
Testing Atomicity of Composed Concurrent Operations

Ohad Shacham
Tel Aviv University

ohad.shacham@cs.tau.ac.il

Nathan Bronson
Stanford University

nbronson@cs.stanford.edu

Alex Aiken
Stanford University

aiken@cs.stanford.edu

Mooly Sagiv
Tel Aviv University

msagiv@post.tau.ac.il

Martin Vechev
ETH Zurich and IBM Research
martin.vechev@gmail.com

Eran Yahav ∗

Technion
yahave@cs.technion.ac.il

Abstract
We address the problem of testing atomicity of composed
concurrent operations. Concurrent libraries help program-
mers exploit parallel hardware by providing scalable concur-
rent operations with the illusion that each operation is exe-
cuted atomically. However, client code often needs to com-
pose atomic operations in such a way that the resulting com-
posite operation is also atomic while preserving scalability.
We present a novel technique for testing the atomicity of
client code composing scalable concurrent operations. The
challenge in testing this kind of client code is that a bug may
occur very rarely and only on a particular interleaving with
a specific thread configuration. Our technique is based on
modular testing of client code in the presence of an adver-
sarial environment; we use commutativity specifications to
drastically reduce the number of executions explored to de-
tect a bug. We implemented our approach in a tool called
COLT, and evaluated its effectiveness on a range of 51 real-
world concurrent Java programs. Using COLT, we found 56
atomicity violations in Apache Tomcat, Cassandra, MyFaces
Trinidad, and other applications.

Categories and Subject Descriptors D.2.5 [Testing and
Debugging]; D.1.3 [Concurrent Programming]

General Terms Verification

Keywords concurrency, linearizability, testing, composed
operations, collections

∗ Deloro Fellow

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’11, October 22–27, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0940-0/11/10. . . $10.00

1. Introduction
Concurrent data structures are becoming critical components
of many systems [27] but are notoriously hard to get right
(e.g., [11]). To shield programmers from the complexity of
concurrent data structures, modern languages hide their im-
plementations in libraries (e.g., [1, 3, 19]). Data structures
provided by the library usually guarantee that their opera-
tions are atomic. That is, every individual operation appears
to take place instantaneously at some point between its invo-
cation and its return, and the implementation details of the
operation can be ignored by the programmer.

Custom Concurrent Data Structures While the library
provides basic concurrent data structures, client code often
needs specific concurrent data structures supporting addi-
tional operations. Such custom operations may combine sev-
eral operations of the concurrent library. The main challenge
when composing atomic operations is to guarantee that the
composed operation is also atomic.

It is important to note that programmers usually compose
the operations of underlying concurrent data structures with-
out using a wrapping lock, because guaranteeing atomicity
of the composed operation using a wrapping lock requires
wrapping every other operation of the concurrent data struc-
ture with the same lock. Besides the major code modifica-
tions entailed by this approach, it severely limits concur-
rency and defeats the original purpose of using a concurrent
data structure.

For example, Figure 1, taken from OpenJDK [4], imple-
ments an increment operation for a concurrent histogram
(as a map of counters). The histogram is implemented as
a subclass of ConcurrentHashMap and other map opera-
tions (e.g., remove, get, put) can be performed directly,
and concurrently, on the map by client code. The incre-
ment operation does not use any locks (for the reasons men-
tioned above), and instead guarantees atomicity using an
optimistic concurrency loop, using the (atomic) operations
putIfAbsent and replace provided by the underlying

1 vo id i n c (Class <?> key) {
2 f o r (; ;) {
3 I n t e g e r i = g e t (key) ;
4 i f (i == n u l l) {
5 i f (p u t I f A b s e n t (key , 1) == n u l l) / / @LP i f s u c c e e d s
6 r e t u r n ;
7 } e l s e {
8 i f (r e p l a c e (key , i , i + 1)) / / @LP i f s u c c e e d s
9 r e t u r n ;

10 }
11 }
12 }

Figure 1. A correct concurrent increment operation for a
map of concurrent counters, implemented using Concurren-
tHashMap operations (from OpenJDK [4]).

ConcurrentHashMap. While the code in Figure 1 does
guarantee atomicity, we have found that many other open
source clients combine atomic operations of underlying con-
current data structures in a non-atomic way.

Checking Atomicity Given the difficulty of writing com-
posed atomic operations, it is desirable to provide program-
mers with an automatic technique for checking atomic-
ity. Existing approaches to dynamic atomicity checking,
such as Velodrome [15], identify violations of conflict-
serializability [7] using an online computation of the happens-
before relation over program executions.

Unfortunately, the conflict-serializability property is in-
appropriate for concurrent data structures since correct data
structures often violate it. For example, the increment code
of Figure 1 is not conflict-serializable. Indeed, many of the
programs that we investigated are not conflict-serializable
since they contain two memory accesses in the same method
with an intervening write. (In Section 5, we show that for
all of our benchmarks, correct methods would have been
rejected by a conflict-serializability checker.) Therefore, in-
stead of using conflict-serializability as the correctness crite-
rion, which results in many false alarms, we focus on check-
ing linearizability [21] of the concurrent data structure.

The Challenge Given an application, our goal is to test
whether its composed concurrent operations might violate
atomicity. In the rest of this paper, we refer to a method
implementing the composed concurrent operation as the
method under test (MUT).

Since atomicity violations often depend on specific thread
configurations and schedules, very few program executions
may exhibit the error. In fact, the biggest challenge for dy-
namic atomicity checking tools such as Velodrome [15] and
Lineup [8] is identifying the thread configuration and sched-
ule that expose an error. In our experience, exposing a single
bug in TOMCAT using a non-modular approach took about
one week of work and required us to manually write an input
test and introduce scheduling bias.

COLT addresses the challenge of identifying thread con-
figurations and scheduling by: (i) modularly checking that
composed operations are linearizable w.r.t. an open environ-

ment relative to the collection; (ii) guiding execution by in-
terleaving non-commutative collection operations.

Modular Checking of Linearizability Rather than check-
ing the application as a whole, COLT tests it under an open
environment with respect to collection operations. The open
environment over-approximates any possible manipulation
of the environment on the collection used by the MUT. This
allows us to test the MUT in an adversarial environment
rather than trying to reproduce adversarial testing conditions
within the original application.

However, since COLT covers interleaving that may not oc-
cur for the MUT in the context of its application, it might
produce false alarms in cases where application-specific in-
variants create a restricted environment in which the MUT
is actually atomic. Fortunately, we found that such situa-
tions are rare, and on real programs COLT has a very low
false alarm rate. Intuitively, this happy situation arises be-
cause operations can usually be executed in an arbitrary or-
der without violating linearizabilty. Furthermore, checking
the code for linearizability against all possible environments
guarantees that the code is robust to future extensions of the
client. Indeed, our experience has been that programmers fix
linearization bugs discovered by COLT even if such bugs are
unlikely or impossible in the current application, because
they are concerned that future, apparently unrelated changes
might trigger these latent problems.

Adversarial Execution Guided by Non-Commutativity
Our goal is to test the atomicity of the MUT. We would
like to avoid exploring executions that result in collection
values already observed by the MUT in earlier executions.
Indeed, COLT aims for every newly explored execution path
to yield a new collection result for the MUT. This can be
viewed as a kind of partial order reduction (e.g., [18]) where
commutativity is checked at the level of atomic collection
operations.

Main Contributions The main contributions of this paper
are:

• We present an approach for modular testing of lineariz-
ability for composed concurrent operations.

• We demonstrate our approach in the context of Java con-
current collections. We have implemented a dynamic tool
called COLT that checks the atomicity of composed con-
current collection operations.

• We use collection non-commutativity specifications to
direct exploration. This significantly increases the bug
hunting capabilities of our tool, as confirmed by our ex-
perimental results at Section 5. We show that this opti-
mization cannot filter out linearizability violations.

• We show that COLT is effective in detecting real bugs
while maintaining a very low rate of false alarms. Using
COLT, we were able to identify 56 linearizability viola-
tions in Apache Tomcat, Cassandra, MyFaces Trinidad,

1 A t t r i b u t e r e m o v e A t t r i b u t e (S t r i n g name) {
2 A t t r i b u t e v a l = n u l l ;
3 s y n c h r o n i z e d (a t t r) {
4 found = a t t r . c o n t a i n s K e y (name) ;
5 i f (found) {
6 v a l = a t t r . g e t (name) ;
7 a t t r . remove (name) ;
8 }
9 }

10 r e t u r n v a l ;
11 }

(a)

removeAttribute(“A”)

val = null;

found =

attr.containsKey(“A”) ;

if(found){

val=attr.get(“A”) ;

val = attr.remove(“A”);

removeAttribute(“A”)
val = null;
found =

attr.containsKey(“A”) ;
if(found){

val=attr.get(“A”) ;

val = attr.remove(“A”);
}
return val;

T1 T2

(b)

1 A t t r i b u t e r e m o v e A t t r i b u t e (S t r i n g name) {
2 A t t r i b u t e v a l
3 = a t t r . g e t (name) ; / / @LP v a l == n u l l
4 i f (v a l != n u l l) {
5 v a l = a t t r . remove (name) ; / / @LP
6 }
7 r e t u r n v a l ;
8 }

(c)

Figure 2. (a) An erroneous code from Apache Tomcat [2] version 5 where attr is a HashMap. In version 6 the attr

implementation was changed to a ConcurrentHashMap and synchronized(attr) from line 3 was removed. (b) is an
execution that shows an atomicity violation in removeAttribute at Tomcat version 6. (c) is a fixed linearizable version of
removeAttribute.

Adobe BlazeDS, as well as in other real life applications.
Some of these violations expose real bugs, while other
violations represent potential bugs in future client imple-
mentations.

2. Motivation
Figure 2a shows a composed operation taken from Apache
Tomcat [2] version 5. In this version attr is a sequen-
tial HashMap. The atomicity of the composed operation
is guaranteed by wrapping the composed operation with
synchronized(attr) block. The operation maintains the
invariant that removeAttribute returns either the value it
removes from attr or null.

In Tomcat version 6, the developers decided to utilize
fine-grain concurrency, therefore, attr’s implementation
was changed from a HashMap to a ConcurrentHashMap

and consequently the programmers decided to remove the
synchronized(attr) blocks from the program as well
as from line 3 of Figure 2a. This caused a bug which was
identified by COLT.

Hard to cover rarely-executed traces Figure 2b shows an
execution of removeAttribute revealing the invariant vi-
olation in the composed operation in Tomcat version 6. In
this execution trace, thread T1 returns a value different than
null even though it does not remove a value from attr,
which breaks the invariant. This violation occurs due to the
remove("A") operation by thread T2 occurring between the
get("A") and the remove("A") of thread T1. In order to
reveal the violation, it is not enough that remove occurs at a
specific point in the trace, but also that the collection opera-
tions all use same key "A". This composed operation is not
linearizable and COLT successfully detects the violation. We
reported this bug to Tomcat’s developers as well as the fix in
Figure 2c and they acknowledged the violation and accepted
the fix.

While COLT discovers this violation, tools that run the
whole program are unlikely to succeed — in particular, the
above violation can only be triggered with a specific choice
of keys.

2.1 The Main Ideas in our Solution
We now briefly describe the main ideas in our tool.

Composed Operations Extraction COLT includes a semi-
automatic technique that significantly helps the user in ex-
tracting composed operations out of whole applications. A
simple static analysis identifies methods that may invoke
multiple collection operations. These methods are returned
to the user for further review. In some cases the static anal-
ysis identifies a composed operation inside a larger method
and the user must manually extract and generate the MUT.

Modular Checking of Linearizability COLT checks lin-
earizability [21] in a modular way by invoking one MUT
at a time in an environment that performs arbitrary collec-
tion operations concurrently.

Adversarial Execution Guided by Non-commutativity Due
to the rare nature of many atomicity violations, a dynamic
tool for detecting atomicity violations must use some form of
focused exploration to be effective. In COLT, we use collec-
tion semantics to reduce the space of explored interleavings,
without filtering out interleavings leading to linearizability
violations.

As a first step, we assume that the underlying collection
implementation is linearizable and thus the internal repre-
sentation of the collection can be abstracted away and col-
lection operations can be assumed to execute atomically. As
done in [6], this allows us to consider interleavings at the
level of collection operations, without considering interleav-
ings of their internal operations. However, the key insight
that we use is that before and after each collection operation
op1 executed by the MUT, the environment chooses a col-
lection operation op2 to execute that does not commute with

1 V compute (K k) {
2 V v a l = m. g e t (k) ;
3 i f (v a l == n u l l) {
4 v a l = c a l c u l a t e V a l (k) ;
5 m. p u t I f A b s e n t (k , v a l) ;
6 }
7 r e t u r n m. g e t (k) ;
8 }

(a)

val=m.get(7)compute(7) … tmpVal=m.putIfAbsent(7,8) return m.get(7)

val=m.get(8)compute(8) … tmpVal=m.putIfAbsent(8,8) return m.get(8)m.put(9,10)

val=m.get(12)compute(12) … tmpVal=m.putIfAbsent(12,8) return m.get(12)m.put(19,12)

val=m.get(5)compute(5) … tmpVal=m.putIfAbsent(5,13) return m.get(5)m.put(5,12)

val=m.get(20)compute(20) … return m.get(20)m.put(20,10)

val=m.get(2)compute(2) … tmpVal=m.putIfAbsent(2,8) return m.get(2)m.put(30,12) m.remove(20)

val=m.get(14)compute(14) … tmpVal=m.putIfAbsent(14,8) return m.get(14)m.remove(14)

val=m.get(20)compute(20) … return m.get(20)m.remove(14)m.put(9,10)

.

.

.

(b)

Figure 3. (a) Non linearizable example, capturing bugs from Adobe BlazeDS and others; (b) sample executions of compute
concurrently with a client running arbitrary collection operations. Solid and dashed edges represent operations by compute

and the client respectively.

op1. Note that scheduling operations only before every col-
lection operation of the MUT is insufficient, as this strategy
can omit interleavings that lead to linearizability violations
(see Section Section 4.5).

Figure 3a shows an example of a non-linearizable
method inspired by bugs from Adobe BlazeDS, Vo

Urp and Ehcache-spring-annotations. The procedure
compute(K k) uses an underling concurrent collection to
memoize the value computed by calcuateVal(k). When
the value for a given key is cached in the collection it is re-
turned immediately; when the value for a given key is not
available, it is computed and inserted into the collection.

Figure 3b shows sample executions of compute(K k)

running concurrently with a general client that performs ar-
bitrary collection operations with arbitrary arguments. Oper-
ations of compute(K k) are shown with solid arrows, oper-
ations of the general client are depicted with dashed arrows.
Out of the 8 sample executions in the figure, only 1 exposes
the atomicity violation; in practice a smaller fraction of ex-
ecutions reveal the atomicity violation. As we show in Sec-
tion 5, a random search of the space of executions fails to
find even a single violation in practice.

To trigger an atomicity violation in a MUT, particular
collection operations, with a particular key, must interleave
between the collection operations of the MUT. The set of
client operations that can potentially trigger an atomicity
violation in a point of execution in the MUT can be char-
acterized as operations that do not commute with the col-
lection operation in the MUT. In the example, the execu-
tions that reveal the atomicity violation are those in which a
client operation affects the result of the m.get(k) in line 7
of compute(K k). This suggests that an adversarial client
should focus on scheduling an operation that does not com-

mute with m.get(k) right before scheduling this MUT op-
eration. An example of an operation that does not commute
with m.get(k) is m.remove(k), as shown in the last exe-
cution of Figure 3b.

3. Preliminaries
In this section we define linearizability [21] and lineariza-
tion points, show two ways for checking linearizability, and
finally define a notion of commutativity [29].

3.1 Linearizability
Linearizability [21] is defined with respect to a sequential
specification (pre/post conditions). A concurrent object is
linearizable if each execution of its operations is equivalent
to a legal sequential execution in which the order between
non-overlapping operations is preserved.

An operation op is a pair of an invocation event and a re-
sponse event. An invocation event is a triple (tid, op, args)
where tid is the thread identifier, op is the operation identi-
fier, and args are the arguments. Similarly, a response event
is a triple (tid, op, val) where tid and op are as just defined,
and val is the value returned from the operation. For an op-
eration op, we denote its invocation by inv(op) and its re-
sponse by res(op). A history is a sequence containing in-
voke and response events. A complete invocation of an oper-
ation op is a history with two events where the first event is
inv(op) and the second event is res(op) A complete history
is a history without pending invocation events (that is, all in-
vocation events have a matching response event). A sequen-
tial history is one in which each invocation is a complete
invocation. A thread subhistory, h|tid is the subsequence of
all events in h with thread id tid. A sequential history h is le-
gal if it belongs to the sequential specification. Two histories

inv a(4) a(4)/true inv c(4) c(4)/false inv a(7) a(7)/true

inv r(4) r(4)/true inv c(7) c(7)/false inv c(7) c(7)/true

inv a(4) a(4)/true inv c(4) c(4)/false inv a(7) a(7)/trueinv r(4) r(4)/true inv c(7) c(7)/false inv c(7) c(7)/true

(H1)

(L1)

inv a(4) a(4)/true inv c(4) c(4)/true inv a(7) a(7)/true

inv r(4) r(4)/true c(7) c(7)/false inv c(7) c(7)/true

(H2)

+

+

+

+

+

+

Figure 4. Concurrent histories and possible sequential his-
tories corresponding to them.

h1, h2 are equivalent when for every tid, h1|tid = h2|tid.
An operation op1 precedes op2 in h, and write op1 <h op2,
if res(op1) appears before inv(op2) in h. A history h is
linearizable when there exists an equivalent legal sequential
history s, called a linearization, such that for every two op-
erations op1, op2, if op1 <h op2 then op1 <s op2. That is,
s is equivalent to h, and respects the global ordering of non-
overlapping operations in h.

Example Next we illustrate the concepts of linearizability
and histories on a concurrent set data structure with methods
add, remove, and contains.

Figure 4 shows two concurrent histories H1 and H2, and
a sequential history L1. All histories involve two threads
invoking operations on a shared concurrent set. In the figure,
we abbreviate names of operations, and use a,r, and c, for
add, remove, and contains, respectively. We use inv
op(x) to denote the invocation of an operation op with an
argument value x, and op/val to denote the response op
with return value val.

Consider the history H1. For now, ignore the + sym-
bols. In this history, add(4) is overlapping with opera-
tion remove(4), and add(7) overlaps contains(7).
The history H1 is linearizable. We can find an equivalent
sequential history that preserves the global order of non-
overlapping operations. The history L1 is a possible lin-
earization of H1 (in general, a concurrent history may have
multiple linearizations).

In contrast, the history H2 is non-linearizable. This is be-
cause remove(4) returns true (removal succeeded), and
contains(4) that appears after remove(4) in H2 also
returns true.

Linearizability provides the illusion that for each opera-
tion op, there exists a point between its invocation inv(op)
and response res(op) in the history h where op appears to
take effect instantaneously. This point is typically referred to
as the linearization point lp(op) of the operation op. Given
a concurrent history h, the (total) ordering between these
points induces a linearization marked as lin(h). We refer to
lin(h) as the reference history of h.

Example Consider the history H1 of Figure 4, the + sym-
bols in the figure denote the linearization point in each oper-
ation. The relative ordering between these points determines
the order between overlapping operations, and therefore de-
termines a unique linearization of H1, shown as L1.

3.2 Checking Linearizability
There are two alternative ways to check linearizability [28]:
(i) automatic linearization—explore all permutations of a
concurrent execution to find a valid linearization; (ii) lin-
earization points—build a linearization (lin(h)) on-the-fly
during a concurrent execution, using linearization points.

The first technique is fully automatic and checks whether
there exists a linearization for the concurrent execution. The
second technique requires either user-provided linearization
points or uses a heuristic for guessing linearization points.
This technique checks whether the concurrent execution is
equivalent to a specific legal sequential execution defined by
the linearization points.

3.3 Commutativity
Following [29], we say that an operation op1 commutes with
an operation op2 with respect to a complete history base,
if s1 and s4 are complete invocations of op1, s2 and s3 are
complete invocations of op2, and base·s1 ·s3 and base·s2 ·s4
are equivalent histories. Conversely, if base · s1 · s3 and
base · s2 · s4 are not equivalent histories then op1 and op2
does not commute with respect to base.

Example An example of non-commutative operations is
r(4) and c(4) in history L1 from Figure 4. These op-
erations are non-commutative with respect to the complete
history a(4), because if the order between the two opera-
tions changes and c(4) is executed before r(4) then c(4)
would instead return true.

4. Commutativity-Guided Checking
COLT aims to check linearizability in a modular fashion by
checking for violations of a composed concurrent operation.
In this section we present our commutativity-based checking
of linearizability.

4.1 General Setting
COLT exploits the fact that collection operations are atomic
and encapsulated (the state of the collection is only accessed
through methods of the collection), which allows COLT to
only explore interleavings between the (atomic) operations,
without having to interleave the implementations of the op-
erations. Such histories, consisting of atomic operations, can
be generated by a single thread.

Therefore, to test linearizability, we generate histories via
only two threads: one thread that runs the MUT, and another
(adversarial) thread that runs arbitrary collection operations.
The general technique used by COLT’s environment contains
three components:

Operation remove(k) get(k) putIfAbsent(k, v2)
remove(k) get(k) 6= null get(k) 6= null true
get(k) get(k) 6= null false get(k) = null
putIfAbsent(k, v1) true get(k) = null get(k) = null

Figure 5. Non-commutativity Specification for Map. For
simplicity, we assume that v1 and v2 are non-null.

• MUT CLIENT, which implements the thread running the
MUT (MUT THREAD) and is responsible for generating
inputs for the MUT.

• ENV CLIENT, which implements the thread running arbi-
trary collection operations (ENV THREAD) and is respon-
sible for choosing collection operations together with
their input arguments.

• SCHEDULER, which is responsible for scheduling the ENV
THREAD and the MUT THREAD.

Main Question The main question in building COLT is:

How should we define the behavior of MUT CLIENT, ENV
CLIENT, and SCHEDULER to effectively find bugs?

4.2 Naive Approach
The naive approach is to use randomness. Here, the MUT
CLIENT would randomly select input values for the MUT, the
ENV CLIENT would randomly select collection operations
together with their input arguments, and the SCHEDULER

would randomly schedule between the MUT THREAD and the
ENV THREAD.

This approach is ineffective, as the space of executions
using random values is huge, and only a few of these choices
are likely to lead to executions that contain violations. In-
deed, as shown in Section 5, the naive approach does not
work well; the use of random choices fails to expose even
a single violation in realistic examples after hours of execu-
tion. Note that even if we consider a systematic exploration
of possible schedules (via say context-bounding [25]), we
will still not find many problematic behaviors unless we
know the precise values with which to exercise these sched-
ules.

4.3 Commutativity Guided Scheduling
The main insight behind our approach is to leverage the
commutativity of collection operations in order to define
the behaviors of ENV CLIENT and SCHEDULER. With our
approach, we do not produce histories that we know are
certainly linearizable. This enables us to significantly prune
the massive search space of possible executions and focus
on schedules that can trigger violations.

Commutativity Specifications A non-commutativity spec-
ification for some of the Map operations is shown in Table 5.
Such specifications are easy to obtain from the specification
of Map’s methods. The way to make use of this table is as
follows: i) select an operation op1 from a column; ii) select

an operation op2 from a row; iii) pick a complete history
base such that the state of the collection at the end of base
satisfies the condition in the box. Then, by the definition
of commutativity, op1(k) and op2(k) do not commute from
base. In the case where the box is false, it means the opera-
tions always commute from any complete history base, i.e,
they are never non-commutative. Conversely, when the box
is true, the operations never commute. That is, regardless
of which complete history base is selected, the operations
never commute with respect to base.

General Approach It is possible to augment ENV CLIENT

and SCHEDULER to be commutativity-aware. That is, ENV
CLIENT selects an operation with such keys and values so that
the operation does not commute with any of the preceding
operations performed by MUT THREAD or with the operation
that is about to be performed by the MUT THREAD. The
SCHEDULER is responsible for scheduling the ENV THREAD

before and after each collection operation performed by the
MUT THREAD.

The intuition behind our approach is conceptually simple:
if the ENV THREAD operation commutes with all of the MUT
THREAD’s operations, then we can shift the ENV THREAD’s
operation to not interleave with the MUT THREAD. That is,
we can always produce a linearization of the concurrent his-
tory by simply moving all of ENV THREAD’s operations be-
fore or after the operations in MUT THREAD. Indeed, pro-
ducing concurrent histories that we know can always be lin-
earized is not useful for finding linearizability violations.

In addition, we also augment the SCHEDULER so that un-
derlying collection operations are always performed atom-
ically. For instance, in Figure 3a, an operation such as
remove() will be allowed to preempt compute(), yet we
always schedule remove() to execute atomically, without
preemption. This is because the underlying collection (ex-
cluding MUT) is already linearizable and due to the col-
lection encapsulation the MUT always accesses the col-
lection state through the underlying methods (i.e., get())
and hence the MUT cannot violate the linearizability of
remove().

Implemented Approach In this work, we implemented a
simpler version of the more general approach. Rather than
checking if a scheduled operation commutes with all preced-
ing operations performed by MUT THREAD, we only check
whether the operation does not commute with the operation
just performed by MUT THREAD or about to be performed
by MUT THREAD. Although this approach may miss lineariz-
ability violations, as we show later, it is still a very effective
approach for discovering errors in practice.

4.4 One Thread Implementation
Our approach uses two threads ENV THREAD and MUT
THREAD to detect linearizability violations. Using the (non)
commutativity specification of the map, we know that ENV
THREAD may run operation op only before or after a map op-

1 vo id ENV(o p e r a t i o n , a rgs , map) {
2 i f (∗) {
3 (nonCommutativeOp , a r g s) =
4 getNonComOp (o p e r a t i o n , a rgs , map) ;

6 map . nonCommutativeOp (a r g s) ;
7 }
8 }

(a)

1 V compute (K k) {
2 ENV(‘ ‘ ge t ’ ’ , k , m) ;
3 v a l = m. g e t (k) ;
4 ENV(‘ ‘ ge t ’ ’ , k , m) ;
5 i f (v a l == n u l l) {
6 v a l = c a l c u l a t e V a l (k) ;
7 ENV(‘ ‘ p u t I f A b s e n t ’ ’ , k , va l , m) ;
8 m. p u t I f A b s e n t (k , v a l) ;
9 ENV(‘ ‘ p u t I f A b s e n t ’ ’ , k , va l , m) ;

10 }
11 ENV(‘ ‘ ge t ’ ’ , k , m) ;
12 v a l = m. g e t (k) ;
13 ENV(‘ ‘ ge t ’ ’ , k , m) ;
14 r e t u r n v a l ;
15 }

(b)

Figure 6. One thread instrumentation done by COLT for
function compute from Figure 3a. (a) shows function ENV

imitating ENV THREAD and (b) shows the instrumentation of
compute done by COLT.

eration op′ of MUT THREAD s.t. op and op′ do not commute.
Therefore, we can implement both logical threads using a
single actual thread as follows: given a MUT M we instru-
ment M to include ENV THREAD operations before and after
map operations of the MUT THREAD.

Figure 6a shows a method ENV, which takes an op-
eration (operation), its arguments (args), and a map.
ENV imitates ENV THREAD by make a non-deterministic
choice whether to run an operation (given by getNonComOp)
non-commutative to operation(args) at map. Method
getNonComOp takes an operation, its arguments (args),
and a map. This function returns one operation non commu-
tative to operation(args) at map.

Figure 6b shows the instrumentation done by COLT for
function compute from Figure 3a. As Figure 6b shows,
ENV is called before and after every operation of m done
by compute. This instrumented program uses one thread
and imitates an environment thread running in parallel to
compute.

4.5 Commutativity Guided Scheduling: An Example
Let us illustrate how our approach works on a simple exam-
ple. Suppose that we would like to check the linearizability
of the compute() operation from Figure 3a using a user-
provided linearization point. The execution that we will con-
struct next is shown in Figure 7.

The example shows a concurrent execution of the MUT
THREAD and the ENV THREAD together with the concurrent
history of the concurrent execution. In addition, the example

shows the REFERENCE THREAD representing the sequential
run together with its corresponding sequential history.

The execution starts when the MUT CLIENT selects an
arbitrary key, say 7, for compute() and the SCHEDULER

invoked the MUT THREAD to perform its operations up
to but not including putIfAbsent(7, 14). Next, the
SCHEDULER, using a non-commutativity specification, de-
cides to run the ENV THREAD. The ENV THREAD is in-
voked, and ENV CLIENT consults Table 5. To achieve non-
commutativity with the next operation of compute(), i.e.,
putIfAbsent(7, 14), ENV CLIENT must also use the
same key, i.e., key 7 (otherwise, if the keys are differ-
ent, the operations will commute). From Table 5, we ob-
serve that putIfAbsent(7, v) does not commute with
putIfAbsent(7, 14) when key 7 is not in the map (for
any value of v). Therefore, ENV CLIENT selects the opera-
tion putIfAbsent(7,12) for the ENV THREAD (the value
12 for v is picked randomly).

Since putIfAbsent(7,12) executes atomically, this is
a linearization point for putIfAbsent(7,12), and hence
we execute the REFERENCE THREAD that executes operation
putIfAbsent(7,12) on the reference map. This adds the
first operation to the sequential history, and the results of the
first operation putIfAbsent(7,12) on the sequential and
concurrent history are compared. In this case, the results are
the same, i.e., null, and therefore, a violation of linearizabil-
ity is not yet detected.

Next, the SCHEDULER lets the MUT THREAD run and the
operation putIfAbsent(7, 14) operation is performed.
Assuming that putIfAbsent(7,14) is a linearization
point of compute(7), the reference implementation of
compute is executed atomically and the compute operation
(marked as c) is added to the sequential history with its re-
sult 12. Later, compute(7)’s result in the sequential history
will be compared to compute(7)’s result in the concurrent
history (when it will be available).

At this point, once again, the ENV THREAD is scheduled
before get(7). Again, ENV CLIENT consults Table 5, and it
observes that remove(7) does not commute with get(7)

as key 7 is in the map at this point. Therefore, ENV CLIENT

performs remove(7) after putIfAbsent(7,14) and be-
fore get(7). As remove(7) is executed atomically, this is
a linearization point for remove(7) and hence we execute
the REFERENCE THREAD that executes remove(7) on the ref-
erence map. This adds an operation to the sequential history
(marked as r), and the results of the operation remove(7)

on the sequential and concurrent history are compared. In
this case, the results are the same, i.e., 12, and therefore, a
violation of linearizability is not yet detected.

However, when the get(7) operation executes by the
MUT THREAD and subsequently compute(7) returns, it will
return the value null and the response and the result of
compute(7) is added to the concurrent history. When we
compare the result of compute(7) on the concurrent and

MUT

thread

ENV

thread

Reference

Thread

Concurrent

history

Sequential

history

compute(7)
val = m.get(7)
if (val == null)

val = calculateVal()

inv c(7)

m.putIfAbsent(7,12)

inv pia(7,12)

pia(7,12)/null

refM.putIfAbsent(7,12)

inv pia(7,12)

pia(7,12)/null

m.putIfAbsent(7,14) compute(7)
val = refM.get(7)

if (val == null)
return refM.get(7)

inv c(7)

c(7)/12

m.remove(7) refM.remove(7)

inv r(7)

r(7)/12

inv r(7)

r(7)/12

m.get(7)

c(7)/null

Figure 7. An example execution of our technique, testing
method compute() from Figure 3a.

1 vo id add (K k) {
2 v a l = m. g e t (k) ; / / @LP (v a l != n u l l)
3 i f (v a l == n u l l) {
4 m. p u t (k , 2) ; / / @LP
5 }
6 }

Figure 8. An example showing that restricting ENV
THREAD to perform operations only before map operation of
the MUT can miss linearizability violation.

sequential histories, we obtain different results, i.e., null vs.
12, triggering a linearizability violation.

Scheduling environment operations only before MUT op-
erations Note that scheduling operations only before ev-
ery collection operation of the MUT can sometimes lead
to missing linearizability violations. Figure 8 shows a non-
linearizable function add, where restricting ENV THREAD

to perform operations only before m operations performed
by add would miss all non-linearizable executions of add.
Function add receives an input key k and in case that k is
not already in m adds k to m with the value 2. In this function
the user provided two conditional linearization points. One
at line 2, in case that val 6= null and the second one at line
4.

Figure 9 shows an execution of add that reveals the lin-
earizability violation. All the violating executions of add are
similar to the one shown at Figure 9. In this execution, the
linearizability violation of add occurs due to the get opera-
tion that occurs after the last operation of add. Therefore, re-
stricting the environment to perform operations only before
m operations performed by add would prune this violating
execution of add.

5. Experimental Evaluation
In this section we explain COLT’s implementation and demon-
strate the effectiveness of COLT by evaluating it on a range

MUT

thread

ENV

thread

Reference

Thread

Concurrent

history

Sequential

history

add(7)
val = m.get(7)
if (val == null)

inv add(7)

m.put(7, 4)

inv put(7, 4)

put(7,4)/null

refM.put(7,4)

inv put(7,4)

put(7,4)/null

m.put(7,2) add(7)
val = m.get(7)
if (val == null)

inv add(7)

add(7)/void

m.get(7) refM.get(7)

inv g(7)

g(7)/2

inv g(7)

g(7)/4

add(7)/void

Figure 9. An example execution of our technique, testing
method add(K k) from Figure 8. Note that the linearizabil-
ity violation revealed by the different return value of the get
method occurs after the last operation of add.

of real-world applications. Using our approach we found a
number of errors, substantiating our hypothesis that pro-
grammers often make incorrect assumptions when using
concurrent collections. Together with the error, we reported
a suggested fix for that error to the development team. In
many cases, our fixes were accepted by the development
team and incorporated in the application. All of our exper-
iments were carried out using 64-bit Linux with 8GB of
RAM running on a dual-core, hyper-threaded 2.4Ghz AMD
Opteron.

5.1 Implementation
An outline of COLT’s implementation is shown in Figure 10.
The programmer provides a multithreaded program to the
MUT Extractor. The MUT Extractor uses a simple static
analysis that identifies methods that may invoke multiple
collection operations. These methods are returned to the user
for review. In some cases the MUT Extractor identifies a
specialized concurrent data structure operation inside a large
method and the user needs to manually extract and generate
the MUT (which occurred in 19% of our examples). The user
writes a driver that generates keys and values for the MUT
and for the collection. In addition, the user provides a non-
commutative driver that takes an input object and returns a
different object. This driver is used by the non-commutative
aware adversarial environment. In order to help the user, we
integrated into COLT simple and generic drivers for primitive
and simple types such as Integers. These drivers, together
with linearization points and the MUT, are given to the Byte-
code instrumentor. The Bytecode instrumentor instruments
the MUT and generates our linearizability checker using the
library’s non-commutativity specification. Then, the instru-
mented MUT is repeatedly executed until either a lineariz-
ability violation is found or a time bound is exceeded.

program

MUT

extractor

candidate
MUTs

linearization points (opt)

Timeout

instrument
linearizability

checking

MUT

key/value driver

MUTConcurrent Collection

Specialized Concurrent Collection

MUT ClientENV client Scheduler
Environment

Non-Lin

Execution

library

spec

non-commutative
driver

Figure 10. COLT overview

5.1.1 Checking Linearizability
COLT has three modes for checking linearizability and in gen-
eral does not rely on user-specified linearization points. The
first mode enumerates linearizations, the second enumerates
candidate linearization points, and the third uses heuristics
for guessing linearization points.

In our experiments, the third mode worked sufficiently
well and we never resort to the more expensive modes or
manually provided linearization points.

5.2 Applications
The 51 real-world applications shown in Table 1 were se-
lected because their code is available and they make use
of Java’s concurrent collections. In many cases concurrent
collections were introduced to address observed scalability
problems, replacing Collections.synchronizedMap or
manual locking of a sequential map.

Each of the applications contains one or more methods
that were extracted and tested by COLT. These methods were
extracted using COLT’s MUT Extractor (discussed in Sec-
tion 5.1). which identifies methods that may invoke multiple
collection operations. In 18 out of the 95 extracted methods,
COLT identified a specialized concurrent data structure oper-
ation inside a large method and we manually extracted and
generated the MUT.

5.3 Results
We tested 95 methods in 51 applications. As Figure 11b
shows 36 (38%) of these methods were linearizable in an
open environment (and hence also linearizable in their pro-
gram environment). Another 17 (18%) of these methods
were not linearizable in an open environment, but were safe
when implicit (and unchecked) application invariants were
taken into account. Finally, 42 (44%) of these methods had
atomicity violations that could be triggered in the current ap-
plication.

Figure 11a shows the results reported by COLT. The ’X’
axis shows the application number from Table 1 and the ’Y’
axis shows the number of MUTs checked for each applica-
tion. “Non-Lin” shows the methods in our experiments that
are not linearizable in an open environment as well as in the

Program LOC Description
1 Adaptive Plan-

ning
1,103,453 Automated budgeting tool

2 Adobe BlazeDS 180,822 Server-based Java remoting
3 Amf-serializer 4,553 AMF3 messages serializaton
4 Annsor 1,430 runtime annotation processor
5 Apache Cassan-

dra
54,470 Distributed Database

6 Apache Derby 618,352 Relational database
7 Apache MyFaces

Trinidad
201,130 JSF framework

8 Apache Struts 110,710 Java web applications frame-
work

9 Apache Tomcat 165,266 Java Servlet and Server Pages
10 Apache Wicket 142,968 Web application framework
11 ApacheCXF 311,285 Services Framework
12 Autoandroid 19,764 Tools for automating android

projects
13 Beanlib 42,693 Java Bean library
14 Carbonado 53,455 Java abstraction layer
15 CBB 16,934 Concurrent Building Blocks
16 cometdim 5,571 A web IM project
17 Direct Web Re-

moting
26,094 Ajax for Java

18 dyuproject 26,593 Java REST framework
19 Ehcache Annota-

tions for Spring
3,184 Automatic integration of

Ehcache in spring projects
20 Ektorp 6,261 Java API for CouchDB
21 EntityFS 79,820 OO file system API
22 eXo 13,298 Portal
23 fleXive 910,780 Java EE 5 content repository
24 GlassFish 260,461 JavaServer faces
25 Granite 28,932 Data services
26 gridkit 8,746 Kit of data grid tool and libs
27 GWTEventService 17,113 Remote event listening for

GWT
28 Hazelcast 59,139 Data grid for Java
29 ifw2 54,888 Web application framework
30 JBoss AOP 1,013,073 Aspect oriented framework
31 Jetty 64,039 Java HTTP servlet server
32 Jexin 11,024 functional testing platform
33 JRipples 148,473 Program analysis
34 JSefa 27,208 Object serialization library
35 Jtell 5,402 Event collaboration library
36 keyczar 4,720 Cryptography Toolkit
37 memcache-client 4,884 Memcache client for Java
38 OpenEJB 191,918 Server
39 OpenJDK 1,634,818 JDK 7
40 P-GRADE 1,154,884 P-GRADE Grid Portal
41 Project Tammi 163,913 Java development framework
42 Project Track 5,160 Example application
43 RESTEasy 81,586 Java REST framework
44 Retrotranslator 27,315 Automatic compatibility tool
45 RoofTop 2,036,614 network/systems monitoring

(NSM) tool
46 Tersus 165,160 Visual Programming Plat-

form
47 torque-spring 2,526 Torque support classes
48 Vo Urp 24,996 UML data models translator
49 WebMill 57,161 CMS portal
50 Xbird 196,893 XQuery processor and XML

db
51 Yasca 326,502 Program analysis tool

Table 1. Applications used for experiments

0

2

4

6

8

10

12

1 3 5 7 9
1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

BM

M
U

T
 (

#
)

Lin

Non-Lin

Modular NL

(a)

17

18%

42

44%

36

38%

(b)

Figure 11. Benchmark results. (a) shows the MUT results for each benchmark. (b) shows the MUT distribution per results.
As the graph shows, 42 MUTs are non linearizable in their current applications, 17 MUTs are non linearizable only in COLT’s
open environment, and 36 are linearizable in an open environment.

client environment. “Modular NL” shows the methods in our
experiments that are not linearizable in an open environment
but are linearizable in the client’s current environment.

For example, application #9 is Apache Tomcat and has
10 non-linearizable methods in an open environment as well
as the client environment and 1 linearizable method in any
environment. For all of the non linearizable methods(“Non-
Lin” and “Modular NL”), COLT reported an interleaving in
which the MUT is not atomic. In cases where we observed
the method to be linearizable under a restricted environment
(e.g., no remove operations), we confirmed that re-running
COLT under an appropriately restricted adversary no longer
reports the same violation.

We manually inspected all of the methods where COLT

timed out without reporting a violation after 10 hours. We
managed to construct a linearizability proof for each one of
them, showing that: (i) these methods are indeed linearizable
and COLT did not miss an error; and (ii) no false alarms
were reported by COLT on these linearizable methods. These
methods are presented in Figure 11a as “Lin”.

Naive Adversary Testing with a naive adversary failed to
find a single violation within a timeout of 10 hours per
method, while COLT reported a violation for all of these non-
linearizable methods in less than a second.

Confirmed Violations We reported all violations of lin-
earizability (even those that were only present in an open
environment) to the project developers. For each violation
we included the interleaving and a suggested fix. Interest-

ingly, in some cases, even though the tool reported errors
that cannot occur in the program environment, the develop-
ment team still decided to adopt our suggested fixes to make
the code more robust to future program modifications.

Apache Cassandra has two methods that implement an
optimistic concurrent algorithm on top of a concurrent col-
lection. COLT reports a violation for both methods. The rea-
son for the violation is that this algorithm may throw a null
pointer exception when running concurrently with a remove
operation. We reported this violation to the development
team and it turned out that under the program environment,
remove operations are allowed only on local copies of the
collection. Therefore, in the current program environment
the method is linearizable. However, the project lead decided
to adopt our suggested fixes in order to make the method lin-
earizable in any future evolution of the program.

Apache MyFaces Trinidad, Ektrop, Hazelcast, Grid-
Kit, GWTeventservice, and DYProject use modules that
try to atomically add and return a value from a collection or
return a value if one is already in the collection for a given
key. COLT reports a violation for all of these methods. For
Apache MyFaces Trinidad, we reported the potential vio-
lation, but the developers had fixed this problem before we
submitted the report. For Ektrop, the developers decided to
keep our remarks in case they opt to make program mod-
ifications in the future. For Hazelcast, the developers ac-
knowledged the violation and replied that the code is being
re-factored. For GWTeventservice, the developers acknowl-

edged the violations and adopted our fixes. For GridKit, the
developers reported that the violation is not feasible in their
environment. However, they still decided to adopt our fixes
as a preventive measure. For DYProject, the developers ac-
knowledged the violations and adopted our fixes.

In Apache Tomcat COLT found violations in 10 of the
11 methods checked. Two of the reported violations were
approved as violations by the Tomcat development team.
Most of the violations were caused by switching the im-
plementation from a HashMap to a ConcurrentHashMap

while removing the lock that guarded the HashMap in
the collection client. Another type of violation occurs in
FastHttpDateFormat and is caused by switching from
a synchronizedMap to a ConcurrentHashMap without
changing the client code. In this case, violations were intro-
duced because the implementation of synchronizedMap

guards each operation by the object’s lock while the im-
plementation of ConcurrentHashMap has internal locks
which are different than the object lock. Therefore, two
of the methods are built by a set of collection opera-
tions guarded by the collection’s lock. These methods were
linearizable under synchronizedMap and became non-
linearizable under ConcurrentHashMap.

For the rest of the violated methods we reported the vio-
lations but have not yet heard from the development teams.

5.4 Conflict Serializability vs. Linearizability
None of the application methods we tested are conflict seri-
alizable [15]. The conflict serializability checker reports vi-
olation on all of our methods, whether or not the method be-
haves atomically. For the methods that required repair, none
of the repairs were conflict serializable.

5.5 A Recurring Example: Memoization
A recurring operation in our benchmarks was memoization,
in which a concurrent map was used to store the results of an
expensive computation. The authors of ConcurrentHashMap
explicitly avoided including this functionality, because the
optimal design depends on the hit rate of the memoization
table, the cost of the computation, the relative importance
of latency versus throughput, potential interference between
duplicate work, the possibility that the computation might
fail, etc.

Consider a function compute(K k) that memoizes the
result of calculateVal(k). The desired functionality
(note that Java does not actually have an atomic keyword)
is:

V compute (K k) {
atomic {

V v = m. g e t (k) ;
i f (v == n u l l) {

v = computeVal (k) ;
m. p u t (k , v) ;

}
r e t u r n v ;

}
}

Figure 12 shows some of the implementations that we en-
countered for compute, including the buggy version from
Figure 3a.

The procedure compute(K k) uses an underlying con-
current collection to memoize the value computed by func-
tion calculateVal(k). When the value for a given key is
cached in the collection it is returned immediately; when the
value for a given key is not available, it is computed and in-
serted into the collection.

Figure 12(i) shows a linearizable concurrent implemen-
tation of compute. This operation is linearizable because
it has only one collection operation, putIfAbsent, there-
fore, the linearizability guarantee is provided by the collec-
tion library. Even though this implementation is correct and
linearizable, in most cases, programmers avoid writing the
compute operation in this way because the internal imple-
mentation of putIfAbsent acquires a lock and this can
be avoided in several cases. Another reason is that often
calculateData can be time consuming or cause a side ef-
fect, and hence should not be executed more than once.

The implementation in Figure 12(ii) is mostly used to
avoid lock acquisition when k is already inside the collec-
tion. This implementation is linearizable and has two condi-
tional linearization points marked by @LP [condition].
The first conditional linearization point occurs when the
get operation returns a value different than null. In this
case, the value returned by get is returned without any
additional access to m. The second linearization point oc-
curs at the putIfAbsent. In cases where putIfAbsent

succeeds in updating m a null value is returned by the
putIfAbsent and the updated value is returned. Otherwise,
putIfAbsent returns the value from m and this value is re-
turned by compute.

The implementations in Figure 12(iv), Figure 12(v), and
Figure 12(vi) are common non linearizable implementations
of Figure 12(ii) and the implementation in Figure 12(iii) is a
common non-linearizable implementation of Figure 12(i).

Figure 7 displays an interleaving that reveals the non-
linearizability of the implementation in Figure 12(iv): the
remove(7) operation at line 10 causes compute(7) to re-
turn a null result. A similar interleaving can reveal the non-
linearizability of Figure 12(iii) and Figure 12(vi) where a
remove(k) operation occurs between the putIfAbsent(k)
and the get(k).

An interleaving that reveals the non-linearizability of Fig-
ure 12(v) occurs when put(k,*) with the same key k is ex-
ecuted between if (val == null) and putIfAbsent of
compute. In this case the putIfAbsent fails and the value
returned by compute is not the value corresponding to k in
the map m.

Advanced Example When the calculateVal function
is either time consuming or causes a side effect the code
in Figure 12(vii) is used. This implementation uses Java’s
Future construct to guarantee that only one execution of

V compute(K k) {
V val = calculateVal();
V tmpVal = m.putIfAbsent(k, val); // @LP

if(tmpVal != null)
val = tmpVal;

return val;
}

V compute(K k) {
V val = calculateVal();

m.putIfAbsent(k, val);
return m.get(k);

}

V compute(K k) {

V val = m.get(k); // @LP (val != null)

if (val == null) {
val = calculateVal();
V tmpVal = m.putIfAbsent(k, val); //@LP

if(tmpVal != null)

val = tmpVal;
}
return val;

}

V compute(K k) {
V val = m.get(k);
if (val == null) {

val = calculateVal();
m.putIfAbsent(k, val);

}
return m.get(k);

}

V compute(K k) {
V val = m.get(k);

if (val == null) {
val = calculateVal();
m.putIfAbsent(k, val);

}
return val;

}

V compute(K k) {

while (true) {
Future f = m.get(k);
if (f == null) {

FutureTask ft = new FutureTask(
new Callable() {

public V call() {
return calculateVal();
}});

f = m.putIfAbsent(k, ft);
if(f == null) {

f = ft;
ft.run();

}
}

try {
return f.get(); // @LP (f.isDone())

} catch (CancellationException e) {
cache.remove(k, f);
}

}
}

compute(K k) {
if (!m.containsKey(k)) {

V val = calculateVal();
m.putIfAbsent(k, val);

}
return m.get(k);

}

(i)

(ii)

(iii)

(iv)

(v)

(vi) (vii)

Figure 12. Implementation types of compute, conditional linearization points for each linearizable implementation are marked
with @LP [condition].

calculateData is done for each added key. This way only
one thread is responsible for the calculation while the oth-
ers may block until the calculation completes. If Future is
canceled, the Future is removed from the map and a new
memoization iteration continues until a Future terminates
successfully and its value is returned. A linearization point
for this implementation occurs when f.get() returns suc-
cessfully (marked by @LP (f.isDone())) due to the fact that
the f calculation terminated successfully. The reason this is
a linearization point is that there might be a case where an-
other thread canceled f’s execution and then the compute

execution should continue.
Even though the implementation in Figure 12(vii) is lin-

earizable, COLT reports a violation of linearizability. The
problem is that COLT is not aware of the Future semantics
and should treat a Future value that has not terminated suc-
cessfully as if its corresponding key is missing from the map.
Augmenting COLT with this information solves the problem
and COLT no longer reports a linearizability violation in this
case.

In this example, the Future computation does not itself
perform collection operations and thus no special handling
of the scheduling of futures is required, even if the Future
is added to the collection (and such examples exist in prac-
tice). In general COLT warns the user if a Future performs
collection operations, but we have seen no such examples in
practice.

Benchmark Distribution Figure 13 shows the distribution
of the different kinds of composed concurrent operations (as
given in Figure 13) in our benchmark.

Figure 13. Distribution of our 95 MUTs of the types shown
at Figure 12. Type (i) is missing because it is not a composed
operation.

Overall 68% of the MUTs we checked were memoization
examples. The most common bug pattern (20%) was the im-
plementation in Figure 12(v) followed by the implementa-
tion in Figure 12(iv) (9%).

5.6 Reasons for Success
Source of Bugs most of the MUTs were written origi-
nally using a concurrent collection. However, in some cases,
the MUT was modified while changing the collection im-
plementation from sequential to concurrent. Refactoring the
code in most cases resulted in a linearizability violation. A
clear example is Apache Tomcat where 10 out of 11 MUTs
were refactored in a non-linearizable manner.

Bugs Characteristics Observing the implementations in
Figure 12 reveals that these implementations behave uni-
formly for each given key. This characteristic occurs in all
our checked MUTs and implies that if the MUT is not lin-
earizable then for each key there exists an interleaving re-
vealing the MUT’s non-linearizability.

The fact that programmers tend to write buggy special-
ized concurrent collections and that their corresponding
MUTs are uniform significantly eases bug detection in real
code. The uniformity characteristic implies that bugs can
be detected using any input key so long as the adversary
performs the right operation with the right interleaving. Our
non-commutativity aware adversarial environment easily de-
tects these non-linearizable interleavings.

6. Related Work
Partial Order Reduction Partial order reduction tech-
niques, such as [18], use commutativity of individual mem-
ory operations to filter out execution paths that lead to the
same global state. Indeed, our technique is a partial order re-
duction that uses a similar observation. However, our tech-
nique works on an encapsulated ADT and leverages com-
mutativity at the level of the ADT, rather than the level
of memory operations. A traditional partial order reduction
technique working at the level of memory operations would
not be able to leverage the commutativity specification at
the level of ADT operations and would instead require ex-
posing the implementation of ADT operations and checking
whether individual memory operations within them com-
mute. In contrast, our approach treats ADT operations as
atomic operations and leverages commutativity of ADT op-
erations to significantly increase the bug hunting capabilities
of our tool.

Dynamic Atomicity Checking Dynamic atomicity check-
ers such as [14, 15] check for violations of conflict serial-
izability. As noted earlier, conflict-serializability is inappro-
priate for concurrent data structures. Therefore, in this work
we check for violations of linearizability. Vyrd [12] is a dy-
namic checking tool that checks a property similar to lin-
earizability. Vyrd required manual annotation of lineariza-
tion points. Line-Up [8] is a dynamic linearizability checker
that enumerates schedules. The formal result of [13] im-
plies that we need not generate schedules where linearizable
operations are executed non-atomically. This can reduce the
number of interleavings that need to be explored. This in-
sight has also been discussed and made use of in the pre-
emption sealing work of [6].

In contrast with COLT, all of these existing tools are
non-modular and not directed using non-commutativity. As
shown in Section 5, when commutativity information is not
utilized, the ability to detect collection-related atomicity vi-
olations remains low. In fact, the poor results of the random
adversary in Section 5 are obtained when underlying collec-
tion operations are considered atomic.

GAMBIT [10] is a unit testing tool for concurrent li-
braries built on top of the CHESS tool [25]. GAMBIT uses
prioritized search of a stateless model checker using heuris-
tics, bug patterns, and user-provided information. Even
though GAMBIT and COLT are unit testing tools for concur-
rent libraries, COLT is working on a specialized concurrent
data structure library built on top of an already verified and
well defined concurrent collection. COLT leverages this fact
together with non-commutativity to guide the scheduling to
quickly reveal bugs. From the above reasons GAMBIT is
unlikely to detect the collection-related atomicity violations.

An active testing technique for checking conflict serializ-
abilty is presented in [26]. The technique uses bug patterns to
control the scheduler directing the execution to error-prone
execution paths. Even if the technique is adjusted to check
linearizability, it is not modular and not directed using non-
commutativity. Therefore, its ability to detect collection-
related violations would likely be low.

Static Checking and Verification Some approaches [17,
24] do static verification and use the atomicity proof to sim-
plify the correctness proofs of multithreaded programs. Our
work also uses the linearizability proof of the collection li-
brary to prune non-violating paths. However, our technique
is different than these works because we perform modular
testing and check only methods. In addition, we use collec-
tion non-commutativity specifications to direct exploration.
Moreover, we are checking the linearizability of the meth-
ods. Other work such as [28] focuses on model checking
individual collections. Our work operates at a higher level,
as a client of already verified collections and leverages the
specifications of the underlying collections to reduce the
search space. Shape analysis tools, such as [5], prove the lin-
earizability of heap manipulating concurrent programs with
a bounded number of threads. These tool are verifiers and
may produce false alarms due to the overapproximating ab-
stractions they employed. Our work is different than these
works because we use dynamic analysis.

The idea of using a general client over-approximating the
thread environment is common in modular verification. Pre-
vious work represented the environment as invariants [22]
or relations [23] on the shared state. This idea has also
been used early on for automatic compositional verifica-
tion [9]. In addition, this approach has led to the notion
of thread-modular verification for model checking systems
with infinitely-many threads [16] and has also been applied
to the domain of heap-manipulating programs with coarse-
grained concurrency [20]. COLT uses the idea of an adver-
sarial environment for dynamic checking, leveraging non-
commutativity information to effectively reveal atomicity vi-
olations.

7. Conclusions
We have presented a modular and effective technique for
testing composed concurrent operations. Our technique uses
a specialized adversary that leverages commutativity infor-
mation of the underlying collections to guide execution to-
wards linearizability violations. We implemented our tech-
nique in a tool called COLT and showed its effectiveness by
detecting 56 previously unknown linearizability violations in
51 popular open-source applications such as Apache Tom-
cat.

Acknowledgments
We thank Karen Yorav for reading a preliminary version of
this paper and making valuable remarks. This research was
partially supported by The Israeli Science Foundation (grant
no. 965/10), NSF Grant CCF-0702681, and a gift from IBM.

References
[1] Amino concurrent building blocks.

http://amino-cbbs.sourceforge.net/.

[2] Apache tomcat. http://tomcat.apache.org/.

[3] Intel thread building blocks.
http://www.threadingbuildingblocks.org/.

[4] openjdk. http://hg.openjdk.java.net/jdk7/jaxp/jdk.

[5] AMIT, D., RINETZKY, N., REPS, T. W., SAGIV, M., AND

YAHAV, E. Comparison under abstraction for verifying lin-
earizability. In CAV (2007), pp. 477–490.

[6] BALL, T., BURCKHARDT, S., COONS, K. E., MUSUVATHI,
M., AND QADEER, S. Preemption sealing for efficient con-
currency testing. In TACAS (2010), pp. 420–434.

[7] BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN,
N. Concurrency Control and Recovery in Database Systems.
1987.

[8] BURCKHARDT, S., DERN, C., MUSUVATHI, M., AND TAN,
R. Line-up: a complete and automatic linearizability checker.
In PLDI (2010), pp. 330–340.

[9] CLARKE, JR., E. Synthesis of resource invariants for concur-
rent programs. TOPLAS 2, 3 (1980), 338–358.

[10] COONS, K. E., BURCKHARDT, S., AND MUSUVATHI, M.
GAMBIT: effective unit testing for concurrency libraries. In
PPOPP (2010), pp. 15–24.

[11] DOHERTY, S., DETLEFS, D. L., GROVES, L., FLOOD,
C. H., LUCHANGCO, V., MARTIN, P. A., MOIR, M.,
SHAVIT, N., AND GUY L. STEELE, J. DCAS is not a sil-
ver bullet for nonblocking algorithm design. In SPAA (2004),
pp. 216–224.

[12] ELMAS, T., TASIRAN, S., AND QADEER, S. Vyrd: verifying
concurrent programs by runtime refinement-violation detec-
tion. In PLDI (2005), pp. 27–37.

[13] FILIPOVIĆ, I., O’HEARN, P., RINETZKY, N., AND YANG,
H. Abstraction for concurrent objects. In ESOP (2009),
pp. 252–266.

[14] FLANAGAN, C., AND FREUND, S. N. Atomizer: A dynamic
atomicity checker for multithreaded programs. In POPL
(2004), pp. 256–267.

[15] FLANAGAN, C., FREUND, S. N., AND YI, J. Velodrome:
a sound and complete dynamic atomicity checker for multi-
threaded programs. In PLDI (2008), pp. 293–303.

[16] FLANAGAN, C., AND QADEER, S. Thread-modular model
checking. In SPIN (2003), pp. 213–224.

[17] FLANAGAN, C., AND QADEER, S. A type and effect systrm
for atomicity. In PLDI (2003), pp. 338–349.

[18] GODEFROID, P. Partial-Order Methods for the Verification
of Concurrent Systems: An Approach to the State-Explosion
Problem. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1996.

[19] GOETZ, B., PEIERLS, T., BLOCH, J., BOWBEER, J.,
HOLMES, D., AND LEA, D. Java Concurrency in Practice.
Addison Wesley, 2006.

[20] GOTSMAN, A., BERDINE, J., COOK, B., AND SAGIV, M.
Thread-modular shape analysis. In PLDI (2007), pp. 266–
277.

[21] HERLIHY, M. P., AND WING, J. M. Linearizability: a cor-
rectness condition for concurrent objects. TOPLAS 12, 3
(1990).

[22] HOARE, C. A. R. Towards a theory of parallel programming.
1972.

[23] JONES, C. B. Specification and design of (parallel) programs.
1983.

[24] MUSUVATHI, M., AND QADEER, S. Iterative context bound-
ing for systematic testing of multithreaded programs. In PLDI
(2007), pp. 446–455.

[25] MUSUVATHI, M., QADEER, S., BALL, T., BASLER, G.,
NAINAR, P. A., AND NEAMTIU, I. Finding and reproducing
heisenbugs in concurrent programs. In OSDI (2008), pp. 267–
280.

[26] PARK, C.-S., AND SEN, K. Randomized active atomicity
violation detection in concurrent programs. In SIGSOFT
(2008), pp. 135–145.

[27] SHAVIT, N. Data structures in the multicore age. Commun.
ACM 54 (March 2011), 76–84.

[28] VECHEV, M., YAHAV, E., AND YORSH, G. Experience with
model checking linearizability. In SPIN (2009), pp. 261–278.

[29] WEIHL, W. E. Commutativity-based concurrency control for
abstract data types. IEEE Trans. Computers 37, 12 (1988),
1488–1505.

