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Abstract

Assertions are a familiar and widely used bug detection tech-

nique. Traditional assertion checking, however, is performed

synchronously, imposing its full cost on the runtime of the

program. As a result, many useful kinds of checks, such as

data structure invariants and heap analyses, are impractical

because they lead to extreme slowdowns.

We present a solution that decouples assertion evalua-

tion from program execution: assertions are checked asyn-

chronously by separate checking threads while the program

continues to execute. Our technique guarantees that asyn-

chronous evaluation always produces the same result as syn-

chronous evaluation, even if the program concurrently mod-

ifies the program state. The checking threads evaluate each

assertion on a consistent snapshot of the program state as it

existed at the moment the assertion started.

We implemented our technique in a system called STROBE,

which supports asynchronous assertion checking in both

single-and multi-threaded Java applications. STROBE runs

inside the Java virtual machine and uses copy-on-write to

construct snapshots incrementally, on-the-fly. Our system

includes all necessary synchronization to support multiple

concurrent checking threads, and to prevent data races with

the main program threads. We find that asynchronous check-

ing significantly outperforms synchronous checking, incur-

ring tolerable overheads – in the range of 10% to 50% over

no checking at all – even for heavy-weight assertions that

would otherwise result in crushing slowdowns.
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1. Introduction

Assertions are a widely used technique for program mon-

itoring and bug detection. Assertions are easy to use—

programmers add them directly to their code—and they

provide a precise and reliable failsafe for critical program

properties. The downside is that assertions are checked syn-

chronously, imposing their full cost directly on the run-

time of the program. As a result programmers must take

care not to add assertions that are too frequent or too

costly. This constraint severely limits the kinds of prop-

erties that can be checked using assertions, and existing

code reflects this limitation: it often contains simple and

cheap assertions, such as assert(p!=null), but almost

never contains complex and expensive assertions, such as

assert(redblack invariants(my tree)).

This paper presents Asynchronous Assertions, a new

mechanism that supports efficient checking of complex as-

sertions, including heap properties and data structure invari-

ants. The central idea is to perform expensive checks con-

currently in separate threads, allowing the application exe-

cution to continue unimpeded. The key problem we solve

is how to ensure that asynchronous evaluation produces the

same result as synchronous evaluation, even if the applica-

tion proceeds to modify the program state while the check is

running.

Our solution is to run assertion checks on a snapshot of

the heap as it existed when the assertion was encountered.

We introduce techniques to implement the snapshot mech-

anism efficiently and to ensure the absence of race condi-

tions between the application and the checking threads. No



changes are needed to make assertions asynchronous: pro-

grammers simply identify the code that implements the as-

sertions, and our system automatically adds instrumentation

that reads from the snapshot and handles concurrency.

The programming model for handling asynchronous as-

sertion failures, however, is necessarily different. Although

asynchronous assertions produce the same result as syn-

chronous assertions, the result only becomes known at some

later point in execution. Therefore we offer two methods for

handling failures. The first is completely asynchronous: like

a traditional assertion, a failure causes the program to stop,

wherever execution happens to be at that point. The second

interface is like a future: when an assertion starts it returns a

handle that the application code can use to inquire about the

result of the assertion, or force synchronous evaluation.

We implemented asynchronous assertions for Java in the

Jikes RVM. Our implementation, called STROBE, works with

single- and multi-threaded applications and supports multi-

ple concurrent assertions, each with its own snapshot. On

suitable hardware, assertions can be evaluated in parallel on

separate CPU cores.

Our implementation includes several optimizations that

reduce the cost of creating and managing snapshots. First, it

uses per-object copy-on-write to snapshot only those objects

that the application actually modifies. Second, it never snap-

shots objects that are new since the start of the most recent

check (since they do not exist in any snapshot). Finally, we

share copies between snapshots whenever possible.

Since existing programs do not contain suitably complex

assertions, we evaluate our system using a combination of

micro-benchmarks (adopted from related work), and syn-

thetic assertions running on a more realistic benchmark. The

synthetic assertions allow us to thoroughly explore the per-

formance space: we systematically vary the frequency and

cost of assertions, and the number of checking threads.

We find that asynchronous evaluation greatly outper-

form synchronous evaluation, as long as there are enough

checking threads to keep up with the rate of new asser-

tions. With sufficient resources our approach supports sig-

nificantly higher checking workloads for a given runtime

overhead budget. Limiting the overhead to 20%, for ex-

ample, six checker threads can perform checks that would

otherwise slow the program by a factor of 2.5 if evaluated

synchronously. With a 30% overhead budget, six threads can

perform checks that would otherwise slow the program by

a factor of 4. With a 40% budget six checker threads can

perform checks that would otherwise slow the program by a

factor of 6.5.

The contributions of this paper are:

• Asynchronous Assertions, a new assertion checking

mechanism that evaluates assertions concurrently with

the application, while guaranteeing the same results as

synchronous evaluation.

private boolean isOrdered() {

Node n = head;

while (n != null && n.next != null) {

if (n.data > n.next.data)

return false;

n = n.next;

}

return true;

}

Figure 1. Example assertion: unmodified code to check

whether a linked list is ordered.

• An efficient implementation of our technique in a system

called STROBE built on JikesRVM.

• An evaluation of STROBE on different usage scenarios: a

set of microbenchmarks with data structure invariant as-

sertions, and a well-known benchmark with a synthetic

assertion allowing us to systematically explore the per-

formance space. Our results indicate that STROBE works

well in practice: it greatly outperforms synchronous

checking, and can execute a range of intensive assertion

workloads with overheads ranging from 10% to 50%.

2. Overview

In this section, we show how to use STROBE to write and

check a data structure invariant assertion asynchronously.

We describe the programming model and give code for a

small example.

A Use Case Suppose that we are implementing an ordered

linked list, and we want to ensure the invariant that for any

node in the list, node.data <= node.next.data.

To check this invariant synchronously, we would write a

checking method that is called before and after every pub-

lic method invocation on the data structure. This checking

method appears in Fig. 1.

Using Asynchronous Assertions With a large linked list,

this invariant may take a long time to check, so it is a good

candidate for asynchronous checking. Here we show how to

convert it to an asynchronous assertion for use in STROBE.

STROBE defines an interface, StrobeTask, which the

user must implement to issue an asynchronous assertion.

StrobeTask contains only one method, compute(),

which the system will call to compute the result of the check.

The definition of StrobeTask is shown in Fig. 2.

To convert our synchronous ordering check to an asyn-

chronous one, we simply call the synchronous checking

method in Fig. 1 from inside the compute() method of an

inner class that implements StrobeTask. We also tag this

method with a special annotation, @ConcurrentCheck,

so the JVM knows it is meant to run concurrently. Code

for this inner class is shown in Fig. 2 (we assume that

isOrdered() is declared inside the inner class). Note that

the code inside compute() simply calls isOrdered():



public interface StrobeTask {

public boolean compute();

}

private class InvTask implements StrobeTask {

@ConcurrentCheck

public boolean compute() {

return isOrdered();

}

}

Figure 2. Example assertion modified to use the asyn-

chronous assertions StrobeTask interface. No changes to

the core assertion check isOrdered() are necessary.

no changes are needed to execute the check concurrently; the

STROBE system automatically handles all synchronization.

When using this asynchronous checking mechanism, we

must choose what to do if the check fails (i.e, if the list is

unordered). STROBE provides two choices for how to han-

dle check failures. One choice is to exit the program im-

mediately and inform the user that the check failed. This

is analogous to traditional assertion checking. The seman-

tics are slightly different, however, because the program con-

tinues executing asynchronously and progresses beyond the

point where the assertion is started. This model is useful

in cases where a failed check would not result in catas-

trophic side effects, but we want the program to halt. In

STROBE, this is implemented by issuing the check using the

StrobeAssertion class (see Fig. 3).

However, if it is crucial that the program not progress be-

yond a certain point if the check fails, STROBE provides a

future-like mechanism for the program to wait for the re-

sult of the asynchronous check before proceeding. When

the check is issued, STROBE returns a handle to the result

of the check, and calling the get() method of the handle

blocks the program until the result becomes available. Thus

the user can separate the initiation of the check from the

point when the result is needed, allowing the system to ex-

ploit as much concurrency as possible. In STROBE, this is im-

plemented by issuing the check using the StrobeFuture

class (see Fig. 3).

Note that in either case, the program is allowed to modify

the data structure as soon as the check is issued, even if the

check has not completed yet. Because of STROBE’s snapshot-

ting mechanism, the check will return the same result as if

the data structure had not been modified.

3. Snapshot semantics

In this section we describe the semantics of our snapshot

mechanism. We present an abstract model of snapshots and

use this model to describe our snapshot algorithms for both

single and multiple concurrent assertions. We show how

these algorithms capture the state of the program at a par-

ticular point without copying all of the objects. We also enu-

merate several optimizations that further reduce the amount

StrobeAssertion sassertion =

new StrobeAssertion(new InvTask());

sassertion.go();

(a)
StrobeFuture sfuture =

new StrobeFuture(new InvTask());

sfuture.go();

...

assert(sfuture.get());

(b)

Figure 3. Using (a) StrobeAssertion and

(b) StrobeFuture to issue the check. With

StrobeAssertion, the program will exit immedi-

ately if the check returns false. With StrobeFuture, the

system returns a handle to the future result, and at a crucial

point, the program can block and wait for the result by

calling get().

of state we need to preserve and cost of copying. We add

synchronization where necessary to avoid race conditions

between the application and the asynchronous assertions.

Using our approach, we can safely construct snapshots on-

the-fly: the assertion code computes its result on a snapshot

while the application mutates the state.

3.1 Snapshot model

A snapshot captures the state of the program at a moment

in time. Since our goal is to support complex checks, such

as data structure invariants, our focus is on snapshotting

the state of the heap. The heap consists of a set of objects

containing both primitive values as well as references to

other objects. We assume that objects are mutable, so it is

necessary to preserve object states in order to construct a

snapshot.

We model heap mutability as a series of object versions:

conceptually, each time an object is modified a new version

is created. Given an object o, oi represents the state of the ob-

ject after imutations. The most recent version is represented

by the mapping current(o). In the application’s code, a field
access always retrieves its value from the current (most re-

cent) version: o.f is interpreted as current(o).f .
A snapshot, then, is the set of object versions that were

current at the moment the snapshot is requested (in our case,

the moment an asynchronous assertion is started). Our al-

gorithm is based on the observation that many of these ver-

sions will continue to be current, as long as the application

does not modify them. The only object versions we need to

preserve are those that the application mutates after the start

of the assertion check. In the discussion below we refer ex-

plicitly to versions of objects, but in our implementation we

preserve an object’s state by copying it right before the write

occurs (copy-on-write). By making this operation atomic, an

assertion can safely access its snapshot, even if the applica-

tion changes the heap concurrently.



3.2 Single snapshot

We start with an algorithm that computes a single heap snap-

shot for a single asynchronous assertion. Initially, there are

no preserved versions of objects. Evaluating the assertion in

this state is equivalent to traditional synchronous evaluation.

When an asynchronous assertion is encountered the system

enables the following read and write behavior by atomically

setting a global flag active to true.

The version of an object we want to preserve is the ver-

sion that was current when the snapshot started. This ver-

sion will still be the current version at the first write to the

object (if any write occurs). So, at an application write we

first check to see if the given object already has a preserved

version in the snapshot. If so, there is no extra work to do.

If not, we keep a reference to that old version in a sepa-

rate mapping called preserved before allowing the write to

proceed and produce a new version. A Boolean flag called

modified records which objects have been preserved.

At application write to object o:

if active and !modified(o)
preserved(o) := current(o) = oi

modified(o) := true

write to o , current(o) := oi+1

The assertion checking code accesses the snapshot by first

determining whether to use the original object or the pre-

served version. A read of the form o.f is interpreted

snapshot(o).f where:

snapshot(o) =

{

preserved(o), modified(o)
current(o), otherwise.

When an assertion completes, the assertion code sets the

active flag to false, and clears the preserved andmodified

data structures.

3.3 Guarantees

We guarantee that when the assertion code reads an object it

sees either (a) the original object, if it has not been modified

since the time the check started, or (b) a copy of the object

that reflects its state at that time, if it has been modified.

In our implementation we ensure the absence of race con-

ditions by updating modified and preserved atomically.

No interleaving allows the assertion checker to see modi-

fications to the object that occur after it starts. Our synchro-

nization strategy is described in more detail in Section 4

(Implementation). Note, however, that there can be races

when multiple application threads start assertions without

synchronizing with each other.

Notice in the algorithm above that assertion checking

code applies the snapshot mapping at every field load. This

algorithm avoids exposing direct references to preserved

versions of objects, which is critical for both correctness and

performance:

• Snapshots change dynamically.An object write in the ap-

plication can occur in the middle of an assertion check,

triggering a snapshot operation. Earlier assertion code

might have read from the original object, but all subse-

quent accesses must be redirected to the snapshot.

• Object identity is preserved. Hiding snapshot references

is crucial for the correctness of code that relies on object

identity (such as reference comparison and Identity-

HashMap, which could be destroyed if we allow a mix

of references to the current and old versions of an object.

• No reference “fixup”. We never need to fix object refer-

ences in the running assertion code, since snapshot refer-

ences are never held directly in local variables or stored

in any data structures.

3.4 Multiple snapshots

Multiple concurrent asynchronous assertions can be trig-

gered either by a single thread issuing one assertion before

another is completed, or by multiple application threads is-

suing assertions concurrently. In either case, each concurrent

assertion needs its own snapshot, corresponding to the heap

state at the time it started.

The main problem we solve is determining, at a given ap-

plication write, which snapshots need to preserve the current

object version and which do not. Again, the key observation

is that we only need to preserve an object the first time it is

modified with respect to any given snapshot.

We start by introducing an epoch counterE:E is initially

0; the system increments E each time it starts executing a

new asynchronous assertion. The epoch number serves as

a unique identifier for each dynamic check instance. The

flag active becomes a set of flags, one for each epoch, that

indicates which checks are still running.

Instead of simply recording whether an object is modified

or not, we record in which epoch it was last modified. We

store this information in a mapping modifiedAt(o). An
object needs to be preserved for an assertion started at time

Et if it was last modified in an epoch before Et. Finally,

we augment the preserved mapping to hold multiple object

versions, one for each snapshot.

At an application write to object o:

for each assertion Et

if active(Et) and modifiedAt(o) < Et

then preserved(o,Et) := current(o) = oi

modifiedAt(o) := E

write to o , current(o) := oi+1

Each assertion reads from its snapshot, as necessary. A read

of the form o.f in an active assertion instance Et is inter-

preted snapshot(o,Et).f where:

snapshot(o,Et) =

{

preserved(o,Et), modifiedAt(o)≥Et

current(o), otherwise.



3.5 Optimizations

The algorithms above construct relatively small snapshots,

consisting of only those objects that the application modifies.

We further reduce the cost of constructing snapshots using

two optimizations:

• Skip new objects:We never need to preserve newly cre-

ated objects. Objects created since the start of the most

recent asynchronous assertion do not exist in any snap-

shot. We can easily implement this optimization in our

framework by initializing modifiedAt(o) to the current
epoch value E for any newly allocated objects. This op-

timization proves extremely valuable because it prevents

unnecessary copying that would otherwise be triggered

by frequent mutations in object constructors.

• Share object copies: At any given write, the snapshots

that need to preserve the mutated object all need the same

version of that object (i.e., the current version). Since

our implementation uses copying to preserve state, we

can share one copy across all the snapshots that need it.

This optimization also allows us to simplify the test for

copying: at a write if modifiedAt(o) < E then at least

one snapshot needs a copy of object o.

4. Implementation

In this section, we describe the implementation of the algo-

rithms presented in Section 3. The two main challenges are

(a) finding an efficient way to store and access snapshots,

and (b) ensuring that snapshot management is free of data

races. The system is implemented in Jikes RVM 3.1.1, the

most recent stable release, and consists of three major com-

ponents:

• Copying write barrier: When an assertion starts, STROBE

activates a special write barrier in the application code

that constructs a snapshot of the program state. It copies

objects as necessary to preserve the state and synchro-

nizes snapshot access with the checker threads.

• Checker thread pool: Checker threads pick up assertions

as they are issued and execute them. If all checker threads

are busy, assertions block the application thread until one

is free.

• Snapshot read barrier: Assertion checking code is written

in regular Java, tagged with an annotation that the com-

piler recognizes (see Fig. 2). The code is compiled with

a read barrier that returns values from object snapshots

whenever they are present.

4.1 Snapshot storage and management

The primary goal of our design is to minimize the impact

of snapshot management on the performance of the appli-

cation threads. The last modification time of an object (the

modifiedAt value, expressed in terms of epoch number)

void writeBarrier(Object src, Object target,

Offset offset)

{

int epoch = Snapshot.epoch;

if (Header.isCopyNeeded(src, epoch)) {

// -- Needs to be copied, we are the copier

// timestamp(src) == BEING_COPIED

snapshotObject(src);

// -- Done; update timestamp to current epoch

Header.setTimestamp(src, epoch);

}

// -- Do the write (omitted: GC write barrier)

src.toAddress().plus(offset).store(target);

}

Figure 4. Copy-on-write write barrier

boolean isCopyNeeded(Object obj, int epoch)

{

int timestamp;

do {

// -- Atomic read of current timestamp

timestamp = obj.prepareWord(EPOCH_POS);

// -- If in current epoch, nothing to do

if (timestamp == epoch)

return false;

// -- If someone else is copying, wait

if (timestamp == BEING_COPIED)

continue;

// -- ...until CAS BEING_COPIED succeeds

} while (!obj.attempt(timestamp, BEING_COPIED,

EPOCH_POS));

return true;

}

Figure 5. Snapshot synchronization

must be checked at every single write. To make this opera-

tion fast we store the timestamp information in an extra word

added to the header of each object.

Preserving the state of an object is accomplished by tak-

ing a snapshot of it right before a write. Because this copy

operation occurs in the application thread, we put signifi-

cant effort in reducing the cost of copying and eliminating

unnecessary copies. Since the original object is mutated, all

existing references to it continue to point to the most current

version. No extra work is needed to maintain this informa-

tion (i.e., the current(o) mapping is a no-op.)
Since we have a fixed pool of checker threads, much of

the information about active assertions is identified by the

ID of the checker thread, not by the epoch number. With T

checker threads we will have at most T simultaneous snap-

shots, and therefore at most T copies of any given object.

We store this information (the preservedmapping) in a per-

object array of T references (one for each potential snap-

shot), indexed by thread ID. We refer to it as the forwarding

array.



4.2 Synchronization

All snapshot operations, both reads and writes, work on

a single object at a time. Therefore we can synchronize

these operations on the modifiedAt word in the object

header. We check and update this value using only atomic

operations, and use two techniques to avoid race conditions.

First, the write barrier stores a “being copied” sentinel

value in themodifiedAt word during copying. The sentinel

value ensures that three operations—copying the object, up-

dating the epoch timestamp, and performing the write—

occur as an atomic unit. This avoids a potential race con-

dition in which two application threads modify the same

object, resulting in two snapshots, one of which is incor-

rect. Note that this situation does not necessarily represent

a race in the application if the two threads are updating dif-

ferent fields. Without synchronization it is possible for both

threads to determine that the object must be copied (both see

modifiedAt(o) < E). One thread copies the object, installs

the copy in the forwarding array, and performs its write. The

second thread then copies the object again—but this copy

includes the write from the first thread, which should not be

visible to the checker.

Second, we order these operations in such a way that

the checker thread cannot see intermediate results: the write

barrier only updates the timestamp after it has made the

copy, but before it applies the write. The read barrier might

access the copy before it needs to, but it will never see new

values written to the object. To be safe, we also fully copy

the object before installing its reference in the forwarding

array.

4.3 Write barrier

The write barrier is shown in Fig. 4 (slightly simplified

from the actual code). All operations on the forwarding array

(making or accessing copies) are synchronized using atomic

operations on the object’s timestamp. The write barrier first

calls a method to determine if a copy is needed. The method

isCopyNeeded() is shown in Fig. 5. It consists of a

loop that exits when either (a) the timestamp is current,

so no copy is needed, or (b) the timestamp is older than

the current epoch, so a copy is needed. In case (b) the

code writes a special sentinel value BEING COPIED into

the timestamp, which effectively locks the object. All other

reads and writes are blocked until the sentinel is cleared.

This code is compiled inline in the application.

4.4 Snapshot creation

The snapshot code, shown in Fig. 6 (slightly simplified from

the actual code), is compiled out-of-line, since it is infre-

quent and relatively expensive. It first loads the forwarding

array, creating one if necessary. It then makes a copy of the

object using an internal fast copy (the same mechanism used

in the copying garbage collectors). It installs a pointer to the

copy in each slot of the forwarding array for which the corre-

void snapshotObject(Object obj)

{

// -- Get forwarding array; create if needed

Object[] forwardArr =

Header.getForwardingArray(obj);

if (forwardArr == null) {

forwardArr = new Object[NUM_CHECK_THREADS];

Header.setForwardingArray(obj, forwardArr);

}

// -- Copy object

Object copy = MemoryManager.copyObject(obj);

// -- Provide copy to each active checker

// that has not already copied it

for (int t=0; t < NUM_CHECK_THREADS; t++) {

if (isActiveCheck(t) &&

forwardArr[t] == null)

forwardArr[t] = copy;

}

}

Figure 6. Copying code

// -- Returns the object to read from,

// either the original or the copy

Object readBarrier(Object obj)

{

// -- Get forwarding array

Object[] forwardArr =

Header.getForwardingArray(obj)

// -- No forwarding array? return original

if (forwardArr == null) return obj;

else {

// -- Else load copy from forwarding array,

// indexing by checking thread ID

Object copy =

forwardArray[thisThread.checkerId];

// -- No copy of this object? return original

if (copy == null) return obj;

else {

// -- ...otherwise return copy (snapshot)

return copy;

}

}

}

Figure 7. Read barrier

sponding checker thread is (a) active and (b) has not already

copied the object (slot is null).

Our system allocates all object copies and forwarding ar-

rays in the Java heap, which allows them to be automati-

cally reclaimed by the garbage collector. Our system is com-

pletely independent of any specific garbage collection algo-

rithm, we only require the garbage collector to consider for-

warding arrays in its processing of the heap (this is the only

change we made to the collector). When an assertion com-

pletes, the checker nulls out all of the slots in the forwarding

arrays corresponding to its thread ID, eliminating the only

references to the snapshot objects. Forwarding arrays are re-

claimed when the original objects become garbage.



4.5 Read barrier

Assertion checking code is compiled with a read barrier,

shown in Fig. 7 (also slightly simplified), that accesses the

forwarding array as necessary to read data from object snap-

shots. The read barrier first loads the forwarding array, and

if the array is non-null, it uses the ID of the checker thread

to index into the forwarding array and retrieve the copy be-

longing to that snapshot. If either the forwarding array or the

copy is null, it indicates that the object has not been copied,

and the read barrier returns the current reference to the ob-

ject, which may then be read.

5. Experimental Evaluation

In this section we present an experimental evaluation of

STROBE. The focus of this evaluation is not on bug detection:

our technique detects all the same errors that traditional

synchronous assertions would catch. Our goal is to explore

the performance space of this technique in order to provide a

sense of how well it works under a range of conditions. Our

main findings are:

• Asynchronous checking performs significantly better

than synchronous checking in almost all circumstances.

Only when individual checks are extremely brief does

the overhead of concurrency overwhelm the benefit.

• Since assertions are independent, they parallelize per-

fectly. As long as there are enough checker threads to

keep up with the demand, our technique slows over-

all runtime by 10% to 60%, depending on the assertion

workload. By comparison, evaluating the same assertions

synchronously slows runtime by 1.25X to 8X.

• When there are not enough checker threads for the as-

sertion workload, the application must often wait for an

available checker. At this point the slowdown begins to

grow quicky, at a rate similar to synchronous evaluation.

• The main source of overhead is creating and maintain-

ing snapshots. We found, however, that up to 1/3 of the

overhead is due to other factors – a combination of the

cost of the extra words in the object header (one for the

epoch, and one for the forwarding address) and possibly

additional pressure on the memory system.

• Sharing object copies between snapshots significantly

reduces overhead. Without this optimization, overheads

would be approximately 50% higher.

5.1 Experimental set up

We evaluate STROBE using two kinds of experiments: mi-

crobenchmarks instrumented with data structure invariant

checks, and a real benchmark program (SPEC JBB2000),

instrumented with synthetic assertions that allow us to sys-

tematically vary the frequency and cost of the checks. Both

sets of benchmarks are assertion-intensive, making them a

challenge to execute efficiently.

int traverseAndCheck(Node n, Node p)

{

if (n == null || n == nil)

return 1;

Node l = n.left;

Node r = n.right;

/* Recursive traversal:

return count of BLACK nodes */

int lb = traverseAndCheck(l, n);

int rb = traverseAndCheck(r, n);

/* Check that the tree is balanced */

if (lb != rb || lb == -1)

return -1;

/* Check that the tree is ordered */

Integer val = (Integer) n.key;

if (l != nil && val <= (Integer) l.key)

return -1;

if (r != nil && val >= (Integer) r.key)

return -1;

/* Check colors */

int c = n.color;

if (c == RED &&

(l.color != BLACK || r.color != BLACK))

return -1;

return lb + (n.color == BLACK ? 1 : 0);

}

public boolean checkAssertions()

{

return (traverseAndCheck(root, nil) != -1);

}

Figure 8. An assertion procedure that performs recursive

checking of various safety properties on a red-black tree.

Microbenchmarks. Our microbenchmarks experiments

replicate the evaluation presented in the Ditto work [13]. We

implemented two data structures: an ordered linked list and

a tree-map using a red-black tree. For each one, we added a

method that checks the data structure invariants:

• Ordered linked list: check that link.next.prev ==

link and that elements are ordered.

• TreeMap red-black tree: (a) make sure values are in order,

(b) check that all children of red nodes are black, and (c)

make sure that all paths from the root to a leaf have the

same number of black nodes. The code is shown in Fig. 8.

SPEC JBB2000 SPEC JBB2000 [14] is a multithreaded

benchmark that emulates a three-tier client-server system,

with the database replaced by an in-memory tree and clients

replaced by driver threads. The system models a company,

with warehouses serving different districts and processing

customer orders. In a single run, the benchmark executes

70,000 transactions against its database. The runtime is 1.99



seconds in a completely unmodified JikesRVM (no asser-

tions, no extra header words) running on our hardware.

We added a synthetic assertion check on the main Com-

pany data structure right before each transaction is processed

(in TransactionManager.go()). This synthetic asser-

tion allows us to systematically vary the frequency of asser-

tions and the amount of work performed by each check. This

assertion performs a bounded transitive closure on the object

it is given, emulating a fixed amount of data structure traver-

sal and access. We control the frequency of these assertions

by selecting some fraction of them to perform.

Methodology We compare three kinds of runs: asyn-

chronous assertions (with varying numbers of checking

threads), synchronous assertions (stop and evaluate each

assertion), and baseline (no assertions, no RVM modifica-

tions). Our primary measurement is overall application run-

time. For asynchronous checks we also measure the number

of objects copied during the run and the total number of

bytes copied. Our system is GC-algorithm independent, and

all experiments use the generational mark/sweep collector.

For the microbenchmarks we run each test 20 times and

compute the average and confidence interval. For the SPEC

JBB experiments we run four iterations of the benchmark

in the same invocation and time the last iteration. The dif-

ferences we observe in runtimes between synchronous and

asynchronous checking are so great that small perturbations

in the execution do not affect our overall results. We fix the

Java heap size to 120MB, which is approximately 2X the

minimum.

All experiments were run on a 12-core machine (dual six-

core Xeon X5660 running at 2.8GHz) with 12GB of main

memory running Ubuntu Linux kernel 2.6.35. We limit the

number of checker threads to 10, since we need 1 or 2 cores

to run the application threads.

5.2 Results: Microbenchmarks

Each run of the microbenchmark program builds one of the

two data structures of a specific size and performs 1000

operations on it. Each operation is either an add, a remove,

or an access. We perform the invariant checks before and

after each add or remove. Operations are chosen at random

so that 90% are accesses, 9% are adds, and 1% are removes.

For each data structure, we ran experiments with size

1,000, 10,000, 100,000 and 1,000,000 elements. We varied

the number of checker threads from 1 to 12. The results are

presented in Figures 9 and 10. Time is normalized to the cost

of the synchronous checks.

We find that for the list, the cost of the asynchronous

mechanism (coordinating with the checker threads and

building the snapshots) overwhelms the relative simplicity

of the computation. While performance improves with more

threads, we never significantly improve upon synchronous

checking. For the TreeMap, however, increasing the number

of threads improves performance substantially, particularly

as the size of the data structure increases. For all input sizes,

we hit the break-even point at around five threads; using 12

threads reduces the overhead of invariant checking to within

a small fraction of the baseline time for all but the smallest

input size.
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Figure 9. Ordered linked list: overhead versus number of

checker threads for various data structure sizes. The compu-

tation is too brief to recoup the cost of synchronization and

snapshotting.
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Figure 10. TreeMap (red-black tree): overhead versus num-

ber of checker threads for various data structure sizes. With

more than five checker threads, asynchronous checks beat

synchronous checks.

5.3 Results: SPEC JBB

Our synthetic transitive closure assertion allows us to ex-

plore the performance space of our technique by systemat-

ically varying the assertion workload along two axes: fre-

quency of checks and cost of each check:

• Frequency:We vary the number of checks from 700 per

run (1 every 100 transactions) to 21,000 per run (1 every

3 transactions).
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Figure 12. SPECJBB: Overhead of a fixed number (5600) of assertions for a range of costs, normalized to baseline (no

assertions, unmodified RVM). Left graph shows all data; right graph zooms in on the unsaturated region (1X to 2.2X).

• Cost: We vary the cost by varying the fraction of the

database that each assertion traverses, measured in num-

ber of objects visited – from 1 object to 30,000 objects.

We run the program with synchronous checks and with

asynchronous checks using 2, 4, 6, 8, and 10 checker

threads. All times are normalized to the runtime of SPEC

JBB with no assertions running on a completely unmodified

JikesRVM. This baseline run takes about about 1.99 seconds

on our hardware configuration.

These experiments generate a considerable amount of

data. In the discussion below we present “slices” of this data:

we fix one axis of the workload (frequency or cost) and vary

the other.

Fix frequency, vary cost. Fig. 11 and Fig. 12 show the

relative slowdown for a fixed number of assertions (fixed

frequency) over a range of assertion costs, comparing syn-

chronous checking against asynchronous checking with 2 to

10 threads. Each figure consists of a pair of graphs of the

same data: the graph on the left shows all the data, the graph

on the right zooms in on a range of the Y axis from 1 to 2.2.

Both figures show the same trends:

• The overhead of synchronous checking grows very rapidly

as the cost of the assertions (size of the traversal) in-

creases from 1 object to 30,000 objects.

• The overhead of asynchronous checking grows relatively

slowly until the checker threads become saturated, at

which point the overhead begins growing rapidly because

the application must wait for an available checker – the

performance curve turns sharply up, with a slope similar

to the synchronous configuration.

With a workload of 2800 assertions ( Fig. 11), 2 checker

threads become saturated at an assertion cost of 8000, while
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4 threads become saturated around 22,000. With 5600 asser-

tions ( Fig. 12), all configurations eventually become satu-

rated when the cost of each assertion exceeds 25,000 objects.

The zoomed versions of these graphs (on the right) high-

light the configurations where the threads are not over-

loaded, and the main source of overhead is the snapshot

mechanism. With 2800 assertions the overhead grows from

less than 10% to around 45%. With 5600 assertions the over-

head grows from 10% to 60% at the saturation point.

Fix cost, vary frequency. Fig. 13 and Fig. 14 show

the relative slowdown for a fixed cost assertion (size of

heap traversal) over a range of frequencies, comparing syn-

chronous checking against asynchronous checking with 2 to

10 threads. As above, each figure consists of a pair of graphs

of the same data: the graph on the left shows all the data,

the graph on the right zooms in on a range of the Y axis

from 1 to 2.2. These graphs show the same trends as the

fixed-frequency graphs:

• The overhead of synchronous checking grows very rapidly

as assertions become more frequent.

• The overhead of asynchronous checking grows slowly as

long as the checker threads can keep up with the rate of

the assertions.

With a 3000-object traversal ( Fig. 13), 2 checker threads

become saturated at a frequency of 7000 assertions, while

4 threads become saturated around 15,000 assertions. With

a 6000-object traversal ( Fig. 14), all configurations become

saturated by the time we have 15,000 assertions, although 10

threads manage to keep the overhead under 80%.

In the zoomed versions of these graphs (on the right),

notice that increasing the frequency of assertions causes

overhead to grow more quickly than increasing the cost



of each assertion (as shown in Fig. 11 and Fig. 12). The

reason for this difference is that there is a per-assertion cost

associated with initiating and cleaning up a heap snapshot.
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Figure 15. SPECJBB copying costs: more checks require

more snapshots, increasing the volume of bytes copied, but

tops out as all heap writes generate copies.

Copying costs and GC time. During each asynchronous

run we count the total number of objects copied and the vol-

ume in bytes for all snapshots. Fig. 15 shows the volume

of bytes copied as a function of assertion frequency. This

cost ranges from 25,000 objects (2MB) for fast, infrequent

checks up to 800,000 objects (70MB) for long-running and

frequent checks. Note that the graph flattens out as the num-

ber of checks increases. The reason is that under heavier as-

sertion workloads there are evaluations in-flight at all times,

so all writes to the heap are generating object copies.

Since object copying occurs in the write barrier in the

application thread, it directly impacts overall runtime. In

addition, the extra objects reside in the Java heap, increasing

garbage collection time proportionally. On average, GC time

increases by 10% to 50% over synchronous evaluation. In

our configuration, however, GC time only accounts for 5%

to 10% of total runtime, so the impact is low. Under tighter

memory constraints the extra memory used by snapshots

would likely have a bigger impact on runtime. In our lower

bound experiment (described below) we turned off snapshots

to measure this cost.

Effect of not sharing copies. One of the consequences

of our snapshot algorithm is that in many cases multiple

snaphots can share a single copy of an object. When an ob-

ject is modified, any assertion that started since the previous

modification needs the same image of that object. To mea-

sure the benefit of this optimization we turned it off and com-

pared this no-sharing version to the full version of STROBE.

Fig. 16 shows the results for a fixed frequency (2800 checks,

on the left) and a fixed cost (3000 object, on the right).

As the assertion workload increases, the benefit of sharing

copies becomes significant: sharing copies reduces overhead

by 25% to 30% – e.g., from an overhead of 70% (no sharing)

to an overhead of 50% (with sharing).

Lower bound: no snapshots. In order to explore the lower

bound of this technique we use a version of STROBEthat per-

forms asynchronous checking without heap snapshots. This

version does not produce correct results (since assertions see

the changing state of the heap), but allows us to eliminate

the overhead of creating and maintaining snapshots. Fig. 17

shows the results for a fixed frequency (2800 checks, on the

left) and a fixed cost (3000 object, on the right). Eliminat-

ing the snapshot reduces the overhead significantly, but not

completely. We believe that two other factors contribute to

overhead. First, we compare our system against a baseline

that does not include extra header words – eliminating these

words reduces GC load. Second, asynchronous assertions

place additional demands on the machine’s memory system,

including the caches and memory bandwidth.

6. Related Work

Our work is related to a large body of previous work on pro-

gram checking. In this section, we briefly discuss some of

the related work on dynamic checking, usage of snapshots

in concurrency, and other related runtime techniques such

as futures, concurrent garbage collection and software trans-

actions. No existing technique, however, supports complex

dynamic checks evaluated at a specific point in the program

with low overhead and high accuracy.

Future contracts Our work is closely related to recent

work on future contracts [7], a technique for concurrently

checking behavioral software contracts in Scheme programs.

The authors propose (but only partially implement) a very

different approach for handling mutations in the store. They

view a write by the main thread as a kind of synchronization,

which blocks until the checking thread has had a chance to

read the old value (in effect, blocking the main thread un-

til the check completes). This approach is unlikely to per-

form well for imperative languages, where mutations are

frequent. Our approach is to copy the old state, allowing

the main thread and the checker thread to proceed without

blocking. Our infrastructure could be used for a more com-

plete, high-performance implementation of future contracts

that supports imperative languages, avoids unnecessary syn-

chronization, and supports multiple concurrent assertions.

Dynamic program checking Dynamic analysis avoids the

main problem with static analysis: by performing error

checks on the actual concrete heap of a running program,

it does not have to make conservative assumptions about

potential program state. Our system addresses the primary

challenge of dynamic checking: runtime overhead. There

are a number of existing approaches for reducing the cost of

dynamic checks. These techniques are orthogonal to ours,

however: any of them could be combined with our system to

obtain the benefits of both.
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Figure 16. SPECJBB Snapshot sharing: When snapshots do not share object copies, overhead increases by 25% to 30% over

the unmodified (Full) STROBE implementation (with the sharing optimization).
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Figure 17. SPECJBB Lower bound: Evaluate asynchronous assertions without creating snapshots. Creating and maintaining

snapshots accounts for approximately 2/3 of the overhead.

The Ditto system speeds up invariant checking by au-

tomatically incrementalizing the checking code [13]. The

incremental checks are still quite expensive, however, and

since they are run synchronously, significantly slow program

execution. The QVM system provides a number of heap

probes to check data structures, and manages the cost by re-

ducing the frequency of checking [2]. The Phalanx system

attempts to reduce the cost of assertion checking by paral-

lelizing the queries. In both QVM and Phalanx, the queries

are evaluated synchronously with respect to the application.

Recent work has explored the idea of piggybacking heap

checks on the garbage collector. In the work by Aftandil-

ian et al, [1], assertions are evaluated synchronously at a

regularly scheduled garbage collection. Subsequent work by

Reichenbach et. al [12] investigates the class of assertions

that can be computed with the same complexity as garbage

collection. The two main limitations of this technique are (a)

the kinds of checks it supports are limited by the GC algo-

rithm (in particular, the single-touch property), and (b) the

frequency of checks is limited because they are evaluated

only when a collection occurs.

Concurrent program checking The SuperPin system [17]

provides some of the same capabilities as ours but through

a completely different mechanism. SuperPin uses the fork

system call to create a consistent snapshot, which it uses to

run an instrumented copy of the main program. As with other

previous work, however, this system is focused on relatively

low-level program analysis added as binary instrumentation,

and performance is still too slow for production use (100-

500% slowdown).

Speck [11], Fast Track [10], and ParExC [15] are all spec-

ulative execution systems. Speck and ParExC focus on low-

level runtime checks such as array out-of-bounds and pointer

deference checks. Fast Track enables speculative unsafe op-

timizations, whose correctness it checks by the unoptimized

program on multiple processors. None of these systems are

designed to check the high-level program properties we are

interested in.



Safe Futures for Java [18] provides a safe implementa-

tion of futures in Java. They handle concurrency issues be-

tween the main program and the futures via many of the

same mechanisms as our work: read and write barriers and

object versioning. However, their system does not work with

multithreaded programs, and because their futures can write

to the heap, they must use a read barrier for all memory ac-

cesses. Our assertions cannot write to objects in the snap-

shot, so we can avoid a read barrier in the program code and

achieve better performance.

Transactional memory Recently, there has been signifi-

cant amount of work on transactional memory [8]. In prin-

ciple, it is possible to treat each assertion evaluation as a

separate transaction, and let the STM detect conflict. How-

ever, the problem with this approach would be that either the

assertion or the program would be rolled back every time a

conflict occurs, which is highly likely for long-running as-

sertions that may touch large portions of the heap. Frequent

rollbacks would render the system unusable (and restarting

the application has its own issues when it comes to side ef-

fects such as exceptions and I/O). Further, with our seman-

tics, rollbacks are unnecessary, as the assertion only needs

to compute a result with respect to the state in which it was

triggered.

Concurrent Programming Models Recently, there has

been an increased interest in new concurrent programming

models [6, 3]. Essentially, in these models, revisions are

used to ensure that each process operates on its own local

snapshot. When processes complete, their local snapshot

changes are merged into the global state, or if their changes

conflict (i.e., if they modify the same memory location), ei-

ther a conflict is declared and the program aborts [3] or

in the case of more advanced conflict resolution strategies,

the programmer can provide a merge function which is used

to resolve these conflicts [6]. We can think of our asyn-

chronous assertion model as a restricted form of concurrent

revisions where the asynchronous processes (the assertions)

do not modify the heap and hence there is no need to perform

conflict checking.

Snapshot-based concurrent garbage collectors Copy-on-

write techniques for obtaining snapshots have seen exten-

sive use in mark-and-sweep, snapshot-at-the-beginning con-

current garbage collectors, i.e., [4, 5, 19, 16, 9]. Once the

garbage collector starts working, it computes all reachable

nodes in the heap at the time the collector started by oper-

ating on a snapshot maintained by a write barrier, as in our

system. There are a few basic technical differences between

snapshot collectors and this work. First, there is no need for

multiple garbage collectors to be running at the same time

computing the same information. Usually, a new collector

cycle is started after the previous one has ended. In contrast,

it is sensible to have multiple assertions at the same time,

and hence our system must support this scenario. Second,

collectors are computing a specific property: transitive clo-

sure from a set of roots. In our case, each snapshot can be

used to compute completely different assertions. Third, with

concurrent collectors, the program needs to intercept only

heap reference modifications, while in our case, depending

on whether the assertion accesses primitive values in the

heap, it may be desirable to snapshot their modification as

well.

7. Conclusions

Assertions are a powerful and convenient tool for detecting

bugs, but have always been limited by the fact that the check-

ing cost is paid for in application runtime. In this paper we

show how assertions can be checked asynchronously, greatly

reducing checking overhead. Our technique enables a much

wider range of assertions, including complex heap checks

and data structure invariants. We believe that this approach

will become even more appealing as modern processors con-

tinue to add CPU cores, providing ample additional comput-

ing power that can be devoted to making software run more

reliably.
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