all constraints in 𝑨𝑞 are computed. At worst there are no vertices in group R0 and

all vertices are spread equally between R+ and R−, leading to 𝑛
2
𝑣/4 rays to be intersected with 𝑛𝑎

constraints where each intersection corresponds to computing a ratio of dot-products and is order

O(𝑑). Selecting the first intersection for each ray is linear in the intersection number. Consequently,

the ray-shooting process overall is O(𝑑 · 𝑛𝑎 · 𝑛
2
𝑣). Note that this adds new incidence matrix rows

corresponding to the new vertices R∗, which can then be populated with the row obtained by the

elementwise 𝑎𝑛𝑑 of the two vertices generating the ray and a 1 in the column associated with the

constraint of the first intersection which is linear O(𝑛𝑣) and dominated by the previous term.

Enforcing A-irredundancy. The intermediate state prior to enforcing A-irredundancy contains

at most 𝑛 = 2(𝑛𝑣 + 𝑛
2
𝑣/4) vertices, consisting of the at most 𝑛𝑣 vertices in R+ and the at most

𝑛2𝑣/4 vertices in R∗, discovered during ray shooting, for both intersection directions. To enforce A-

irredundancy, vertices are first sorted in descending order by the number of active constraints which

is order O(𝑛 log(𝑛)). Then starting with the first vertex, row-wise inclusion of the corresponding

incidence matrix rows is checked for all following elements. Each check is O(𝑛𝑎) and (𝑛
2 − 𝑛)/2

checks have to be performed in the worst case that is, if no element is removed. This leads to an

overall complexity of O(𝑛𝑎 · 𝑛
4
𝑣 + 𝑛

2
𝑣 log(𝑛

2
𝑣)) for enforcing A-irredundancy.

PDDM complexity. Putting the three elements together and observing𝑑 < 𝑛𝑣 for any𝑑-dimensional,

bounded polytope, we observe that both the ray-shooting and the separation of vertices get

dominated by the last step of enforcing A-irredundancy. Swapping the roles of 𝑛𝑣 and 𝑛𝑎 to

derive an expression in terms of primal space entities, we arrive at an overall complexity of

O(𝑛𝑣 · 𝑛
4
𝑎 + 𝑛

2
𝑎 log(𝑛

2
𝑎)). □

5 SPLIT-BOUND-LIFT METHOD Algorithm 3: Split-Bound-Lift Method (SBLM)

Input: Variable ordering I, input polytope P, set of

bounding regions D and set of bounds B

Output: Jointly constraining polytope K

if |I | > 0 then
Get next output variable: 𝑦 ← I0
foreach D𝑖 ,B𝑖 in D,B do

Split region: P𝑖 = P ∩ D
𝑖

Apply SBLM: K𝑖 ← SBLM(I1:𝑒𝑛𝑑 ,P𝑖 ,D,B)

Extend into space including 𝑦: K𝑖 ← K𝑖 × R

Apply bounds B𝑖 : K𝑖 ← K𝑖 ∩ B
𝑖

Compute convex hull: K = PDDM({K𝑖 }𝑖 )

return K
else

return P

In this section, we explain the

Split-Bound-Lift Method in greater

detail. Recall that we use the SBLM

to compute k-neuron abstractions,

by approximating the convex hull

conv({(𝒙,𝒇 (𝒙)) | 𝒙 ∈ P ⊆ [𝑙𝑥 , 𝑢𝑥 ]
𝑘 })

for a group of 𝑘 neurons

and their activation functions

𝒇 (𝒙) = [𝑓1 (𝑥1), ..., 𝑓𝑘 (𝑥𝑘 )]
⊤, assuming

that their inputs are constrained by

the polytope P.

At a high level, we first decompose

the input polytope into regions where

we can bound all activation functions

tightly. Then, we extend these regions into the output space and apply linear constraints corre-

sponding to the (relaxed) activations. Taking the convex hull of the resulting polytopes yields an

H -representation encoding the k-neuron abstraction.

To increase the efficiency of this approach, we use a decomposition method we call splitting

and then recursively extend and bound the resulting polytopes by one output variable at a time,

which we call lifting. This minimizes the dimensionality in which we have to compute the convex

hulls. We formalize this in Algorithm 3 and explain both splitting and lifting below after stating

the prerequisites for the SBLM.
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5.1 Prerequisites

For simplicities’ sake, we assume just one type of activation function 𝑓 : D→ R, with domain D, is

to be bounded. Now the SBLM requires a set of intervalsD𝑖 (e.g., 𝑥 𝑗 ≤ 0, 𝑥 𝑗 ≥ 0 for ReLU), covering

the domain D (e.g., R for ReLU), and a pair of tight linear constraints B𝑖 upper and lower bounding

the function output (e.g., 𝑦 𝑗 ≤ 0 and 𝑦 𝑗 ≥ 0, and 𝑦 𝑗 ≤ 𝑥 𝑗 and 𝑦 𝑗 ≥ 𝑥 𝑗 , respectively, for ReLU) on

each of the intervals obtained by intersecting the interval [𝑙𝑥 , 𝑢𝑥 ]𝑖 defined by the neuron-wise

bounds with the intervals D𝑖 . More formally, we require the intervals

D𝑖
= [𝑐𝑖 , 𝑑𝑖 ], 𝑐𝑖 , 𝑑𝑖 ∈ R and 𝑐𝑖 ≤ 𝑑𝑖 ,

D ⊆
⋃

𝑖

D𝑖 ,

with the affinely extended real numbers R = R ∪ {−∞,∞} and the bounds on these intervals

B𝑖
= (𝑎≤𝑖 , 𝑎

≥
𝑖 ), 𝑎

{≤,≥}
𝑖 (𝑥) = 𝑎𝑥 + 𝑏, 𝑎, 𝑏 ∈ R 𝑠 .𝑡 .

𝑎≤𝑖 (𝑥) ≤ 𝑓 (𝑥) ≤ 𝑎≥𝑖 (𝑥), ∀ 𝑥 ∈ (D
𝑖 ∩ [𝑙𝑥 , 𝑢𝑥 ]𝑖 ),

to be provided to instantiate SBLM and by extension Prima. We note that the bounds 𝑐𝑖 and

𝑑𝑖 of the bounding regions can depend on the concrete input bounds 𝑙𝑥 and 𝑢𝑥 and the slope

𝑎 and intercept 𝑏 of 𝑎
{≤,≥}
𝑖 can in turn depend on the corresponding concrete interval bounds

[max(𝑙𝑥 , 𝑐𝑖 ),min(𝑢𝑥 , 𝑑𝑖 )].

Generalization. While we focus on the univariate case using only two bounding regions D1

and D2 in the following, SBLM and by extension Prima can be generalized to allow for neuron

groups combining different multivariate activation functions 𝑓 : D ⊆ R𝑑 → R. Further, more than

one upper- and lower-bound B𝑖 per bounding region can be provided and D𝑖 can be specified as

polyhedral regions instead of as intervals, as long as their union covers the domain D ⊆
⋃

𝑖 D
𝑖 of

the individual functions 𝑓 .

5.2 Splitting the Input Polytope

To apply the bounds B𝑖 , the input polytope P has to be split into the regions for which the bounds

were specified. These regions correspond to the intersection of P with the k-Cartesian product of

the bounding regionsD𝑖 , that is all combinations of neuron-wise bounding regions for the group of

k neurons. We choose an ordering of the output variables I and recursively split P by intersecting

with the bounding regions associated with these output variables.

As every such split is equivalent on an abstract level, we will explain one case assuming the

parent polytope P1, the output variable 𝑦 𝑗 = 𝑓 (𝑥 𝑗 ), and the corresponding bounding regions

D1
𝑗 = {𝒙 ∈ R𝑘 | 𝑥 𝑗 ≥ 𝑐1} and D

2
𝑗 = {𝒙 ∈ R𝑘 | 𝑥 𝑗 ≤ 𝑑2}. We compute the children nodes by

intersecting P1 with D
1
𝑗 and D

2
𝑗 to obtain P1,1 = P1 ∩ D

1
𝑗 and P1,2 = P1 ∩ D

2
𝑗 . Starting with P at

the root and recursively applying this splitting rule for every 𝑦 𝑗 ∈ I, generates a polytope tree,

which we call the decomposition tree, with 2𝑘 leaf polytopes P{1,2}𝑘 , which we call quadrants. This

is illustrated in the blue portion of the central panel in Figure 4, where D1 and D2 are R+0 and R−0 ,

respectively.

5.3 Lifting

We now extend these quadrants P{1,2}𝑘 to the output space and bound them using the corre-

sponding constraints on the activation function B𝑖
𝑗 , before taking their convex hull. This yields a

polytope K , jointly constraining the inputs and outputs of a neuron group. The constraints of its

H -representation form the desired k-neuron abstraction. We call this process lifting and propose
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a recursive approach: We lift sibling polytopes on the decomposition tree until only the desired

polytope K remains.

Again, we explain a single step of lifting, as they are equivalent. We assume the sibling polytopes

K1,1 and K1,2, corresponding to P1,1 and P1,2 in the decomposition tree, with the associated input-

and output-variables 𝑥 𝑗 and 𝑦 𝑗 , respectively, and the pairs of bounds B1
𝑗 and B

2
𝑗 instantiated for 𝑦 𝑗 .

A single step consist of three parts:

• extending K1,1 and K1,2 by the output variable 𝑦 𝑗 ,

• bounding 𝑦 𝑗 on the extended polytopes, by intersecting them with the constraints B1
𝑗 and

B2
𝑗 to obtain K ′1,1 and K

′
1,2,

• computing their (approximate) convex hull using the PDDM: K1 = conv(K ′1,1,K
′
1,2).

Applying this lifting rule recursively to the decomposition tree starting with K{1,2}𝑘 = P{1,2}𝑘 ,

combines all 2𝑘 quadrants into a single 2𝑘-dimensional polytope K , jointly constraining the inputs

and outputs, thereby concluding the Split-Bound-Lift Method. This is illustrated in the right portion

of the central panel in Figure 4. The decompositional approach has two benefits: Precision ś

computing approximate convex hulls via the PDDM is exact for polytopes of dimension up to 3 and

starts to lose precision only slowly as dimensionality increases. Directly computing 2𝑘-dimensional

convex hulls with PDDM will therefore lose more precision than using our decomposed method.

Speed ś a lower-dimensional polytope with fewer constraints and generally also fewer vertices

significantly reduces the runtime for the individual convex hull operations. In fact, computing

the convex hulls for the approximation of non-piecewise-linear functions directly in the input-

output space is intractable even for groups of only size 𝑘 = 3, as the number of vertices increases

exponentially with 𝑘 during the extension and bounding process in that case.

5.4 Instantiation for Various Functions

𝑥

𝑦

𝑙𝑥 𝑢𝑥𝑐

𝑦 =
𝑒𝑥

1+𝑒𝑥

neither convex
nor concave

concave

Fig. 11. Interval-wise bounds for the Sigmoid function
on the intervals [𝑙𝑥 , 𝑐] and [𝑐,𝑢𝑥 ].

We instantiate SBLM for common network

functions next.

ReLU. We can capture all univariate,

piecewise-linear functions, such as ReLU,

exactly on the intervals D𝑖 where they are

linear. Further, if the neuron-wise bounds

[𝑙𝑥 , 𝑢𝑥 ] only contain one such linear region,

the neuron behaves linearly, can be encoded

exactly and is excluded from the k-neuron abstraction. Therefore, we consider 𝑦 =𝑚𝑎𝑥 (𝑥, 0) with

𝑥 ∈ [𝑙𝑥 , 𝑢𝑥 ] for 𝑙𝑥 < 0 < 𝑢𝑥 . We choose D1
= [−∞, 0] and D2

= [0,∞], with B1
= (𝑦 ≥ 0, 𝑦 ≤ 0)

and B2
= (𝑦 ≥ 𝑥, 𝑦 ≤ 𝑥), obtaining exact bounds on both intervals.

Tanh and Sigmoid. Let 𝑓 be an S-curve function with domain [𝑙𝑥 , 𝑢𝑥 ], that is 𝑓 ′′(𝑥) ≥ 0 for

𝑥 ≤ 0, 𝑓 ′′(𝑥) ≤ 0 for 𝑥 ≥ 0 and 𝑓 ′(𝑥) > 0 for 𝑥 ∈ [𝑙𝑥 , 𝑢𝑥 ]. Both Sigmoid 𝜎 (𝑥) = 𝑒𝑥

𝑒𝑥+1 and Tanh

tanh(𝑥) = 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
have these properties. We split the domain at 𝑐 ∈ [𝑙𝑥 , 𝑢𝑥 ] into D

1
= [−∞, 𝑐] and

D2
= [𝑐,∞], choosing 𝑐 to minimize the area between upper and lower bound in the input-output

plane, using the bounds from Singh et al. [2019b]:

𝑓 (𝑥) ≤ 𝑎≤ = 𝑓 (𝑢𝑑 ) + (𝑥 − 𝑢𝑑 )

{

𝑓 (𝑢𝑑 )−𝑓 (𝑙𝑑 )

𝑢𝑑−𝑙𝑑
, if 𝑢𝑑 ≤ 0,

min(𝑓 ′(𝑢𝑑 ), 𝑓
′(𝑙𝑑 )), else,

𝑓 (𝑥) ≥ 𝑎≥ = 𝑓 (𝑙𝑑 ) + (𝑥 − 𝑙𝑑 )

{

𝑓 (𝑢𝑑 )−𝑓 (𝑙𝑑 )

𝑢𝑑−𝑙𝑑
, if 𝑙𝑑 ≥ 0,

min(𝑓 ′(𝑢𝑑 ), 𝑓
′(𝑙𝑑 )), else,
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where we denote the lower bound of the intersection D𝑖 ∩ [𝑙𝑥 , 𝑢𝑥 ] as 𝑙𝑑 and the upper one as

𝑢𝑑 . We show these bounds in Figure 11 for the Sigmoid function and, for illustration purposes, a

non-optimal 𝑐 . In practice, we choose 𝑐 to minimize the area of the abstraction of a single neuron

in the input-output plane.

𝑥1

𝑥2

𝑙𝑥1 𝑢𝑥1

𝑙𝑥2

𝑢𝑥2

D1: 𝑥1 ≥ 𝑥2

D2: 𝑥2 ≥ 𝑥1

B1: 𝑦 = 𝑥1

B2: 𝑦 = 𝑥2

Fig. 12. Polyhedral bounding regions D𝑖 and corre-
sponding bounds B𝑖 for the 2𝑑 MaxPool function on
the input region [𝑙𝑥1 , 𝑢𝑥1 ] × [𝑙𝑥2 , 𝑢𝑥2 ].

MaxPool. Let MaxPool be the multivariate

function 𝑦 = max(𝑥1, 𝑥2, ..., 𝑥𝑑 ) on the domain

𝒙 ∈ P ⊆ [𝑙𝑥 , 𝑢𝑥 ]
𝑑 . Note that here the general-

ized formulation is required. We chose the poly-

hedral bounding regions D𝑖
= {𝒙 ∈ R𝑑 |𝑥𝑖 ≥

𝑥 𝑗 , 1 ≤ 𝑗 ≤ 𝑑, 𝑖 ≠ 𝑗}𝑖 , separating the domain

into the 𝑑 regions where one variable dominates

all others (illustrated for 𝑑 = 2 in Figure 12). On

each of these regions, MaxPool can be bounded

exactly with 𝑦 ≤ 𝑥𝑖 and 𝑦 ≥ 𝑥𝑖 . During the splitting process, this increased number of bounding

regions leads to a decomposition tree where every parent node has 𝑑 child nodes.

6 PRIMA VERIFICATION FRAMEWORK

Prima is based on three high-level steps: (i) accumulate a set of constraints encoding a (convex)

abstraction of the network for a given pre-condition (as discussed so far), (ii) define a linear

optimization objective representing the post-condition, and (iii) use an LP or MILP solver to derive

a bound on this optimization objective. If this bound exceeds a threshold depending on the post-

condition, certification succeeds, otherwise, if the optimal solution violates this bound, it could be a

true counterexample or a false positive due to approximation. Hence, we evaluate any such possible

counterexample with the concrete network to determine whether it is a true counterexample.

While all affine layers are encoded exactly, two considerations have to be balanced when encoding

non-linear activation layers with Prima: more precise encodings (e.g., considering more or larger

neuron groups) improve the optimal bound of the optimization problem, but the increased number

of constraints can make this problem impractical to solve. We navigate this trade-off by leveraging

abstraction refinement ś using increasingly more precise but also more costly methods until we

are able to either decide a property (verify or falsify) or reach a timeout.

6.1 Abstraction Refinement Approaches

Fundamentally, we can refine our abstraction in three ways: (i) compute tighter abstractions of the

group-wise inputs, (ii) compute tighter layer-wise multi-neuron constraints for the given input

abstraction from (i), and (iii) encode part of the network using an exact MILP encoding.

Input bound refinement. Since SBLM and PDDM abstract a group of neurons for a given polyhedral

input region, the tightness of the resulting constraints depends directly on the tightness of the input

abstraction. These are computed using a fast, incomplete verifier (e.g., [Müller et al. 2021; Singh

et al. 2019b; Xu et al. 2020]) based on single-neuron abstractions and can be tightened significantly

by computing more precise neuron-wise bounds [Singh et al. 2019c] using an LP or MILP encoding.

Tighten multi-neuron constraints. The layer-wise tightness of our multi-neuron constraints

depends on (i) the tightness of the group-wise constraints, mostly determined by the quality of

the input region, and (ii) on capturing the important neuron-interdependencies with the chosen

groups. Using larger neuron groups (increasing 𝑘) and considering more groupings by allowing

more overlap (increasing 𝑠) and partitioning the neurons into fewer sets before grouping (increasing

𝑛𝑠 ), allows capturing more and more complex interactions. While the constraints themselves can

be computed quickly, the resulting LP problems become harder to solve.
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Network encoding. Prima encodes non-linear activations in four different ways: (i) exact encoding

via equality constraints for stable (those exhibiting linear behavior) piecewise-linear activations,

(ii) single-neuron constraints, (iii) multi-neuron constraints computed via SBLM and PDDM, and

(iv) exact (for piecewise-linear functions) MILP encodings. While stable activations are always

encoded exactly and all unstable activations are encoded using both the single- and multi-neuron

constraints, we only selectively use a MILP encoding on the (typically relatively narrow) last layers

of convolutional networks due to their large computational cost.

6.2 Abstraction Refinement Cascade

Prima leverages our multi-neuron constraints as part of an abstraction refinement cascade using

increasingly more precise and expensive approaches: We first attempt verification using single-

neuron constraints via DeepPoly [Singh et al. 2019b] or GPUPoly [Müller et al. 2021]. If this fails,

we encode all activation layers using our multi-neuron constraints and solve the resulting LP. If this

also fails, we attempt to decide the property by tightening the multi-neuron constraints Section 6.1,

encoding the final network layer(s) using MILP, and refining individual neuron bounds.

7 EXPERIMENTAL EVALUATION Table 1. Neural network architectures used in experiments.

Dataset Model Type Neurons Layers Activation

MNIST 5 × 1005 FC 510 5 ReLU

6 × 100 FC 600 6 Tanh/Sigm

8 × 1005 FC 810 8 ReLU

9 × 100 FC 900 9 Tanh/Sigm

5 × 2005 FC 1 010 5 ReLU

6 × 200 FC 1 200 6 Tanh/Sigm

8 × 2005 FC 1 610 8 ReLU

ConvSmall Conv 3 604 3 Relu/Tanh/Sigm

ConvBig Conv 48 064 6 ReLU

CIFAR10 ConvSmall Conv 4 852 3 ReLU

CNN-A-Mix Conv 6 244 3 ReLU

CNN-B-Adv Conv 16 634 3 ReLU

ConvBig Conv 62 464 6 ReLU

ResNet Residual 107 496 10 ReLU

Self-Driving DAVE Conv 107 032 8 ReLU + Tanh

In this section, we evaluate the effective-

ness of Prima and show that it signifi-

cantly improves over state-of-the-art ver-

ifiers on a range of challenging bench-

marks yielding up to 14%, 30% and 34%

precision gains on ReLU-, Sigmoid-, and

Tanh-based networks, respectively. Fur-

ther, we show that Prima can scale to real-

world problems, obtaining tight bounds

in an autonomous driving steering-angle-

prediction task. Finally, we demonstrate

the effectiveness and benefits of comput-

ing relaxations with SBLM and PDDM

compared to directly using the exact con-

vex hull.

7.1 Experimental Setup

The neural network certification benchmarks for fully connected networks were run on a 20 core

2.20GHz Intel Xeon Silver 4114 CPU with 100 GB of main memory and those for convolutional

networks on a 16 Core 3.6GHz Intel i9-9900K with 64GB of main memory and an NVIDIA RTX

2080Ti. We use Gurobi 9.0 for solving MILP and LP problems [Gurobi Optimization, LLC 2018].

7.2 Benchmarks

We evaluate Prima on a wide range of networks based on ReLU, Tanh, and Sigmoid activations:

• The set of fully-connected and convolutional ReLU networks5 from [Singh et al. 2019a]

trained using DiffAI [Mirman et al. 2018], PGD [Madry et al. 2018], Wong [Wong et al. 2018],

and natural training (see results on MNIST and CIFAR10 in Table 2).

5The networks referred to as 6 × · 00 and 9 × · 00 in previous work only include 5 and 8 hidden layers, respectively, and

have therefore been renamed.
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Table 2. Number of verified adversarial regions of the first 1 000 samples and runtime for Prima, OptC2V
[Tjandraatmadja et al. 2020], and kPoly [Singh et al. 2019a]. Natural (NOR), adversarial (PGD [Madry et al.
2018]), or provable (DiffAI [Mirman et al. 2018], Wong [Wong et al. 2018]) training was used.

Dataset Model Training Accuracy 𝜖 𝑛𝑠 kPoly OptC2V
†

Prima (ours) # Upper Bound

# Ver Time # Ver Time # Ver Time

MNIST 5 × 100 NOR 960 0.026 100 441 307 429 137 510 159 842

8 × 100 NOR 947 0.026 100 369 171 384 759 428 301 820

5 × 200 NOR 972 0.015 50 574 187 601 403 690 224 901

8 × 200 NOR 950 0.015 50 506 464 528 3451 612 395 911

ConvSmall NOR 980 0.120 100 347 477 436 55 640 51 733

ConvBig DiffAI 929 0.300 100 736 40 771 102 775 5.5 790

CIFAR10 ConvSmall PGD 630 2/255 100 399 86 398 105 458 16 481

ConvBig PGD 631 2/255 100 459 346 n/a† n/a† 482 128 550

ResNet Wong 290 8/255 50 245 91 n/a† n/a† 248 1.9 248

†The OptC2V [Tjandraatmadja et al. 2020] code has not been released; we report their runtimes and results where available.

• The published set of CIFAR10 convolutional networks from [Dathathri et al. 2020], trained

using either just PGD or a mix of standard and PGD training (see results on CIFAR10 in

Table 3).

• The set of fully-connected and convolutional Tanh and Sigmoid networks from [Singh et al.

2019a] trained using natural training (see results on MNIST in Table 5).

• The NVIDIA self-driving car network architecture DAVE [Bojarski et al. 2016] trained on a

steering angle prediction task using the Udacity self-driving car dataset [Udacity 2016] with

31 834 train and 1 974 test samples6, an input resolution of 3 × 66 × 200, and PGD [Madry

et al. 2018] training (see results in Table 6).

While we evaluate performance for the widely considered and challenging ℓ∞ perturbations7, Prima

can also be applied to other specifications including individual fairness [Ruoss et al. 2020b], global

safety properties [Katz et al. 2017], acoustic [Ryou et al. 2020], geometric [Balunovic et al. 2019],

and spatial [Ruoss et al. 2020a] based perturbations.

For classification tasks and ReLU networks, we compare Prima with a range of state-of-the-

art incomplete verifiers notably also the ReLU-specialized kPoly [Singh et al. 2019a], OptC2V

[Tjandraatmadja et al. 2020], and additionally the highly optimized and fully GPU-based 𝛽-Crown

[Wang et al. 2021] (in incomplete mode). For classification using Tanh and Sigmoid activations,

fewer verifiers are available and thus we compare with the state-of-the-art incomplete verifier

DeepPoly [Singh et al. 2019b]. Few verification methods consider the regression setting and to the

best of our knowledge, we are the first to analyze the full-size DAVE network. Neurify [Wang et al.

2018] analyses a heavily scaled-down version in a binary classification setting, but in complete

mode it does not scale to the much larger networks analysed here. In incomplete mode, it uses the

same bounds as DeepZono [Singh et al. 2018] and is less precise than GPUPoly [Müller et al. 2020]

to which we compare. 𝛽-Crown does not support regression tasks and while an extension might

be possible, it is non-trivial. It is also unclear if the approach scales to networks of this size.

6The labels of the original test set are not available (anymore), so we used videos 1, 2, 5, and 6 as train and video 4 (instead

of 3) as test dataset.
7That is, 𝑦 := 𝑐 (𝒙)𝑖 = 𝑐 (𝒙′), ∀𝒙′ ∈ B∞𝜖 := {𝒙 ∈ X | | |𝒙 − 𝒙′ | |∞ ≤ 𝜖 } ⇔ min

𝒙
′∈B∞𝜖

𝒉(𝒙′)𝑦 − 𝒉(𝒙
′)𝑖 > 0, ∀𝑖 ≠ 𝑦
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(a) MNIST 5 × 100, 𝜖 = 0.026
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(b) MNIST ConvBig, 𝜖 = 0.3
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(c) CIFAR10 ConvSmall, 𝜖 = 2/255

Fig. 13. Comparison of the runtime/accuracy trade-off of Prima (ours), OptC2V [Tjandraatmadja et al. 2020],
FastC2V [Tjandraatmadja et al. 2020], kPoly [Singh et al. 2019a], RefinePoly [Singh et al. 2019b], DeepPoly
[Singh et al. 2019c] (equivalent bounds to Crown [Zhang et al. 2018] and CNN-Cert [Boopathy et al. 2019]),
RefineZono [Singh et al. 2019c] and DeepZono [Singh et al. 2018] (equivalent bounds to Fast-Lin [Weng
et al. 2018] and Neurify [Wang et al. 2018] in incomplete mode), evaluated on the first 1000 samples (100 for
RefinePoly) of the corresponding test sets. The tightest known upper bound to the certifiable accuracy is
shown as dashed line. Higher and further left is better.

For our experiments, we use the setup outlined in Section 6 which is similar to kPoly in [Singh

et al. 2019a].We useDeepPoly orGPUPoly (for convolutional networks) to determine the octahedral

input bounds required to compute the multi-neuron constraints with Prima. For fully-connected

networks, we refine the neuron-wise bounds of unstable neurons using the MILP encoding from

Tjeng et al. [2019] for the second activation layer (the first layer bounds are already exact) and an

LP encoding for the remaining layers. We note that encoding more layers with MILP does not scale

on these networks. For convolutional networks, we encode some of the neurons in the last one or

two layers using the MILP encoding from [Tjeng et al. 2019]. We note that the concurrent bound

optimization in 𝛽-Crown corresponds to simultaneous bound-refinement on all neurons of all

layers, which is orthogonal to our approach and a promising direction to be explored in future work

(though intractable without a GPU-based LP solver). We report as Accuracy the number of correctly

classified samples out of the considered test set, as # Upper Bound the number of properties that

could not be falsified and hence form an upper bound to the number of certifiable properties, as #

Ver the number of verified regions, and as Time the average runtime per correctly classified sample

in seconds.

7.3 Image Classification with ReLU Activation

We compare Prima against the state-of the art methods kPoly andOptC2V in Table 2 and 𝛽-Crown

in Table 3. Computing multi-neuron constraints for groups of 𝑘 = 4 ReLU neurons becomes feasible

with SBLM and PDDM reducing the time per group from several minutes, when directly computing

exact convex hulls as in kPoly, to less than 50 milliseconds. Nevertheless, we find empirically that

the best strategy to leverage this speed-up is to evaluate a large variety of small groups. Unless

reported differently, we consider overlapping groups of size 𝑘 = 3 with 𝑛𝑠 = 100.

Comparison with the state-of-the-art. Figure 13 shows scatter plots comparing the runtime and

precision of Prima with those of other state-of-the-art verifiers on the robustness certification of a

normally trained 5 × 100 MLP, a provably trained ConvBig (MNIST) and an adversarially trained

ConvSmall (CIFAR10). We note that adversarially and provably trained networks sacrifice accuracy

for ease of certification, making normally trained networks more relevant and challenging. Here,

fast, purely propagation-based, incomplete verifiers like DeepPoly verify only about 16% of the

images. In contrast, Prima verifies 51% in < 160 seconds per image. The closest verifiers in terms

of precision are kPoly and OptC2V, which verify 44% and 43% of samples and take around 310
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and 140 seconds, respectively. Based on these observations, we compare Prima with kPoly and

OptC2V on the remaining benchmarks from [Singh et al. 2019a].

Table 3. Number of verified adversarial regions of the 100
random samples from the CIFAR10 test set evaluated by
[Wang et al. 2021]. CNN-A-Mix is trained using a combina-
tion of adversarial and natural training and CNN-B-Adv only
adversarially. Both are taken from [Dathathri et al. 2020].

Model 𝜖 Acc 𝛽-Crown Prima (ours) # Bound

# Ver Time # Ver Time

CNN-A-Mix 2/255 100 43 209 57 53 68

CNN-B-Adv 2/255 100 46 234 43 260 81

Comparison with kPoly and OptC2V.

For all normally trained networks, Prima

is significantly more accurate than both

kPoly [Singh et al. 2019a] and OptC2V

[Tjandraatmadja et al. 2020], verifying be-

tween 44 and 201 more regions than the

better of the two while sometimes also be-

ing significantly faster. These results are

summarized in Table 2. For the, compara-

tively easy to verify (as can be seen in Fig-

ure 13(b)), DiffAI trained ConvBig MNIST

network, we gain less precision verifying only 4 more regions than OptC2V. However, the easier

proofs come at the cost of reduced accuracy, making them less relevant for real-world applications.

For both PGD-trained CIFAR10 networks, Prima verifies between 23 and 59 more regions than

kPoly and OptC2V while being around four times faster. On the provably trained ResNet, Prima

is 50x faster than kPoly and able to decide all properties. However, this network is so heavily

regularized that even complete verification via a MILP encoding is tractable. In summary, Prima is

usually faster than kPoly and OptC2V, especially on larger networks, and is always more precise,

sometimes substantially so.

Table 4. Evaluation of a range of parameters for group-
ing set size 𝑛𝑠 , group size 𝑘 , and overlap 𝑠 , partial MILP
refinement, and neuron-wise bound refinement for the
first 100 samples of the MNIST test set and the normally
trained 5 × 100. Of the first 100 samples, 99 are classified
correctly and for 9 of those a counterexample is known.

𝑛𝑠 𝑘 𝑠
Partial MILP Refinement

# Ver Time [s]
# layers # neurons LP MILP

1 1 - - - - - 21 2.56

10 3 1 - - - - 26 5.75

20 3 1 - - - - 28 6.52

20 3 2 - - - - 28 67.79

20 4 1 - - - - 28 54.05

100 3 1 - - - - 28 16.59

1 1 - 1 30 - - 23 4.58

100 3 1 1 30 - - 30 42.00

100 3 1 1 100 - - 30 44.03

100 3 1 2 100 - - 35 117.37

1 1 - - - y - 27 24.15

100 3 1 - - y - 45 99.40

100 3 1 - - y y 54 115.24

100 3 1 2 100 y y 60 189.21

Comparison with 𝛽-Crown. 𝛽-Crown

[Wang et al. 2021] is a highly optimized, fully

GPU-based complete BaB [Morrison et al.

2016] solver, supporting only ReLU activa-

tions8 and the classification setting. When

comparing complete and incomplete verifiers

on accuracy, it is crucial to ensure that similar

runtimes were achieved, as complete verifiers

can, given sufficient time, decide any prop-

erty. The GPU-based LP solver underlying

𝛽-Crown is an orthogonal development to

the Prima multi-neuron constraints. Prima

currently uses a much slower CPU-based

solver which is the main bottleneck for large

networks as the runtime for computing multi-

neuron constraints becomes small via our im-

proved algorithms (see Section 7.8). We con-

sider combining the GPU-based solver from

𝛽-Crown with our multi-neuron approxima-

tions as an interesting item for future work.

Despite the discrepancy in LP-solver perfor-

mance distorting the comparison, Prima is

still significantly faster on CNN-A-Mix while also achieving notably higher precision. On the larger

network CNN-B-Adv, where LP-solver performance is more dominant, 𝛽-Crown achieves slightly

8Extensions to piecewise-linear activations with more than𝑚 = 2 linear regions would significantly increase runtime

(O(𝑚𝑑 ) with split depth 𝑑), while precision would be significantly lower for non-piecewise linear activations.
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higher precision and smaller runtime. Unfortunately, we could not run the public version of

𝛽-Crown without soundness issues on the networks from [Singh et al. 2019a] and consequently

only compare on networks they provide. The recent SDP-based (semidefinite programming) SDP-FO

[Dathathri et al. 2020] takes many hours per sample and is outperformed by 𝛽-Crown. Thus we

do not compare to it directly.

7.4 Parameter Study

In Table 4, we compare the effect of different parameter combinations on runtime and accuracy for

the 5× 100 MLP, which allows also more expensive settings to be evaluated while still representing

a challenging verification problem with 𝜖 = 0.026. Using the single-neuron triangle relaxation

(𝑘 = 1) only 21 regions can be verified. Adding our multi-neuron constraints with partition sizes

of 𝑛𝑠 = 10 and 𝑛𝑠 = 20 increases this to 26 and 28 regions, respectively. Neither considering a

larger overlap (𝑠 = 2), nor larger groups (𝑘 = 4), nor larger partition sizes (𝑛𝑠 = 100) can increase

the number of verified regions, despite significantly increased the runtime. While using triangle

relaxations with a partial MILP encoding is relatively fast it also only increases the accuracy to

23 regions. In contrast, combining a partial MILP encoding with multi-neuron constraints yields,

depending on the exact setting, an almost 75% increase to 35 verified regions, although at the

price of increased runtime. Refining the neuron-wise bounds using a triangle relaxation and LP

encoding only improves the number of verified regions to 27, while additionally using multi-neuron

constraints yields a significant jump to 45. This further improves to 54 when using MILP to refine

the second layer bounds and 60 when additionally encoding the last two layers with MILP. The

significant increase in precision when combining tight multi-neuron constraints computed via

SBLM and PDDM with other methods demonstrates their utility and highlights the potential of our

abstraction-refinement-based approach.

7.5 Effect of Grouping Strategy

0.0 0.5 1.0 1.5 2.0
r = fraction of groups

0

25

50

75

100

125
Normalized bound improvement [%]

our sparse heuristic

random

Fig. 14. Normalized bound improvement
over the fraction of groups used to com-
pute multi-neuron constraints, 𝑟 . Our
method is the blue circle, whose gain is
normalized to 100%.

We evaluate the sensitivity of Prima to the chosen neu-

ron groupings, by comparing the performance9 of random

groups with those generated by our sparse grouping heuris-

tic in Figure 14 for the first 100 test images of CIFAR10 and

the ConvSmall network. Concretely, we first generate a de-

terministic sparse grouping with our heuristic for a group

size of 𝑘 = 3, a partition size of 𝑛𝑠 = 100, and a maximum

overlap of 𝑠 = 1. Then we (randomly) reduce this grouping

to a fraction 𝑟 (x-axis in Figure 14) of the original number

of groups. The random groupings are generated to have

the same size (number of groups) by repeatedly drawing 𝑘

indices uniformly at random and rejecting duplicates.

We observe that considering fewer groups from our

heuristic (blue in Figure 14) reduces the bound improve-

ment notably, e.g., to 37% at 𝑟 = 0.1 (blue square). Choosing

random groups (orange in Figure 14) is consistently worse (vertical gap in Figure 14); by around

10% at 𝑟 = 1.0 (circles) closing to 3.4% at 𝑟 = 0.1 (squares). While our heuristic generates groups

with small overlap to evenly cover all neurons, random sampling can lead to some groups with

large overlap, while potentially not covering some neurons at all, leading to worse performance.

9Concretely, we compare the obtained improvement ofℎ𝑦,𝑖 , the lower bound to the optimization objectivemin
𝒙
′∈B∞𝜖

𝒉(𝒙′)𝑦−

𝒉(𝒙′)𝑖 , over the triangle relaxation (Δ) normalized using our standard sparse heuristic (Prima): (ℎ𝑦,𝑖 − ℎ
Δ

𝑦,𝑖 )/(ℎ
Prima

𝑦,𝑖 − ℎΔ𝑦,𝑖 )
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Considering fewer groups makes overlaps between groups less likely, making the groupings re-

sulting from the two sampling strategies more similar and explaining the shrinking performance

gap. To obtain the same precision with random groups as with our heuristic, about twice as many

(𝑟 = 2.0, diamond) groups are needed (horizontal gap in Figure 14). We repeated these experiments

several times with different random seeds and obtained consistent results.

Overall, we conclude that while our heuristic consistently outperforms random groups, Prima is

relatively insensitive to the exact groupings, as long as sufficiently many are used.

7.6 Image Classification with Tanh and Sigmoid Activations

Table 5. Number of verified adversarial regions and run-
time in seconds of Prima vs. DeepPoly for Tanh/Sigmoid
on 100 images from the MNIST dataset.

Act. Model Acc. 𝜖 DeepPoly Prima

Ver. Time Ver. Time

Tanh 6 × 100 97 0.006 38 0.3 61 72.5

9 × 100 98 0.006 18 0.4 52 186.0

6 × 200 98 0.002 39 0.6 68 170.0

ConvSmall 99 0.005 16 0.4 30 27.8

Sigm 6 × 100 99 0.015 30 0.3 53 96.9

9 × 100 99 0.015 38 0.5 56 336.4

6 × 200 99 0.012 43 1.0 73 267.0

ConvSmall 99 0.014 30 0.5 51 47.0

While using the exact convex hull algorithm

for ReLU relaxations is merely slow, it be-

comes infeasible for non-piecewise-linear ac-

tivations such as Tanh and Sigmoid. Com-

puting the constraints for a single group of

𝑘 = 3 neurons can take minutes using di-

rect exact convex hull computation, whereas

SBLM using PDDM takes only 10 millisec-

onds. This dramatic speed-up is a result of

SBLM’s decompositional approach of solving

the problem in lower dimensions (see Sec-

tion 5), significantly reducing its complexity.

Note that bothmethods compute only approx-

imations of the optimal group-wise convex

relaxation for these cases, as the underlying

interval-wise bounds are not exact.

We evaluate our method on normally trained, fully-connected and convolutional networks for

the MNIST dataset. We choose an 𝜖 for the 𝐵∞𝜖 region such that the state-of-the-art verifier for Tanh

and Sigmoid activations, DeepPoly, verifies less than 50% of the regions. We remark that DeepPoly

is based on the same principles and has similar precision as other state-of-the-art verifiers for these

activations such as CNN-Cert [Boopathy et al. 2019] and Crown [Zhang et al. 2018].

We use overlapping groups with 𝑛𝑠 = 10 and again refine neuron-wise lower- and upper-bounds

for fully-connected networks. We verify between 14% and 34% more regions than the current state-

of-the-art, in some cases doubling the number of verified samples, while maintaining a reasonable

runtime comparable to that for ReLU networks (see Table 5).

7.7 Autonomous Driving

Table 6. Standard (std.), empirically maximal (emp.) and
certifiably maximal (cert.) mean absolute steering angle
error (MAE) (smaller is better) for Prima vs. GPUPoly eval-

uated on every 20𝑡ℎ sample and mean evaluation time.

𝜖 Method
std.

MAE

emp.

MAE

cert.

MAE

cert.

Width
Time [s]

1/255 GPUPoly 7.37° 9.41° 10.35° 5.75° 1.55

Prima 7.37° 9.41° 10.17° 5.30° 154.2

2/255 GPUPoly 7.37° 11.46° 18.35° 19.63° 2.41

Prima 7.37° 11.46° 17.05° 17.03° 239.5

We evaluate Prima in the setting of au-

tonomous driving, deriving upper and

lower bounds to the predicted steering an-

gle under an ℓ∞ threat-model in a regres-

sion setting. We thereby demonstrate scal-

ability to large networks (> 100k neu-

rons and over 27 million connections)

and inputs (3 × 66 × 200) of real-world

relevance. We report the certified maxi-

mum absolute steering angle error and

the width of reachable steering angles. We
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Fig. 16. Case study: Analysis of the distribution of the number of discovered constraints, abstraction volume,
and runtime over all (≈ 360) individual 3-neuron groups processed during the verification of a single MNIST
image on the 5 × 100 ReLU network.
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Fig. 17. Comparison of the runtime contribution of the octahedral input constraint computation, multi-neuron
constraint computation and LP solve.

use PGD [Madry et al. 2018] to compute empirical bounds (emp). We use the CNN archi-

tecture proposed by Bojarski et al. [2016] and adversarial training [Madry et al. 2018] on

the Udacity autonomous driving dataset [Udacity 2016] to obtain the network evaluated here.

Fig. 15. Samples from the self-driving car dataset. The
target steering angle is illustrated in green, the pre-
dicted one in blue. The empirical bounds for 𝜖 = 2/255

are shown in red and the certified range is shaded blue.

When the permissible perturbation size is

small and the standard error of the model is

larger than the perturbation effect, cheaper

methods such as GPUPoly already yield good

results. However, for larger perturbations,

Prima reduces the gap between empirical and

certified error around 20% (see Table 6). In Fig-

ure 15, we show two representative samples,

where the certified steering angle range for

𝜖 = 2/255 is shaded blue, the empirical bounds

on the steering angle are shown in red, the

target in green and the prediction on the un-

perturbed sample in blue. Qualitatively, we find

that while the network often still performs well

on unperturbed samples with poor lighting or contrast (see lower example in Figure 15) the sensi-

tivity to perturbations and consequently the width of the reachable steering angle range is much

larger than for samples in better conditions (see upper example in Figure 15).
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Fig. 18. Runtime comparison of using SBLM vs. exact convex hull for computing relaxations in Prima.
Evaluated on 100 images and the MNIST 5 × 100 ReLU network.

7.8 Effectiveness of SBLM and PDDM for Convex Hull Computations

Computing approximations with SBLM using PDDM has two main advantages compared to the

direct convex hull approach: It is significantly faster and produces fewer constraints, making the

resulting LP easier to solve, while barely losing any precision.

For example, verifying the 5 × 100 network with Prima and comparing abstractions for groups

of 𝑘 = 3 computed with SBLM and PDDM or naively and neuron-wise triangle relaxation (Figure

16), we observe the following: Using SBLM and PDDM we reduce the mean number of constraints

computed per neuron-group by over 70% from 156 to 44 significantly reducing the number of con-

straints in the resulting LP, as many hundred such neuron groups are considered. The mean volume

of the constraint polytopes defined by these constraints in the 6-dimensional input-output space

of the individual neuron groups, meanwhile, is only around 5% larger. Single neuron constraints,

in contrast, yield 4-times larger volumes. Additionally, computing the approximate constraints is

about 200 times faster than the exact convex hull.

Not only are Prima constraints faster to generate and allow the verification of the same properties,

but a runtime analysis for the first 100 samples (illustrated in Figure 18) shows that they also speed

up the final LP solve 8-fold compared to the naive approach, as significantly fewer constraints have

to be considered. This effect is also observed in the time-intensive neuron-wise bound-refinement

where Prima constraints reduce the runtime by 70% while allowing 3 additional regions to be

verified. This can be explained by the fewer but more diverse Prima constraints also speeding up

the final LP solve in the refinement step reducing the number of timeouts and allowing tighter

neuron-wise bounds to be computed. Using neuron-refinement with Prima is in fact still quicker

than the naive approach without any refinement, while almost verifying twice as many samples.

SBLM combined with exact convex hulls computations already yields a small speed-up of around

20%, but the synergy with PDDM is key to unlock its full potential.

An analysis of the runtime contributions of the octahedral input constraint computation, the

multi-neuron constraint computation and the final LP solve (illustrated in Figure 17), shows the

following: Using the naive approach, the multi-neuron constraint computation clearly dominates

the runtime, while only contributing around 50% when using SBLM and PDDM. For larger net-

works, the input constraint computation and LP-solve become more expensive, reducing the

multi-neuron constraints computation runtime contribution further and further, e.g., 7% for the

CIFAR10 ConvSmall, and shifting the performance bottleneck to the LP-solver, especially when

neuron-wise bound-refinement or partial MILP encodings are used.
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8 RELATED WORK

The importance of certifying the robustness of neural networks to input perturbations has created

a surge of research activity in recent years. The approaches with deterministic guarantees can be

divided into exact and incomplete methods. Incomplete methods are much faster and more scalable

than exact ones, but they can be imprecise, i.e., they may fail to certify a property even if it holds.

Complete methods are mostly based on satisfiability modulo theory (SMT) [Ehlers 2017; Huang

et al. 2017; Katz et al. 2017, 2019] or the branch-and-bound approach [Anderson et al. 2020; Botoeva

et al. 2020; Bunel et al. 2020b; Lu and Kumar 2020; Palma et al. 2021; Tjeng et al. 2019; Wang et al.

2021; Xu et al. 2021], often implemented using mixed integer linear programming (MILP). These

methods offer exactness guarantees but are based on solving NP-hard optimization problems, which

can make them intractable even for small networks. Incomplete methods can be divided into bound

propagation approaches [Gowal et al. 2019; Mirman et al. 2018; Müller et al. 2020; Singh et al. 2018,

2019b; Weng et al. 2018; Zhang et al. 2018] and those that generate polynomially-solvable optimiza-

tion problems [Bunel et al. 2020a; Dathathri et al. 2020; Lyu et al. 2020; Raghunathan et al. 2018;

Singh et al. 2019a; Tjandraatmadja et al. 2020; Xiang et al. 2018] such as linear programming (LP) or

semidefinite programming (SDP) optimization problems. Compared to deterministic certification

methods, randomized smoothing [Cohen et al. 2019; Lecuyer et al. 2018; Salman et al. 2019a] is a

defence method providing only probabilistic guarantees and incurring significant runtime costs at

inference time, with the generalization to arbitrary safety properties still being an open problem.

A new avenue towards more precision are methods [Palma et al. 2021; Singh et al. 2019a; Tjan-

draatmadja et al. 2020] breaking the so-called convex barrier [Salman et al. 2019b] by considering

activation functions jointly. However, their scalability is limited by the need to solve NP-hard con-

vex hull problems. There are many approaches for solving the convex hull problem for polyhedra

exactly [Avis and Fukuda 1991, 1992; Barber et al. 1993; Dantzig 1998; Edelsbrunner 2012; Fukuda

and Prodon 1995; Joswig 2003; Motzkin et al. 1953], in contrast to few approximate methods which

either sacrifice soundness [Bentley et al. 1982; Khosravani et al. 2013; Sartipizadeh and Vincent

2016; Zhong et al. 2014] or still exhibit exponential complexity [Xu et al. 1998], prohibiting their

use in neural network verification.

Our work follows the line of convex barrier-breaking methods, generalizing the concept to

arbitrary bounded, multivariate activations. In contrast to prior work, we decompose the underlying

convex hull problem into lower-dimensional spaces and solve it approximately using a novel relaxed

Double Description, irredundancy formulation, and a new ray-shooting-based algorithm to add

multiple constraints jointly. The resulting speed-ups make Prima tractable for non-piecewise-linear

activations, a first for convex barrier-breaking methods.

9 CONCLUSION

We presented Prima, a general framework that substantially advances the state-of-the-art in

neural network verification by providing efficient multi-neuron abstractions for arbitrary, bounded,

multivariate non-linear activation functions. Our key idea is to compute tighter overall abstractions

by consideringmany overlapping neuron groups thereby capturingmore inter-neuron dependencies.

To enable this, we decompose the bottleneck convex hull computation into lower-dimensional

spaces and solve it approximately. Our extensive experimental evaluation shows that our algorithmic

advances shift the bottleneck to the LP-solver while significantly improving both precision and

scalability over prior work.
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