
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Scalable Race Detection for Android Applications

Pavol Bielik
Department of Computer Science

ETH Zürich, Switzerland

Veselin Raychev
Department of Computer Science

ETH Zürich, Switzerland

firstname.lastname@inf.ethz.ch

Martin Vechev
Department of Computer Science

ETH Zürich, Switzerland

Abstract
We present a complete end-to-end dynamic analysis system
for finding data races in mobile Android applications. The
capabilities of our system significantly exceed the state of
the art: our system can analyze real-world application inter-
actions in minutes rather than hours, finds errors inherently
beyond the reach of existing approaches, while still (criti-
cally) reporting very few false positives.

Our system is based on three key concepts: (i) a thorough
happens-before model of Android-specific concurrency, (ii)
a scalable analysis algorithm for efficiently building and
querying the happens-before graph, and (iii) an effective set
of domain-specific filters that reduce the number of reported
data races by several orders of magnitude.

We evaluated the usability and performance of our sys-
tem on 354 real-world Android applications (e.g., Face-
book). Our system analyzes a minute of end-user interaction
with the application in about 24 seconds, while current ap-
proaches take hours to complete. Inspecting the results for 8
large open-source applications revealed 15 harmful bugs of
diverse kinds. Some of the bugs we reported were confirmed
and fixed by developers.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; D.2.5 [Software
Engineering]: Testing and Debugging; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs

Keywords Data Races, Happens-before, Android, Non-
determinism

1. Introduction
Modern smartphones are powerful computing platforms able
to run complex applications, thus end users increasingly rely
on them for various computing needs. A distinguishing fea-
ture of mobile applications is their event-driven nature: the
application must handle asynchronously generated events
from a diverse set of sources including the user interface,
the network, the sensors and the framework. Unfortunately,
this asynchrony can cause data races that potentially corrupt-
ing the overall application behavior. As a result, researchers
have recently devised program analyses aiming to automati-
cally discover such harmful behaviors (e.g., for Android ap-
plications [6, 9]).

While these works represent a promising step forward,
they still suffer from several drawbacks, including: (i) in-
ability to analyze realistic user interactions and applications
due to poor analysis scalability requiring hours to handle
even short interactions, (ii) reduced testing coverage missing
important data races, and (iii) incomplete happens-before
model of Android concurrency also affecting (ii). As a re-
sult, these analyzers cannot handle real-world applications
and user interactions in any reasonable time. A more detailed
discussion of prior work is provided in Section 2.

This Work In this work we present the first scalable dy-
namic analysis system for finding data races in Android
applications and demonstrate the scalability and precision
of our approach by applying it to 354 real-world applica-
tions. Our system is based on several key ingredients: new
algorithms for building and querying the happens-before
(HB) graph (the algorithms are of interest beyond Android),
a thorough and formal definition of the HB model capturing
Android concurrency, handling of potential sources of con-
current interference beyond user provided source code, and
a detailed set of filters for reporting fewer false positives.

Challenges Arriving at a complete solution was challeng-
ing for three reasons. First, formally capturing how concur-
rency arises in the entire Android platform is difficult as
many subtle features of Android concurrency are not well
documented. Second, and perhaps most unexpected: exist-
ing state-of-the-art analysis algorithms [5], even those tar-
geting event-driven applications [12], do not scale to han-

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

OOPSLA’15, October 25–30, 2015, Pittsburgh, PA, USA
c© 2015 ACM. 978-1-4503-3689-5/15/10...

http://dx.doi.org/10.1145/2814270.2814303

332

dling real world Android programs. The reasons are funda-
mental: either, their vector clock data structures quickly run
out of memory [5] when dealing with thousands of events, or
as in [12], they focus on simple fork-join models of concur-
rency which are not suitable when analyzing platforms that
exhibit complex happens-before rules (as Android does). Fi-
nally, handling the full complexity of realistic applications
while reporting few false positives comes with its own set of
difficult problems.

Main Contributions The contributions of our work are:

• A thorough and precise happens-before model which
captures Android-specific concurrency (Section 5). This
model is a useful basis for any Android program analyzer.
• A new scalable algorithm for building and querying the

happens-before graph (Section 6). This algorithm can
deal with complex happens-before rules and is key to en-
abling analysis of real-world applications and user inter-
actions in seconds.
• An effective set of filters allowing the analysis to report

very few false positives (Section 7). These reduce the
number of false positives by an order of magnitude.
• A complete implementation of our approach including

both, a standalone analyzer as well as an online service
for analyzing Android binaries1.
• An comprehensive evaluation on 354 real-world applica-

tions (Section 8). Inspecting the results for 8 open-source
apps revealed 15 harmful bugs including displaying old
results, crashes after configuration changes or when the
user navigates away from the application. Some of the
bugs we reported were confirmed and fixed by develop-
ers, including errors manifesting inside the framework.

2. Related work
Before we proceed further, we compare our work with those
that are most closely related. These include CAFA [6] and
DROIDRACER [9], both investigating the problem of finding
data races in Android, as well as EVENTRACER [11, 12] and
SDNRACER [10] which focuses on web pages and software
defined networks respectively.

2.1 Comparison with CAFA and DROIDRACER

Our work differs from these approaches in several major
ways.

Difference 1: Handling Realistic Interactions Prior work
cannot analyze realistic interactions in reasonable time, tak-
ing hours (as reported by the authors) with trivial interac-
tions. In contrast, our system analyzes realistic interactions
in seconds.

The reason is that our algorithms have better asymp-
totic time complexity for constructing the HB graph:O(N2)

1http://www.eventracer.org/android

vs. O(N3) for DROIDRACER. The complexity analysis of
CAFA is unavailable, but the poor runtimes suggest it is sim-
ilar to DROIDRACER’s. Note that disabling some features of
our algorithm (described in Section 6) leads to massive anal-
ysis slowdowns: from 11 seconds to 254 minutes.

Difference 2: Happens-Before Model The HB rules in
CAFA are inconsistent (e.g., by not considering the effect of
barriers) and introduce orderings contradictory to those ob-
served in the execution. Further, our HB model is more pre-
cise than both prior works as we introduce more true edges
(which reduce the number of reported false positives) and do
not introduce false edges (which enables us to find more real
errors). A detailed summary is found in Section 5.3.

Difference 3: Error Coverage We provide better error
coverage than prior work. To report fewer false positives,
CAFA only detects errors that lead to null pointer excep-
tions, while DROIDRACER focuses on interference occur-
ring in user code. In contrast, we detect data races origi-
nating from both user code and between user code and the
framework (shown in Section 3.2). Existing approaches can-
not detect these races, yet they are important – developers
fixed several such errors that we reported.

Difference 4: Tool Availability and Robustness Experi-
mental comparison with these tools was not possible as
CAFA is not publicly available while for DROIDRACER,
even after discussion with its developers, the tool could
not process traces larger than few seconds and kept crash-
ing. In contrast, our complete system is fully available both
as a push-button online service where one can simply up-
load an Android binary and receive the analysis results, as
well as a standalone downloadable analyzer available at:
http://www.eventracer.org/android.

Summary Because of the above differences and the capa-
bilities of our system, we believe that this work presents the
first scalable analysis system for finding harmful data races
in real-world Android applications.

2.2 Comparison with EVENTRACER and SDNRACER

The EVENTRACER work [11, 12] focuses on detecting data
races in another application domain (web pages) but has
developed advanced general-purpose offline analysis algo-
rithms [12]. While these algorithms are useful, we find that
in our application domain, the main analysis bottleneck is
not the processing of the trace, but the act of building the
HB graph. Thus, to handle realistic programs in reasonable
time, we developed new algorithms presented in Section 6.

Another recent work, SDNRACER [10], defines happens-
before rules and a commutativity specification for the do-
main of software defined networks and demonstrates that
the commutativity specification can significantly reduce the
number of reported races. The happens-before rules and the
commutativity specification are specific to the domain of
software defined networks and are not applicable to Android.

333

row 1

ImageView#1

row 2

ImageView#2

row 3

ImageView#3

row 4

ImageView#4

row 5

row 6

ImageView#1

row 7

ImageView#2

V
is

ib
le

ro
w

s
In

vi
si

bl
e

ro
w

s

The framework
reuses ImageViews

when scrolling.

class ItemAdapter extends BaseAdapter {
ArrayList<String> mItems;
@Override
View getView(int pos, ImageView view) {

if (view == null) {
view = //create a new view

}
new ImageLoader(view, mItems[pos])

.execute();
return view;

} }

class ImageLoader extends AsyncTask {
final ImageView view;
final String image;
ImageLoader(ImageView imageView, String

image) {
this.view = imageView;
this.image = image;
//this.view.setTag(image);

}

@Override //executed in a background thread
Bitmap doInBackground() {

return loadImage(image);
}

@Override //executed in the main thread
void onPostExecute(Bitmap bitmap) {

//if (view.getTag() != url) return;
view.setImageBitmap(bitmap);

} }

MainThread Background Threads

getView(1, ImageView#1)
ImageLoader#1.view = ImageView#1
ImageLoader#1.execute()

... ListView scrolls to row 5 ...

getView(6, ImageView#1)
ImageLoader#2.view = ImageView#1
ImageLoader#2.execute()

onPostExecute(image#2)
ImageView#1.setImage(image#2)
ImageView#1.mDrawable= image#2

onPostExecute(image#1)
ImageView#1.setImage(image#1)
ImageView#1.mDrawable= image#1

Im
ag

eL
oa

de
r#

2
do

In
B

ac
kg

ro
un

d(
)

Im
ag

eL
oa

de
r#

1
do

In
B

ac
kg

ro
un

d(
)

Image for row 1 is displayed in row 6

(a) (b) (c)

Figure 1. Illustration of a ListView with images as rows (row color denotes which image was loaded in the bad execution
trace) where: (a) the framework reuses ImageView components when scrolling, (b) the relevant application code which starts
image download when the row becomes visible, and (c) a bad execution trace displays the incorrect image for row 6.

2.3 Comparison with Testing Tools
A number of Android testing tools were developed in re-
cent years [1–3, 7, 8, 13] that are complementary and focus
on input generation while we focus on analysis of a given
execution. These approaches often rely on assertions or ex-
ceptions to report issues and may need to run an application
multiple times and explore a large number of traces before
finding harmful behaviors. In contrast, our approach finds
violations which do not exist in the given execution but do
exist in a permutation of that execution. Thus, it provides
more powerful coverage guarantees per explored execution.

3. Overview
In this section we provide three illustrative examples of
the different kinds of concurrency errors that can arise in
Android applications and show how they manifest as data
races. These examples show harmful behaviors detected by
our analysis system.

Fundamentally, data races can arise when two events
(generated from various sources including the framework,
the network, the sensors, and the user interface) can be exe-
cuted in arbitrary order and they access overlapping memory
locations where one of the accesses is a write. In our work
we focus on data races between events handled by a single
main thread (also referred to as a UI thread) – a designated

thread that facilitates queuing and dispatching of messages
allowed to manipulate user interface components.

We note that these data races denote unordered conflict-
ing accesses to the same memory location and even though
these accesses have well-defined semantics (events are often
executed by the same thread), the resulting conflict can lead
to unexpected application behaviors. This is different from
traditional data races for which programming languages of-
ten give very weak semantics (e.g., incrementing non-atomic
variable in a C program). However, for completeness, we
also report traditional data races between different threads
of the application.

3.1 Data Races Caused by Object Reuse
Consider a simplified version of a harmful bug found by
our tool in the OI File Manager application which con-
tains a ListView user interface component displaying one
image per row. Without loss of generality we assume that
all rows are supposed to display different images denoted
by color as shown in Fig. 1 (a). Each row is identified by
an index and contains an ImageView in which an under-
lying adapter loads the respective images from the file sys-
tem or network as shown in Fig. 1 (b). Each time a new row
becomes visible on the screen, either by initially showing
the list view or when the user scrolls, the framework imple-
mentation of ListView invokes the getView method of its

334

adapter to populate the contents of that row. Even though the
ListView can contain hundreds of rows, at any given time,
only a couple of them fit the screen and are shown to the
user. Because only few rows can be shown on the screen at
a time, for performance reasons, the components represent-
ing the rows (i.e., ImageViews) are reused internally by the
framework and are supplied to the application as a parameter
of the getView method.

To ensure responsiveness, in its getView method, the ap-
plication creates an ImageLoader object which is a subtype
of the framework class AsyncTask (in Android, AsyncTask
is one of the key mechanisms for creating asynchronous be-
haviors). The application then fires off an asynchronous task
while supplying description of an image to be loaded. While
the application proceeds, a background thread invokes the
procedure doInBackground which asynchronously loads
the image and stores it in a suitable Bitmap representa-
tion. On completion of method doInBackground, the back-
ground thread notifies the main thread which in turn invokes
the method onPostExecute with the resulting image rep-
resentation.

Unfortunately, because the ImageView components are
reused internally by the framework, it is possible that two
asynchronous tasks with the same associated ImageView

are loading different images in parallel. One possible exe-
cution of the code that illustrates this scenario is shown in
Fig. 1 (c). Initially, the framework calls method getView

to populate row 1. Let the concrete view object of row 1
be ImageView#1. As a result, the application starts an
ImageLoader#1 for loading the image at row 1. However,
as the user scrolls the ListView, row 1 may become invisi-
ble and instead row 6 is about to be shown. The framework
calls the getView method to populate row 6, but reuses
the view ImageView#1. In this case, ImageLoader#2 is
started to load the image at row 6.

Harmful Behavior In the bad execution trace shown in
Fig. 1 (c), both ImageLoaders are executed concurrently in
separate threads. Because the framework does not guarantee
the order in which ImageLoader tasks will complete, the
user may not see the correct image displayed for row 6, but
instead sees the image for row 1.

Data Race The harmful behavior described above is a re-
sult of an unordered execution of two onPostExecute

events updating the same ImageView and manifests itself
as a data race on mDrawable field of the ImageView#1

object. The field mDrawable is written inside setImage

method defined in the framework which is called from the
user code.

Repair To synchronize this example we could ignore any
ImageView objects supplied to the getView method and
create a new one for each invocation. Although this so-
lution prevents the aforementioned bug, it results in de-
graded performance. Another, better solution is shown as

class MainActivity extends Activity {
void onCreate() {
...
new Downloader(this).execute(URL); // downloads data

}

class Downloader extends AsyncTask {
ProgressDialog mDialog;

Downloader(Activity context) {
mDialog = new Dialog.Builder(context).create(...);
mDialog.show();

}

ArrayList<Data> doInBackground(URL url) {
return downloadData(url);

}

void onPostExecute(ArrayList<Data> data) {
// if (mDialog.getContext().isDestroyed()) return;
mDialog.dismiss(); // accesses activity state
...//display the data to the user

} } }

Figure 2. Example of using Activity in invalid state if the
user navigates away while data is being downloaded.

commented code in Fig. 1 (b). Here, the onPostExecute

method checks whether the associated ImageView is still
assigned to the same position in the ListView.

3.2 Data Races Caused by Invalidation
An invalidation error designates that an operation may use
an object no longer in a valid state. The example in Fig. 2
shows a simplified version of a data race our tool found in the
AnyMemo application. The MainActivity class extends the
Activity framework class to display a single full-screen
window to the user. When MainActivity is shown to the
user, the framework calls the onCreate method which cre-
ates an AsyncTask that downloads data in a background
thread and upon finishing displays the data to the user. While
the data is downloaded in the background, the user is notified
about the progress using a ProgressDialog component.

Harmful Behavior When the AsyncTask finishes, the
MainActivity object may no longer be in a valid state.
This happens for example when the user navigates away
by pressing the back button while the data is still down-
loaded. In this case, invoking mDialog.dismiss() results
in an exception that crashes the application. The exception
is thrown, because the dialog internally uses reference to the
invalid MainActivity object supplied upon its instantia-
tion.

Data Race In this example, the event that destroys ob-
ject MainActivity when the user navigates away (this
event is inside the framework) and the event that runs
onPostExecute are unordered. A data race is reported on
the mPanels field inside the framework class PhoneWindow.
This example shows that it is critical to handle not only user
level memory locations but also memory locations inside
the framework (handling these is beyond the reach of any
existing work).

335

public class MainActivity extends Activity
implements LocationListener {

SQLiteOpenHelper mDbHelper = new
SQLiteOpenHelper(this, DB_NAME, DB_VERSION);

// boolean isActive = false;

protected void onResume() {
// isActive = true;
mLocationManager.requestLocationUpdates(this);

}

protected void onStop() {
// isActive = false;
mLocationManager.removeUpdates(this);
mDbHelper.close();

}

public void onLocationChanged(Location loc) {
// if (!isActive) return;
mDbHelper.getWritableDatabase().insert(loc);

}
}

<application>
MainThread

<framework>
Remote Process

activity#1.onResume()
mLocationManager.requestLocationUpdates(activity#1)

activity#1.onStop()
mLocationManager.removeUpdates(activity#1)
mDbHelper.close()

activity#1.onLocationChanged(location#1)
mDbHelper.getWritableDatabase()

registers listener
to receive

location updates

enqueue
location update

unregisters listener
stop future

location updates

(a) (b)

Figure 3. An example application that may unintentionally keep a database connection open if a location update is enqueued
while the application’s activity stops (a) and its bad execution trace (b).

Repair To synchronize this example we can modify the
onPostExecute method to check whether the Activity is
still in a valid state before dismissing the ProgressDialog
as illustrated by the comments in Fig. 2. This synchroniza-
tion relies on the fact that when the framework destroys an
Activity, it sets a flag to reflect this state change in a field
in the Activity object.

3.3 Callback Races
The Android framework contains hundreds of different types
of events that can be delivered to a running application in
non-deterministic order. As a result, even developers knowl-
edgeable with the Android event system may not know all of
the ordering constraints.

Consider the example shown in Fig. 3 (a). This exam-
ple registers a listener to receive location updates from the
GPS sensor and writes them into a database. The method
onResume is used to start location updates when the applica-
tion becomes visible, and onStop is used to remove location
updates when the user navigates away. Database manipula-
tion is facilitated by a SQLiteOpenHelper class provided
by the Android framework. The onStop method closes the
database and the semantics of getWritableDatabase are
such, that it either returns an already open database instance
or creates a new one.

Intuitively, the onLocationChanged callback should be
executed only after executing onResume and before execut-
ing onStop, yet this is not always the case. The reason why
location updates may arrive after they are stopped is illus-
trated in Fig. 3 (b). If a sensor enqueues a location update
while the onStop method is being executed, then after com-
pleting the onStop method, the application will process the
enqueued location update.

Harmful Behavior If location updates come to a stopped
activity, the database instance will be reopened and will
consume resources even if the user is not interacting with
the application.

Data Race Here, a race is reported on the internal field
mConnectionPoolLocked of the class SQLiteDatabase.

Repair To ensure that no location updates are processed
after the application is stopped, we suggest adding a guard
isActive as shown in the comments in Fig. 3 (a).

4. Android Platform Overview
We provide a brief overview of the Android framework fo-
cusing on the parts which affect concurrency.

4.1 Event Dispatching
Event dispatching in Android is facilitated by the Looper

class. While Looper objects may be created by the devel-
oper, their common use is in the main thread of every An-
droid application. As the application starts, the frameworks
launches the main thread and runs a Looper that continu-
ously dispatches events.

Events dispatched by Looper are called messages and
each message defines a routine to be executed. Once a mes-
sage routine is started, no other message routines can start
until the first one completes. Additionally, the Looper class
allows for a message to be enqueued both by the application
and by the framework, and supports removal of messages
that may become obsolete before they are dispatched.

Messages The timing and order of message dispatching is
controlled by the message type and parameters as follows:

• Delayed(delay) denotes a message to be dispatched after
a specified time elapses. If the time is set to 0 it denotes

336

that the message should be dispatched directly after the
current event finishes (assuming there are no other mes-
sages already scheduled before).
• AtT ime(when) denotes a message to be dispatched at

a specific time.
• Front denotes a message to be dispatched next. For mes-

sages of type Front even if the message queue already
contains other messages scheduled for execution, the
message will be scheduled before them.
• Idle denotes a message to be dispatched when the Looper

has no other messages to dispatch.

Barriers Messages marked as barriers by the framework
are allowed in time critical contexts to enforce additional or-
dering constraints by delaying dispatch of standard messages
enqueued by the application. Examples of messages marked
as barriers are animations and user interface manipulations
that must be processed at a steady high frame rate. We note
that the name barrier is adopted from the terminology used
inside the Android framework and is unrelated to the barrier
semantics typically used in concurrent programming.

Native Messages The Looper contains additional lower
level mechanism for enqueuing and dispatching system mes-
sages from native code. The native messages are used ex-
clusively by the framework for efficient delivery of user in-
put and graphics subsystem messages. We denote these two
types of messages as Input and Display respectively.

4.2 Inter-process Communication (IPC)
The IPC to system services such as AudioManager or
WifiManager is facilitated by a mechanism called Binder.
Similarly to Looper, we can view Binder as a special type
of message dispatcher, where message enqueueing and dis-
patching is performed by different processes. The IPC mes-
sages can be enqueued in one of two modes – synchronous
and asynchronous. Synchronous mode guarantees that the
thread performing enqueue blocks until the message is fully
processed by the receiver, whereas with asynchronous mode,
thread performing enqueue returns immediately.

Message Dispatching Each application processes IPC
messages using a designated pool of up to 16 threads, re-
ferred to as Binder threads. The choice of the Binder

thread processing an incoming message is non-deterministic
and applications should be prepared to handle multiple mes-
sage dispatches happening at the same time.

5. Capturing Android Asynchrony
We present a thorough formal model which captures the
asynchrony arising in the Android platform. The formal
model is described in the form of a happens-before (HB) re-
lation between operations – a core building block for many
concurrency analyzers (e.g., static may-happen analysis,
atomicity analysis). We begin by defining operations nec-

Message Type(s) Field Description

IPC sync execution mode

Delayed delay time before dispatch

Front,AtT ime,Delayed barrier execution mode

Table 1. Description of enqueue operations.

essary to capture the HB where we aim to cleanly capture
key details of the platform. We then formalize the notion of
an Event and finally define the HB rules over the operations.
The definition of HB rules is based on studying framework
source code and careful empirical experimentation with the
goal to model the ordering of the events as precisely as pos-
sible. Our experience across several Android versions is that
the HB remains quite stable (i.e., only one change in three
years).

5.1 Defining Operations and Events
Operations defined here are an abstraction of the Android
platform where different Android APIs can be mapped to
the same operation.

Each operation op ∈ Op is a structure with the following
fields:

〈event, pid, tid,mid, type, dispatcher,
dispatchertype, delay, sync, barrier〉

Here, event denotes the unique identifier of the event
as part of which the operation executes, pid is the process
identifier, tid is the thread identifier, mid is an unique iden-
tifier assigned to each message, type ranges over the values
{Delayed, Front, Idle, AtT ime, Input,Display, IPC},
dispatcher denotes the unique identifier of the message
dispatcher, dispatchertype ranges over {Looper, Binder},
delay is a natural number and sync and barrier are booleans.

Operations typically make use of only a subset of fields
(discussed below). The operations are divided into three
kinds, discussed next.

Message Dispatch The following set of operations provide
an abstraction over the various types of message dispatching
mechanisms found in Android including both Looper and
Binder described in Section 4.

• enqueue(mid, type) denotes a message with type and
a unique identifier mid scheduled for execution. For all
messages the unique message dispatcher is denoted as
enqueue(mid).dispatcher. The meaning of the other
fields used by this operation is summarized in Table 1:
one can see that different message types typically go in
pair with different fields.
• blocking enqueue end(mid) denotes that the blocking en-

queue operation has finished the message dispatch.
The only message dispatcher that currently supports
blocking enqueue operations is Binder used for IPC.

337

• remove(mid) denotes that a previously enqueued message
is removed and will not be dispatched.
• begin(mid) and end(mid) denotes the beginning and end-

ing of a dispatching message mid.

Thread Specific

• fork(tid, tid′) and join(tid, tid′) denote that thread tid
created a new thread tid′, and respectively tid waits until
thread tid′ finishes execution.
• thread init(tid) and thread exit(tid) denote the first and

last operation performed by a thread tid.
• wait(id) and notify(id) denote thread synchronization us-

ing wait and notify operations with an unique id.

Explicit Synchronization To model explicit synchroniza-
tion we define three callback operations. Here, register(c),
invoke(c, sync) and unregister(c) denote that a callback c
was registered and might be invoked later using an invoke.
Boolean field sync denotes the execution mode of the in-
vocation which can be either synchronous or asynchronous.
The unregister operation denotes removal of the callback c.

The happens-before is defined over API calls at the level
of dispatcher mechanisms such as Looper and Binder.
An operation α not performed as a result of dispatching
a message is not part of an event and thus α.event = ⊥.

Definition 5.1. Event. An event is a finite sequence of
operations: begin(mid) · . . . · end(mid) performed as a result
of dispatching a message by a dispatcher mechanism.

5.2 Defining the Happens-Before
A program’s semantics is defined as a set of traces where
a finite trace π = α0 · α1 · · · · · αn is a sequence of
operations. We use πtid to obtain a trace where all operations
are performed on thread tid. For a trace π, we use α <π β
to denote that operation α occurs before operation β in π.
The happens-before relation ≺ ⊆ Op × Op is a binary
relation that is irreflexive and transitive. For convenience we
use α ≺ β instead of (α, β) ∈≺.

Happens-Before Rules The HB rules are formalized in
Fig. 4. What follows is a description of individual rules. All
rules are designed such that they introduce an ordering in
the form α ≺ β. To avoid clutter, all rules use the implicit
condition α <π β in their premise.

EVENTOP. Operations performed within the same event are
ordered according to the trace order.

LOOPERATOMIC. A pair of events dispatched by the same
Looper is ordered whenever there is at least one pair of or-
dered operations between them. Instead of testing all possi-
ble pairs of operations between two events, it is sufficient to
test whether the begin operation of the first event is ordered
before the end operation of the second event. This rule takes

η�γ Delayed AtT ime Idle

Delayed η.delay ≤ γ.delay false η.delay = 0

AtT ime false false false

Front true true true

Idle false false true

Table 2. Conditions for ordering events based on their en-
queue messages type defining the function looperord(η, γ).

advantage of fact that the events dispatched by the Looper

dispatcher are executed atomically and are not interruptible.

THREADINIT and THREADEXIT. All operations in a thread
are ordered after thread init and before thread exit. THREA-
DINIT together with rule THREADFORK is used to order
operations performed before fork with the operations per-
formed by a thread created as a result of a fork operation.
THREADEXIT is similarly used together with THREADJOIN.

MSGENQUEUE. Message enqueue is ordered before the
start of message dispatch denoted by operation begin.

MSGREMOVE. Operation remove is ordered after all dis-
patched messages. The intuition behind this rule is that at
the time of executing remove operation, either the corre-
sponding enqueue was already dispatched or it will never
be dispatched (since the remove deletes it from the message
queue). We note that this ordering is sound only if the cor-
responding enqueue is guaranteed to be executed before the
remove. Otherwise the message could be dispatched in case
enqueue is reordered with the remove.

MSGBLOCKING. For blocking enqueue operations, not
only is enqueue before begin as defined by MSGENQUEUE,
but additionally end is ordered before blocking enqueue end.

MSGBEGIN#1. This rule defines the conditions under which,
given two ordered enqueue operations η ≺ γ, the result-
ing dispatched events α and β will also be ordered. First,
both messages η and γ must be dispatched by the same
Looper (i.e., η.dispatcher = γ.dispatcher). The condi-
tion η.barrier∨¬γ.barrier captures that the order in which
messages are dispatched should not be affected by barriers.

The function looperord(η, γ) evaluates to values from
Table 2 of row η.type and column γ.type. For η.type =
Front, we know that only another enqueue of type Front
can be dispatched before and therefore the whole row evalu-
ates to true.

For η.type = AtT ime we cannot add any HB order-
ing as the order depends on external factors such as thread
scheduling and can change between executions. To illustrate
why two enqueue operations of type AtT ime can not be or-
dered, consider a scenario where initially x = 0 and we
perform two operations postAtTime(task 1, x+100)

and postAtTime(task 2,x) inside of the same event.
Depending on time t between the invocation of these two

338

α.event 6=⊥ α.event = β.event α <π β

α ≺ β
(EVENTOP)

α = register(c) β = invoke(c,)

α ≺ β
(CALLBACKREG#1)

α = register(c) β = unregister(c)

α ≺ β
(CALLBACKREG#2)

α = invoke(c,) β = unregister(c)

α ≺ β
(CALLBACKUNREG)

α, β = invoke(c, sync) ∧ α <π β
α ≺ β

(CALLBACKINV)

α = end(mid) η = enqueue(mid)
β = begin(mid′) γ = enqueue(mid′) η ≺ γ
looperord(η, γ) η.dispatcher = γ.dispatcher

η.type ∈ {Delayed,AtT ime, Front, Idle}
γ.type ∈ {Delayed,AtT ime, Idle}

η.barrier ∨ ¬γ.barrier
α ≺ β

(MSGBEGIN#1)

α = end(mid′)
γ = enqueue(mid′) β = begin(mid)

η = enqueue(mid) η ≺ γ ≺ β
η.dispatcher = γ.dispatcher γ.type = Front

η.type ∈ {Delayed,AtT ime, Front, Idle}
γ.barrier ∨ ¬η.barrier

α ≺ β
(MSGBEGIN#2)

η = begin(mid) α = end(mid)
β = begin(mid′) γ = end(mid′)

η ≺ γ α.dispatcher = β.dispatcher
α.dispatchertype = Looper

α ≺ β
(LOOPERATOMIC)

α = enqueue(mid) β = begin(mid)

α ≺ β
(MSGENQUEUE)

α = fork(, tid) β = thread init(tid)

α ≺ β
(THREADFORK)

α = thread exit(tid) β = join(, tid)

α ≺ β
(THREADJOIN)

α = thread init(tid) β ∈ πtid \ α
α ≺ β

(THREADINIT)

β = thread exit(tid) α ∈ πtid \ β
α ≺ β

(THREADEXIT)

α = notify(id) β = wait(id)

α ≺ β
(NOTIFYWAIT)

α = begin(mid)
β = remove(mid) γ = enqueue(mid) γ ≺ β

α ≺ β
(MSGREMOVE)

α = end(mid) β = blocking enqueue end(mid)

α ≺ β
(MSGBLOCKING)

Figure 4. HB rules defining ordering constraints. All rules use implicit condition α <π β in the premise.

operations there are two possible outcomes: i) if t < 100,
then task 2 is dispatched first, ii) if t ≥ 100, then task 1

is dispatched first.
When both operations are of type Delayed, the resulting

events can be ordered only if η.delay ≤ γ.delay. Otherwise,
the ordering depends on the execution time between η and γ
in a given trace which is non-deterministic. When the second
enqueue is of type Idle, we can order the events only in case
delay = 0. For any greater value of delay, it is possible that
the Idle message will be dispatched first in case the Looper
has no messages to dispatch before delay time elapses.

MSGBEGIN#2. This rule complements rule MSGBEGIN#1
where the second ordered enqueue operation γ is of type
Front. We know that γ will be dispatched before any pre-
viously enqueued operation η that is still waiting to be dis-
patched. To guarantee that η is still waiting to be dispatched
we use condition γ ≺ β, where β is the begin operation of
an event dispatched as a result of enqueueing message η.

Speculative Happens-Before Rules Many system pro-
cesses that communicate with the application using IPC or
native messages include complex synchronization mecha-
nisms and are partly written in native code. Such code can
enforce additional orderings on the events of the applica-
tion. To capture these orderings, we introduce speculative
HB rules. The rules are referred to as speculative because

α = end(mid) <π β = begin(mid′)
α.type, β.type ∈ {Input,Display}

α.type = β.type α.dispatcher = β.dispatcher

α ≺ β
(NATIVE)

α = end(mid) η = enqueue(mid)
β = begin(mid′) γ = enqueue(mid′) η <π γ

η.sync ∨ ¬γ.sync η.type = γ.type = IPC
η.pid = γ.pid η.dispatcher = γ.dispatcher

α ≺ β
(IPCHANDLE)

α, β ∈ πtid α <π β α.event = β.event =⊥
α ≺ β

(THREADOP)

α = end(mid) η = enqueue(mid)
β = begin(mid′) γ = enqueue(mid′) η ≺ γ
η.type = γ.type = IPC ¬η.sync ¬γ.sync
η.tid = γ.tid η.dispatcher = γ.dispatcher

α ≺ β
(IPCASYNC)

Figure 5. Speculative HB rules.

they are based on empirical observations of how the Android
system behaves by using careful experimental evaluation (as
opposed to source code review) of the Binder framework.
As a result they may introduce more orderings than strictly
necessary. We discuss the effects of speculative rules on the
concurrency analysis in Section 8.2.

339

NATIVE. All native messages of the same type delivered to
the application are ordered according to trace order. This
rule assumes that messages of a given type are enqueued by
a single process and that the internal logic of this process
ensures the messages are always ordered. For native Input
messages, this translates to the observation that when the
user interacts with the device, the system will deliver both
Input messages to the application in the same order as they
were performed, which should intuitively be the case.

THREADOP. This rule states that operations in the same
thread and outside of events are ordered by trace order.

IPCHANDLE. IPC messages enqueued by the same process
to the same dispatcher are ordered by trace order. This rule
uses the observation that IPC messages are usually enqueued
to a single dispatcher from a single remote process and we
assume the remote process is properly synchronized. This
rule is important in order to capture the happens-before or-
dering of the interaction with Android system services such
as AudioManager, WifiManager or LocationManager.
Such system services run in a separate process and commu-
nicate with the user application using the IPC messages.

IPCASYNC. For two ordered IPC messages η ≺ γ enqueued
by the same thread to the same dispatcher, the resulting
events are fully dispatched in the same order they were
enqueued (i.e., dispatch of the second message starts only
after first finished dispatching). Note that the messages need
not be dispatched by the same Binder thread. In case η ≺ γ
where ¬η.sync and γ.sync the events cannot be ordered as
it is not guaranteed that two enqueues performed in quick
succession are not dispatched concurrently.

5.3 Comparison with CAFA and DROIDRACER

Having formally defined the HB rules, we next discuss the
differences compared to the HB rules presented in CAFA [6]
and DROIDRACER [9]. The HB rules defined in CAFA are
based on Android version 4.3, DROIDRACER uses version
4.0, and we use Android version 4.4. Although the frame-
work core is relatively stable among different versions, there
are still some changes that have to be accounted for occa-
sionally.

We analyzed versions of Android from 4.0 to 4.4 span-
ning more than three years (October 2011 - November 2014)
and during this time there was a single change to the frame-
work that required adapting the HB rules (introduction of
barriers) as well as a single major performance change that
required adapting the actual implementation. Additionally,
we note that there is a value in supporting newer framework
versions as they often include new APIs that can be of signif-
icant value for the developers. Table 3 summarizes the dif-
ferences between the happens-before model presented in our
work vs. the two prior works, CAFA and DROIDRACER. We
can see that our model is strictly more precise in all aspects
than the HB models defined in these works:

HB Rule Our work CAFA DROIDRACER

MSGBEGIN all types Delayed, Front Delayed

MSGREMOVE 3 7 7

barriers 3 7 –
IPCASYNC 3 3 3*

MSGBLOCKING 3 7 7

IPCHANDLE 3 7 7

*manually created list of ordered system events

Table 3. Comparison of HB rules with related work. Com-
mon rules are omitted to remove clutter.

• Complete handling of message types. We handle all avail-
able message types (i.e.,Front,Delayed, AtT ime, Idle),
compared to supporting onlyDelayed by DROIDRACER
and Delayed, Front by CAFA.
• Considers effect of message removal. Our work is first to

consider the effect of removing messages on the happens-
before ordering.
• Considers effect of barriers. We also model the ef-

fect of barrier message dispatching. Here we note that
DROIDRACER does not include barriers as it targets An-
droid version 4.0 whereas barriers were introduced in
version 4.1.
• Models IPC communication. We formalize the IPC com-

munication provided by the Binder framework using
the happens-before rules. This in contrast to the infor-
mal description provided by CAFA which also does not
describe the different effects of synchronous and asyn-
chronous messages. On the other hand, in DROIDRACER,
IPC communication is captured via a set of rules (created
by a domain expert) which define the ordering between
messages sent from the system. We note that such an ap-
proach is inherently incomplete as it cannot capture user
defined APIs and can also be costly to maintain.

In our work we introduce both, additional true HB order-
ings due to rules MSGBEGIN and MSGREMOVE (first two
lines), and remove false HB orderings using the remaining
entries. To quantify the effect of a more precise HB def-
inition, we performed experiments where we enabled and
disabled rules not found in CAFA and DROIDRACER. We
found that on average, we remove 8.5% false HB orderings
by considering the effect of barriers, and 61% HB orderings
present due to imprecise handling of IPC communication
(assuming that all messages from remote processes, except
for lifecycle messages, follow trace order). Some of the false
HB orderings that we removed even contradict the order of
events as seen in the execution trace (this is caused by not
considering the effect of barriers).

Finally, in our experiments we even discovered a bug (de-
scribed in Section 3.3) in the framework which contradicts
the official documentation – the documentation states that
after a call to removeUpdates, the location updates will

340

no longer occur2. Detecting this bug would be impossible if
we used the documentation as the specification for ordering
framework events, as done by DROIDRACER.

Races Between Threads Even though the focus of our
work is on Android specific concurrency errors (i.e., in the
main application thread), for completeness, our system also
detects races between threads. To detect these races, the only
needed information is tracking lock and unlock operations.
Just as in CAFA, we use the lock and unlock operations only
to check for mutual exclusion using the lockset algorithm
(these do not affect the HB relation). Therefore, checking
for races between threads can be easily handled as in our ap-
proach, the most expensive and difficult part – defining (Sec-
tion 5) and computing (Section 6) the HB graph – is done for
the whole Android system, not just the main thread.

6. Scalable Computation of the HB Graph
A key challenge when designing our analysis system was
coming up with a scalable algorithm for building the happens-
before (HB) graph from a given execution. Such an algo-
rithm is particularly critical because in the Android setting,
the process of race detection (once the HB graph is built) is
not the performance bottleneck – the expensive part is build-
ing the HB graph. In fact, the algorithm for building the HB
graph is also the key performance bottleneck of both [6, 9]
and is one of the underlying reasons for why these analyzers
do not scale in practice.

The reason we need a new algorithm lies in the complex-
ity of the HB rules discussed so far. We believe that once de-
veloped for Android, the HB graph construction algorithm
will translate to frameworks with similar HB rules (possi-
bly iOS or Windows Phone). It is important to note that we
cannot simply reuse techniques developed in other domains
such as analysis of web pages (e.g., [12]), because they tar-
get a much simpler fork-join happens-before model.

The algorithm we developed handles the full Android
model, performs well on real world applications, is orders
of magnitude faster than prior work, and is used for both
detecting races on the main thread and for detecting races
between threads. Our algorithm takes as input an execution
trace and the formalized HB rules as described in Section 5,
and outputs a HB graph. Once the full HB graph is obtained,
we can then reuse existing techniques for detecting races
(described in Section 7).

Overview Algorithm 1 provides a high level description of
the HB graph construction. The function BuildHB takes as
input a trace π consisting of a sequence of operations, as well
as an initially empty HB graph (with nodes V and edges E).
The algorithm then iteratively builds the graph by adding
each operation from the trace to the set of nodes (line 3). The
operations are processed in the trace order which is guaran-

2 http://developer.android.com/reference/android/location/
LocationManager.html#removeUpdates(android.location.LocationListener)

Algorithm 1 Builds the happens-before graph (V,E) given
an execution trace π.

1: function BUILDHB(π, V,E)
2: for β ∈ sortByTraceOrder(π) do
3: V ← V ∪ {β}
4: rules← applicableRules(β, V,E)

5: for rule ∈ rules do
6: for all α ∈ match(rule, β, V,E) do
7: E ← E ∪ {(α, β)}
8: for all α′ ∈ match(LOOPERATOMIC, β, V,E)
9: and (α′.event, β.event) /∈ E do

10: E ← E ∪ (α′.event, β.event)
11: Vo← {γ ∈ V | β.event ≺ γ}
12: BUILDHB(Vo, V, E)

teed by sorting the operations at line 2. We note that the sort-
ing is not required in the actual implementation as long as we
ensure that the inputs are already sorted. Next, the algorithm
finds edges connecting to the newly added node, by checking
which HB rules can be applied (using applicableRules

on line 4). For most of the rules, we efficiently match all op-
erations α that satisfy the rule preconditions and since each
rule implies α ≺ β, we add (α, β) to the graph (line 7).
Finally, we apply the complex rule LOOPERATOMIC (lines
8-9). This rule orders entire atomic events based on ordering
of operations within the events. In this case, we also repro-
cess part of the input trace (all nodes ordered after the second
event), because the added edge may affect other rules (lines
11 and 12).

Key Scalability Ingredients To make the algorithm scale,
we instantiate the functions in Algorithm 1 as follows:

• Efficient HB rule matching: this is done via the match

function where for a given rule and operation β, the
function finds all matching operations α that should be
ordered before β. This is discussed in Section 6.1.
• Evaluating each rule at most once: this is accomplished

by leveraging rule evaluation order. That is, the function
applicableRules is designed so that it returns a list of
rules. This enables us to use a simple loop with rule ∈
rules instead of an expensive fixpoint iteration. Details
of this technique are discussed in Section 6.2.
• Trace optimization: this technique prevents processing

an operation multiple times due to recursive calls to
BuildHB (discussed in Section 6.3).
• O(1) graph connectivity queries: we provide an efficient

procedure for answering whether (α, β) ∈ E, while the
graph is being built. This is discussed in Section 6.4.

While instantiated for Android, we believe these tech-
niques (or variants) will be of interest in other settings with
complex HB rules.

341

enqueue(2) enqueue(1)

begin(2) begin(1)

begin(0)end(0)

Event 0

enqueue(3)

'

Figure 6. Example of inefficient graph pruning in case
of multiple paths to the same node (from enqueue(3) to
begin(0)) in the happens-before graph.

Performance Benefits In our experiments, the above in-
gredients were critical to achieving a scalable concurrency
analysis system. For example, disabling pruning (Section 6.1)
and fast connectivity queries (Section 6.4) resulted in ≈4x
and ≈50x slowdowns respectively for 2 minute traces. As
the traces get larger, the effect of both optimizations be-
comes even more significant resulting in slowdowns of ≈7x
and ≈140x for 10 minute traces.

6.1 Efficient Rule Matching
Our algorithm evaluates most rules in constant time by
caching part of the rule: this allows for fast retrieval of a
matching operation α given an operation β. This approach
is applied to MSGENQUEUE, MSGREMOVE, MSGBLOCK-
ING and all CALLBACK and THREAD rules, for which
our instrumentation guarantees that the corresponding op-
eration α is unique in the trace and is efficiently cached.
As an example, consider rule MSGENQUEUE where for
an operation begin(mid) we want to find the correspond-
ing operation enqueue(mid) with the same mid. Since
the mid is designed to be unique for all enqueue opera-
tions (it consists of tuple (tid, id) where the implementa-
tion increments id whenever a new message is generated),
we can use it to cache the enqueue operation using mid
as key. Consequently, when we later encounter operation
begin(mid) in the trace, we can easily retrieve the corre-
sponding enqueue(mid) from the cache.

Rules EVENTOP, THREADOP, IPCHANDLE and NA-
TIVE are evaluated in O(1) by taking advantage of the tran-
sitivity of the HB relation. Here, it is sufficient to add an
edge only to the latest α in the trace that matches the rule.

For performance reasons, rule LOOPERATOMIC is not
evaluated directly. Instead, when other rules introduce an or-
dering α ≺ β, we perform the following equivalent evalua-
tion. First, if β is not performed in a Looper event, the rule
premise never evaluates to true and hence we stop evalua-
tion. Second, when both α and β are performed by the same
Looper, it is sufficient to only check whether their enclos-
ing events can be ordered. Finally, when β is performed by
a Looper but α is performed either by a different Looper
or not inside a Looper, we need to traverse a potentially lin-

ear number of nodes in the graph. This is because we need
to find all operations ordered before α that are performed by
the same Looper as operation β.

Finally, rules MSGBEGIN and IPCASYNC have worst
case complexity linear in the number of nodes. The reason
is that they require checking all ordered pairs of enqueue
operations η ≺ γ. Even though worst case is linear, by
pruning the graph traversal, we are able to effectively reduce
the total number of visited nodes during analysis.

Graph Traversal Pruning Evaluating rule MSGBEGIN and
IPCASYNC requires checking all ordered pairs of enqueue
operations η ≺ γ (implemented as a depth-first graph
search). To improve the worst case linear complexity, we
prune the graph search to significantly reduce the total num-
ber of visited vertices during analysis as follows:

• For two enqueue operations η ≺ γ of type Delayed
we prune when η.delay = γ.delay and rule MSGBE-
GIN evaluates to true.
• For two enqueue operations η ≺ γ of type IPC we

prune when rule IPCASYNC evaluates to true.

These conditions reflect the fact that pruning is performed
only when we are guaranteed that (by the transitivity of the
HB relation) the HB graph already contains all edges that
might be added as a result of visiting pruned nodes.

Further, whenever node γ is pruned, we also prune begin
node of γ.event. This is important as there might be multi-
ple paths leading to the begin node, not all of which might be
pruned. However, as long as at least one of them is pruned,
evaluating such a path can be safely skipped. An illustrative
example of the happens-before graph where this optimiza-
tion is useful is shown in Fig. 6. The edges in the graph de-
note happens-before relationships (e.g., operation begin(0)
is ordered before operation enqueue(1)) and we perform
search for all pairs of enqueue operations η ≺ γ. Whenever
such a pair is found, we evaluate the corresponding happens-
before rule (one of MSGBEGIN or IPCASYNC) and if pos-
sible, perform pruning. The algorithm performs depth-first
graph search and finds an ordered pair of enqueue opera-
tions η ≺ γ which can be pruned. However, as the algo-
rithm continues, another ordered pair of enqueue operations
η ≺ γ′ is found. Assume however that this pair does not sat-
isfy the conditions for pruning, and therefore the depth-first
search continues visiting node begin(0) and all of its par-
ents. By pruning not only the node η but also its correspond-
ing begin operation (in this case begin(0)), we can effec-
tively prevent unnecessary graph search in this scenario.

6.2 Rule Evaluation Order
To ensure efficiency, we define evaluation order of the HB
rules for every operation in the trace such that a rule is
evaluated exactly once. That is, evaluating each rule once
must produce the same result as evaluating all rules until
a fixed point. Because the conclusion of all rules has the form

342

α ≺ β, only rules that use HB ordering in their premise can
be affected by applying the conclusion of another rule. There
are two rules that make use of HB ordering in their premise –
MSGBEGIN and IPCASYNC. Note that for any operation β,
at most one of them can be applied. This is because both
rules are used to order operation β = begin based on the
type of its enqueue operation. Hence, we can evaluate all
rules in any order except these two, which are evaluated last
(in any order).

6.3 Processing Operations Only Once
The previous optimization guarantees that during operation
processing, each rule is applied at most once. However, an
operation may be processed multiple times due to the rule
LOOPERATOMIC (recursive call in Algorithm 1). Consider
the trace e1 · e2 where the two events are:

e1 : begin(1)1 · enqueue(3, . . .)2 · register(c)3 · end(1)4
e2 : begin(2)5 · enqueue(4, . . .)6 · invoke(c)7 · end(2)8

Here, the order in which operations are processed is de-
noted by the superscripts. Consider that the first five op-
erations were already processed and we are about to pro-
cess enqueue(4). At this point, rule MSGBEGIN is eval-
uated by finding all enqueue operations ordered before
enqueue(4) and checking whether the resulting events can
be ordered. Since events e1 and e2 are not yet ordered, no
such enqueue operation is found. As we process the next op-
eration invoke(c), rule CALLBACKREG orders register(c)
and invoke(c) after which rule LOOPERATOMIC is used to
order the events by introducing the edge end(1) ≺ begin(2).
However, this introduces an ordering between enqueue(3)
and enqueue(4), thus affecting the result of processing
enqueue(4) in the previous step. As a result, we need to
evaluate enqueue(4) again.

To prevent frequent occurrence of such cases (i.e., where
same pair of operations needs to be evaluated several times),
the HB algorithm moves operations – in this case invoke –
that are guaranteed to trigger the rule LOOPERATOMIC to
the beginning of the event. This is sound if both such op-
erations are from the same dispatcher. In the above exam-
ple, this results in moving the invoke(c) operation right af-
ter begin(2), hence establishing an order between events e1
and e2 before enqueue(4) is processed.

6.4 Fast Online Connectivity Queries
To keep the HB graph sparse (which is crucial for effective
pruning) and to efficiently evaluate rules MSGBEGIN and
LOOPERATOMIC, we need to efficiently check whether two
nodes are reachable in the graph. For this purpose, we mod-
ified the chain-decomposition graph connectivity algorithm
used for offline race detection in [12] to be usable in our on-
line graph construction setting. Note that we use the terms
offline and online to denote the design of the algorithm, that
is, whether it requires the complete trace (offline) to run or

whether it can also be used incrementally as the trace is be-
ing built.

The idea of chain decomposition is to assign every node
in a graph to a chain, such that there is a path from a node to
its successor in the chain. Then, a vector clock is allocated
to each node in the graph and a connectivity query between
any two nodes can be performed in constant time [12]. Each
vector clock requires memory proportional to the number
of chains. To make the chain assignment procedure work in
an online setting, we used the fact that we add nodes to the
graph in the order they appear in the trace. Since we apply
many of the rules directly after adding a node, we greedily
try to assign each node to a chain formed by a predecessor
node in these directly applied HB rules (Algorithm 1, line 7),
or to a new chain if no such chain is found.

Finally, for some of the rules, we must be able to add
edges between a pair of (possibly internal) nodes α and β
in the graph. To add edge from α to β, we join the vector
clocks of each of the nodes β′, for which β ≺ β′, with the
vector clock of α.

Memory Efficiency Memory efficiency of Algorithm 1 is
dominated by the memory requirements of the vector clocks.
This is due to the fact that vector clocks requireO(nc) mem-
ory, where c is number of chains and n is the number of
events. In our experiments, the number of chains is less than
5k for all analyzed traces (up to 10 minutes of app explo-
ration, with up to 400k nodes). Many chains are generated
when processing the system startup where for example a 10
minute Facebook trace (4577 chains, 380k nodes) has only
slightly more than twice the chains of a 2 minute trace (2075
chains, 100k nodes) which demonstrates that the analysis
scales well as the number of nodes increases.

7. Implementation
This section describes key implementation aspects of our
system. The individual parts and the flow between them is
shown in Fig. 7. These parts include: (i) a modified Android
framework, (ii) an algorithm that builds the HB graph from
a given trace, a race detector analyzing the HB graph, and
(iii) an interactive web-based race explorer which allows one
to easily explore the reported races and the HB graph.

7.1 Android Instrumentation
Our instrumentation extends the Android framework version
4.4. We created a custom system image that can be flashed
onto a real device or used by a standard Android emulator.
Instrumenting the framework instead of only the application
is essential as many operations necessary to establish HB
orderings are generated internally in the framework. The
instrumentation is performed at the lowest possible API level
(e.g., instrumenting a single abstract View class instead of
all concrete UI components) and required modification of
around 40 different Android API classes.

343

.apk

Unmodified
Application

Instrumented
System Image

Application
Exploration

.trace

Execution Trace
Happens-before

Graph Construction Race Detector Race Explorer

Figure 7. Overview of the analysis process.

Java Memory Locations Android applications and most of
the Android framework are written in Java, where memory
locations are object and class fields. The instrumentation is
performed by modifying the portable interpreter found in the
Dalvik VM (i.e., reads/writes to object and class fields are
translated to read and write operations). Our modification is
based on the portable interpreter, which is written entirely
in C and is expected to run on a broad range of hardware
platforms. To keep our instrumentation active at all times,
we disabled the JIT compiler.

Logical Memory Locations We define logical memory
locations to explicitly allow a suitable abstraction of the
shared or external resources. For example, we instrumented
two SharedPreferences methods get(key,value) and
put(key,value) and translated them to corresponding
reads and writes to logical memory location key.

To handle long-running programs, we do not record reads
and writes of newly allocated objects and final static fields
as well as reads and writes inside Java methods invoked
from native code. Additionally, inside a single event, we
only record the first reads and writes to the same memory
location. We note that this optimization is enabled only when
analyzing the main thread of the application as otherwise we
record all reads and writes.

Message Dispatcher Operations We instrumented three
message dispatchers – Binder, Executor and both Java
and native Looper. For all message dispatchers the corre-
sponding message container was extended to facilitate stor-
ing a unique mid assigned to a message upon its creation.

Callback Operations For intraprocess Android APIs, the
instrumentation is done manually and includes user inter-
face components, sensors and utility class listeners such as
View.OnClickListener. For interprocess APIs, we take
advantage of the fact that interprocess listeners are usually
associated with a low level native resource used to facilitate
the interprocess communication and the listener invocation.
As a result, instead of instrumenting all the individual places
where such listeners are created, we instrument the low level
native resources for Binder and the native Looper classes.

Lock and Unlock Operations To keep track of lock and
unlock operations, we instrumented the Dalvik VM and
the Java package java.util.concurrent.locks which
defines built-in primitives such as ReentrantLock. The
instrumentation of Dalvik VM handles the Java keyword
synchronized by instrumenting the corresponding op-

codes monitorenter and monitorexit inside the inter-
preter. We note that no special handling is required for the
java.util.concurrent.atomic package which defines
set of lock-free thread-safe atomic classes as they all use na-
tive methods (e.g., compareAndSet or getAndIncrement)
that do not access Java memory locations.

7.2 Race Detection
Once the HB graph is obtained, we use the modified graph
connectivity algorithm from [12] to find races as described in
Section 6.4. The algorithm first decomposes the graph into c
chains of totally ordered nodes and then assign vector clocks
of width c to all nodes. For a graph of n nodes and c chains, it
requires O(nc) space and O(1) time per connectivity query.

7.3 Dealing with Benign Races
A key challenge with race detectors is that they often report
too many races, beyond what is reasonable to expect from
a developer to inspect manually. To address this issue, we
employ the following three techniques.

7.3.1 Race Coverage
The first approach we use to filter races is the concept of
coverage introduced in the EVENTRACER work [12]. Infor-
mally, covered races are races which are not guaranteed to
occur due to ad-hoc synchronization by races on other mem-
ory locations. Conversely, uncovered races are guaranteed
to be real races.

We note that race coverage guarantees that if a race (c,d)
covers race (a,b), it also covers any other race (e,f) where e
and f are not recorded due to not being the first read or write
in an event for a given variable. This is because the defi-
nition of race coverage does not depend on the program’s
control flow or on the values being read/written. Further,
we note that race coverage is only applicable when we are
analysing the main thread of the application since its defini-
tion assumes the presence of atomic events.

Covering Races in Android Based on extensive experi-
ments with coverage in Android, we reached a conclusion
that we need a finer definition of coverage where we can
control which races can cover which other races. Hence, we
ensure that only memory locations in user space and a set
of whitelisted framework variables such as the mDestroyed
field in a Activity class may act as synchronization. We
believe that the set of whitelisted variables we provided is
generic for Android and is unlikely to change in future.

344

Operation Type Count(median/max) Size(median/max)

Happens-before 59 / 62 · 104 13.45 / 14.13 MB
Memory Location 514 / 533 · 104 85.52 / 90.08 MB

Debug Info 1933 / 2124 · 104 97.1 / 116.04 MB

Table 4. Trace statistics for 6 minute application execution.

7.3.2 Race Filtering
We use several techniques to remove common classes of
benign races by taking into account the context of the race
operations. One such technique was previously presented by
Raychev et al. [12]: races updating the same value, races
with no non-local reads and lazy initialization. Additionally,
we designed the following Android specific filters:

Races Entirely in the Framework We assume that all op-
erations in the framework are properly synchronized. Thus,
we mark as benign all races, for which the operations and
their entire call context is in the Android framework. Note
that this does not include the operations that are in the frame-
work, but were called from user code (e.g., see Section 3.2).

Observably Commutative Operations We constructed a list
of Android specific APIs and locations where we know that
the operations commute. One such class of APIs are oper-
ations that update the UI components or interact with the
graphics subsystem. We mark as benign all races where at
least one of the operations belongs to such an API.

7.3.3 Race Grouping
Finally, we group multiple redundant races into single re-
ports by event source such as Input, Display, IPC or Thread,
as well as by the calling context of the race operations (i.e.,
the stack trace). Additionally, we split the reported groups
into two categories: (i) User vs. User race groups where
both accesses to the memory location are performed directly
in the user code, and (ii) User vs. Framework race groups
where one of the accesses is performed in the framework.

8. Evaluation
This section discusses our extensive experimental evalua-
tion. We tested the following experimental hypotheses:

• Analysis Performance: The instrumentation of the An-
droid framework does not significantly degrade the per-
formance of the application.
• Analysis Performance: The algorithms scale to analyzing

real-world application interactions in feasible time.
• Analysis Usability: Filtering and grouping techniques are

effective in reducing the number of benign races, and the
system is able to find harmful races.

We used a Nexus 10 device with a custom instrumented
system image to collect program traces. The processing of
traces was performed on a machine with 2.10GHz Intel Core
i7-4600U CPU, 16GB of memory running Ubuntu 13.04.

Metric Facebook Dropbox Twitter

2 minutes
Application Events 6823 3761 5763

Runtime in seconds 28.9 19.8 20.2
Memory Usage in GB 1.93 1.79 1.06
10 minutes

Application Events 50135 16261 19878
Runtime in seconds 126.7 77.9 91.4

Memory Usage in GB 10.45 6.38 6.45

Table 5. Performance metrics of end-to-end analysis of the
main application thread.

We evaluated our system on 354 popular Android appli-
cation downloaded from Google Play Store3. Each applica-
tion was exercised with 1000 user events generated by An-
droidMonkey4 using the following command:

adb shell monkey -s 42 --throttle 60 -v 1000

This resulted on average in 60 seconds of active appli-
cation usage. Our system was able to analyze the collected
traces of each application on average in 24 seconds.

On average, our system discovered 3, 093 races per appli-
cation main thread, but based on our filtering and grouping,
we reduced this to only 4 reports in the user code, and 19
reports in APIs called from user code. Further, in 11% and
37% of the applications there were no races reported for user
vs. user and framework groups respectively.

8.1 Performance
To test the efficiency and scalability of our system, we used
three of the most popular, yet very complex, applications –
Facebook, Dropbox and Twitter.

Overhead Our instrumentation is based on the portable in-
terpreter of the Dalvik VM and does not support JIT com-
pilation or use some of the assembly routines for particu-
lar platforms. Nevertheless, in practice the system feels nim-
ble and responsive and such performance optimizations were
not needed. The runtime overhead incurred by the instru-
mentation of reads and writes together with collection of de-
bug information such as stack traces is ≈ 300% (the over-
head required to build the HB graph is negligible). We are
able to achieve such small overheads because of efficient
implementation coupled with the fact that part of the main
thread’s execution is spent in native code for which memory
location instrumentation is disabled.

Trace Size Trace files statistics are shown in Table 4. The
majority of recorded operations are due to collecting addi-
tional debug information used to improve usability of re-
ported races. Because we instrument the framework, we
need to handle on average 10 − 20 × more locations than

3 https://play.google.com/apps
4 developer.android.com/tools/help/monkey.html

345

Metric \ Application
OI

Fil
e Man

age
r

NPR
New

s

ATi
meT

rac
ker

Aar
d Dic

t

Any
Mem

o

Fli
ck-

Upl
oad

er

aSQ
Lit

eMa
nag

er

Fee
dEx

Number of uncovered races
on main application thread 2251 455 685 1201 925 1349 1755 2004
User vs. User race groups 4 4 0 6 3 12 1 4

Harmful 3 1 0 2 2 2 0 1
Commutative 1 0 0 0 1 2 1 1
Synchronization 0 1 0 1 0 5 0 2
Harmless 0 2 0 3 0 3 0 0

User vs. Framework race groups 9 7 6 7 13 9 6 12
Harmful 6 1 1 0 3 0 2 1
Commutative 0 2 0 1 4 1 1 10
Synchronization 0 2 0 1 3 3 0 0
Harmless 3 2 5 5 3 5 3 1

Table 6. Races and groups reported by our tool for the main application thread after analyzing traces of 8 selected applications.

prior work (16K vs 646K for Twitter, 50K vs 800K for Face-
book). Note that the number of nodes in the resulting HB
graph is less that the number of HB operations recorded,
since it is unnecessary for each operation to be a new node.

End-to-End Analysis Performance metrics relevant for
end-to-end analysis of the main application thread are shown
in Table 5. Given the same exploration time, the processing
time is relatively stable among various apps. This is because
the processing time is mainly spent in constructing the HB
graph build for the entire Android system which is domi-
nated by the framework and not the analyzed application.
Further, the number of total events in the HB graph for the
whole system is usually 3 − 6 × larger than the number of
application events. We can efficiently analyze traces of up
to 10 minutes of interaction even for large apps. Analyzing
such interactions is practically infeasible for other works
[6, 9] as they already take hours for much shorter interac-
tions. The time it takes to run the offline race detector and
apply the filters and grouping we developed is negligible and
is less than a second for all analyzed traces.

The runtime of the end-to-end analysis including all ap-
plication threads is 25% to 200% slower than analyzing
only the main application thread. Even though the HB graph
graph construction runtime is exactly the same as when ana-
lyzing only the main application thread (in both cases the HB
graph is computed for the whole application), significantly
larger amount of memory locations and debugging informa-
tion (e.g., call stack traces) needs to be processed. However,
this overhead is only linear in the size of the trace and does
not affect the overall scalability of the analysis.

8.2 Usability
We evaluated the techniques for dealing with benign races
(discussed in Section 7.3). Towards that, we evaluated sev-
eral popular open source applications. This choice was done
to allow for manual inspection of the reported races and as-
sess their harm from the source code. For all experiments

that detect data races on the main thread we always used the
set of races computed using the covering scheme, filtering
and grouping as discussed in Section 7.3. For experiments
that detect traditional data races between threads, race cov-
erage does not apply. Table 6 shows detailed results for the
number of reported race groups in the selected applications
for the main application thread. Based on our filters, our
analysis system reported only 3.5 and 9 groups on average
with high and normal priority respectively. The high priority
groups contain races in the user code of the application, and
the normal priority groups contain races in framework APIs
called from the user code. Reports in user code contain on
average 2.5 races while reports in user vs framework contain
on average 22 races, illustrating the effectiveness of the race
grouping technique. These numbers do not include races not
shown due to the usage of race coverage.

We manually inspected each of the reports and classified
them into one of four classes – harmful, commutative, syn-
chronization and harmless. What follows is a short descrip-
tion of each class. We note that in our reports, we did not
find any false positives due to deficiencies in our HB rules
or instrumentation.

Harmful Races Upon manual inspection we confirmed
that 11 out of 34 race groups in the user code and 14 out of
69 race groups in framework APIs called by user code can
lead to 15 different harmful errors. The number of harm-
ful races is usually higher than the number of harmful bugs
as a single bug can manifest itself as different races. The
reported races provide a range of different ways to trigger
them (e.g., standard usage, pressing the back button, orienta-
tion change or external system event). We note that many of
the reported races do not result in an exception but instead
change the intended semantics of the application in a way
that can go unnoticed by developers, but may plague user
experience. Next, we discuss some of the harmful behav-
iors, in addition to the ones described in Section 3:

346

Metric \ Application
OI

Fil
e Man

age
r

NPR
New

s

ATi
meT

rac
ker

Aar
d Dic

t

Any
Mem

o

Fli
ck-

Upl
oad

er

aSQ
Lit

eMa
nag

er

Fee
dEx

Number of all races
found between application threads 142 947 0 1 1292 327 2 93
User vs. User race groups 11 50 0 0 62 48 2 39

Not inside atomic region 11 50 0 1 55 21 2 29
Inside atomic region 0 0 0 0 7 17 0 10

User vs. Framework race groups 2 101 0 5 4 75 0 5
Not inside atomic region 2 101 0 5 4 42 0 5
Inside atomic region 0 0 0 0 0 33 0 0

Table 7. Races reported by our tool between application threads after analyzing traces of 8 selected applications.

• OI File Manager: A harmful observed race is that
while the contents of a current directory are loaded asyn-
chronously in the background, the user navigates to a pre-
vious directory either by using UI components provided
by the application or by pressing the back button on the
device. However, in this scenario, the asynchronous task
is not properly canceled and when it finishes, contents of
a wrong directory are displayed on the screen.
• FeedEx: Here, articles are shown to the user one at

a time using the PageViewer component. For usability,
the PageViewer component loads an asynchronously
selected article and its neighbors. Simultaneously, the
application keeps a user preference which controls the
article appearance on screen in the mPreferFullText

field, which might be changed when the article finishes
loading. Unfortunately, depending on the order in which
articles finish loading, the same set of articles might be
shown differently between individual executions.
• NPR News: Here, a harmful race occurs in two unordered

application generated events. The application shows
a ListView containing news articles and allows load-
ing more articles asynchronously on demand by clicking
a button at the bottom of the list. As a result, it is possible
to show the same article multiple times in the same list.

Commutative and Synchronization Races Given the size
of the framework, there are races which originate in the
framework not properly marked by the filters we developed.
An interesting example occurs between commutative opera-
tions on collections such as ArrayList, where append and
get of an existing element commute, but we may observe
a race (e.g., on field mSize). To handle such cases, we plan
to adopt the commutativity analysis technique from [4].

Harmless Races We found two main types of harmless
races: benign and inactive. Benign races are such that both
event orderings are correctly handled. An example is a race
between an event updating a ListView and a click on a list
element. While both orders lead to different results, each is
correct since the user always interacts with the most up-to-
date items in ListView. Alternatively, inactive races do not

lead to harmful behaviors in the current version of the ap-
plication, but are an indicator of incorrectly ordered events.
An example is a race that associates incorrect data with a UI
control, but the invalid UI is not shown to the user. Such bugs
are of interest, but are likely to be of lower priority.

Effect of Speculative Rules None of the speculative rules
caused missing an actual race in our experiments. However,
by disabling speculative rules we observed many more false
races (≈ 20% more races for Facebook), mostly as a result
of not ordering user input events.

To the best of our knowledge, rules NATIVE and IPCHAN-
DLE never result in false negatives (i.e., not reporting an
actual race). They are listed as speculative only because,
even after careful study of the source code, we were not able
to verify that the alternative ordering could not happen (it
should be noted that the relevant implementation that affects
happens-before is in the Linux kernel). This is in contrast to
the rules in Fig. 4 which are all designed based on guarantees
given by the actual implementation.

On the other hand, rule THREADOP can result in false
positives in case the developer uses a custom message queue
implementation instead of the one provided by the standard
library. Thus, our tool allows to select whether this rule
should be used with user created threads. However, none
of the 8 manually analyzed applications contained a custom
message queue and therefore disabling this rule for user
space threads did not change the number of reported races.

Races Between Threads To evaluate races found between
application threads we performed analysis on the same set of
applications as in the previous step, as shown in Table 7. The
applications NPR News and AnyMemo take advantage of the
threads heavily to offload computation from the main thread,
which also leads to a high number of reported races. This is
worsened by the fact that these applications use pure Java
threads instead of the abstractions provided by the Android
framework (e.g., AsyncTask).

We analysed all these reports manually and discovered
several harmful races and patterns that developers did not
implement correctly. First, the developers often used shared

347

variables for notification purposes while forgetting that the
values are not necessarily guaranteed to be updated atom-
ically. In this setting, usually one thread only reads from
a given variable and another thread only writes. An exam-
ple of this harmful race can be found in aSQLiteManager.
There, a thread that exports a database, records its progress
into a shared variable myProgress and the main thread
reads from this variable and displays the progress to the
user. In such cases, an easy fix is to use atomic primi-
tive types provided in the Android library. Second, we no-
tice that the usage of atomic regions (i.e., using explicit
locks or synchronized keyword) is quite rare. This of-
ten leads to concurrent usage of data structures and objects
which are not thread safe. We believe that this is partially
caused by the fact that the Android framework often hides
the internal structures behind high level APIs. As an exam-
ple, queries on SQLiteDatabase are not thread safe but
queries on ContentProvider are thread safe. Similarly us-
ing SharedPreferences, as done in OpenFileManager,
is not thread safe since the SharedPreferences class is
internally backed by a non-thread safe hashmap.

Finally, we note that some of the races are benign as they
are on objects recycled by the framework (such as Parcel
or TypeValue). For these objects a common practice is to
ask the framework for the object of the given type instead
of creating a new instance manually. However, if the frame-
work returns a previously used object, it is very likely that
a race will be reported when that object is accessed. To ad-
dress such scenarios, a simple filter can be added to mark
these races as object reuse and to not report them.

9. Conclusion
We presented the first scalable analysis system for finding
data races in Android applications. Our system is based on
several key contributions: (i) fast algorithms for building
and querying the happens-before graph capable of handling
complex happens-before rules, (ii) a precise formal happens-
before model of Android concurrency, and (iii) a thorough
experimental evaluation illustrating that our techniques for
race filtering and grouping result in a practically feasible
number of reports (decrease the amount of false positives by
orders of magnitude). No existing work deals comprehen-
sively with these issues, yet these are important for analysis
of complex concurrent systems.

We performed an extensive evaluation of our system on
354 real-world Android applications. Our results indicate
that the system is practically useful and scales to realistic
interactions with complex applications (e.g., Facebook). The
system was successfully used to find 15 harmful bugs of
diverse kinds in 8 open-source applications from Google
Play Store, while (critically) reporting few false positives.
Based on these results, we believe that our system represents
a valuable tool for Android developers.

References
[1] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine,

and A. M. Memon. Using gui ripping for automated testing of
android applications. In Proceedings of the 27th IEEE/ACM
Conference on Automated Software Engineering, ASE ’12.

[2] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated
concolic testing of smartphone apps. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foun-
dations of Software Engineering, FSE ’12.

[3] W. Choi, G. Necula, and K. Sen. Guided gui testing of an-
droid apps with minimal restart and approximate learning. In
Proceedings of the 2013 ACM SIGPLAN Conference on Ob-
ject Oriented Programming Systems Languages Applications,
OOPSLA ’13.

[4] D. Dimitrov, V. Raychev, M. Vechev, and E. Koskinen. Com-
mutativity race detection. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14.

[5] C. Flanagan and S. N. Freund. Fasttrack: Efficient and precise
dynamic race detection. In Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’09.

[6] C.-H. Hsiao, J. Yu, S. Narayanasamy, Z. Kong, C. L. Pereira,
G. A. Pokam, P. M. Chen, and J. Flinn. Race detection
for event-driven mobile applications. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14.

[7] C. S. Jensen, M. R. Prasad, and A. Møller. Automated testing
with targeted event sequence generation. In Proceedings of
the 2013 International Symposium on Software Testing and
Analysis, ISSTA ’13.

[8] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An in-
put generation system for android apps. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineer-
ing, ESEC/FSE ’13.

[9] P. Maiya, A. Kanade, and R. Majumdar. Race detection
for android applications. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14.

[10] J. Miserez, P. Bielik, A. El-Hassany, L. Vanbever, and
M. Vechev. Sdnracer: Detecting concurrency violations in
software-defined networks. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Re-
search, SOSR ’15.

[11] B. Petrov, M. Vechev, M. Sridharan, and J. Dolby. Race de-
tection for web applications. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12.

[12] V. Raychev, M. Vechev, and M. Sridharan. Effective race de-
tection for event-driven programs. In Proceedings of the 2013
ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’13.

[13] T. Takala, M. Katara, and J. Harty. Experiences of system-
level model-based gui testing of an android application. In
Proceedings of the 2011 4th IEEE International Conference
on Software Testing, Verification and Validation, ICST ’11.

348

