
Probabilistic Model for Code with Decision Trees

Veselin Raychev
Department of Computer Science

ETH Zürich, Switzerland
veselin.raychev@inf.ethz.ch

Pavol Bielik
Department of Computer Science

ETH Zürich, Switzerland
pavol.bielik@inf.ethz.ch

Martin Vechev
Department of Computer Science

ETH Zürich, Switzerland
martin.vechev@inf.ethz.ch

Abstract
In this paper we introduce a new approach for learning pre-
cise and general probabilistic models of code based on deci-
sion tree learning. Our approach directly benefits an emerg-
ing class of statistical programming tools which leverage
probabilistic models of code learned over large codebases
(e.g., GitHub) to make predictions about new programs (e.g.,
code completion, repair, etc).

The key idea is to phrase the problem of learning a proba-
bilistic model of code as learning a decision tree in a domain
specific language over abstract syntax trees (called TGEN).
This allows us to condition the prediction of a program ele-
ment on a dynamically computed context. Further, our prob-
lem formulation enables us to easily instantiate known deci-
sion tree learning algorithms such as ID3, but also to obtain
new variants we refer to as ID3+ and E13, not previously ex-
plored and ones that outperform ID3 in prediction accuracy.

Our approach is general and can be used to learn a prob-
abilistic model of any programming language. We imple-
mented our approach in a system called DEEP3 and evalu-
ated it for the challenging task of learning probabilistic mod-
els of JavaScript and Python. Our experimental results indi-
cate that DEEP3 predicts elements of JavaScript and Python
code with precision above 82% and 69%, respectively. Fur-
ther, DEEP3 often significantly outperforms state-of-the-art
approaches in overall prediction accuracy.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—Statistical meth-
ods; I.2.2 [Artificial Intelligence]: Program synthesis—
Automatic Programming

Keywords Probabilistic Models of Code, Decision Trees,
Code Completion

1. Introduction
Recent years have seen an increased interest in programming
tools based on probabilistic models of code built from large
codebases (e.g., GitHub repositories). The goal of these tools
is to automate certain programming tasks by learning from
the large effort already spent in building a massive collec-
tion of existing programs. Example applications targeted by
such tools include programming language translation [9, 15],
patch generation [18], probabilistic type inference [26], and
code completion [7, 10, 21, 25, 27]. However, the proba-
bilistic models used by existing tools are either: (i) care-
fully crafted with specific features tailored to a particular
task [18, 25, 26]; this requires careful manual effort that is
difficult to reuse for other tasks, or (ii) the models are general
but may be imprecise (e.g., n-gram, PCFGs, [7], [27]).

A fundamental challenge then is coming up with a prob-
abilistic model of code which is both general and precise.
However, building such model is a difficult problem and
one which has recently attracted the attention of researchers
from several areas. Latest attempts to addressing this prob-
lem range from using n-gram models [11, 22, 34] to proba-
bilistic grammars [2, 9, 17, 19] to log-bilinear models [3, 4].
All of these however make predictions about program el-
ements based on a fixed set of relatively shallow features
(e.g., the n code tokens that precede the prediction). Unfor-
tunately, such features are often a poor choice because they
blindly capture only dependencies that are syntactically local
to the element to be predicted by the model. Perhaps more
importantly, a key limitation of these techniques is that they
use the same features for a very diverse set of predictions:
API calls, identifiers, constants, or even expressions. As a
result, while general, these models tend to suffer from low
precision limiting their practical applicability.

The need for different contexts: an example To motivate
our approach and obtain a better intuition, consider the four
JavaScript code examples shown in Fig. 1. The goal for each
of these examples is to predict the most likely HTTP header
property that should be set when performing a HTTP request
(marked as ?). An important observation is that even though
all four examples predict a property name, the best features
needed to make the correct prediction are very different in

var http options = {
? ← prediction

}; position

(a)

http.request(..., {
host: ’localhost’,

accept: ’*/*’,

?

});

(c)

http.request(..., {
?

});
(b)

relevant positions used to
condition the prediction

http.request(..., {
host: ’www.google.com’,

accept: ’*/*’,

user-agent: ’curl/7.2’

});
...

http.request(..., {
host: ’www.bing.com’,

accept: ’*/*’,

?

});

(d)

Figure 1. JavaScript code snippets used to motivate the
need for a probabilistic model with dynamically computed
context based on the input. Although each example predicts
a property name used for an HTTP request, the best context
used to condition the prediction (shown as rectangles) is
different for each input.

each example (marked as green boxes). In Fig. 1 (a) and (b),
the only available information is the variable name to which
the dictionary object is assigned, and the fact that it is used
in the http.request API, respectively. In Fig. 1 (c), a pre-
diction can be based on the previous two properties that were
already set, as well as on the fact that the dictionary is used
as a second argument in the http.request API. In Fig. 1
(d), another similar call to http.request is present in the
same program and a probabilistic model may leverage that
information. Intuitively, the best features depend on the con-
text in which the completion is performed. Thus, ideally, we
would like our probabilistic model to automatically discover
the relevant features/context for each case.

This work We present a new approach for learning accu-
rate probabilistic models of code which automatically deter-
mine the right context when making a prediction. The key
technical insight is to (recursively) split the training data in
a fashion similar to decision trees [20, §3] and to then learn
smaller specialized probabilistic models for each branch of
the tree. Our approach is phrased as learning a program p in
a domain specific language for ASTs (abstract syntax trees)
that we introduce (called TGEN) and then using p and the
training data to obtain a probabilistic model. We designed
TGEN to be independent of the specific programming lan-
guage which means that our approach can be used for build-
ing a probabilistic model of any programming language.

The learned decomposition enables us to automatically
produce a set of deep features dynamically selected when
executing the program p on the given input. As a result, as
shown later in the paper, our probabilistic model enables
higher prediction accuracy than the state of the art. Impor-
tantly, our formulation allows us to cleanly represent (and
experiment) with classic decision tree learning algorithms
such as ID3 [23] but also permits new, previously unexplored
extensions which lead to better precision than ID3.

if number properties already set

= 0 ≥ 1

if statement type

Assigment API Call

Model (a) Model (b) Model (c) Model (d)

if previous property name is
seen in program multiple times

true false

Figure 2. An example of a decision tree learned by our
approach. When processed by this tree, each of the inputs
in Fig. 1 will end up in a different leaf and thus a different
model will be used to answer the queries of each example.

The closest work related to ours is DeepSyn [27], which
also proposes to use a domain specific language (DSL) for
finding the correct context of its predictions. Their DSL,
however, does not include branches and therefore DeepSyn

cannot learn to predict all cases of Fig. 1 simultaneously.
This limitation cannot be fixed easily, because simply adding
branches to the DSL of DeepSyn leads to an exponentially
harder synthesis task that is untractable by the existing syn-
thesis procedures – a problem that we address in this paper.

Tree decomposition: an example Our approach can learn
a decision tree such as the one shown in Fig. 2 directly
from the training data. This tree represents a program p from
our TGEN language (discussed later in the paper). Here, the
tree contains several tests that check properties of the input
code snippet (e.g., whether some properties have been set)
in order to select the suitable probabilistic model used for
making the prediction for that specific input. In this example,
each of the four inputs from Fig. 1 will end up with a
different probabilistic model for making the prediction.

Main contributions Our main contributions are:

• A new approach for building probabilistic models of code
based on learning decision trees represented as programs
in a DSL called TGEN. The DSL is agnostic to the lan-
guage for which the model is built allowing applicability
of the approach to any programming language.
• An instantiation of our approach to several decision tree

algorithms, including classic learning such as ID3, but
also new variants which combine decision trees with
other powerful models.
• A complete and scalable implementation of our model in

a system called DEEP3, applied to JavaScript and Python.
• An extensive experimental evaluation of DEEP3 on the

challenging tasks of learning probabilistic models of
JavaScript and Python. Our experimental results show
that our models are significantly more precise than exist-
ing work: for JavaScript, the model achieves 82.9% accu-
racy when predicting arbitrary values used in JavaScript
programs and 83.9% in predicting code structure.

Benefits Our approach as well as our implementation can
be directly used to learn a probabilistic model of any pro-
gramming language. Despite its generality, the precision of
the model is higher than prior work. For instance, the model
can make predictions about program structure such as loops
and branches with more than 65% accuracy whereas all eval-
uated prior models have accuracy of less than 41%. As a re-
sult of its generality and higher precision, we believe that
DEEP3 can immediately benefit existing works by replacing
their probabilistic model [1, 3, 4, 9, 11, 15]. It can also be
used as a building block for future tools that rely on a prob-
abilistic model of code (e.g., code repairs, synthesis, etc).

Outline In the remainder of the paper, we first present
our general approach based on decision tree learning. We
then discuss the domain-specific language TGEN and how
to obtain a probabilistic model for that language, followed
by a description of the implementation of DEEP3. Our ex-
perimental section describes a comprehensive evaluation of
DEEP3 on the hard challenge of learning a precise model of
JavaScript programs.

2. Learning Decision Trees for Programs
In this section we present our approach for learning prob-
abilistic models of programs. Our probabilistic models are
based on generalizing classic decision trees [20] and com-
bining these with other probabilistic models. A key obser-
vation of our work is that we can describe a probabilistic
model (decision trees, combinations with other models) via
a program p in a domain specific language (DSL). This en-
ables us to cleanly instantiate existing decision tree learning
algorithms as well as obtain interesting new variants. These
variants have not been explored previously yet turn out to be
practically useful. To our knowledge, this is the first work to
use decision trees in the context of learning programs.

In what follows, we first discuss how to obtain our train-
ing data set. We then discuss the general requirements on
the DSL so that it is able to represent decision trees and com-
binations with other models. Finally, we show how to learn
different probabilistic models by instantiating the program
p in a fragment of DSL. In Section 3 we provide a concrete
instantiation of a DSL suitable for learning programs.

2.1 Training Data
Our training data is built by first taking the set of available
programs and generating a set of pairs where each pair is
a tuple of a partial program (part of the original program)
and an element in the original program that we would like
the model to predict. More formally, our training dataset
is D = {(x(j), y(j))}nj=1 of n samples where x(j) ∈ X

are inputs (partial programs) and y(j) ∈ Y are outputs
(correct predictions for the partial programs). Each possible
output is called a label and Y is the set of possible labels.
This way of obtaining a data set reflects a key goal of our
probabilistic model: it should be able to precisely predict

program elements (e.g., statements, expressions, etc) and be
useful when making predictions on new, unseen programs in
a variety of scenarios (e.g., statistical code synthesis, repair).

An example of a data set is shown in Fig. 3 (a). Our goal
is to obtain a probabilistic model Pr(y | x) that predicts
outputs given new inputs. We can then use the Pr model to
perform various tasks, for instance, statistical code synthesis
can be performed by computing:

y′ = arg max
y∈Y

Pr(y | x′)

where x′ is a partial code fragment written by the user (and
possibly not seen in the training data).

2.2 Representing Decision Trees with a DSL

To represent decision trees with a DSL, we require the DSL to
include branch statements of the following shape:

if (pred(x)) then pa else pb

where pred is a predicate on the input x and pa, pb ∈ DSL.
Here, pa and pb may be branch instructions or other pro-
grams in DSL. The semantics of the instruction is standard:
check the predicate pred(x) and depending on the outcome
either execute pa or pb.

Example Consider the decision tree in Fig. 3 (b) corre-
sponding to the following program:

p ≡ if (query x is console.) then ε100 else ε101

Here ε100, ε101 ∈ DSL are leaves of the tree and the root
checks if the query x is on the console object. According
to this tree, our six training samples from Fig. 3 (a) are split
such that the first two fall in ε100 and the rest in ε101.

Now, assume that we would like to use this decision tree
to make predictions depending on the branch an input x
falls into. Given our training data, we observe that all out-
puts falling in ε100 are log. Thus, we can learn that ε100
should produce label log. The remaining outputs fall into
the other branch and are more diverse. Their labels can be ei-
ther height, left or top. To predict these labels, we either
need to refine the tree or keep the tree as is and use a proba-
bilistic model not perfectly confident in its prediction: for ex-
ample, since half of the samples have label height, we can
guess with confidence 1/2 that the label should be height.
To formalize these probabilistic estimates, we include the
empty program in our DSL.

Empty programs We say a program εi ∈ DSL is empty if
this program encodes an unconditional probabilistic model.
A possible way to obtain an unconditional probability esti-
mate is to use maximum likelihood estimation (MLE):

Pr(y | x) =
|{(x(j), y(j)) ∈ d | y(j) = y}|

|d|

j x(j) y(j)

1 console. log

2 console. log

3 x.width * x. height

4 y.width * y. height

5 a.right - a. left

6 b.bottom - b. top

if query x is console.

true false

ε100 ε101

Training data samples in branches:
1, 2 3, 4, 5, 6

Most likely prediction:
log height

if query x is console.

true false

ε102 Model conditioned on
previous field access [25]

Predictions:
log width→ height

right→ left
bottom→ top

(c) Model based on a previous field access on
(a) Training data (b) Empty programs in leaves the same object in the right leaf.

Figure 3. Example training data for field name prediction and two possible probabilistic models visualized as trees.

Here, the dataset d ⊆ D includes the samples from D that
reached the empty program. That is, we count the number
of times we see label y in the data and divide it by the total
number of samples 1. For Fig. 3 (b), the model of program
ε100 results in probability 1 for label log and probability 0
for any other label. The model of program ε101 assigns
probability 1/2 to height and 1/4 to left and top. This
estimate is called unconditional because the input x is not
used when computing Pr(y | x).

Note that despite the fact that the two programs in the
leaves of the tree in Fig. 3 (b) are empty, they encode two
different models for each branch. Technically, to achieve
this we require that empty programs are uniquely identified
– either by the branch taken in branch statements or by an
index of the empty program (100 and 101 in our case).

2.3 Representing a Combination of Decisions Trees
and Other Models in a DSL

Our DSL approach is not limited to decision trees. In practice,
using decision trees for some tasks leads to very large trees
and overfitting [20, §3.7] and thus we allow other probabilis-
tic models in the leaves of our trees instead of only empty
programs. In Fig. 3 (c) we show the same tree as in Fig. 3 (b)
except that in the right subtree we use a probabilistic model
from [25] that predicts the name of a field based on the name
of the previous field access on the same variable. Using this
more advanced model, we learn the mapping shown in the
lower-right corner of Fig. 3 (c). The resulting probabilistic
model is as follows: if the previous field access on the same
variable was width, then Pr(y = height | x) = 1. If
the previous field access on the same variable was right,
then Pr(y = left | x) = 1, etc. This means that for
the input “z.right - z.”, the predicted field name by our
model will be left with probability 1 (and not height, as
the unconditional model would predict).

Discussion Here, we make two additional observations.
First, we can use a deeper decision tree instead of the model
in Fig. 3 (c) and still achieve similar predictions for our toy

1 In practice, we use a slightly modified equation with smoothing [20,
§6.9.1.1] to give non-zero probability to labels outside of the training data.

example dataset. This deeper tree, however, would be im-
practically large for realistic probabilistic models. Second,
adding decision trees to a model such as the one from [25]
increases the power of the resulting model. For example, the
model from [25] needs a previous API access to make con-
ditioning, but our model in Fig. 3 (c) can make correct pre-
dictions based on the name of the console variable even in
the absence of other field accesses.

So far we showed how to obtain a probabilistic model
Prp(y | x) from a program p ∈ DSL and a training dataset
D. Next, we discuss how the program p is learned from D.

2.4 Learning Programs in DSL from Data
Our goal at learning time is to discover p ∈ DSL that “ex-
plains well” the training dataD. One possible and commonly
used metric to measure this is the entropy of the resulting
probability distribution, estimated as follows:

H(D, p) = −
∑

(x(j),y(j))∈D

1

|D|
log2 Prp(y

(j) | x(j))

We use a variant of the entropy metric called cross-entropy
where the training data is split in two parts. The first part is
used to build the probability distribution Prp parametrized
on p and the second part to calculate the entropy measure.
Then our training goal is to find a program p ∈ DSL that
minimizes H(D, p). Because the space of programs is very
large we use approximations in our minimization procedure.

Our greedy learning algorithm is shown in Algorithm 1.
A useful benefit of our approach is that we can instantiate
different decision tree learning algorithms by simply vary-
ing the fragment of the DSL to which the learned program
p belongs. In this way we instantiate existing learning algo-
rithms such as ID3 [23] but also new and interesting variants
which have not been explored before.

ID3 decision tree learning ID3 is one of the most com-
monly used and studied decision tree algorithms [20, §3].
We instantiate ID3 learning as follows. Let DSL0 be a frag-
ment of DSL with programs in the following shape:

if (pred(x)) then εa else εb

1 def Learn(d, syn)
Input: Dataset d, local synthesis procedure syn
Output: Program p ∈ DSL

2 begin
3 if done(d) then
4 return εi // generate unique i
5 p← syn(d)

6 where p ≡ if (pred(x)) then pa else pb
7 pa ← Learn({(x, y) ∈ d | pred(x)}, syn)

8 pb ← Learn({(x, y) ∈ d | ¬pred(x)}, syn)

9 return p
10 end

Algorithm 1: Decision Tree Learning Algorithm.

where εa and εb are empty programs. Then, for a dataset
d we define syn0(d) = arg minp∈DSL0 H(d, p). We obtain
the ID3 learning algorithm by invoking Algorithm 1 with
syn = syn0. Then, at each step of the algorithm we synthe-
size a single branch using syn0, split the data according to
the branch and call the algorithm recursively. As a termina-
tion condition we use a function done(d) which in our im-
plementation stops once the dataset is smaller than a certain
size. This limits the depth of the tree and prevents overfitting
to the training data.

We note that the original formulation of ID3 found in [20,
23] may at first sight look quite different from ours. A reason
their formulation is more complicated is because they do not
use a DSL with empty programs like we do. Then, the metric
they maximize is the information gain of adding a branch.
The information gain of a program p ∈ DSL0 for a dataset d
is IG = H(d, p)−H(d, ε). Since H(d, ε) is independent of
p, our formulation is equivalent to the original ID3.

2.5 Extensions of ID3
Our formulation of ID3 as learning a program in a DSL

fragment allows us to extend and improve the algorithm by
making modifications of the DSL fragment. We also provide
extensions that leverage the capability of the DSL to express
probabilistic models other than standard decision trees.

ID3+ decision tree learning Classic ID3 learning results
in decision trees (i.e., programs in DSL) with the leaves
of the tree being empty programs. Our models, however,
allow combining branch instructions with other probabilistic
models like in Fig. 3 (c). To handle such combinations, we
extend the ID3 algorithm to also generate programs in the
leaves of the trees.

Let DSLS be a fragment of DSL. Programs in this fragment
may describe probabilistic models without branches such as
language models [1, 29] or other models (e.g., [7, 27]). Let
synS(d) = arg minp∈DSLS H(d, p) be a synthesis procedure
which computes a program that best fits d. Then, the ID3+
learning algorithm extends ID3 by replacing the empty pro-
grams returned on Line 4 of Algorithm 1 with synS(d). The

TGen ::= SimpleCond | BranchCond

SimpleCond ::= ε | WriteOp SimpleCond | MoveOp SimpleCond

WriteOp ::= WriteValue | WritePos | WriteType

MoveOp ::= Up | Left | Right | DownFirst | DownLast |

NextDFS | NextLeaf | PrevDFS | PrevLeaf |

PrevNodeType | PrevNodeValue

PrevNodeContext

BranchCond ::= Switch(SimpleCond) {
case v1: TGen| · · · | case vn: TGen

default: TGen

}

Figure 4. The TGEN language for extracting structured
context from trees with switch statements.

branch synthesis of the ID3+ algorithm uses the same syn0
procedure as ID3 and as a result constructs a tree with the
same structure. The only difference in the resulting tree is
the programs in the leaves of the tree.

E13 algorithm The ID3+ learning algorithm essentially
first runs ID3 to generate branches until too few samples fall
into a branch and then creates a probabilistic model for the
final samples. Intuitively, there are two potential issues with
this approach. First, ID3+ always trains the probabilistic
models based on DSLS only on small datasets. These small
datasets may result in learning inaccurate models at the
leaves. Second, syn0 always minimizes information with
respect to empty programs, but leaves of the tree may contain
non-empty programs.

To address these limitations, we propose to instantiate the
learning algorithm so that instead of using syn0 as ID3 does,
it uses the following procedure:

• First, let synS(d) ∈ DSL be the best program that we
would synthesize for d if that program was a leaf node in
the ID3+ algorithm.
• Let DSLA be a fragment of DSL with programs in the

shape p ≡ if (pred(x)) then pa else pb where pred is
a predicate and pa and pb are either the empty program
or synS(d). This is, we consider that not only empty
programs may stay in the branches, but we take into
account that the program synS(d) may be there.
• Finally, to obtain our E13 algorithm, we set syn to
synA = arg minp∈DSLA H(d, p) in Algorithm 1.

Summary In this section we showed how to use a decision
tree and a dataset to obtain a probability distribution. We
also showed how by varying the DSL over which we learn
our program, we can instantiate different variants of ID3
learning and (combinations of) probabilistic models. In the
next section, we discuss a specific instance of a DSL suitable
for learning probabilistic models of programs.

t ∈ Tree n ∈ X ctx ∈ C s ∈ TGen

op ∈ MoveOp n′ = mv(op, t, n)

〈op :: s, t, n, ctx〉 −→ 〈s, t, n′, ctx〉
[MOVE]

op ∈ WriteOp c = wr(op, t, n)

〈op :: s, t, n, ctx〉 −→ 〈s, t, n, ctx · c〉
[WRITE]

op ∈ Switch 〈op.cond, t, n, []〉 → 〈ε, t′, n′, ctxcond〉 ctxcond ∈ op.cases
〈op, t, n, ctx〉 −→ 〈op.cases[ctxcond], t, n, ctx · op.case id(ctxcond)〉

[SWITCH]

op ∈ Switch 〈op.cond, t, n, []〉 → 〈ε, t′, n′, ctxcond〉 ctxcond /∈ op.cases
〈op, t, n, ctx〉 −→ 〈op.default, t, n, ctx · op.case id(⊥)〉

[SWITCH-DEF]

Figure 5. TGEN language small-step semantics. Each rule is of the type: TGEN × States→ TGEN × States.

3. TGEN: a DSL for ASTs
In this section we provide a definition of our domain specific
language (DSL), called TGEN, which will be used to learn
programs that define a probabilistic model of code (as dis-
cussed earlier). This language contains operations which tra-
verse abstract syntax trees (ASTs) where the operations are
independent of the actual programming language for which
the probabilistic model is built. This means that TGEN is
generally applicable to building probabilistic models for any
programming language. Next, we discuss the syntax and se-
mantics of TGEN.

Syntax The syntax of TGEN is summarized in Fig. 4 and
consists of two kinds of instructions – BranchCond instruc-
tions execute a subprogram depending on a checked con-
dition and SimpleCond programs that encode straight line
tree traversal programs and consist of two basic types of
instructions: MoveOp and WriteOp. Move instructions fa-
cilitate the tree traversal by moving the current position in
the tree, while write instructions append facts about the cur-
rently visited node to the accumulated context.

Semantics TGEN programs operate on a state σ defined as
σ = 〈t, n, ctx〉 ∈ Stateswhere States = Tree×X×C. In
a state σ, t is a tree, n is the current position in the tree and
ctx is the currently accumulated context. The accumulated
context ctx ∈ C = (N ∪ Σ ∪ N)∗ by a TGEN program is a
sequence of observations on the tree where each observation
can be a non-terminal symbol N from the tree, a terminal
symbol Σ from the tree or a natural number in N. Initially,
execution starts with the empty observation list [] ∈ C and
instructions from the program are executed. We show the
small-step semantics of TGEN in Fig. 5.

For a program p ∈ TGEN, a tree t ∈ Tree, and node
n ∈ X , we say that program p ∈ TGEN computes the con-
text ctx = p(t, n) iff there exists a sequence of transitions
from 〈p, t, n, []〉 to 〈ε, t, n′, ctx〉. That is, ctx is the accumu-
lated context obtained by executing the program p on a tree
t starting at node n. That tuple (t, n) of an AST and a pre-
diction position is the input x to our probabilistic models.

3.1 Semantics of Basic Instructions
The basic instructions MoveOp and WriteOp are used to
build straight line programs that traverse a tree and accu-
mulate context.

The semantics of the write instructions are described by
the [WRITE] rule in Fig. 5. Each write accumulates a value
c to the conditioning set ctx as defined by the function c =
wr(op, t, n) wherewr : WriteOp×Tree×X → N∪Σ∪N.
The returned value of wr is defined as follows:

• wr(WriteType, t, n) = x where x ∈ N is the non-
terminal symbol at node n.
• wr(WriteValue, t, n) returns the terminal symbol at

node n if one is available or a special value 0 otherwise,
and
• wr(WritePos, t, n) returns a number x ∈ N that is the

index of n in the list of children kept by the parent of n.

Move instructions are described by the [MOVE] rule in
Fig. 5 and use the function mv : MoveOp×Tree×X → X .
The function mv is defined as follows:

• mv(Up, t, n) = n′ where n′ is the parent node of n in t or
n if n has no parent node in t. Note that the [MOVE] rule
updates the node at the current position to be the parent.
• mv(Left, t, n) = n′ where n′ is the left sibling of n in
t. Similarly, mv(Right, t, n) produces the right sibling.
• mv(DownFirst, t, n) = n′ where n′ is the first child of
n in t. Similarly, mv(DownLast, t, n) produces the last
child of n.
• mv(PrevDFS, t, n) = n′ where n′ is the predecessor of
n in t in the left-to-right depth-first search traversal order.
Similarly, mv(NextDFS, t, n) returns the successor of n
in the left-to-right depth-first search traversal order.
• mv(PrevLeft, t, n) = n′ where n′ is the first leaf on the

left of n. Similarly, mv(NextLeft, t, n) returns the first
leaf on the right of n.
• mv(PrevNodeValue, t, n) = n′ where n′ is the first

node on the left of n that has the same non-terminal
symbol as n. Similarly,mv(PrevNodeType, t, n) returns
the first node on the left of n that has the same terminal
symbol as n.
• mv(PrevNodeContext, t, n) = n′ where n′ is the first

node on the left of n that has both the same terminal and
non-terminal symbol as n, and the parent of n has the
same non-terminal symbol as the parent of n′.

j x(j) y(j)

1 console. log

2 console. log

3 x.width * x. height

4 y.width * y. height

5 a.right - a. left

6 b.bottom - b. top

p(x(j)) Pr(y = height | p(x(j)))

100 0
100 0
101 0.5
101 0.5
101 0.5
101 0.5

p(x(j)) Pr(y = height | p(x(j)))

100 0
100 0
101 width 1
101 width 1
101 right 0
101 bottom 0

(a) Training data
p ≡ Switch(Left WriteValue) {

case console : ε default : ε}

(b) Probabilistic model from Fig. 3 (b)

p ≡ Switch(Left WriteValue) {case console : ε

default : Left PrevNodeValue Right WriteValue}

(c) Probabilistic model from Fig. 3 (c)

Figure 6. Probabilistic models for the examples from Fig. 3 along with their TGEN programs.

3.2 Semantics of Switch
The Switch instruction provides a means of branching
based on observed values in the input tree t. The way branch-
ing works is as follows: first, the program of basic instruc-
tions (denoted op.cond for op ∈ Switch) in the condi-
tion of the switch statement is executed, which accumulates
a conditioning context ctxcond. Then, for different values of
ctxcond, different branches are taken. Currently, the TGEN
language only allows comparing the produced ctxcond to
constants given in the program.

The semantics of a switch instruction given by the rules
[SWITCH] and [SWITCH-DEF] in Fig. 5 describe the case
when a program takes some of the branches given by one
case or the default branch, respectively. For an op ∈
Switch, we use op.cases[ctxcond] to denote the program
given by the case where vi = ctxcond. We also assign
a unique index to each subprogram in a Switch statement
that we refer to with op.case id(ctxcond) = i if vi =
ctxcond, otherwise it is ⊥.

The current context is updated by appending the index of
the taken branch to it. This allows us to distinguish which
branch a program has taken even if the programs in the
branches end up as empty programs.

We note that our switch statement allows for more than
two branches coming out of one statement and is slightly
more general than traditional decision trees which typically
have at most two branches (e.g., if-then-else).

Summary In this section we presented a domain-specific
language for traversing ASTs, called TGEN, that is used
(as will be discussed in Section 4) to define a probabilistic
model for code. Similar to the DSL used in DeepSyn [27],
the idea of TGEN is to provide means of navigating over
trees and accumulating context with values from a given tree.
There are two notable differences between the DSLs. First,
our TGEN language does not include any instruction that
depends on manually-provided analysis of the programming
language that is being learned, whereas the language of
DeepSyn relies on lightweight static analysis for JavaScript.
Second, the TGEN language includes the Switch instruction

which allows us to express programs with branches and
enables learning more powerful probabilistic models that are
specialized by the type and the particular context in which
the prediction is performed (as illustrated in Section 1).

4. From TGEN to a Probabilistic Model
Earlier, we had discussed how a program in DSL determines
a probabilistic model. In this section we concretize this dis-
cussion further for the TGEN language, provide examples
and also describe an extension to the model which allows it
to predict labels not seen in the training data.

4.1 Probabilistic Models with TGEN

Using the program p ∈ TGEN and a training dataset of ex-
amples D = {(x(j), y(j))}nj=1, we can now build a proba-
bilistic model of the outputs y in the data given the inputs x.
The model Pr(y | x), equal to Pr(y | p(x)), is built using
maximum likelihood estimation (MLE) as follows:

Pr(y | p(x)) =
|{(x′, y) ∈ D | p(x′) = p(x)}|
|{(x′, y′) ∈ D | p(x′) = p(x)}|

This is, to estimate the probability of observing y given x
we remember the cases in the training data where p(x(j)) =
p(x). From these cases, we count how many times the value
of the label y(j) was y and divide it to the number of times
where y(j) was any arbitrary y′.

Example Next, we give examples of the probabilistic mod-
els in Fig. 3 as described by TGEN programs. The model
from Fig. 3 (b) is described by the following program p:

Switch(Left WriteValue) {case console : ε default : ε}

The program moves to the left of the prediction position and
records the syntactic value at that position. The recorded
value is then compared to console and the corresponding
branch is taken (the branches are indexed 100 and 101,
respectively). Consider again the training data D shown in
Fig. 6 (a) (repeated here for convenience). In the first column
of Fig. 6 (b) we show the resulting context produced by

the above program p when executing it on each of the six
data points x(j). That is, the program accumulates a context
which is simply the sequence of taken branches for that
input. We show the probability of a label y = height given
each of the code fragments. If the input x(j) is “console.”,
the computed context is 100 and because there were no cases
in the training data D with context 100 and label height,
the resulting probability is 0. In the other branch, half of the
training data (2 out of 4 samples with context 101) have label
height and thus the probability estimates are 0.5. These
results are summarized in the second column of Fig. 6 (b).

Note how the model in Fig. 6 (b) assigns probability
of 0.5 to label height for training data samples 3, 4, 5, 6.
This is because the switch statement only records the target
branch (in this case 101) but does not keep any history of
how it got there (e.g., the actual condition that led to the
101 branch being taken). To address this issue and make the
model more precise, we have two choices: (i) either adjust
the semantics of the switch statement to record the condition
in the context, or (ii) keep the semantics as is, but change
the program so that it records more context. In our work, we
chose the second option as it allows for greater flexibility.
This option is illustrated below on our running example.

Here, the model in Fig. 6 (c) solves the above problem
by accumulating context in the case where the call is not
on the console object. This is achieved via the following
SimpleCond program:

Left PrevNodeValue Right WriteValue

This program moves left of the prediction position in the
AST (where the variable is, e.g., x in sample 3), then
moves to the previous use of the same variable (using
PrevNodeValue), then moves right and records the pre-
vious field name used on the same variable. The accumu-
lated contexts using that program and the corresponding
probability of label height appearing given the context are
shown in Fig. 6 (c). This program is an example of combin-
ing a Switch statement with a straight line program. Note
how the SimpleCond program encodes the language model
from [25] and how the model naturally integrates with the
decision tree via the variable sized context computed by p.

In summary, we can see that by simply varying the pro-
gram in our DSL, we automatically vary the probabilistic
model. This is useful as it allows us to quickly build and ex-
periment with powerful probabilistic models that learn from
the training data.

4.2 Extension: Predicting Out-of-Vocabulary Labels
A limitation of the probabilistic models described by TGEN
programs is that they cannot predict values (i.e., APIs, vari-
able names, etc.) not seen in the training data. We offer
a simple mitigation for this limitation by introducing a sec-
ond TGEN program p2 that given an input program x whose
element y we would like to predict, modifies the probabilis-

elem.notify(..., {
position: ’top’,

autoHide: false,

autoHideDelay: 500

});
...

elem.notify(..., {
position: ’top’,

autoHide: false,

? ← prediction

}); position

· · · �
ObjectExpression �

· · · �

Property:autoHide �

Boolean:false �

Property:autoHideDelay �

· · · �
ObjectExpression �

· · · �

Property:autoHide �

Boolean:false �

Property:? �

eq1

Figure 7. Illustration of relating the predicted label to a
value already present in the program.

tic model so the model can express equality of the output
label y to a value already present in x as described below.

In practice, we synthesize both p and p2 together with the
same decision tree algorithm and the two programs follow
the same branches. Only once we synthesize a program with
the synS procedure, we synthesize different instructions for
the programs p and p2.

Training First, we discuss the modified training procedure
on a training data sample (x, y). Let ctx′ = c1c2 · · · cn =
p2(x) be the context computed by the program p2. Recall
that y is the label to be predicted for the input x. We define:

y′ =

{
eqi if ∃i.ci = x (select i to be minimal)
y otherwise

In other words, if any of the accumulated values is equal
to the label y we are predicting, we replace the label with
a special symbol eqi and train the probabilistic model as
before with y′ instead of y.

Prediction If at prediction time for some program x′ our
probabilistic model returns the special value eqi, we accu-
mulate a context ctx′ = c1c2 · · · cn = p2(x′) and then re-
place the predicted label eqi with ci from the program x′.

Example Consider the two code snippets shown in Fig. 1
(d) and Fig. 7 that both try to predict the name of next
property that the developer should set. In Fig. 7, the value to
predict y is a property name autoHideDelay that is present
in the query program x at another location. Then, if we
execute the following TGEN program:

p2 ≡ Left PrevNodeContext Right WriteValue

we will obtain context ctx′ = autoHideDelay. The execu-
tion of p2 is sketched with arrows in Fig. 7.

If we train on Fig. 7 with p set to the empty program and
p2 as described above, we will learn a probability distribu-
tion that Pr(y = eq1) = 1. This means that certainly the

value to be predicted is equal to the value determined by the
program p2. Then, given a program at query time (could be
another program, e.g., from Fig. 1 (d)), this model will pre-
dict that y is equal to the value returned by p2 (the predicted
value will be user-agent for the program in Fig. 1 (d)).

Our current semantics for p2 relate a predicted label y to
another value in the input x with an equality predicate. An
interesting item for future work is to use other predicates
to predict values that are a sum, a concatenation or another
function on possibly several values in the input x.

5. Implementation
We created a system called DEEP3 that given training data
consisting of ASTs learns a probabilistic model that can pre-
dict program elements. Although we later evaluate our sys-
tem on JavaScript and Python (as these are practically rele-
vant), DEEP3 is language independent and is directly appli-
cable to any programming language. DEEP3 consists of mul-
tiple components: a learning component that learns a TGEN
program (using the ID3+ and E13 algorithms), a component
that given a TGEN program builds a probabilistic model and
a component to query the probability distribution and make
predictions.

Since the other components are mostly standard and simi-
lar to what is seen in other probabilistic models (e.g., SRILM
for language models [32]), here we focus on describing the
component that learns TGEN programs.

5.1 Learning SIMPLECOND Programs
The SIMPLECOND fragment of the TGEN language in-
cludes programs without branches. Synthesis of such pro-
grams is what we defined as the procedure synS(d) =
arg minp∈DSLS H(d, p) in Section 2.4. Our SIMPLECOND
synthesis procedure simply enumerates all programs with up
to 5 instructions and evaluates their entropy metric H(d, p)
on the given dataset d. Then to find longer programs we use
genetic programming that keeps the best program discov-
ered to a point plus several other candidate programs. At
each iteration, our genetic programming procedure mutates
the candidates program randomly by adding, removing or
modifying a subset of their instructions. Overall, this syn-
thesis procedure explores ≈ 20, 000 programs out of which
the best one is selected.

5.2 Learning Branches
Our instantiation of the synthesis procedures syn0 and synA
for learning Switch instructions of the TGEN language uses
a similar approach to the synthesis of SIMPLECOND pro-
grams. Here, we again use the exhaustive enumeration to-
gether with genetic programming in order to search for the
predicates in the switch statement. In particular, we initialize
the genetic search by enumerating all predicates consisting
of up to 3 move instructions and 1 write instruction. After-
wards, for a given predicate, we consider the 32 most com-

mon values obtained by executing the predicate on the train-
ing data as possible branches in the synthesized case state-
ment.

We further restrict the generated program to avoid over-
fitting to the training data. First, we require that each synthe-
sized branch of a Switch instruction contains either more
than 250 training data samples or 10% of the samples in the
dataset d. Then, if a program in a branch gets 100% accuracy
on the training data, we select this split even if some other
split would score higher according to the metrics defined in
ID3+ or E13.

5.3 Parallel Learning
Our complete learning procedure generally requires signif-
icant computational power when processing large datasets.
To improve its speed, we parallelize the computation and
scale it out to multiple machines in the cloud. Since the
branches in a TGEN program can be synthesized indepen-
dently, we send them to different machines. For learning
TGEN programs, we used standard 4-core n1-standard-8 in-
stances on the Google Compute Engine 2. Our average train-
ing time per model was 60 machine hours and we could fit
all our training in the free trial provided by Google. We learn
two TGEN separate programs per programming language –
one for predicting terminal symbols and one for predicting
non-terminal symbols. Once a TGEN program is learned,
obtaining a probabilistic model is fast and requires a few
minutes on a single machine.

5.4 Smoothing
We use standard techniques from machine learning to in-
crease the precision of our probabilistic models by incor-
porating Laplace smoothing [20, §6.9.1.1] and Witten-Bell
interpolation smoothing [33]. Witten-Bell smoothing deals
with data sparseness and uses the idea of falling back to con-
ditioning contexts of smaller size (in the worst case falling
to the unconditioned prediction) in case a prediction is based
only on very few training samples. Laplace smoothing reas-
signs small amount of probability to labels not seen in train-
ing data to ensure they are assigned non-zero probability.

6. Evaluation
This section provides a thorough experimental evaluation of
the learning approach presented so far. For the purposes of
evaluation, we chose the tasks of learning probabilistic mod-
els of code for JavaScript and Python programs. This is a
particularly challenging setting due to the dynamic nature
of these languages, because it is difficult to extract precise
semantic information via static analysis (e.g., type informa-
tion) especially when working with partial code snippets. To
evaluate our probabilistic model, we built a code completion
system capable of predicting any JavaScript or Python pro-
gram element (terminal or non-terminal symbol in the AST).

2 https://cloud.google.com/compute/

Key benefits of our approach We demonstrate the benefits
of our decision-tree-based learning approach by showing
that:

• Our model essentially manages to learn “how to pro-
gram” from a large training corpus of code. This is possi-
ble as the scalable learning allows for synthesizing large,
complex TGEN programs not possible otherwise. Using
our probabilistic model based on those programs, we re-
port state-of-the-art accuracy for a number of interest-
ing code prediction tasks including completing API calls,
field accesses, loops, or branches in a program.
• The decision trees and probabilistic models synthesized

by our approach are interesting beyond the induced prob-
abilistic model. Our synthesized TGEN programs enable
us to highlight the program elements used to make each
prediction, and can in fact be used to explain and justify
the prediction to the user.
• Although our TGEN language includes instructions that

only traverse the JavaScript AST purely syntactically, it
is interesting that the (large) obtained program has au-
tomatically learned how to perform lightweight program
analysis to improve the precision of the models.

Experimental comparison of various systems In our ex-
periments we compared the performance of several systems:

• PCFG and N-GRAM: we include two commonly used
probabilistic models based on probabilistic context free
grammars (PCFGs) and n-gram models (for n = 3).
Despite their low accuracy, these models are currently
used by a number of existing programming tools [1, 3,
4, 9, 11, 15].
• DEEPSYN: we use a previous state-of-the-art system for

JavaScript code completion instantiated with our TGEN
language (including the extension for predicting the out-
of-vocabulary labels). For a fair comparison we imple-
mented the probabilistic model from [27] and trained it
on the full Python and JavaScript languages (as opposed
to only JavaScript APIs and fields as in [27]) by learn-
ing one program for each AST node type (i.e., separate
programs for predicting properties, identifiers, etc.).
• ID3+ and E13: these are the learning algorithms pro-

posed in this work and implemented in DEEP3.

JavaScript datasets In our evaluation we use a corpus
collected from GitHub repositories containing 150, 000 de-
duplicated and non-obfuscated JavaScript files that is pub-
licly available at http://www.srl.inf.ethz.ch/js150
and previously used in [27]. The first 100, 000 of the data
are used for training and the last 50, 000 are used as a blind
set for evaluation purposes only. From the 100, 000 training
data samples, we use the first 20, 000 for learning the TGEN
program. Further, in our experiments, we use only files that

parse to ASTs with at most 30, 000 nodes, because larger
trees tend to contain JSON objects as opposed to code.

The files are stored in their corresponding ASTs for-
mats as defined by the ESTree specification3. Each AST
node contains two attributes – the type of the node and
an optional value. As an example consider the AST node
Property:autoHide from Fig. 7 where Property denotes
the type and autoHide is the value. The number of unique
types is relatively small (44 for JavaScript) and is determined
by the non-terminal symbols in the grammar that describe
the AST whereas the number of values (109 in our corpus)
is very large and is a mixture of identifiers, literals and lan-
guage specified operators (e.g., +, -, *).

Python datasets For our evaluation, we also collected
a corpus of Python programs from GitHub and made it avail-
able as ASTs at http://www.srl.inf.ethz.ch/py150.
This dataset only includes programs with up to 30, 000 AST
nodes and from open source projects with non-viral licenses
such as MIT, Apache and BSD. To parse the dataset, we used
the AST format for Python 2.7 from the parser included in
the Python standard library (we also include the code that
we used for parsing the input programs).

The ASTs are stored in a fashion similar to the JavaScript
ASTs such that every node includes type and optionally
a value. For example, the AST node attr:path is of type
attr and has value path. Semantically, this node corre-
sponds to accessing the path attribute of a Python object.

Methodology Given the structure of ASTs, we learn two
different models for a programming language – one for pre-
dicting node type and a second one for predicting the node
value. Since both of these define probability distributions,
they can be easily combined into a single model of the full
programming language.

To train the model for predicting types we generate one
training sample for each AST node in the dataset by replac-
ing it with an empty node (i.e., a hole) and removing all the
nodes to the right. Following the same procedure we gen-
erate training samples for training the model for values, ex-
cept that we do not remove the type of node to be predicted,
but only its value. Using this procedure we obtain our train-
ing dataset D = {(x(j), y(j))}nj=1. In total, our JavaScript
dataset consists of 10.7 ∗ 108 samples used for training and
5.3 ∗ 107 used for evaluation. Our Python dataset consists of
6.2 ∗ 107 training samples and 3 ∗ 107 evaluation samples.

In our evaluation, we measure the precision of our models
by using the accuracy metric. Accuracy is the proportion of
cases where the predicted label y with the highest probability
according to our probabilistic model is the correct one in
the evaluated program. Note that our model always provides
a prediction and therefore the recall metric is always 100%.

To make sure our predictions also capture the structure of
the tree, and not only the labels in the nodes of the tree, we

3 https://github.com/estree/estree

Prior Work Our Work: Deep3

Applications PCFG 3-gram DeepSyn [27] ID3+ E13

Value prediction accuracy (Fig. 9)

Unrestricted prediction 50.1% 71.2% 80.9% 76.5% 82.9%
API prediction 0.04% 30.0% 59.4% 54.0% 66.6%
Field access prediction 3.2% 32.9% 61.8% 52.5% 67.0%

Type prediction accuracy (Fig. 8)

Unrestricted prediction 51.5% 69.2% 74.1% 83.9% 80.0%
Predicting Loop statements 0% 37.5% 0.04% 65.0% 28.3%
Predicting Branch statements 0% 40.9% 17.3% 65.7% 40.4%

Table 1. Accuracy comparison for selected tasks between JavaScript models used in prior work and our technique.

also predict whether a given node should have any siblings
or children. For this purpose, when predicting the type of an
AST node, the label further encodes whether the given node
has right siblings and children which allows us to expand the
tree accordingly.

6.1 Probabilistic Model for JavaScript
Our most interesting setting is one where we are given
a large training data corpus of JavaScript programs, and
we learn a probabilistic model of JavaScript. That is, the
model essentially learns to predict new JavaScript programs
by learning from a large corpus of existing JavaScript code.
In Table 1 we provide highlights of the accuracy for several
interesting prediction tasks.

Each row of Table 1 includes an application we evalu-
ate on and each column includes the accuracy of the cor-
responding probabilistic model on this task. The tasks of
“unrestricted predictions” for both values and types include
a wide range of sub-tasks – some of them are easy and others
are not. Example of an easy task is to predict that there will
be nodes of type Property inside an ObjectExpression

(i.e., properties inside a JSON object). As a result of these
easy tasks, even the most trivial baselines such as PCFG suc-
ceed in predicting around half of the labels.

We include some of the more difficult tasks as separate
rows in Table 1. When faced with these tasks of predicting
APIs, field accesses or less frequent statements such as loops
and branches, the accuracy of the PCFG model essentially
goes down to 0%.

For every task in our experiments, a probabilistic model
based on decision trees has higher accuracy than any of pre-
vious models – PCFG, the 3-gram language model or the
DeepSyn model. An interesting observation is that the model
obtained from the ID3+ algorithm is more precise than the
one obtained from E13 when predicting types and in con-
trast, E13 produces the most precise model for values. We
hypothesize that the reason for this is the relatively smaller
number of labels for types – there are 176 unique labels for
types and around 109 labels for values. In our further eval-
uation, we take the TGEN program obtained from ID3+ for
types and the TGEN program obtained from E13 for values.

Prior Work Our Work

Prediction Type DeepSyn [27] ID3+

ContinueStatement 17% 58%
ForStatement 0% 60%
WhileStatement 0% 76%
ReturnStatement 14% 75%
SwitchStatement 1% 47%
ThrowStatement 9% 51%
TryStatement 2% 54%
IfStatement 18% 66%

for (j = 0; j < groups.length; j++) {
idsInGroup = groups[j].filter(

function(id) {
return ids.indexOf(id) >= 0;

}
);

if (idsInGroup.length === 0) {
? ← prediction position

}
}

correct→
type

positions used to condition the prediction

PrID3+ PrDeepSyn Prn-gram

ContinueStatement

ReturnStatement

ExpressionStatement

VariableDeclaration

0.86 0.03 0.00

0.04 0.11 0.11

0.03 0.66 0.61

0.02 0.06 0.10

Figure 8. List of new predictions enabled by our decision
tree model when predicting type of a statement (top). Exam-
ple of predicting type of a statement from a code snippet in
our evaluation data. We show the top 4 predictions and their
probabilities predicted by each system (bottom).

Since each of these coarse-grained tasks in our evaluation
include a wide range of easy and more difficult prediction
tasks, next we focus on a more detailed evaluation on the
predictions for node types and values.

6.1.1 Predicting Types
We first discuss the application of our model for predict-
ing types of AST nodes, that is, learning the structure of
the code. There are in total 44 different types of nodes in
JavaScript that range over program statements, expressions

as well as constants and identifiers. Our predicted labels for
types also include tree structure information whether the
node has a right sibling and children. As a result, the total
number of different labels that can be predicted is 176.

We provide a detailed list of difficult type predictions for
previous models that are now enabled by our decision tree
models in Fig. 8 (top). An interesting insight of our evalua-
tion is that there are entire classes of predictions where pre-
vious models (such as DeepSyn) fail to make correct predic-
tions about the program structure. For example because for
statements are less frequent in code than other statements
(e.g., assignments), previous models predict such statements
with very low accuracy. In contrast, our decision tree models
partition the training data into multiple branches and builds
precise models for each such case.

Predicting the structure of code is overall a very hard
task. Previous models failed to predict a range of statements
such as loops, switch statements, if statements and exception
handling statements as shown in Fig. 8. We next give an
example of a prediction done by DEEP3.

Example completion To Illustrate the difficulty of cor-
rectly predicting such queries consider an example shown
in Fig. 8 (bottom). Here, the figure shows the original code
snippet with the developer querying the code completion
system asking it to predict the statement at the position de-
noted with “?”. As can be seen by inspecting at the code,
it is not immediately clear which statement should be filled
in as it depends on the intended semantics of the developer.
However, by training on large enough dataset and condition-
ing our prediction on appropriate parts of the code, we can
hopefully discover some regularities that help us make good
predictions.

Indeed, for this example as well as 58% of other queries,
DEEP3 successfully predicted a ContinueStatement state-
ment. In this case, our model suggests ContinueStatement
with very high probability of 86%, whereas the second most
likely prediction has only 4% probability.

On the other hand, existing models (PCFG, n-gram
and DeepSyn) are biased towards predicting the statement
ExpressionStatement simply because it is three orders of
magnitude more frequent than ContinueStatement. These
models cannot discover proper conditioning to predict the
correct statement with high confidence.

Learned program To understand how DEEP3 obtained its
high accuracy we examined the program learned during the
training and the branch this example fell into. The decision
tree performed the following checks for this prediction: i)
check whether the query node is the first child of the current
scope, ii) test whether the current scope is defined by an
IfStatement, iii) retrieve what is the type of node that
defined previous scope and test if it defines a loop or other
constructs such as function or an IfStatement. Once all
of these conditions were satisfied, the probabilistic model
looked at the values in the last IfStatement where the

Prior Work Our Work

Prediction Type DeepSyn [27] E13

API name 59.4% 66.6%
Example: this.getScrollBottom(inTop)

API call target 63.1% 67.0%
Example: node.removeAttribute(attName)

Array index identifier 72.4% 82.8%
Example: event[prop] = ...

Assigment variable identifier 66.8% 70.3%
Example: result = ...

point x.applyForce(direction.multiply(...));

point y.applyForce(direction.? ← prediction position

branch based on context of API prediction

API completion query:

Fragment of the learned TGEN program for predicting APIs:

api() obj.api() obj.field.api()

branch on how is the result used

assigment argument binary expression

branch on argument position

1 2 3

Model based on:
i) name of the call target (direction)
ii) previous API call on the same object (multiply)

Figure 9. Accuracy of various applications for predicting
values in JavaScript (top). Example of an API completion
query and visualization of the decomposition learned by
our approach (bottom). As can be seen the our approach
learns a specialized model that is learn on queries predicting
API invoked directly on call target that are used as second
argument in another method invocation.

query node is defined. In Fig. 8 (bottom), we highlighted
all positions in the code on which our probabilistic model
conditions in order to make the correct prediction.

6.1.2 Predicting Values
We now turn attention to evaluating the quality of the learned
program trained for predicting values in JavaScript pro-
grams. While this task is similar to the task of predicting
node types in JavaScript ASTs, some of the predictions
are much more challenging because the label set for val-
ues is several orders of magnitude larger than the label set
for types. In Fig. 9 (top) we show the accuracy for several
prediction tasks as well as examples of predictions made
for these tasks. For all these tasks we improve the accu-
racy between 3% to 10% over the accuracy achieved by the
DeepSyn model. In addition, for the API and field access
prediction tasks, DEEP3 outperforms DeepSyn by 6% and
5%, respectively as shown in Table 1. We expect that these
tasks are useful in the context of IDE code completion and

the improvement in accuracy should result in better user
experience in the IDE.

Learned program As an interesting example query for
value prediction consider the query shown in Fig. 9 (bottom)
where the value should be completed with an API call. The
goal of this query is to predict the API name at the position
denoted by “?”. For this case, the learned TGEN program
investigates the context in which the API call is done (on
a variable, on a field object, on this object, etc.), how the
result of the call is used and since it is used as an argument in
a function call, at what position that argument is. Note that
while this program makes sense since it closely identifies the
kind of API used, providing all this conditioning manually
would require tremendous amount of effort.

6.2 Predicting Out-of-Vocabulary Labels
We next evaluate DEEP3’s capability to predict values not
seen in the training data with the model described in Sec-
tion 4.2. To check the effect of this extension (which affects
11% of the learned programs used as leaves in the decision
tree), we performed an experiment where we compared the
accuracy of the resulting probabilistic models with and with-
out the extension. For a fair comparison, Table 1 summarizes
the results for both DeepSyn and DEEP3 with this extension
enabled.

If we disable the second program p2 from Section 4.2,
the overall accuracy for predicting values decreases by 2%,
from 82.9% to 80.9%. This decrease is caused mostly by
the lower accuracy of predicting identifiers and properties –
these are the two prediction tasks that contain most of user
defined values. On the other hand, for predicting types the
second program that describes equality does not affect the
accuracy. This is intuitive as all the possible labels for types
are easily seen in the training data.

6.3 Learned TGEN Programs
Using the learning approach proposed in our work, we dis-
cover a TGEN program with a large number of branches that
is interesting in itself and provides several benefits beyond
providing state-of-the-art code completion system. The pro-
grams learned using the E13 algorithm contain 13, 160 and
307 leaves together with 5, 869 and 157 internal switch
nodes in their decision trees for values and types respec-
tively. That number of cases is clearly infeasible to con-
ceive or design manually. For example, only for predicting
ContinueStatement, the learned TGEN program for types
uses 30 different leaves in its decision tree. One of the ad-
vantages of our approach is that despite the relatively large
size of the model, its learned TGEN program can be easily
inspected, interpreted and even manually modified by an ex-
pert, if needed.

An interesting observation we made by looking at the
learned TGEN program for values is that the model learns
sequences of instructions that perform traversals to a previ-

Applications SVM Our Work: Deep3

Value prediction accuracy 70.5% 82.9%
Type prediction accuracy 67.5% 83.9%

Table 2. Accuracy comparison of discriminative model
trained using SVM and our technique.

ous method invocation depending on whether the call tar-
get is a simple identifier, another call expression or field
access. That is, our synthesized TGEN performs a form of
lightweight program analysis and leads to improvements in
the prediction accuracy. Such specialized sequences are at
the moment learned for performing certain kinds of predic-
tions in some branches of a TGEN program. An interesting
future work item is to build a library of such automatically
learned program analyses and investigate their applicabil-
ity for building either more precise probabilistic models for
code or for other problems in this space.

Prediction speed Even though the learned programs con-
tain thousands of instructions, executing them is fast. This
is due to the fact that for any prediction only a small part of
the instructions in a program needs to be executed (since ex-
ecution traverses only a single branch of the decision tree).
As a result, DEEP3 is capable of answering around 15, 000
completion queries per second on a single CPU core.

6.4 Comparison to SVM
The probabilistic model that we construct in DEEP3 is gen-
erative, meaning that it can assign probabilities to entire pro-
grams. In contrast, several recent works build discriminative
models that only learn to do certain kinds of predictions con-
ditioned on a program without being able to assign probabil-
ities to the program itself. Examples of such discriminative
models are presented in [3, 4, 18, 26], which all work by first
generating a set of features and then learning the weights of
these features on a training dataset.

We compare DEEP3 to a discriminative model based on
support vector machine (SVM). A similar SVM model was
used in JSNICE [26] for predicting variable names and type
annotations. Our SVM model is based on syntactic feature
functions that correspond to the types and values of the 10
nodes preceding the completion position in the AST (these
features are also similar to the ones used in [4]). The query
that we trained our SVM model on, is completing one AST
node of a program – the very same query on which we
evaluate our probabilistic models for code, except that the
SVM model does not return probabilities for its predictions.

To learn the weights for each feature, we used an online
support vector machine (SVM) learning algorithm based on
hinge loss (following the approach in [26]) and performed
grid-search for the parameters that control the regularization
(L∞), the learning rate and the margin of the SVM.

Prior Work Our Work: Deep3

Applications PCFG 3-gram DeepSyn [27] ID3+ E13

Value prediction accuracy

Unrestricted prediction 10.2% 63.9% 67.2% 63.7% 69.2%
Attribute access prediction 0% 25% 42% 27% 42%
Numeric constant prediction 22% 44% 40% 39% 46%
Name (variable, module) prediction 17% 38% 38% 39% 51%
Function parameter name prediction 40% 50% 50% 50% 57%

Type prediction accuracy

Unrestricted prediction 59.0% 63.2% 72.5% 76.1% 76.3%
Function call prediction 55% 65% 71% 74% 74%
Assignment statement prediction 29% 39% 61% 67% 66%
Return statement prediction 0% 19% 10% 41% 29%
List prediction 23% 46% 52% 58% 52%
Dictionary prediction 30% 52% 59% 61% 61%
Predicting raise statements 0% 18% 1% 27% 13%
Predicting (presence of) function parameters 54% 47% 70% 75% 76%

Table 3. Accuracy comparison for selected tasks between Python models used in prior work and our technique.

The results for predicting values and types of AST nodes
are summarized in Table 2. The SVM has worse accuracy
compared to DEEP3 and is in fact worse than the 3-gram
model shown in Table 1. A reason for the worse performance
of these discriminative models is that in contrast to our ap-
proach, SVMs always use fixed weights for the given fea-
tures and cannot express that different features are relevant
for different kinds of predictions.

6.5 Probabilistic Model for Python
To build our probabilistic model for Python, we took DEEP3
and fed it with another training dataset of Python ASTs.
This means that the only effort necessary for our models to
handle that programming language was to provide a parser
for Python and to download a large training dataset.

We summarize the accuracy of DEEP3 in Table 3 and
compare it to baseline models such as PCFG, n-gram lan-
guage model and a model synthesized by the algorithm of
DeepSyn [27]. Overall, the results for Python mimic the ones
for JavaScript, but with some nuances:

• Similar to JavaScript, the best Python models learned by
DEEP3 outperform the models from previous works. The
ID3+ algorithm performs well for predicting the node
types, but not as well for predicting node values. The
E13 algorithm is the best algorithm for predicting node
values.
• The precision of all Python models is lower than the

precision of the corresponding model for JavaScript.
One possible explanation is the different structure of the
Python ASTs, which include less information that is re-
dundant and easily predictable. The lower precision of
the PCFG model for Python in comparison to the PCFG
model for JavaScript also supports this interpretation of
the results.

• In contrast to JavaScript, the Python syntax includes ex-
pressions for specifying lists and sets. DEEP3 can predict
these expressions with higher accuracy than prior works.

7. Related Work
We next survey some of the work that is most closely related
to ours.

Decision tree learning Decision trees are a well studied
and widely used approach for learning classifiers. Among
the large number of decision tree algorithms notable ones
include ID3 [23] and its successor C4.5 [24], along with
various general purpose techniques such as bagging and
random forests.

Although decision trees are mostly used as black box
classification technique for some applications, it is some-
times necessary to extend them in a way that the learning
reflects the requirements or the domain knowledge available
for the given task at hand. For example, in the context of
learning program invariants [8], it is necessary that the de-
cision tree classifies all examples perfectly and includes do-
main knowledge in form of implication counter-examples.

Similarly, in our work we extend and adapt the classic
ID3 learning algorithm so that it takes advantage of the fact
that the leafs do not necessary have to correspond to un-
conditioned maximum likelihood estimate but can be rep-
resented using probabilistic models conditioned on complex
features (in our case, contexts).

Probabilistic models of code Recently, there has been an
increased interest in building probabilistic models of code
and using these probabilistic models for various predic-
tion tasks. Several existing approaches build a probabilistic
model where the conditioning is hard-wired: via the sim-
ple n-gram model and syntactic elements [11], the n-gram
and recurrent neural networks with API calls [25], program

expressions [10], tree substitutions in the abstract syntax
tree [2] or other [21]. Further, several approaches address the
limitation of the n-gram model by providing better seman-
tic program abstractions using program dependence graphs
[13] or various extensions including topic models [22] and
modeling local and global context [34].

While a good first step, these systems suffer from very
low precision (e.g., [11]) or perform well only in restricted
scenarios (e.g., APIs in [25]) and for specific languages
with strong type information (e.g., Java). For instance, [25]
has poor API prediction precision in the case of dynamic
languages such as JavaScript (evaluated in [27]).

Regardless of the performance of such models, our ap-
proach provides a general framework which can be instanti-
ated by arbitrary existing models used as leafs in the decision
tree that is being learned without any changes required to the
learning algorithm. That is, our work allows us to leverage
some of these models at the leafs.

As discussed throughout the paper, in terms of expres-
siveness, the recent works of [7, 27] are perhaps most ad-
vanced and precise: they condition not only on a fixed
context but also on a dynamically learned context. While
promising, as we illustrated in the paper, these approaches
only learn a single program without branches that must
somehow explain a large structured domain such as en-
tire, complex programming languages (e.g., JavaScript and
Python) together with the frameworks used by programs
written in these languages. As a result, the precision of these
approaches is worse than our work.

Another recent work proposes a language model of C#
programs based on a log-linear tree-traversal model [19].
This model is only capable of learning a linear combination
of a small set of predefined features in contrast to our work
where we learn from an exponentially larger set of programs.
Further, our learned functions that guide the predictions are
interpretable as a program and not only as a set of weights.
Because the model of our work is described by a program, it
can also be understood, edited by a human and further tuned
towards a specific application.

Discriminative learning In addition to generative ap-
proaches for code modeling, there have also been several
recent works that employ discriminative models including
[18, 26]. Such approaches however do not provide valid
probability distributions and require user specified feature
functions whose weights are then learned. The feature func-
tions can be difficult to discover manually, are designed only
for a specific task the tool addresses, and cannot serve as a
basis for a general purpose model of complex, rich program-
ming languages such as JavaScript and Python. Further, the
combination of weights and feature functions leads to mod-
els that are difficult to understand, debug and explain.

Program synthesis A common challenge for many exist-
ing program synthesis techniques [5, 14, 30, 31] is scalabil-
ity: it is still difficult to scale these approaches to the task

of synthesizing large, practical programs. To address this
challenge, several recent works attempt exploit the struc-
ture of the particular task to be synthesized by using tech-
niques such as hierarchical relational specifications [12] or
shapes of independent components [6]. Such approaches al-
low for finding suitable decompositions easily which in turn
can significantly speed up the synthesis procedure. Another
approach taken by Raza et. al. [28] proposes the use of com-
positional synthesis guided by examples. Finally, Kneuss et.
al. [16] decompose the initial synthesis problem of discover-
ing a recursive function into smaller subproblems.

The main difference between our work and these ap-
proaches is that these attempt to satisfy all of the provided
input/output examples. This has implications on the scalabil-
ity as well as on the level of acceptable errors. Further, in our
work we consider a very different setting consisting of large
and noisy datasets where our goal is to discover a decompo-
sition without relying on any domain specific knowledge on
the shape of the underlying components and without using
guidance from counter-examples.

8. Conclusion
We presented a new approach for learning probabilistic mod-
els of code. The key insight of our work is a new decision
tree based learning approach that: (i) discovers a suitable de-
composition of the entire data set, (ii) learns the best condi-
tioning context for each component, and (iii) allows usage
of probabilistic models as leafs in the obtained decision tree.

We generalize our approach by phrasing the problem of
decision tree learning in terms of learning a program in a do-
main specific language (DSL) that includes branch instruc-
tions. We instantiate the learning by defining a general pur-
pose and programming language independent DSL, called
TGEN. This language allows for traversing abstract syntax
trees (ASTs) and provides ways for accumulating a condi-
tioning context obtained from traversing the AST.

We implemented our approach and applied it to the task
of building probabilistic models for Python and JavaScript,
and developed a statistical code completion system, called
DEEP3, based on our model. DEEP3 can provide comple-
tions for any program element and achieves precision higher
than that of existing techniques.

The key to DEEP3’s improved accuracy is the ability
of the underlying probabilistic model to discover interest-
ing decompositions of the entire dataset into more than sev-
eral hundreds specialized components. This is a task which
would be infeasible to perform manually, by hand. Crucially,
the discovered components can be inspected by a human, are
often intuitive, and can also be used to provide a justification
for the prediction.

We believe this work represents an important advance
in systematically learning powerful probabilistic models of
code which will be useful as a core building block for a va-
riety of applications.

Acknowledgements
The research leading to these results was partially supported
by an ERC Starting Grant 680358.

References
[1] M. Allamanis and C. Sutton. Mining source code repositories

at massive scale using language modeling. In MSR, 2013.

[2] M. Allamanis and C. Sutton. Mining idioms from source
code. In Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering,
FSE 2014, pages 472–483, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-3056-5.

[3] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. Suggesting
accurate method and class names. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 38–49, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3675-8.

[4] M. Allamanis, D. Tarlow, A. D. Gordon, and Y. Wei. Bimodal
modelling of source code and natural language. In F. R.
Bach and D. M. Blei, editors, ICML, volume 37 of JMLR
Proceedings, pages 2123–2132. JMLR.org, 2015.

[5] R. Alur, R. Bodı́k, G. Juniwal, M. M. K. Martin,
M. Raghothaman, S. A. Seshia, R. Singh, A. Solar-Lezama,
E. Torlak, and A. Udupa. Syntax-guided synthesis. In Formal
Methods in Computer-Aided Design, FMCAD 2013, Portland,
OR, USA, October 20-23, 2013, pages 1–8, 2013.

[6] S. Barman, R. Bodik, S. Chandra, E. Torlak, A. Bhattacharya,
and D. Culler. Toward tool support for interactive synthesis.
In 2015 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software
(Onward!), Onward! 2015, pages 121–136, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-3688-8.

[7] P. Bielik, V. Raychev, and M. T. Vechev. PHOG: proba-
bilistic model for code. In Proceedings of the 33nd Inter-
national Conference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19-24, 2016, pages 2933–2942,
2016. URL http://jmlr.org/proceedings/papers/

v48/bielik16.html.

[8] P. Garg, D. Neider, P. Madhusudan, and D. Roth. Learning
invariants using decision trees and implication counterexam-
ples. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2016, pages 499–512, New York, NY, USA,
2016. ACM. ISBN 978-1-4503-3549-2.

[9] T. Gvero and V. Kuncak. Synthesizing java expressions from
free-form queries. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2015, part
of SLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015,
pages 416–432, 2015.

[10] T. Gvero, V. Kuncak, I. Kuraj, and R. Piskac. Complete
completion using types and weights. In Proceedings of the
34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, pages 27–38. ACM,
2013. ISBN 978-1-4503-2014-6.

[11] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the
naturalness of software. In Proceedings of the 34th Interna-
tional Conference on Software Engineering, ICSE ’12, pages
837–847, Piscataway, NJ, USA, 2012. IEEE Press. ISBN 978-
1-4673-1067-3.

[12] T. Hottelier and R. Bodik. Synthesis of layout engines from
relational constraints. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA
2015, pages 74–88, New York, NY, USA, 2015. ACM. ISBN
978-1-4503-3689-5.

[13] C.-H. Hsiao, M. Cafarella, and S. Narayanasamy. Using web
corpus statistics for program analysis. In Proceedings of the
2014 ACM International Conference on Object Oriented Pro-
gramming Systems Languages & Applications, OOPSLA
’14, pages 49–65, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2585-1.

[14] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-
guided component-based program synthesis. In Proceedings
of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE ’10, pages 215–224, New York,
NY, USA, 2010. ACM. ISBN 978-1-60558-719-6.

[15] S. Karaivanov, V. Raychev, and M. T. Vechev. Phrase-based
statistical translation of programming languages. In Onward!
2014, Proceedings of the 2014 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Program-
ming & Software, part of SLASH ’14, Portland, OR, USA,
October 20-24, 2014, pages 173–184, 2014. doi: 10.1145/
2661136.2661148.

[16] E. Kneuss, I. Kuraj, V. Kuncak, and P. Suter. Synthesis mod-
ulo recursive functions. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Pro-
gramming Systems Languages & Applications, OOPSLA
’13, pages 407–426, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-2374-1. doi: 10.1145/2509136.2509555. URL
http://doi.acm.org/10.1145/2509136.2509555.

[17] P. Liang, M. I. Jordan, and D. Klein. Learning programs: A
hierarchical bayesian approach. In Proceedings of the 27th
International Conference on Machine Learning (ICML-10),
June 21-24, 2010, Haifa, Israel, pages 639–646, 2010. URL
http://www.icml2010.org/papers/568.pdf.

[18] F. Long and M. Rinard. Automatic patch generation by learn-
ing correct code. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2016, pages 298–312, New York, NY,
USA, 2016. ACM. ISBN 978-1-4503-3549-2.

[19] C. J. Maddison and D. Tarlow. Structured generative models
of natural source code. In Proceedings of the 31th Interna-
tional Conference on Machine Learning, ICML 2014, Beijing,
China, 21-26 June 2014, pages 649–657, 2014.

[20] T. M. Mitchell. Machine Learning. McGraw-Hill, Inc., New
York, NY, USA, 1 edition, 1997.

[21] A. T. Nguyen and T. N. Nguyen. Graph-based statistical lan-
guage model for code. In Proceedings of the 37th Interna-
tional Conference on Software Engineering - Volume 1, ICSE
’15, pages 858–868, Piscataway, NJ, USA, 2015. IEEE Press.
ISBN 978-1-4799-1934-5.

[22] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen.
A statistical semantic language model for source code. In
Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, pages 532–542, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-2237-9.

[23] J. R. Quinlan. Induction of decision trees. Mach. Learn., 1
(1):81–106, Mar. 1986. ISSN 0885-6125. doi: 10.1023/A:
1022643204877.

[24] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.
ISBN 1-55860-238-0.

[25] V. Raychev, M. Vechev, and E. Yahav. Code completion with
statistical language models. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, pages 419–428, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2784-8.

[26] V. Raychev, M. Vechev, and A. Krause. Predicting program
properties from ”big code”. In Proceedings of the 42nd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’15, pages 111–124. ACM,
2015. ISBN 978-1-4503-3300-9.

[27] V. Raychev, P. Bielik, M. Vechev, and A. Krause. Learn-
ing programs from noisy data. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, pages 761–774, New

York, NY, USA, 2016. ACM. ISBN 978-1-4503-3549-2. doi:
10.1145/2837614.2837671.

[28] M. Raza, S. Gulwani, and N. Milic-Frayling. Compositional
program synthesis from natural language and examples. In
Proceedings of the Twenty-Fourth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2015, Buenos Aires, Ar-
gentina, July 25-31, 2015, pages 792–800, 2015.

[29] R. Rosenfeld. Two decades of statistical language modeling:
Where do we go from here. In Proceedings of the IEEE, 2000.

[30] A. Solar-Lezama. Program sketching. STTT, 15(5-6):475–
495, 2013.

[31] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. A.
Saraswat. Combinatorial sketching for finite programs. In
ASPLOS, pages 404–415, 2006.

[32] A. Stolcke. SRILM-an Extensible Language Modeling
Toolkit. International Conference on Spoken Language Pro-
cessing, 2002.

[33] I. H. Witten and T. C. Bell. The zero-frequency problem:
Estimating the probabilities of novel events in adaptive text
compression. IEEE Transactions on Information Theory, 37
(4):1085–1094, 1991.

[34] T. Zhaopeng, S. Zhendong, and D. Premkumar. On the lo-
calness of software. In Foundations of Software Engineering,
FSE ’14, New York, NY, USA, 2014. ACM.

