
Phrase-Based Statistical Translation
of Programming Languages

Svetoslav Karaivanov
ETH Zurich

svskaraivanov@gmail.com

Veselin Raychev
ETH Zurich

veselin.raychev@inf.ethz.ch

Martin Vechev
ETH Zurich

martin.vechev@inf.ethz.ch

Abstract

Phrase-based statistical machine translation approaches have been
highly successful in translating between natural languages and are
heavily used by commercial systems (e.g. Google Translate).

The main objective of this work is to investigate the applicability of
these approaches for translating between programming languages.
Towards that, we investigated several variants of the phrase-based
translation approach: i) a direct application of the approach to
programming languages, ii) a novel modification of the approach
to incorporate the grammatical structure of the target programming
language (so to avoid generating target programs which do not
parse), and iii) a combination of ii) with custom rules added to
improve the quality of the translation.

To experiment with the above systems, we investigated machine
translation from C# to Java. For the training, which takes about
60 hours, we used a parallel corpus of 20, 499 C#-to-Java method
translations. We then evaluated each of the three systems above by
translating 1, 000 C# methods. Our experimental results indicate
that with the most advanced system, about 60% of the translated
methods compile (the top ranked) and out of a random sample of 50
correctly compiled methods, 68% (34 methods) were semantically
equivalent to the reference solution.

1. Introduction

In this work, we investigate the application of phrase-based sta-
tistical machine translation to the problem of translating programs
written in different programming languages and environments. The
basic observation is that a large corpus of translated code is likely
to contain regularities which can be effectively captured by a sta-
tistical learning approach.

Rule Based Approach and Combinations The alternative to sta-
tistical translation approaches is a rule-based approach, but as is
well known in natural language translation [18], a full blown rule-
based approach suffers from the fact that it is difficult to manually

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Onward! 2014, October 20–24, 2014, Portland, OR, USA.
Copyright © 2014 ACM 978-1-4503-3210-1/14/10. . . $15.00.
http://dx.doi.org/10.1145/2661136.2661148

provide all of the possible rules and it can also be difficult to main-
tain (especially as programming platforms keep adding new APIs
and features that need to be handled by the translation).

However, we believe that in the future, statistical translation sys-
tems will be combined with parts of traditional rule-based systems.
In fact, in one of our configurations we experimented with a trans-
lation system that contains several user-defined rules. Other com-
binations are also possible: for instance, the phrase table which is
automatically learned in the statistical approach can be consumed
by a standard language translator.

Approximate Solutions To be effective, a statistical translation
system need not always be exact – it has value in providing an
approximate solution which is not semantic preserving yet is “close
enough” to the desired solution. This is akin to recent statistical
approaches for software synthesis [16, 17] where the synthesizer
predicts (a set of) likely program completions or refactorings which
are then shown to the programmer for further inspection.

This Work In this work, we first investigated a direct application
of the phrase-based statistical translation approach to translating
programs in different programming languages. While this approach
has some success, it fails to take into account the fact that pro-
gramming languages have an inherent structure captured by their
grammar. This means that such an approach will invariably pro-
duce translations which are not grammatically correct.

To avoid this problem, we extended the phrase-based approach to
take the programming language grammar into account and ensure
that the translation only computes solutions which can be parsed
by the language grammar. In statistical translation, the decoding
(actual translation) process continually builds up prefixes until the
entire source sentence is translated. Therefore, to take the gram-
mar into account during translation, we need to continually ask the
question of whether a given prefix can be completed in the given
grammar. That is, even though the grammar cannot parse the prefix,
the grammar may be able to parse some completion of that prefix.
Then, if at any point, a completion of the prefix which the gram-
mar can parse does not exist, we discard that prefix from further
consideration.

To answer the question of whether a prefix can be extended without
introducing new specialized parsing algorithms, we provide an
optimized procedure that translates the original grammar into what
we call a prefix grammar. Informally, the prefix grammar can parse
all strings that can be parsed by the original grammar as well as
their prefixes. Therefore, during machine translation, we can now
directly check whether the current prefix can be parsed by the prefix
grammar. Finally, to improve translation quality, we experimented
by adding rules to the translation process.

Example Translation: from C# to Java We experimented with
our systems by translating programs written in C# to programs
in the Java language. We trained the system on a parallel corpus
of 20, 499 C#-to-Java method translations. We then evaluated the
translation on 1, 000 C# methods. Our experimental results indicate
that with our most advanced configuration, about 70% of the trans-
lated methods compile and out of a random sample of 50 correctly
compiled methods, 68% (34 methods) were semantically equiva-
lent to the reference solution while many of the remaining 16 were
”almost equivalent” and could easily be fixed by a developer.

Main Contributions The main contributions of this paper are:

• An optimized procedure for translating a context-free grammar
into a prefix grammar that is suitable for phrase-based statistical
machine translation.

• An implementation which extends phrase-based translation to
take language grammar into account.

• A detailed experimental evaluation indicating that with our
most advanced configuration, about 60% of the translated meth-
ods compile and many of the translated methods are semanti-
cally equivalent to the reference solution.

We believe that this work is a promising step in automating the task
of programming language translation and in understanding the pros
and cons of adopting statistical approaches for this challenge.

Outline The paper proceeds by first reviewing the mathematical
reasoning behind phrase-based translation. In then discusses the ac-
tual decoding (translation) process as well as how the prefix gram-
mar is used. It follows with a discussion on how to obtain the prefix
grammar and finally proceeds with a detailed implementation and
evaluation of the approach.

2. The translation model

In this work, we adopt the phrase-based statistical translation
model [8]. We next present a brief overview of this approach. The
procedures of this model can be grouped into three main phases:
training, translation and tuning.

2.1 Training phase

The training phase consists of several sub-phases to train the differ-
ent components of a phrase-based machine translation: the phrase
table and the language model. We next briefly describe the training
process.

Step 1: Obtain Phrase table The process of constructing the
phrase table is summarized in Fig. 1 and consists of three sub
phases.

During the first sub phase ”Parallel data collection”, a set of input
pairs 〈m,n〉 is obtained, where m and n denote the two methods
(including the body of the method) that are translations of one
another. For the purposes of translation, a method body (e.g., m)
is treated as a sentence made up of a sequence of tokens.

In the next sub phase ”Word alignment”, given the set of method
pairs, an aligner discovers the most likely alignment between to-
kens of the methods of each pair. That is, for each method pair
〈m,n〉, the aligner produces a sequence containing the most likely
alignment.

Finally, the phrase table is obtained. Each phrase consists of a
sequence of tokens (of length more than one). A phrase table
links a phrase from the source language to a phrase to the target
language along with a score denoting the translation probability:
the likelihood that the source phrase is a translation of the target
phrase. Note that this translation (conditional) probability is in a
sense ”reversed”: it denotes the probability that a phrase in the
target language is translated to a phrase in the source language.

Step 2: Build a Statistical language model In addition to the
phrase table, phrase-based machine translation requires a statisti-
cal model of the target language that scores correct and “fluent”
sentences higher than incorrect ungrammatical or meaningless sen-
tences. One goal of the phrase table is to help the translation engine
stitch the phrases of the phrase table into meaningful programs.

A statistical language model assigns probabilities to sentences.
If w1w2...wl is a sentence where wi is the i-th word, then its
probability is computed as:

Pr(w1w2 . . . wl) =

l∑
i=1

Pr(wi | w1 . . . wi−1)

Since the probability of each word is computed as a probability on a
potentially long prefix, for efficiency purposes, the product is often
approximated. Typically, machine translation systems use an N -
gram language model. This language model approximates a term
Pr(wi | w1 . . . wi−1) with the term Pr(wi | wi−N+1 . . . wi−1).
For example, when N = 3, for each word wi in the sentence, the
approximation uses only the previous 2 words.

2.2 Translation phase

Given a phrase table and a statistical language model, one approach
to find a translation T̂ of a method S is via the Bayes rule:

T̂ = argmax
T

Pr(T | S) = argmax
T

Pr(S | T)Pr(T)
Pr(S)

=

= argmax
T

Pr(S | T)Pr(T)

An important point here is that the target language model Pr(T)
can be trained on massive data purely for the target language, and is
independent of the parallel corpus. Written with log-probabilities,
the above equation becomes:

T̂ = argmax
T

(
log
(
Pr(S | T)

)
+ log

(
Pr(T)

))
However, in practice the above model does not take into account
that our estimates of Pr(S | T) and Pr(T) may be biased due
to the algorithms used in the phrase table and the language model.
Thus, instead we use a more general model that allows assigning
different weights to each of these components [13]. In this case:

T̂ = argmax
T

n∑
i=1

λifi(S, T)

where fi(S, T) are features on sentences and λi are weights. Two
of the features we use are: i) the log-probabilities obtained from the
phrase table, and ii) the statistical language model. This allows us
to obtain the Bayes rule model as a special case of this more general
model.

Subphase Output Example output

Parallel data collection Method pairs C#: Console . WriteLine ("Hello World!") ;
Java: System . out . println ("Hello World!") ;

Word alignment Aligned method pairs
C#: Console . WriteLine ("Hello World!") ;

Java: System . out . println ("Hello World!") ;

Phrase table construction Phrase table

C# phrase Java phrase Score i.e. Pr(C# phrase | Java phrase)
Console System . out 0.8
WriteLine println 0.5
. . 0.7
((0.9
...

Figure 1. Summary of the process of phrase table construction along with example input for translation between C# and Java.

Phrase table
log(Pr(S | T))

Language model
log(Pr(T))

Other features
...

weight: λ1

λ2

λ3

+
Candidate
translation

scorer

Source
sentence: S

Generator
of candidate

translations T

Best scoring
translation T̂

Figure 2. Architecture of the synthesis procedure in the decoding.
This procedure generates a translation that maximizes a translation
score, which is a linear combination of scores of phrase table,
language model and other rules.

Given an input sentence S (in our case, a method body), the final
translated sentence is obtained via a process shown in Fig. 2. In this
approach, for a given source sentence S, the process first uses the
phrase table to generate candidate translation sentences and these
sentences are then scored with the equation above. Finally, the best
scoring sentence T̂ is returned as the translation.

2.3 Tuning phase

To optimize the quality of the translation system, one could opti-
mize the weights λi. A common way to achieve this is by using
a minimum-error rate training [12] on a tune dataset. This is an
algorithm that optimizes the weights such that the quality of the
translation on the tune dataset is as high as possible. To evaluate
the quality of a translation, typically a BLEU [14] score is used.

2.4 Discussion of features

Since a weight-based system allows for more than just features on
a phrase table and a language model, we give a brief overview of
some of the features such systems use:

• log
(
Pr(T)

)
- language model score.

• log
(
Pr(S | T)

)
- phrase table translation probability.

• log
(
Pr(T | S)

)
- phrase table reverse translation probability.

Both phrase table probabilities are estimated by a maximum-
likelihood estimation.

• A version of the phrase-table features with smoothed weights
(e.g. with lexical weighting [7]).

• short/long phrase penalty - features that add penalty score when
shorter (respectively longer) phrases from the phrase-table are
used.

3. Decoding with Grammar

In this section we describe the decoding phase of the system. Given
an input sentence, the decoding phase computes the most likely
translations of that sentence. We describe a commonly used search
algorithm [8] that generates and scores candidate translations as
well as our modification to that algorithm to handle programming
languages (essentially by leveraging the grammatical structure of
the programming language). This algorithm approximates the best
possible translation by gradually translating parts from the source
to the target sentence employing a beam-search heuristic. We next
describe the algorithm and show an example of its operation.

3.1 Definitions

Let us define a partial translation p of a sentence in the source
language to be a pair p = 〈Sc, Lt〉. The intuition is that the c stands
for coverage and the t stands for translation. The two components
of the pair are:

• The set of (currently) translated words Sc: this set ranges over
the indices of the words (tokens in our case) of the source
sentence, that is, Sc ⊆ {1, 2, . . . ,m} where m is the length
of the source sentence (number of tokens) to be translated.

• The (currently) translated sequence Lt: this sequence ranges
over the words (tokens in our case) of the target programming
language.

We use p.Lt to denote the translation of p and p.Sc to denote the
coverage of p. We define the length of a partial translation as |p| to
be |p.Lt|.

3.2 Algorithm Operation

Suppose that we wish to translate a sentence of length m and the
maximum length of the resulting translation we can obtain is of
length n. At the start of the decoding (translation) process, n + 1
stacks (the term stack was used in [8], but their implementation is
not necessarily that of a stack), numbered as St0, St1, . . . Stn are
initialized. Each stack Stk represents the set of partial translations
which have length k. Every stack has a maximum capacity C (the
number of partial translations it can hold).

Sc = ∅
Lt = []

Sc = {1}
Lt = System . out

Sc = {1, 2}
Lt = System . out .

Sc = {1, 2, 3}
Lt = System . out .

println

St0 St1 St2 St3 St4 St5

S′c = {1} i.e. the first source word
Console System . out 0.8

S′c = {2}
. . 0.7

S′c = {3}
WriteLine println 0.5

Figure 3. Example translation procedure of ”Console . WriteLine” to ”System . out . println”. Each stack Sti holds the C best
translations of length i. Each partial translation is scored (scores are not shown).

Algorithm 1 Beam-search expansion algorithm
Input: sentence s, maximum translation length n, phrase table,
prefix grammar G
Output: stacks Stl (l ∈ [0, n])

1: insert 〈∅, []〉 in St0
2: for l← 0 to n− 1 do
3: for each partial translation p ∈ Stl do
4: for each ph = wi+1 . . . wi+k ⊆ s do
5: S′c ← {i, i+ 1, . . . , i+ k}
6: if S′c ∩ p.Sc = ∅ then
7: for ph′ such that (ph, ph′) ∈ phrase table do
8: L′t ← p.Lt · ph′ // new partial translation
9: if L′t 6∈ L(G) then

10: continue // check if in prefix grammar
11: end if
12: p′ ← 〈p.Sc ∪ S′c, L′t〉
13: insert p′ in St|p′|
14: prune stack St|p′| if necessary

(based on the translation score)
15: end for
16: end if
17: end for
18: end for
19: end for

We next explain the operation of the algorithm shown in Algorithm
1. For now, let us ignore Line 9 of the algorithm (this line captures
our change and is discussed a little later). An illustration of the
algorithm on an example is shown in Fig. 3. The process of gener-
ating translations is done by gradually building candidate prefixes,
until all tokens from the source language are translated to the target
language. The algorithm generates candidate translation prefixes of
different length and then extends these (prefixed) translations.

At the beginning of the decoding phase, the empty partial transla-
tion 〈∅, []〉 is inserted in the stack St0 (the translation for St0 in Fig.
3). Then, at step l ≥ 0, for each partial translation p = 〈Sc, Lt〉 ∈
Stl, we extend p to obtain a longer partial translation as follows:

1. Pick a phrase ph = wiwi+1 . . . wi+k (i.e. a sequence of to-
kens/words) from the source sentence that have not yet been
translated. That is, for that phrase, its corresponding set of to-
ken indices S′c satisfies the following constraints:

• S′c = {i, i+ 1, i+ k} ⊆ {1, . . . ,m}, and

• S′c ∩ p.Sc = ∅.

In general, the phrase need not be a prefix (it is only required
that it is a sequence of adjacent words). However, to illustrate
the process, in our example in Fig. 3, we only include the
case when we pick the first untranslated token from the source

sentence. That is, initially, we pick the phrase ph = Console

with its corresponding S′c = {1}, then we pick the phrase
ph = ., and so on.

2. We next translate all selected phrases from the previous step.
That is, for the phrase ph, we take every translation ph′ from
the phrase table (i.e. the pair (ph, ph′) is in the phrase table)
and obtain new tokens L′t for a partial translation by appending
ph′ to p.Lt. Therefore, for every phrase ph′, we obtain:

L′t ← p.Lt · ph′

3. Finally, we update the respective stacks: we store the newly
obtained partial translation p′ = 〈p.Sc ∪ S′c, L′t〉 in the stack
St|p′|. Note that the selected stack depends on the length of the
produced translation, not the number of translated input tokens.
Thus, in Fig. 3 the stacks St1 and St2 do not contain a partial
translation as no translation is of length 1 or 2.

Scoring and Pruning Since the above procedure may exceed the
capacity C of the stacks holding partial translations, we need to
discard some of these translations. This is done by keeping scores
of different features for each partial translation and only storing the
C best scoring partial translations in each stack. For the example in
Fig. 3, every stack contains up to one partial translation p.

Finally, we take the elements in each stack that are complete trans-
lations of the source sentence and return the best scoring one. For
the example in Fig. 3, the last stack St5 contains the only complete
translation of input sentence, and hence, this is the final result of
the translation for our example.

The above procedure generates the resulting translation by first
building prefixes of it. At the same time, the model does not limit
the order in which phrases from the source sentence are translated,
which allows for phrase reordering between the source and the
target sentence.

3.3 Our Modification: Including Language Grammar

The above algorithm does not take into account the fact that the pro-
gramming language is defined by a formal grammar. To account for
this fact, we slightly modify step 2 above. That is, at the end of step
2, we perform an additional check to see if the newly translated
prefix sentence L′t can actually be parsed by the language grammar
(see Line 9 in Algorithm 1). If it can, L′t is kept, otherwise, it is
removed from further consideration. This prunes the search space
that the machine translation engine would otherwise need to ex-
plore unnecessarily (as once L′t cannot be parsed by the grammar
of the language, any string built by appending to L′t will also not
be parse-able).

Key Question More precisely, we need to efficiently check more
than whether the sentence L′t can be parsed by the grammar of the
language. It can easily be the case that L′t cannot be parsed by the
grammar, yet there exists a completion of L′t that can be parsed and
which the translation system would eventually find. Therefore, the
question we aim to answer is:

Given a sequence of tokens (terminals) L′t, is there an extension of
L′t which can be parsed by the grammar?

If the answer to this question is yes, then the machine translation
system would keep L′t, otherwise, it would discard L′t. Further,
it is important to answer this question as efficiently as possible
as it is on the critical path of the decoding phase. To answer this
question, in the next section we discuss a so-called prefix grammar.
Essentially, given a grammar of a language, the prefix grammar can
parse all prefixes of the strings that can be generated by the original
grammar. It is this prefix grammar we discuss in the next section
that we work with during the decoding phase.

4. Prefix Grammars

As we have seen in the previous section, during the decoding (trans-
lation) phase, at each step of the process we need to decide whether
a given string Lt can be extended in a way that the extended string
belongs to the grammar of the target language. To answer this ques-
tion, we use a fairly standard procedure which instead of using new
parsing algorithms, changes the grammar to what we refer to as a
prefix grammar, in a way that enables us to reuse classic parsing
algorithms and tools.

We do introduce few modifications to the procedure in order to
speed-up the parsing query posed during the translation phase (our
modifications produce about 3x speed-up for large sentences).

We next describe how to obtain such a prefix grammar from the
original grammar.

Prefix Language Let L be a given language. We define pre(L)
to be the prefix language obtained from the language L, that is,
pre(L) contains all prefixes of any sentence in L. Formally:

w ∈ pre(L)↔ ∃w′ ∈ L.w ∈ pre(w′)

where pre(w) denotes the set of all prefixes for a word w.

Prefix grammar. The grammar which generates the language
pre(L) for a given language L is referred to as the prefix grammar
of L. For instance, given a language of all syntactically correct Java
programs and its grammar, we might be interested in obtaining the
prefix grammar of that language, i.e., the grammar which generates
prefixes of syntactically correct Java programs.

Given a language L and its context-free grammar G (every such
grammar follows the rules in Fig. 4), we next discuss a two-step
approach to obtaining a prefix grammar Gp of pre(L).

Step 1: Let ST and SNT be the sets of all terminals and (resp.
non-terminals) in G. In this step, we go over every rule of the form
NT → OE (where NT stands for non-terminal and OE stands
for orExpression) and evaluate pre(OE) as discussed below. The
resulting set pre(OE) will contain exactly the set of all prefixes of
the language of OE.

〈rule〉 ::= 〈nonterminal〉 ‘->’ 〈orExpression〉 ‘;’

〈orExpression〉 ::= 〈andExpression〉 (‘|’ 〈andExpression〉)*

〈andExpression〉 ::= (〈nonterminal〉 | 〈terminal〉 |
〈parenthesisedExpression〉 | 〈specialExpression〉)+

〈parenthesisedExpression〉 ::= ‘(’ 〈orExpression〉 ‘)’

〈specialExpression〉 ::= (〈nonterminal〉 | 〈terminal〉 |
〈parenthesisedExpression〉) (‘*’ | ‘?’ | ‘+’)

Figure 4. The rules of a context-free grammar.

We use a helper function ◦ : W × P(W)→ P(W) where W is a
set of words (to help us define pre):

w ◦ {w1, w2, . . . , wk} = {ww1, ww2, . . . , wwk}

We now recursively define the function pre as shown in Table 1.
The domain of pre is the union of all possible orExpressions (OE),
andExpressions (AE), parenthesizedExpressions and specialEx-
pressions. The range is a set of words in the language used for
describing the grammar rules of the original grammar with the
slight modification that the set of nonterminal symbols SNT is
extended such that for every nonterminal symbol NT the symbol
NT pre is added. Intuitively, pre(OE) is exactly the set of all pre-
fixes of the language of OE. We note that it is the handling of the
last three rules (e.g. forE∗, E+, E?) which lets us obtain about 3x
speed-ups over a naive unfolding.

Example For example pre(A b C) (where A and C are nonter-
minal symbols and b is a terminal) can be calculated using the defi-
nition for pre(A b C), expanding to pre(A)∪A ◦ pre(b)∪A b ◦
pre(C), which in turn expands to {Apre} ∪ {A b} ∪ {A b Cpre}.

Step 2: Once all pre(OE) are computed, we next generate a set
of new rules to be added to Gp (from the rules of G). In this step,
each rule NT → OE in G is added to the new grammar Gp

together with the rules:

pre(NT)→ ◦pre(OE)

Essentially, the above statement generates a set of rules from a
single rule. The total number of newly generated rules to be added
to Gp is |pre(OE)|.

Example Consider the grammar G:

G = {S → S1 | S2, S1 → aS1b | ab, S2 → cS2d | cd}

The prefix grammar Gp then is:

Gp = G ∪ { pre(S → S1 | S2)
pre(S1 → aS1b | ab)
pre(S2 → cS2d | cd) }

where:

pre(S → S1 | S2) = Spre → ◦pre(S1 | S2)
= Spre → ◦{Spre

1 , Spre
2 }

= {Spre → Spre
1 , Spre → Spre

2 }

pre(S1 → aS1b | ab) = {Spre
1 → a, Spre

1 → aSpre
1 ,

Spre
1 → aS1b, S

pre
1 → ab }

pre(S2 → cS2d | cd) = {Spre
2 → c, Spre

2 → cSpre
2 ,

Spre
2 → cS2d, S

pre
2 → cd}

Input Output Condition
NT {NT pre} NT ∈ SNT

T {T} T ∈ ST

OE pre(AE1) ∪ pre(AE2) ∪ · · · ∪ pre(AEk) OE = AE1 | AE2 | . . . | AEk

and every AEi is a andExpression

AE pre(E1) ∪ E1 ◦ pre(E2) ∪ . . . AE = E1 E2 . . . Ek and each Ek

∪E1 E2 . . . Ek−1 ◦ pre(Ek) is either terminal, nonterminal or specialEepression
(OE) pre(OE) OE is an orExpression
E∗ E ∗ ◦pre(E)

E is a terminal, nonterminal or a parenthesizedExpressionE+ E ∗ ◦pre(E)
E? pre(E)

Table 1. Definition of the function pre, expanding the grammar rules.

5. Implementation

We implemented a complete C# to Java statistical machine transla-
tion system based on several existing components:

• The Berkeley aligner [3] for sentence alignments.

• SRILM [19] for training language models, that is, the target
language model Pr(Java).

• The Phrasal [4] translation engine.

We first collected parallel data to train the statistical system on,
aligned the parallel data, built a phrase table with the Phrasal sys-
tem, and modified the decoding phase of Phrasal to incorporate the
C# and Java prefix grammars into the translation phase. Then, we
tuned and evaluated the complete system. Finally, we experimented
with manually introduced translation rules.

5.1 The prefix grammar implementation

We implemented a prefix version of the Java grammar by modify-
ing the ANTLR Java grammar1 according to the rules in Section
4. We also built a prefix C# grammar, which was a slightly more
involved process. We describe the steps below:

The C# grammar We took the official C# grammar v4 Language
Specification as basis and created a C# ANTLR grammar. However,
several modification were needed to perform the translation to an
ANTLR grammar. There are two main problems with the direct
approach: the official specification contains a left recursion and
C# by itself allows some keywords to be used also as identifiers
(namely, the keywords found in LINQ) and it is not immediately
obvious how this feature can be implemented in ANTLR. We solved
the first problem via an application of Paull’s algorithm [6] and
the second by the trick mentioned in The Definitive ANTLR 4
Reference [15], p.209.

5.2 Parallel corpus mining tool

As one of the main purposes of the work is to automate the entire
process and make it unsupervised, we developed a tool which
automatically mines the translation pairs from a corpus of projects
available in both C# and Java.

1 https://github.com/antlr/grammars-v4/tree/master/java

General Problem with Mining Translations In general, we note
that automatically (and even manually) obtaining a good paral-
lel translation corpus between programming languages on already
translated projects can be difficult. The reason is that a translation
may break the method boundaries of the original source code and
hence it may be difficult to figure out which statements in the source
code are translated to which statements in the target. In general, we
believe that a fruitful future direction to obtaining quality train-
ing data is to leverage Amazon Turk for language translation tasks,
much in the way done for natural languages [9].

Implementation Nonetheless, we did implement a mining tool
which uses both the Java and the C# ANTLR grammar to search
for similar methods in a given project pair (C#/Java). The search is
based on the premise that the enclosing classes of the methods in
the translation pair share similar (almost equal) names. When such
classes have been found, the tool continues to search for similar
methods in the scope of the similar classes. We say that a pair of a
C# method and a Java method is a translation pair when those two
methods satisfy the following conditions:

• n1 ' n2

• rtn1 ' rtn2

• np1 = np2

• ns1 = ns2

• SL1 = SL2

where ni, rtni, npi, nsi, SLi are respectively the ith method’s
name, return type name, number of parameters, number of state-
ments and set of all literals in the method body. Here ' is de-
fined as w1 ' w2 ≡ lower(w1) v lower(w2) ∨ lower(w2) v
lower(w1), where lower(w) denotes the lowercase version of the
wordw, and a v bmeans that a is a substring suffix of b. The equal
sign has a default meaning.

Benchmarks We used the following projects available in both C#
and Java to mine parallel data: Db4o, Lucene, Hibernate, Quartz
and Spring. The number of mined pairs of translated methods for
each open source project is listed in Table 2.

We divided the produced translation pairs into two disjoint buckets
for training and testing with 20, 499 and 980 methods respectively.
We also took 342 methods from the training bucket that we addi-
tionally put in a bucket for tuning parameters.

In Table 3, we give statistics for the number of tokens per sentence
in the data we trained and evaluated on. Overall, most methods

Project Number of mined translation pairs
Db4o 12419
Lucene 5721
Hibernate 2293
Quartz 698
Spring 518
Total 21649

Table 2. Number of matched methods extracted from open source
projects available both in C# and Java.

Number of tokens per C# method Java method
Average 49.36 48.17
Minimum 7 6
Median 27 26
75%-ile 52 51
90%-ile 99.2 97
99%-ile 353 343
Maximum 7781 7783

Table 3. Statistics for the number of tokens in the training and
testing corpus for C# and Java.

〈ruleSet〉 ::= 〈rule〉*

〈rule〉 ::= 〈tree〉 ‘->’ 〈tree〉 ‘;’

〈tree〉 ::= ‘(’ 〈non-terminal〉 (〈group〉 | 〈tree〉 | 〈terminal〉)* ‘)’

〈group〉 ::= ‘[’ 〈non-terminal〉 ‘]’ 〈number〉

Figure 5. Language to define custom translation rules.

consist of less than 100 tokens, and less than 50 tokens on average
both for C# and Java. However, the data contains a heavy tail of
overly long and complex methods.

5.3 Combining with a Rule-Based Approach

We expect a statistical machine translation system to be good in
cases where phrases can capture the translation rules, for example
API mapping. However, it may not perform as well for rules of
arbitrary shape. To mitigate this limitation, we have extended our
statistical machine translation to apply rules of more complicated
shapes. The rules are currently manually defined by the user and
we provide a mechanism to extend them.

A custom rule is a pair of syntax trees (T1, T2) where T1 is a
syntax tree in the source language and T2 is a syntax tree in the
target language. The leaves of the trees can be both terminal and
non-terminal symbols. We also define a mapping between the two
sets of non-terminal symbols in the trees T1 and T2. We define the
grammar for defining custom translation rules in Fig. 5.

We tested the effect of the rules experimentally by including a rule
that coverts between typeof expression in C# and the dynamic type
checking expression in Java as given in Fig. 6.

6. Evaluation

In our evaluation investigated the following key questions:

1. Can the SMT systems learn to synthesize translations that parse
and compile?

LEFT RIGHT

Expression

TypeofExpression

typeof (Type) Type

Experssion

Primary

. class

(Expression (TypeofExpression ‘typeof’ ‘(’ [Type]1 ’)’))
→

(Expression (Primary [Type]1 ’.’ ‘class’));

Figure 6. A rule that converts between the C# and the Java syntax
of a dynamic type checking expression.

2. What is the effect of our improvements from Section 3.3 and
Section 5.3?

3. Is SMT a feasible approach for translating between programs in
different programming languages?

To answer the above questions, we trained three SMT systems from
C# to Java on the mined parallel data from Section 5.2. All systems
use the same phrase table and only differ in the way they generate
translations. Next, we describe the SMT systems we evaluate on:

• base is our baseline system based on the standard features
present in Phrasal like the ones listed in Section 2.4. This a
typical system used in natural languages.

• grammar uses the same features as in base, but also uses the
modified translation algorithm presented in Section 3.3 with a
prefix grammar for Java.

• combined is based on our grammar system but augmented
with a manually specified rule as described in Section 5.3.

We translated our evaluation data with each of the systems. Then,
for every system we considered three evaluation metrics:

• BLEU score – a widely used metric in SMT for natural lan-
guages that scores the matching phrases between the gener-
ated and the reference translation. A score of 0% means no
phrases matched, while a score of 100% means that all phrases
matched.

• parse rate – the percentage of translated methods which parse
with the Java grammar.

• compile rate – the percentage of translated methods which
compiled.

We report each of the above rates on two translations. First, by
only considering the best scoring translation for every method, and
second – by taking the 30 best scoring translations and showing the
one which results in the highest respective score. The results of our
evaluation are summarized in Table 4.

BLEU score is not an indicator of quality First, we note that
although our baseline system produces a good BLEU [14] score
(natural language translation systems usually score far worse), its
parse rate and compile rate are fairly low. In fact, although BLEU
score is an important indicator for the quality of natural language
translation systems, it does not reveal the quality of a programming
language translation systems.

System Description BLEU [14] Parse rate Compile rate
first result best of top 30 first result best of top 30 first result best of top 30

base SMT baseline 86.2% 89.2% 57.7% 75.2% 48.5% 56.9%
grammar SMT with prefix grammar 86.4% 89.7% 98.7% 99.2% 58.9% 67.9%
combined SMT with prefix grammar and custom rules 86.7% 90.2% 98.7% 99.2% 60.7% 68.9%

Table 4. Evaluation results of the SMT systems from C# to Java.

Parse Rate In terms of parse rate, the baseline base system pro-
duces translations that parse in less than 60% of the cases, and only
increasing to around 75% when taking the best of the top 30 trans-
lations. This means that with the baseline system, for almost a quar-
ter of the methods, none of the first 30 results parse. This result
means that if we had implemented parsing only as a post-filtering
step of the generated translations, we would have had problems
generating meaningful translations.

In contrast, our second and third systems grammar and combined,
which incorporate grammars during translation, generate translated
methods that parse for 98.7% of the cases. These systems failed to
generate methods that parse for 0.8% of the cases – in these cases
the SMT system did not generate any candidate translations likely
due to sparseness of the phrase table.

Compile Rate The last two columns of Table 4 summarize the
compile rate for each SMT system. Overall, adding grammars and
rules increases the compile rate of the system with our best system
having around 60% success rate.

6.1 Manual inspection

To get a better understanding of what a statistical machine transla-
tion is good and limited at, we inspected the translation results pro-
duced by our best system combined. We then randomly selected
and manually inspected 50 translations that compile, and 50 trans-
lations that do not compile. For each translated method, we com-
pared to the reference method in the original Java project and noted
how the translation and the reference differ. The results for the two
sets of methods are summarized in Table 5 and Table 6.

For 4 of the samples that compiled and 7 of the ones that did not we
noticed that our algorithm for finding matching methods between
C# and Java (Section 5.2) did not produce a pair of fully equivalent
methods. The mismatches were similar (e.g. overloads) that were
however not semantically equivalent. Thus, our translation was also
not semantically equivalent to the reference.

Inspecting Successfully Compiled Methods From the set of
translations that compiled, the vast majority of the translations
were semantically equivalent to the reference translation. In 34 of
the samples, the code is completely equivalent, while in 8 samples
there is a difference in the exceptions that are declared in the throws
section of the method. Java methods, as opposed to C#, must ex-
plicitly declare any exception they may potentially throw in their
execution. Thus, when translating from C# to Java, the SMT system
must guess or infer the set of exceptions. Our system made errors
in both directions – for some methods the declaration in the transla-
tion was over-approximated with any Exception, while in others it
was under-approximated with no throws declaration. Finally, 4 of
the translations that compiled were semantically different and in-
troduced an error due to the statistical machine translation. In two
cases, the system changed a constant from an enum, in one it did not
declare an inline class in a method, and in one case it incorrectly
changed a method call to another method. However, even when the
translation is not fully semantically equivalent, it is still useful if it
is “close enough” to be manually adjusted.

Reason Count
Fully equivalent to reference 34
Equivalent to reference except throws section 8
Semantically different 4
Reference mismatch 4
Total 50

Table 5. Results summary from manual inspection of 50 transla-
tions that compiled successfully.

Reason Count
Wrong API 20
Coding convention (TheMethod vs theMethod) 17
Missing inline class 3
Wrong type 2
Incomplete 1
Reference mismatch 7
Total 50

Table 6. Results summary from manual inspection of 50 transla-
tions that did not compile.

Inspecting Methods which did not Compile From the set of
translation that did not compile, we observed that 20 methods
had API calls that the SMT system did not learn correctly. The
translation included a call to a method (or object constructor) that
did not exist. For the other 17 cases, the code did not compile,
because there was a reference to a method in the project, but the
names are slightly different between the C# and the Java versions
of the project. In these cases, the reason for the compile failure was
purely the difference in the coding conventions for method names
– Java uses lowerCamelCase, while C# uses UpperCamelCase.

For the rest of the translations, the code did not compile due to
differences in the features supported by Java and C#. For three
of the samples, the translation did not include an inline class in
the method like the reference solution, but instead tried to use a
non-existing named class. This is because C# does not support
anonymous classes like Java. For two other cases, the Java code
needed to explicitly mention a type of an expression that the SMT
system did not guess. Finally, for one example the SMT system did
not manage to generate a complete translation.

6.2 Running times

Our current phrase-based implementation is based on research
SMT systems that are not necessarily optimized for performance.
The slowest of all steps was the word alignment step in the parallel
data collection that took around 50 hours to align all of the 20, 499
sentence pairs in our training data (on an 64-bit Ubuntu machine
with 2.13GHz Xeon E7-4830). The rest of the training steps took
a few seconds only. All three systems we evaluated used the same
training data. Additionally, the tuning step required 2 hours per sys-
tem. Finally, the translation phase takes around 2 hours to generate
the 30-best translations for the 980 methods in the evaluation data.

Summary Overall, we believe that statistical machine translation
is an interesting approach to programming language translation and
have shown that adding programming-language specific features
improves the precision of the system. We believe that further re-
search on the problem should focus on experimenting with statisti-
cal techniques combined with deeper semantic features.

7. Related Work

We next discuss several works most closely related to ours.
Programming languages and Statistical Methods The work
most closely related to ours is Nguyen et al. [11] which uses a
phrase-based SMT system to assist language migration. Their sys-
tem reports encouraging BLEU scores, but suffers from high rates
(49.5% − 58.6%) of syntactically incorrect translations and does
not employ language grammars. Further, their work does not pro-
vide detailed insights into the kinds of errors that arise as a result
of translation (e.g. compilation and semantic errors).

Our recent work [17] discusses a new combination of statistical
language models (N-gram, Recurrent Neural Networks) with static
analysis (typestate and alias analysis). The aim of that work is to
leverage statistical language models to perform code completion
(within the same language), while this work focuses on a different
programming challenge (and hence uses different statistical tech-
niques). The work of Hindle et al. [5] uses an N-gram language
model to predict the next program token.

Machine translation The last decades has seen tremendous im-
provements in the area of statistical machine translation systems. A
good overview of such systems can be found in the book by Philipp
Koehn [7]. Here, we briefly describe the work that is mostly related.

Och and Ney present a discriminative model for scoring transla-
tions based on features [13]. The work of Och further improves on
the model by adding a minimum error rate training to train the fea-
tures [12] and later Macherey et al. further improve it [10]. Gains
in SMT translation quality came with the introduction of the BLEU
score [14]. This score is of high importance to natural languages as
a reasonably good predictor for translation quality, and a good op-
timization metric for a minimum error rate training. However, as
we have seen, it may not be a good choice for programming lan-
guage translation. Statistical machine translation has also been suc-
cessfully applied to various application domains including seman-
tic parsing of natural language queries [1] and opinion mining [2].

8. Conclusion and Future work

In this work we presented an approach to programming language
translation based on statistical language models. The key idea of
our approach is to integrate parsing queries to the programming lan-
guage grammar into a phrase-based translation approach. We per-
formed a detailed evaluation of several translation system variants
instantiated to translate from C# to Java. The experimental results
indicate that using our best system, roughly 60% of the resulting
methods compiled. Further, manual inspection of 50 randomly se-
lected methods which compiled indicated that 68% of the methods
(34 methods) were semantically equivalent while many others were
“close” to equivalent.

In the future, we plan to investigate combinations of statistical tech-
niques with features that are more deeply aware of the program se-
mantics, thus such an approach would be more reliant on advanced
program analysis techniques. This will result in a translation system
that is more accurate and effective for handling realistic programs.

References
[1] ANDREAS, J., VLACHOS, A., AND CLARK, S. Semantic parsing

as machine translation. The Association for Computer Linguistics,
pp. 47–52.

[2] BANEA, C., MIHALCEA, R., WIEBE, J., AND HASSAN, S. Multilin-
gual subjectivity analysis using machine translation. In Proceedings
of the Conference on Empirical Methods in Natural Language Pro-
cessing (Stroudsburg, PA, USA, 2008), EMNLP ’08, Association for
Computational Linguistics, pp. 127–135.

[3] Berkeley aligner. https://code.google.com/p/berkeleyaligner/.
[4] CER, D., GALLEY, M., JURAFSKY, D., AND MANNING, C. D.

Phrasal: A statistical machine translation toolkit for exploring new
model features. In Proceedings of the NAACL HLT 2010 Demon-
stration Session (Los Angeles, California, June 2010), Association for
Computational Linguistics, pp. 9–12.

[5] HINDLE, A., BARR, E. T., SU, Z., GABEL, M., AND DEVANBU, P.
On the naturalness of software. In ICSE 2012 (2012).

[6] HOPCROFT, J. E., AND ULLMAN, J. D. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, 1979.

[7] KOEHN, P. Statistical Machine Translation, 1st ed. Cambridge
University Press, New York, NY, USA, 2010.

[8] KOEHN, P., OCH, F. J., AND MARCU, D. Statistical phrase-based
translation. In NAACL’2003 - Volume 1.

[9] KUNCHUKUTTAN, A., ROY, S., PATEL, P., LADHA, K., GUPTA,
S., KHAPRA, M. M., AND BHATTACHARYYA, P. Experiences in
resource generation for machine translation through crowdsourcing.
In LREC (2012), pp. 384–391.

[10] MACHEREY, W., OCH, F. J., THAYER, I., AND USZKOREIT, J.
Lattice-based minimum error rate training for statistical machine
translation. In EMNLP (2008), pp. 725–734.

[11] NGUYEN, A. T., NGUYEN, T. T., AND NGUYEN, T. N. Lexical
statistical machine translation for language migration. In Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering
(New York, NY, USA, 2013), ESEC/FSE 2013, ACM, pp. 651–654.

[12] OCH, F. J. Minimum error rate training in statistical machine trans-
lation. In Proceedings of the 41st Annual Meeting on Association for
Computational Linguistics - Volume 1 (Stroudsburg, PA, USA, 2003),
ACL ’03, Association for Computational Linguistics, pp. 160–167.

[13] OCH, F. J., AND NEY, H. Discriminative training and maximum en-
tropy models for statistical machine translation. In Proceedings of the
40th Annual Meeting on Association for Computational Linguistics
(Stroudsburg, PA, USA, 2002), ACL ’02, Association for Computa-
tional Linguistics, pp. 295–302.

[14] PAPINENI, K., ROUKOS, S., WARD, T., AND ZHU, W.-J. Bleu: A
method for automatic evaluation of machine translation. In Proceed-
ings of the 40th Annual Meeting on Association for Computational
Linguistics (Stroudsburg, PA, USA, 2002), ACL ’02, Association for
Computational Linguistics, pp. 311–318.

[15] PARR, T. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf,
2013.

[16] RAYCHEV, V., SCHÄFER, M., SRIDHARAN, M., AND VECHEV, M.
Refactoring with synthesis. In Proceedings of the 2013 ACM SIG-
PLAN International Conference on Object Oriented Programming
Systems Languages & Applications (New York, NY, USA, 2013),
OOPSLA ’13, ACM, pp. 339–354.

[17] RAYCHEV, V., VECHEV, M., AND YAHAV, E. Code completion with
statistical language models. In Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation (New York, NY, USA, 2014), PLDI ’14, ACM, pp. 419–428.

[18] SENELLART, J., DIENES, P., AND VRADI, T. New generation systran
translation system. In In Proceedings of MT Summit IIX Senellart J.,
Yang J., Rebollo A. 2003. SYSTRAN Intuitive Coding Technology. In
Proceedings of MT Summit IX (2001).

[19] STOLCKE, A. SRILM-an Extensible Language Modeling Toolkit.
International Conference on Spoken Language Processing (2002).

