
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Modeling and Analysis of Remote Memory Access Programming

Andrei Marian Dan
andrei.dan@inf.ethz.ch

ETH Zurich, Switzerland

Patrick Lam
patrick.lam@uwaterloo.ca

University of Waterloo, Canada

Torsten Hoefler
torsten.hoefler@inf.ethz.ch
ETH Zurich, Switzerland

Martin Vechev
martin.vechev@inf.ethz.ch
ETH Zurich, Switzerland

Abstract
Recent advances in networking hardware have led to a new
generation of Remote Memory Access (RMA) networks in
which processors from different machines can communicate
directly, bypassing the operating system and allowing higher
performance. Researchers and practitioners have proposed
libraries and programming models for RMA to enable the
development of applications running on these networks,

However, the memory models implied by these RMA li-
braries and languages are often loosely specified, poorly un-
derstood, and differ depending on the underlying network
architecture and other factors. Hence, it is difficult to pre-
cisely reason about the semantics of RMA programs or how
changes in the network architecture affect them.

We address this problem with the following contribu-
tions: (i) a coreRMA language which serves as a common
foundation, formalizing the essential characteristics of RMA
programming; (ii) complete axiomatic semantics for that
language; (iii) integration of our semantics with an existing
constraint solver, enabling us to exhaustively generate core-
RMA programs (litmus tests) up to a specified bound and
check whether the tests satisfy their specification; and (iv)
extensive validation of our semantics on real-world RMA
systems. We generated and ran 7,441 litmus tests using each
of the low-level RMA network APIs: DMAPP, VPI Verbs,
and Portals 4. Our results confirmed that our model success-
fully captures behaviors exhibited by these networks. More-
over, we found RMA programs that behave inconsistently
with existing documentation, confirmed by network experts.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

OOPSLA’16 October 25–30, 2016, The Netherlands
Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM [to be supplied]. . . $15.00

Our work provides an important step towards understand-
ing existing RMA networks, thus influencing the design of
future RMA interfaces and hardware.

Categories and Subject Descriptors B.3.3 [Performance
Analysis and Design Aids]: Formal models

Keywords Memory Model

1. Introduction
Large-scale parallel systems are gaining importance for data
center, big data, and scientific computations. The traditional
programming models for such systems are message pass-
ing (e.g., through the Message Passing Interface—MPI) and
TCP/IP sockets (as used by Hadoop, MapReduce, or Spark).

These models were designed for message-based intercon-
nection networks such as Ethernet. Remote Direct Memory
Access (RDMA) network interfaces, which have been used
in High-Performance Computing for years, offer higher per-
formance at a comparable cost to Ethernet and are finding
quick adoption in modern datacenters. To extract the highest
performance from such modern interconnects, programmers
need to use Remote Memory Access (RMA) programming
interfaces, which are replacing traditional message passing
models.

Key Benefits of RMA. RMA enables direct access to re-
mote memory through the network interface. RMA bypasses
the operating system and the CPU, enabling low latencies
and high bandwidth—remote access times of less than 1µs
are possible today (Gerstenberger et al. 2013). Since the
hardware implementation in the network card is a simple
set of queues, RMA technology is widely supported; it is
available for InfiniBand (The InfiniBand Trade Association
2004), Blue Gene/P (Allen et al. 2001), Blue Gene/Q (Chen
et al. 2011), IBM PERCS (Arimilli et al. 2010), and Cray’s
Gemini and Aries networks (Alverson et al. 2010; Faanes
et al. 2012). RMA-capable hardware is now in the same price
range as standard Ethernet network cards while providing
higher performance.

RMA Programming. At the lowest level, RMA networks
are programmed through user-level libraries that directly
communicate with the hardware. These libraries provide
calls to read and write remote memory locations as well
as various forms of synchronization that a program can use.
Therefore, programming RMA systems is conceptually sim-
ilar to shared memory systems. The main differences are that
1) RMA systems do not offer atomicity by default (Dunning
et al. 1998) and 2) the global address space is partitioned
such that each network endpoint owns a fixed address range.
Several programming systems embrace remote memory ac-
cess (RMA) functionality (Numrich and Reid 1998; UPC
Consortium 2005; Hoefler et al. 2013; Valiev et al. 2010).

RMA-Based Libraries. RMA library interfaces are spe-
cific to network technologies and include InfiniBand’s Open
Fabrics Enterprise Distribution (OFED (OpenFabrics Al-
liance (OFA) 2014)), Cray’s uGNI and DMAPP (Cray Inc.
2014), the Portals 4 network programming interface (Barrett
et al. 2012) and IBM’s Parallel Active Messaging Interface
(PAMI (Kumar et al. 2012)). Many middleware applications,
such as Hadoop (Islam et al. 2012), call these interfaces di-
rectly. Unfortunately, most of these interfaces only specify
loose memory semantics. No standard interface or memory
model has been established yet, e.g., RMA library interfaces
do not guarantee that all accesses are atomic, and some im-
plementations lead to undefined results for overlapping ac-
cesses, while others require explicit operations to guarantee
visibility.

Our Work To address these challenges, in this work, we
define the first formal model, coreRMA, which cleanly cap-
tures essential characteristics of RMA programming. core-
RMA serves as a basis for specifying the constructs of future
RMA languages and libraries. We encoded our semantics us-
ing a state-of-the-art relational solver, enabling programmers
and network experts to quickly experiment with RMA con-
figurations and scenarios. Finally, based on our semantics,
we exhaustively (up to a bound) generated test cases which
conformed to arcane low-level real-world APIs of RMA net-
works, executed them, and found inconsistencies.

Main Contributions Our main contributions are:

• The first formal axiomatic definition of RMA semantics,
coreRMA, a common foundation formalizing essential
characteristics of RMA networks. These characteristics
include network routing and asynchronous execution.

• An implementation of the coreRMA model in an analysis
tool based on relational logic and a validation framework
including test generation for real world networks.

• A systematic experimental validation of our model on
Cray Aries and InfiniBand, using the DMAPP, Portals 4
and IBV Verbs libraries, which discovered behaviors that
contradict both current RMA network documentation and
our model, as well as predicted behaviors that never oc-

curred. These inconsistencies were confirmed by RMA
network experts.

2. Overview
In this section, we provide an intuitive explanation of RMA
semantics and illustrate allowed RMA behaviors using ex-
amples. Sections 3–5 provide the full coreRMA semantics.

Consider the following RMA program with two processes
P1 and P2. The program has shared variables X belonging to
P1 and Y to P2, with initial values 0 and 1, respectively, along
with local registers a and b. We assume that programs syn-
chronize after setting initial values for their shared variables.

X = 0 Y = 1
P1: P2:

X = get(YP2) Y = get(XP1)
a = X b = Y

This program demonstrates RMA’s remote reads and writes.
The first process reads remotely the value of Y and stores
it in X, while the second process reads remotely the value
of X and stores it in Y. Remote accesses are enqueued by a
CPU onto its network interface card (NIC), which then exe-
cutes required remote communication and memory accesses
without further CPU involvement. After initiating the remote
accesses, each process reads locally the variables X and Y, re-
spectively, and stores results in registers a and b.

To understand this program under sequential consistency,
it suffices to consider the interleavings of the actions making
up the get statements in each process. Possible outcomes in-
clude a = 0, b = 0; a = 1, b = 1; and, with non-atomic
get statements, a = 1, b = 0. However, RMA admits ad-
ditional behaviors, because the local reads are not guaran-
teed to run after the get statements. Thus, a possible out-
come under a non-sequentially-consistent memory model is
a = 0, b = 1. Our axiomatic semantics of RMA enable the
prediction of such admissible hardware behaviors and the
detection of inconsistencies between the model and the hard-
ware. By generating tests from our model, we have con-
firmed 135 instances where Cray hardware exhibits behavior
that violates its documentation and 13 instances for Portals
4; Section 7 presents those cases. We have also observed that
our model is reasonably tight: actual hardware exhibits 90%
of the expected outputs from our model.

2.1 RMA Hardware Model
Modern commodity and special-purpose high-performance
network interfaces can be modeled with an abstract RMA in-
terface. However, detailed memory ordering semantics vary
widely between the different network cards, and it is impor-
tant to understand them to write correct programs.

Figure 2 shows the basic architecture of an RMA sys-
tem. Operations are issued by a program running on a CPU.
When the CPU performs a remote write operation, it in-
structs the network interface card (NIC) to copy data from
local memory at the source to remote memory at the tar-

X = 0 Y = 1

P1: P2:

read Y,0

write X,0

read X,0

read X,0

write Y,0

read Y,0

po, hb

po

po, hb

po

rf

rf

rf rf

X = 0 Y = 1

P1: P2:

read Y,1

write X,1

read X,1

read X,1

write Y,1

read Y,1

po, hb

po

po, hb

po

rf

rf

rf rf

X = 0 Y = 1

P1: P2:

read Y,1

write X,1

read X,1

read X,0

write Y,0

read Y,0

po, hb

po

po, hb

po

rf

rf

rf rf

X = 0 Y = 1

P1: P2:

read Y,1

write X,1

read X,0

read X,0

write Y,0

read Y,1

po, hb

po

po, hb

po

rf

rf

rf

rf

a = 0, b = 0 a = 1, b = 1 a = 1, b = 0 a = 0, b = 1

SC behaviors Non-SC behavior under RMA

Figure 1: Even for a simple program, RMA admits additional behaviors which are not allowed under SC. Leftmost three
cases show all possible behaviors under sequential consistency; RMA-only case on right. Program order and happens-before

relations
po−→ and hb−→ as under RMA. Reads-from relations

rf−→ explain observed behaviors.

MEM

NIC

CPU

PCIe root

complex
MEM

NIC

CPU

PCIe root

complex

Figure 2: NIC/CPU RMA Architecture.

get. The NIC then asynchronously reads the data from the
local memory and sends it to the remote NIC which writes
the data asynchronously to the remote memory. Remote read
and write operations may use the PCI express root complex
to perform the memory accesses. The CPU is free to issue
other operations while the NIC is accessing the memory.
This asynchrony can create complex memory access inter-
leavings. Order between operations can be established using
flush synchronization operations.

The core focus of our work was to cleanly capture the
essence of RMA without worrying about the effects of lo-
cal processors: we model both the RMA interactions be-
tween nodes and inside each node (between the NIC and
the single-threaded CPU). The current model thus concen-
trates on RMA networks with multiple nodes. Each node’s
CPU (potentially x86, ARM, etc.) executes a single thread.
As a result, the coreRMA rules do not require an underlying
consistency model as an input parameter.

Atomicity. An access is atomic if (1) two concurrent oper-
ations that write a and b to a common location must update
the location to either a or b and (2) the read of a location
that is concurrent with a write must either return the writ-
ten value or the previous value at the location. Non-atomic
accesses can return any value or write any value to the loca-
tion. To ensure consistency and guarantee atomic access, the
CPU and the NIC offer atomic instructions. However, these
instructions can be significantly more expensive than non-

atomic instructions. The model in this paper applies to any
set of atomicity guarantees.

Ordering. Ordering of accesses between the same two
endpoints is generally not guaranteed. Some networks, such
as InfiniBand, maintain the order of either remote reads or
writes between the same pair of endpoints. Others, such as
Cray’s Gemini or Aries or IBM’s PERCS network, relax the
ordering to enable network optimizations such as adaptive
routing. Most modern low-diameter topologies require adap-
tive routing to provide a high global bandwidth (Jiang et al.
2009).

2.2 SC Behaviors versus RMA Behaviors
To illustrate the challenges of reasoning about RMA pro-
grams, we present several examples which illustrate the
intricacies that arise when dealing with RMA behaviors.
We show RMA behaviors that differ from sequentially con-
sistent (SC) executions as well as behaviors not exhibited
by other memory models studied in the literature such as
TSO (Owens et al. 2009), PSO, and RMO (SPARC Interna-
tional 1992) (such models obey local data dependencies: a
write to variable X is visible to subsequent reads from X; this
is not the case for RMA, see Section 2.3).

Figure 1 shows possible behaviors of the simple program
from the start of the section. We split each get statement into
read and write actions. The leftmost behavior from Fig-
ure 1 shows X = get(YP2) from P1 split into two statements:
read Y,0—where the get statement reads value 0 from Y;
and write X,0—where the get writes 0 to X.

The relation
po−→ represents the program order between

the actions. The hb−→ relation is the happens-before relation,
also known as the consistency order: if two actions are or-
dered by happens-before, then the effects of the first action
are visible to the second action. In sequential consistency,
program order (

po−→) implies happens-before (hb−→). Hence,
under SC, if an action appears in the program before another
action, the effects of the first action are guaranteed to be visi-

ble by the second action. The
rf−→ relation indicates the write

action from which a read action reads from. Figure 1 shows
that read and write actions constituting a get statement are
always ordered by both

po−→ and hb−→. However, the local read
action is ordered after the get action only by relation

po−→.
This reflects the fact that, under RMA, the effects of a get

are not guaranteed to be visible to subsequent local actions.

Sequentially Consistent Behaviors Reasoning about con-
current programs requires considering (or ruling out) all pos-
sible interleavings; we continue by enumerating interleav-
ings. One case, furthest to the left in Figure 1, is when
Y = get(XP1) runs before X = get(YP2). At the end of this
execution, a and b are both 0, because the local read state-
ments from X and Y read the most recent writes.

In the second SC case (also second from left in Figure 1),
X = get(YP2) runs before Y = get(XP1). Now, both a and
b get 1. Assuming sequential consistency and atomicity of
the get statement, there are only two possible outcomes of
the program: the pair of variables (a, b) can have either the
values (0, 0) or (1, 1).

A third possibility we allow as sequentially consistent be-
havior is when the constituent sets of actions of the get state-
ments are not executed atomically. For example, the read Y

and write X actions from X = get(YP2) may be interleaved
with the read X and write Y actions from Y = get(XP1). It
is thus possible that both get actions read the corresponding
initial values. This leads to (a, b) having values (1, 0),
shown as the third SC behavior in Figure 1.

Non-Sequentially Consistent Behavior. When we execute
the program on an RMA network, we observe additional
non-sequentially consistent behaviors. An example of such
a behavior (shown rightmost in Figure 1) leaves (a, b) with
the values (0, 1). Since the local reads in each process are
not ordered by hb−→ after the writes of the get statements,
these local reads may read from the initial values of the
variables. This execution leads to the values (0, 1) for
(a, b) and is a valid execution under RMA.

2.3 Out of Order Execution
To provide additional intuition for the RMA semantics, we
continue with more examples permitting RMA behaviors
not possible under sequential consistency or other hardware
memory models (e.g., x86 TSO, PSO, RMO). Figure 3 sum-
marizes these examples; we show, for each example, the
source code and one possible behavior. Statements are on
the left and the corresponding actions are on the right. See
Table 3 for the translation from statements to actions.

a) get: out of order execution. In example a) of Figure 3,
process 1 hosts shared variable X and the second process
hosts shared variable Y. Both variables are initialized to 0.
In the sequentially consistent (SC) case, we treat put and
get simply as a shared write and a shared read respectively.

The second process does not execute any statements. Un-
der sequential consistency, when the program terminates,
local register a is 1. However, under RMA, a can be 0, 1,
or undefined (denoted as >). Variable a may be 0 because
the statement X = get(YP2) may complete after X = 1. Vari-
able a may be > because the write X = get(YP2) can hap-
pen concurrently with X = 1 and the atomicity of these ac-
cesses is not guaranteed. In the diagram, the hb−→ relation in-
dicates that the effects of action read Y,0 are visible be-
fore action write X,0 is executed and, similarly, the ef-
fects of write X,1 are visible before the action read X,0

is executed. Since write X,0 is not ordered by hb−→ with
write X,1, those two actions may be executed in any order.

Comparing RMA to TSO, PSO, and RMO. This first ex-
ample also illustrates a case where programs under RMA
allow behaviors that are not possible in other weak memory
consistency models, such as RMO, PSO, or x86 TSO. Con-
sider RMO, the most relaxed (permissive) memory model of
these three. In RMO, writes to the same variable issued by
a process are always ordered. For example, X = 1 is ordered
after X = get(YP2), so that the read a = X can return only 1.
However, recall that under RMA, register a can be 0, which
is not possible under RMO, PSO, or x86 TSO.

b) put: out of order execution. In example b) of Figure 3,
once again, the first process hosts the shared variable X

and the second process hosts Y, and both are initialized to
0. Statement put(YP2, X) in the first process means that
Y gets the value of X. Under SC, upon termination, local
variable b is always 0. Under RMA, b can also be 1, because
put(YP2, X) may complete after the write X = 1. As in the
first example, the statements of the first process can execute
simultaneously, so the final value of b can also be >. Again,
output b = 1 is not allowed under other relaxed buffered
memory models, such as RMO, PSO, or x86 TSO. In this
case, read X,1 could not read from an action which occurs
after itself under

po−→ (namely write X,1).

c) put-get sequence. In example c) of Figure 3, variable X

is initialized to 1 and Y to 0. The flush(P2) ensures that the
get and put statements complete before executing c = X.
This example shows the effect of ordering the accesses be-
tween the same two endpoints. Under SC, upon termina-
tion, local register c is 1. Under RMA, if the accesses of
the first process to the memory of the second process are not
ordered, the final value of c may also be 0: the statement
X = get(YP2) is executed before put(YP2, X). However, if
the network ensures ordered accesses between the same two
endpoints (referred to as in-order routing), discussed later,
then the sequence put-get is ordered and the value 0 is not
possible for c (the get statement will read the value written
by the previous put statement). Finally, c may be undefined
due to a race between non-atomic reads and writes on X.

d) get-put sequence. In example d) of Figure 3, X is ini-
tially 1 and Y is 0. First, P1 reads the value of Y and stores

a) get: out of order execution b) put: out of order execution

X = 0 Y = 0
P1: P2:

X = get(YP2)
X = 1
a = X

SC: a = 1
RMA: a = 0 ∨ 1 ∨ >

[wa] X = 0 [wa] Y = 0

P1: P2:

[era] read Y,0

[ewa] write X,0

[wa] write X,1

[ra] read X,0

po, hb

po

po, hb

rf

rf

X = 0 Y = 0
P1: P2:

put(YP2, X) b = Y
X = 1

SC: b = 0
RMA: b = 0 ∨ 1 ∨ >

[wa] X = 0 [wa] Y = 0

P1: P2:

[era] read X,1

[ewa] write Y,1

[wa] write X,1

[ra] read Y,1
po, hb

po

rf
rf

c) put - get sequence d) get - put sequence

X = 1 Y = 0
P1: P2:

put(YP2, X)

X = get(YP2)
flush(P2)
c = X

SC: c = 1
RMA: c = 0 ∨ 1 ∨ >

[wa] X = 1 [wa] Y = 0

P1: P2:

[era] read X,1

[ewa] write Y,1

[era] read Y,0

[ewa] write X,0

[f] flush

[ra] read X,0

po, hb

po

po, hb

po, hb

po, hb

rf

rf

rf

hb

X = 1 Y = 0
P1: P2:

X = get(YP2)

put(YP2, X)
flush(P2)

X = get(YP2)
d = X

SC: d = 0
RMA: d = 0 ∨ 1 ∨ >

[wa] X = 1 [wa] Y = 0

P1: P2:

[era] read Y,0

[ewa] write X,0

[era] read X,1

[ewa] write Y,1

[f] flush

[era] read Y,1

[ewa] write X,1

[ra] read X,1

po, hb

po

po, hb

po, hb

po, hb

po, hb

po

rf

rf

rf

rf

hb

Figure 3: Example programs show behaviors allowed by coreRMA that are not allowed under sequential consistency. Table 3
provides our translation from get and put statements into read and write actions.

it in X. Next, the value of X is written to Y. After the flush,
the value of Y is read again and stored to X. The interest-
ing behavior in this example is that, even if the ordering of
accesses between the same two endpoints is guaranteed by
the network, the value of d can be 1. This result is counter-
intuitive because it appears that the get and put statements
before the flush are executed in reverse order, even if the
two statements are accesses between the same two endpoints
and the network guarantees order between such accesses.
This type of behavior is allowed by the RMA networks, and
our model enables users to reason about this behavior.

3. The coreRMA Language
We start our formal description of RMA semantics by pre-
senting the statements of our coreRMA language (see Ta-
ble 1). These statements include the core RMA primitives
and are sufficiently expressive to capture the essence of
RMA programs. Our description of RMA behaviors builds
on the semantics of these statements.

3.1 RMA-Based Programming Models
Remote Memory Access (RMA) languages provide inter-
faces to emerging RMA networks. These languages are gain-
ing popularity in HPC and finding adoption in datacenter en-

Table 1: coreRMA statements capture the essence of RMA
programming. ∗ ∈ {a, n} represents atomicity of an access.

Statement Description

u = X∗ local read
X∗= expr local write
X∗= get(Zdst∗) remote get
put(Zdst∗ ,X∗) remote put
X∗= rga(Zdst∗ , Y∗) remote get accumulate
X∗= cas(Zdst∗ ,Y∗,W∗) compare and swap
flush(dst) flush

vironments (Dragojević et al. 2014; Poke and Hoefler 2015).
Successful complex applications such as NWChem (Valiev
et al. 2010) rely solely on RMA programming.

A number of RMA languages take advantage of RMA
hardware acceleration. A key difficulty of implementing
RMA languages lies in using the underlying RMA library
as efficiently as possible, yet legally. Underlying RMA pro-
gramming models are still in active development and far
from understood: MPI One Sided, for example, was re-

Table 2: coreRMA primitives and corresponding constructs in popular RMA languages.

RMA put get flush

DMAPP dmapp_put_nbi dmapp_get_nbi dmapp_gsync_wait

OFED (IB) ibv_wr_rdma_write ibv_wr_rdma_read ibv_reg_notify_cq

Portals 4 PtlPut PtlGet PtlCTWait

UPC upc_memput upc_memget upc_fence

Fortran 2008 assignment assignment sync_memory

MPI-3 RMA MPI_Put MPI_Get MPI_Win_flush

vamped completely in MPI-3.0 (2012) and continues to
evolve towards MPI-4.0.

For coreRMA, we identified 5 primitive remote-access
statements: put, get, rga, cas, and flush. These statements
implement the constructs found in higher-level languages
and libraries. Table 2 shows mappings from constructs in
Cray’s DMAPP API, OFED’s IB API, Portals 4, UPC, For-
tran 2008, and MPI-3 RMA, to coreRMA primitives.

3.2 coreRMA
We next explain the components of our coreRMA language.

Processes, Registers, and Memory Locations. A core-
RMA program consists of a finite set of processes Processes =
{p1, p2, . . . , pN}. coreRMA supports a single process per
computation node. Each p ∈ Processes has a set Registers[p]
of local registers. Local registers cannot be accessed from
other processes. The set Memory [p] denotes the memory
locations of process p, which are accessible to all pro-
cesses. The set of all remotely accessible memory locations
is Memory =

⋃
p∈Processes Memory [p]. We use the terms

memory location and variable interchangeably.

Local Statements. A local statement can only read or write
variables that belong to the process that executes the state-
ment. Using a local statement, process p can access variables
in Memory [p]. It is local in the sense that it does not ac-
cess the memory of other processes. An access to a variable
can be either atomic or non-atomic. We use the symbol ∗ to
range over both types of accesses, that is, ∗ ∈ {a, n}, where
a stands for atomic and n stands for non-atomic.

Let X be a variable of Memory [p], u be a register of
Registers[p], and expr an expression containing registers
and numerical values. The two kinds of local statements are
local read (u =∗ X) and local write (X =∗ expr).

Remote Statements. A remote statement can read or write
any memory location. Using a remote statement, process p
can access any variable in Memory . The notation ∗ also in-
dicates atomicity here. Since remote put and remote get op-
erations have two memory interactions, subscript ∗ indicates
atomicity for each interaction. Our language and formal se-
mantics support all 4 atomicity combinations. Specific net-
works support a subset of these combinations.

Remote statements are performed asynchronously. When
a process executes a remote statement, it instructs the net-

work interface card to perform the necessary read and write
operations, and continues immediately.

Let Zdst be a variable from Memory (dst ∈ Processes is
the target process). Let Y, W be variables from Memory [p].

Remote get: X∗= get(Zdst∗). Process p reads Zdst and writes
it to its local memory location X.

Remote put: put(Zdst∗ , X∗). Process p reads local memory
location X and writes it to Zdst at process dst .

Remote get accumulate: X∗= rga(Zdst∗ , Y∗). Without loss
of generality, consider accumulate function + (addition).
Process p reads the value of local memory location Y.
Next, it uses a read-write operation to read Zdst and write
back the sum of Y and Zdst . Finally, it writes the value of
Zdst that was read initially to local memory location X.

Compare and swap: X∗= cas(Zdst∗ , Y∗, W∗). Process p
reads the values of local memory locations Y and W. Next,
it uses a read-write operation on Zdst to read its value and,
if Zdst and Y are equal, it writes the value of W to Zdst , else
it leaves the value of Zdst unchanged. Finally, it writes the
value of Zdst that was read initially to X.

Flush Statement. The flush statement flush(dst) waits
until all remote operations from the process executing the
flush to the process dst complete.

4. From Statements to Actions
RMA statements, described in Section 3, comprise one or
more actions (e.g., a remote put performs both a read and a
write). We now define how we decompose coreRMA state-
ments into actions. The translation from statements to ac-
tions enables uniform reasoning about programs by allowing
us to describe (in Section 5) the axiomatic semantics of the
language on the set of actions.

Types of Actions. An action has one of six types: local
write (w∗), local read (r∗), external read (er∗), external write
(ew∗), external read-write (erw∗), and flush (flush). Actions
which write to or read from memory carry a star, indicating
their atomicity. We define 3 disjoint sets of action types:

Local actions: Local contains local actions: {r∗,w∗}.
External actions: External contains remote actions that in-

teract with memory: {er∗, ew∗, erw∗}.

Table 3: Translation scheme from statements into sets of
actions, and corresponding attributes.

J Xn = expr K = {l}
l : type = wn , src = p, dst = p, wloc = X

J u = Xn K = {l}
l : type = rn , src = p, dst = p, rloc = X

J Xa = get(Zdstn) K = {e1 , e2 }
e1 : type = ern , src = p, dst = dst , rloc = Z

e2 : type = ewa , src = p, dst = p, wloc = X

J put(Zdstn , Xa) K = {e1 , e2 }
e1 : type = era , src = p, dst = p, rloc = X

e2 : type = ewn , src = p, dst = dst , wloc = Z

J Xn = rga(Zdstn , Yn) K = {e1, e2, e3}
e1 : type = ern , src = p, dst = p, rloc = Y

e2 : type = erwn , src = p, dst = dst , rloc = Z, wloc = Z

e3 : type = ewn , src = p, dst = p, wloc = X

J Xn = cas(Zdstn , Yn, Wn) K = {e1 , e2 , e3 , e4 }
e1 : type = ern , src = p, dst = p, rloc = Y

e2 : type = ern , src = p, dst = p, rloc = W

e3 : type = erwn , src = p, dst = dst , rloc = Z, wloc = Z

e4 : type = ewn , src = p, dst = p, wloc = X

J flush(dst) K = {f }
f : type = flush , src = p, dst = dst

Flush actions: Flush contains flush statements, which do
not interact with memory: {flush}.

Local and external actions perform operations on mem-
ory while flush actions constrain ordering. Actions may be
readers or writers. Set Reader = {r∗, er∗, erw∗} contains
atomic and non-atomic local read and external read and read-
write actions, while set Writer = {w∗, ew∗, erw∗} contains
atomic and non-atomic local write and external write and
external read-write actions. erw∗ actions perform both reads
and writes and hence belong to both sets.

Attributes of Actions. We define auxiliary functions:

• src: origin/source process, which originates the action,
• dst : destination process, which executes the action,
• rloc : memory location accessed by a reader action,
• wloc : memory location modified by a write action.

In the context of a particular statement, we denote the exe-
cuting process by p.

4.1 Translation of Statements to Actions
Let J.K : Statement → P(Action) map statements to gen-
erated actions. Table 3 illustrates this function for coreRMA
statements. Without loss of generality, we illustrate only one
choice of atomicity properties per statement. Table 4 shows
paradigmatic statements and their translations into sets of
actions, along with relevant ordering relations.

Table 4: Translations of paradigmatic statements into ac-
tions. Uses ordering relations

po−→ and hb−→ defined in Sec-
tion 5.1. Atomicity information selectively omitted.

X = get(Zdst) X = rga(Zdst, Y) X = cas(Zdst, Y, W)

[ern] read Z

[ewa] write X
po, hb

[ern] read Y

[erwn] r-w Z

[ewn] write X

po, hb

po, hb

[ern] read Y

[ewn] read W

[erwn] r-w Z

[ewn] write X

po

po, hb

po, hb

hb

For a local non-atomic write statement Xn = expr, the
corresponding action l has type wn (non-atomic local write
action), the origin and destination of the action are both p,
and the write location is X. Atomic local write statements
(not shown) only differ in action type, which would be wa .

Moving on to remote statements, the remote get statement
Xa= get(Zdstn) produces two actions: e1 and e2 . The first
column of Table 4 shows one translation. This translation
also includes the ordering relations

po−→ and hb−→, which are
formally introduced in Section 5. External action e1 has type
non-atomic external read (ern). The destination process of
e1 is dst , the process which owns Z. The read location is Z.
External action e2 has type atomic external write (ewa). Its
destination process is p (the process executing the statement)
and the write location is X. Remote puts are analogous.

Remote get accumulate Xn= rga(Zdstn , Yn) generates
three external actions: a read e1 from variable Y, a read-write
action e2 which reads the value of Zdst and writes back the
sum of the two reads, and a write to X, e3 , which writes the
same value as the read-write action. The second column of
Table 4 shows the translation of an rga statement.

A compare and swap statement generates four external
actions: two external reads, an external read-write and an
external write action (third column of Table 4).

At the bottom of Table 3 we show a flush action corre-
sponding to statement flush(dst). The origin of action f is
the process executing the flush statement (denoted p) and the
destination is the target of the flush, dst .

Atomicity Properties. Decomposing statements into ac-
tions enables fine-grained specification of atomicity proper-
ties. Atomicity properties of statements can either be speci-
fied by a language or ensured by the RMA network specifi-
cation. Our model handles all possible atomicity properties.

5. Axiomatic Semantics of coreRMA
We next present the formal axiomatic semantics of the core-
RMA language. We designed these semantics to capture
common behaviors in RMA networks yet to be flexible
enough to allow for expressing specifics of real world net-
works (as we present in Section 7). In our semantics, we

Table 5: Relations and functions that define an execution.

po−−→ Program order: relates all pairs of actions of the same pro-
cess; does not relate actions from different processes. For
each process p,

po−−→ is a total order for all actions in p.
Acyclic, transitively closed, and not reflexive.

hb−−→ Happens before: when a1
hb−−→a2, the effects of a1 are guar-

anteed visible to a2. Acyclic, transitively closed, and not
reflexive.

rf−−→ Reads from: associates each w ∈Writer with the
r ∈ Reader operations that read the value written by w :

w
rf−−→r. Actions w and r must target the same variable.

rval Read value: for all r ∈ Reader , rval (r) returns the value
read by r .

wval Write value: for all w ∈Writer , wval (w) returns the value
written by w .

represent a program execution with a tuple of the form:

〈Action,
po−→, hb−→, rf−→, rval ,wval〉.

Table 5 presents the meanings of these relations and func-
tions. Each of the three relations

po−→, hb−→, and
rf−→ is acyclic

in a valid RMA program execution. Variables’ initial value
assignments are modeled as write actions to these variables,
ordered by hb−→ before all program actions.

5.1 Relations over Actions
The

po−→ relation is determined from a program’s source
code. The relation hb−→ is derived from this section’s infer-
ence rules. In general, many relations

rf−→ are possible; each
such relation encapsulates the data-flow choices taken in an
execution. Valid reads-from relations must not induce cycles
in hb−→. The two remaining functions, rval and wval , depend
on the choice of

rf−→ and the axiomatic rules, particularly the
conflict semantics described in Section 5.3.

5.2 Conflicts
Two actions happen in parallel if they are not ordered by
happens-before:

a ‖ b ≡ ¬(a hb−→ b) ∧ ¬(b hb−→ a).

A conflict between actions a and b, denoted conflict(a, b),
occurs when a ‖ b; a and b are directed towards the same
variable; at least one of the two actions is in Writer ; and
at least one of the two actions is non-atomic. If r is a read
action, conflict(r) is true iff there exists a write action w
such that conflict(r ,w). Similarly, wconflict(w) is true iff
there exists a write action w ′ such that conflict(w ,w ′).

5.3 Rules
We next explain the axiomatic rules in Figure 4. Our descrip-
tions use Local , External , and Flush from Section 4. Our

rules fall into two categories: most rules establish relation
hb−→, and the remaining rules define the read and written val-
ues rval and wval . Subject to some exceptions, documented
in Section 7, these rules are consistent with the behavior and
documentation of all of the RMA networks that we studied.

Rules for the Reads-from Relation. The reads-from rela-
tion influences the happens-before relation through rules R1
and R2. Let sets AWriter and AReader denote the sets of
atomic writes and reads respectively. The first rule (R1 in
Figure 4) states that if there exist two atomic writes w1 and
w2 to the same variable, ordered by hb−→, and if there exists
an atomic read action r that reads from w1 , then r is also
ordered before w2 by hb−→. This rule is not specific to RMA;
it also holds for sequential consistency.

The second rule involving the reads-from relation (R2)
states that an atomic read r is ordered by hb−→ after an atomic
write w if r reads from w . This ensures that the subset of
the reads-from relation between atomic reads and writes is
included in the happens-before relation.

Conflict Semantics. Rules no-C and C state permissible
behaviors in the absence and presence of conflicts under
RMA. If a reader action r is conflict free and the writer
actionw from which it reads (w

rf−→ r) is write-conflict free,
then the value read by r is equal to the value written by w
(no-C). Otherwise, the value read by r is undefined (C).

Rule for In-Order Routing Guarantees. Let Remote be
the subset of the external actions External containing only
the external actions that interact with variables stored at the
target process. That is, Remote contains: for remote put
statements, the external write action ew; for remote get,
the external read er; and, for remote get accumulate and
compare and swap, the external read-write erw.

Our formal model captures in-order routing via rule IR:
remote actions ordered by

po−→ are also ordered by hb−→.

Rules Corresponding to the Flush Statement. The rules
F1–F3 describe the relations between flush actions and oth-
ers. Rule F1 states that if a flush action f is ordered with
program order before a local action l, then f also is ordered
by happens-before before l.

Given Remote action e , let eactions(e) be the set of
external actions generated by e’s containing statement. For
example, if e is a read action generated by a get statement,
then eactions(e) contains e plus the companion write action
generated by that get statement.

Rule F2 states that if a Remote action e is ordered by
po−→

before a flush f , and if e and f target the same process, then
all actions eactions(e) are ordered by hb−→ before f . Rule
F3 is symmetric to F2, but imposes hb−→ on successors rather
than predecessors.

Rule for Remote Put and Remote Get. We introduce pred-
icates rp and rg to identify the two component actions of

Reads-from relation:

r ∈ AReader w1 ,w2 ∈ AWriter w1
rf−−→ r w1

hb−−→ w2 wloc(w1) = wloc(w2)

r
hb−−→ w2

(R1) r ∈ AReader w ∈ AWriter w
rf−−→ r

w
hb−−→ r

(R2)

Conflicts: Flush actions:

r ∈ Reader w ∈Writer w
rf−−→ r ¬conflict(r) ¬wconflict(w)

rval (r) = wval (w)
(no-C)

f ∈ Flush l ∈ Local f
po−−→ l

f
hb−−→ l

(F1)

r ∈ Reader w ∈Writer w
rf−−→ r conflict(r) ∨ wconflict(w)

rval (r) = >
(C)

f ∈ Flush ∧ e ∈ Remote∧
∧dst(f) = dst(e) ∧ e

po−−→ f ∧ e′ ∈ eactions(e)

e′
hb−−→ f

(F2)

In-order routing:

e1 , e2 ∈ Remote dst(e1) = dst(e2) dst(e1) 6= src(e1) e1
po−−→ e2

e1
hb−−→ e2

(IR)

f ∈ Flush ∧ e ∈ Remote∧
∧dst(f) = dst(e) ∧ f

po−−→ e′ ∧ e′ ∈ eactions(e)

f
hb−−→ e′

(F3)

Remote Get Accumulate: Remote Put and Remote Get:
er , erw , ew ∈ External rga(er , erw , ew)

er
po,hb−−−−→ erw

po,hb−−−−→ ew ∧ wval(erw) = rval (er) + rval (erw) ∧
∧ wval(ew) = rval(erw)

(GA)
(rp(er , ew) ∨ rg(er , ew)) ∧
∧ er , ew ∈ External

er
po,hb−−−−→ ew ∧ rval (er) = wval (ew)

(PG)

Remote Compare And Swap: Local order:
er1 , er2 , erw , ew ∈ External rcas(er1 , er2 , erw , ew) rval (er1) 6= rval (erw)

er1
po−−→ er2

po,hb−−−−→ erw
po,hb−−−−→ ew ∧ er1

hb−−→ erw ∧ wval (ew) = rval (erw)

(CAS-F) l ∈ Local a ∈ Action l
po−−→ a

l
hb−−→ a

(LO)

Write sequentiality:er1 , er2 , erw , ew ∈ External rcas(er1 , er2 , erw , ew) rval (er1) = rval (erw)

er1
po−−→ er2

po,hb−−−−→ erw
po,hb−−−−→ ew ∧ er1

hb−−→ erw ∧
wval (ew) = rval (erw) ∧ wval (erw) = rval (er2)

(CAS-T) w1 ,w2 ∈ AWriter wloc(w1) = wloc(w2)

w1
hb−−→ w2 ∨ w2

hb−−→ w1

(WS)

Figure 4: Axiomatic semantics of the coreRMA language.

remote put and remote get statements. These predicates are
true iff their arguments are the actions generated from a re-
mote put or get; the first argument identifies the external
read action and the second argument the external write.

Rule PG orders, by both
po−→ and hb−→, a remote put/get

statement’s external read action er before the companion
external write er . The value read by the external read equals
the value written by the external write.

Rule for Remote Get Accumulate. We introduce an anal-
ogous rga predicate for remote get accumulate statements.

Rule GA orders an rga’s external read actions er before
external read-write actions erw before external write actions
ew . The rule also determines the values written: the external
read-write value is equal to the sum (or other operation) of
the values read by the external read (er) and external read
write (erw) actions. The value written by the external write
is equal to the value read by the external read write (erw).

Rules for Compare and Swap. We next introduce predi-
cate rcas analogous to rp, rg , and rga . Two rules give the
semantics of compare-and-swap: CAS-F for the non-equal
case and CAS-T for the equal case. In both cases, the rules

order the external read er1 before er2 , both before the exter-
nal read-write erw , and all before the external write ew . As
for the values, the remote compare and swap always writes
to ew the same value as read from erw . If the value read
from er differs from that read from erw , CAS-F gives no
further constraints. When the values are equal, the statement
writes to erw the value read from er2 .

Rule for Local Action Ordering. Rule LO defines the
happens-before relation hb−→ for local actions to include all
program order

po−→ relations between local actions.

Rule for Write Sequentiality. Rule WS totally orders, in
hb−→, atomic actions that write to the same memory location.
This rule does not apply for non-atomic actions.

Local CPU Memory Model. As described, coreRMA fo-
cuses on RMA networks with multiple nodes, where each
node (x86, ARM, etc.) executes a single thread. If a CPU
with some memory model (e.g., x86, ARM) executes mul-
tiple threads, then the current rules applying to local ac-
tions (rules F1, LO, R1, R2) must be parametrized with
that memory model—currently these rules assume that lo-

cal actions of a CPU are sequentially consistent (implicit for
one thread). We believe that combining RMA with other per-
processor models is an interesting and important separate fu-
ture research topic, which can be precisely formulated as an
extension of the results in this paper.

Sequences of Statements. The axiomatic rules are about
relations between actions and they help decide which execu-
tions are allowed by coreRMA. The rules apply to sequences
of statements because the rule hypothesis contains the rela-
tion

po−→ (rules F1, F2, F3, IR, LO). This means that the
rules handle actions generated by a sequence of statements
(that sequence is extended to a sequence of actions).

6. RMA Validation Framework
We next describe the implementation of our validation
framework. The main goal of this framework is to ensure
confidence in our formal model, that is, that our model accu-
rately captures the behavior of real-world networks. Based
on the formal model, our system automatically generates
test cases and then executes these test cases on actual net-
works, in the process checking for discrepancies between
the two. Concretely, we check for two types of suspicious
behaviors: (i) violations: behaviors produced by the actual
network which contradict what our model (and the official
documentation) allows, and (ii) unobserved behaviors: we
look for behaviors expected by our model which never ap-
pear across multiple executions of the test on the network.
As we will see later in Section 7, both of these build confi-
dence that our model accurately captures reality.

6.1 Automatic Test Case Generation
Figure 5 presents the flow of our test case generation frame-
work. The flow consists of the following steps: (i) we first
express our formal model in the Alloy Analyzer (Jackson
2006); (ii) we exhaustively generate instances verifying the
rules of the model up to a given bound (provided a priori;
correlated with the maximum length of the test) and we con-
vert these instances into an intermediate representation; (iii)
we compute all possible expected outputs (values for local
registers) for each instance; and (iv) we translate the interme-
diate representation to RMA programs and we execute these
instances on real-world networks obtaining the actual out-
puts. Based on these actual outputs and the expected outputs,
we can identify both unexpected behaviors which should not
be possible as well as expected outputs which do not seem
to occur on the network. We next discuss these steps in more
detail.

Defining an Alloy Model. We started our evaluation by en-
coding the axiomatic semantics of our formal model in Al-
loy, a lightweight declarative modeling language. The Alloy
Analyzer accepts Alloy models and automatically produces
satisfying instances using a SAT solver.Our encoding was
straightforward and includes around 600 lines of Alloy. The
encoding mirrors the semantics of Section 5.

X = 1 Y = 0
P0: P1:

a = X put(X0, Y)

Y = get(X0)
flush(0)
b = Y

Expected outputs: 〈a, b〉 ∈ {〈0, 0〉, 〈1, 2〉}.

Figure 6: Test generated automatically with IR rule as pivot.
The size of the test is 9 and it has 2 processes. The test has
two possible outputs according to the coreRMA semantics.

Instance Generation. Having encoded our model in Alloy,
we sought to produce instances that illustrate differences be-
tween coreRMA and the actual networks (both unexpected
and unobserved outputs). We thus queried Alloy for a com-
plete set of model instances, up to a given bound. An in-
stance comprises a set of processes, each with actions, reg-
isters, and memory locations. Additionally, Alloy provides
the values read and written by the actions. We generate a
test body, in our intermediate language, from each instance.

To generate tests that have behaviors forbidden by core-
RMA, we ask that the instance generated by Alloy has a cycle
in its hb−→ order. To reduce the number of possible tests and
increase the efficiency of the search for violations, we re-
quire that the hb−→ cycle contains an edge induced by a rule
in Figure 4 and that removing this edge renders hb−→ acyclic.
We call this edge a pivot. We generate tests successively us-
ing each rule of Figure 4 as a pivot. Note that tests generated
using a certain pivot are guaranteed to exercise the corre-
sponding rule. These tests may also exercise additional rules,
depending on the statements that they contain.

To generate tests with behaviors that are easier to observe,
we require that each test must contain at least one local read
(stored in an unique register) from each Writer action, and
that local writes should have distinct values.

We exhaustively generate instances up to a given bound
on instance size. The instance size represents the number of
actions (actions belong to statements).

Instance generation required a fairly standard implemen-
tation of test generation and compiler techniques. We pro-
grammatically call Alloy via its API, exhaustively enumer-
ate and extract instances, and produce concise intermedi-
ate representation code summarizing each instance. We de-
duplicated IR instances because: (i) Alloy is known to gen-
erate duplicate instances, and (ii) some instances differed but
generated identical intermediate representations.

Figure 6 illustrates a test generated by our tool; the pivot
is the hb−→ edge implied by IR between the external write to X

generated by put(X0, Y) and the external read from X gen-
erated by Y = get(X0). The expected outputs represent all
expected values of registers a and b according to coreRMA.

Computing All Expected Outputs. For each generated
test, we use our coreRMA model to compute all expected

Figure 5: coreRMA validation: the procedure used to check the accuracy of our model against real-world RMA networks.

outputs. Using the model rules and the given test as con-
straints, we can query Alloy for one set of expected local reg-
ister values. Next, we add a negation of that newly obtained
output as an additional constraint, and repeat the query until
Alloy exhausts all sets of values. Having a complete set of
expected outputs allows us to detect, at runtime, unexpected
observed outputs as well as unobserved expected outputs.

Code Generation. Finally, we translated each test (writ-
ten in the intermediate representation) into C. Targets used
were the Cray DMAPP API, InfiniBand’s IBV Verbs and
Portals 4 API. We note that writing code generators which
would leverage the given APIs was a non-trivial challenge.
For instance, it is significantly harder than writing gener-
ators for processor memory models; this is because it re-
quires a deep understanding of network implementation de-
tails. RMA APIs are unforgiving of errors and would often
cryptically refuse to proceed. Establishing the correct setup
required several weeks of work. Also, to increase the num-
ber of observed behaviors, we introduced small pseudoran-
dom delays between statements in our generated programs.
To our knowledge, ours is the first work to comprehensively
stress-test RMA networks by generating all instances up to
a given bound.

7. Evaluation
In this section, we describe an extensive experimental evalu-
ation for validating our formal model against real-world net-
works. We considered the following networks:

• DMAPP (S-2446-5202) API running on Cray
Aries (Faanes et al. 2012) hardware using the
Cray x86 compiler. Cray Aries offers parametric
in-order routing, and we enable it by using the
DMAPP_ROUTING_DETERMINISTIC attribute.

• IBV Verbs API running on InfiniBand (The InfiniBand
Trade Association 2004) hardware, which does not pro-
vide strict in-order guarantees for accesses between the
same source-destination pair.

• Portals 4 API, not backed by hardware, configured to run
over UDP (also supports shared memory and OFED).

We generated 7,441 tests. Out of these tests, 3,654 have
two interacting processes. By generating tests with two pro-
cesses, we exercise both the interaction between nodes and
the intra-node interactions between the CPU and the NIC.
Generating tests with more than two processes would fur-
ther stress test the interactions between nodes, which might
reveal more interesting behaviours.

Depending on the size of the test program, the generation
of one test takes between 0.01 and 0.1 seconds. When ex-
haustively generating tests, Alloy frequently generates mul-
tiple instances of the same test, hence total times may in-
crease by a factor of 1000. Overall, generating tests took
about 20 hours, and determining all possible outputs of the
tests approximately 5 hours.

We executed each test 104 times and recorded the outputs.
Test execution (including connection setup) takes up to 20
seconds per 104 iterations. (We ran many tests 105 times and
found no additional outputs.) Our tests found network be-
haviors contradicting existing documentation. Additionally,
we did not observe some outputs predicted by our coreRMA
model—further investigation revealed that the networks pro-
vided additional undocumented guarantees.

Table 6 summarizes the results from tests and outputs
generated from the stock coreRMA rules—these are the rules
presented in Section 5.3. When generating tests, we pick a
rule (first column) and remove the hb−→ edge corresponding to
a single application of that rule. The second column (# proc)
shows the number of processes (1–2) for that row. Single-
process tests exercise RMA due to asynchronous interac-
tion between the CPU and the NIC. The third column (Size)
shows the bound on the number of actions for each rule.
These sizes yielded enough tests of enough complexity such
that we could explore the behavior of RMA networks, iden-
tifying both unexpected behaviors and unobserved expected
outputs. Of course, test generation for still larger sizes is pos-
sible using our procedure, limited only by machine availabil-
ity. For rules R1, R2, and LO, despite the lower bound, the
number of tests generated (fourth column—# tests) is high,
mainly because these rules do not require the existence of
remote statements (which generate additional actions) in the
test. The fifth column (ms/test) shows the mean time it takes

X = 1, Y = 0 X = 0, Y = 1
P0: P0:

Y = cas(Y0,X,Y); Y = get(Y0);
b = Y; b = Y

a = Y; Y = rga(Y0,X);
c = Y;

〈a, b〉 = 〈0, 0〉 a = Y;

〈a, b, c〉 = 〈1, 1, 1〉

Figure 7: The test on the left triggers an unexpected output
on Portals 4 where b = 1. For the test on the right we observe
unexpected outputs where c = 2.

Alloy to generate a test. The sixth column (# outputs) indi-
cates coreRMA’s predicted total number of outputs for the
tests in that row. The average number of outputs per test is
2.6 (1 output: 3,187 tests; 2 outputs: 1,334; 3 outputs: 910;
4 outputs: 812; 5 outputs: 594; and 6–19: 604 tests). The
following columns present results from Cray DMAPP, IBV
Verbs, and Portals 4. We indicate the number of tests with
outputs contradicting coreRMA predictions (# Errors) and
the percentage of observed outputs relative to expected out-
puts (Obs (%)).

RQ1: Can coreRMA discover tests contradicting existing
documentation? For Cray DMAPP, 135 tests have unex-
pected outputs because the in-order routing guarantee given
by the DMAPP_ROUTING_DETERMINISTIC parameter is not re-
spected. Figure 6 illustrates one example from our tests.
Running this test yields unexpected outputs 〈a = 0, b = 1〉
and 〈a = 1, b = 1〉. When b = 1, remote read Y = get(X0)

runs before remote write put(X0, Y). This contradicts IR
(remote actions to the same target are executed in the order
in which they are issued). Network experts confirmed that
these executions violate the available documentation. We re-
ported concrete specification violations to Cray Inc. which
triggered immediate replies and were confirmed.

We customized coreRMA to correctly capture the exact
guarantees of VPI Verbs on InfiniBand by removing rule IR
and imposing ordering between put - put and get - get.
After customization, all the outputs we observe are expected.

We discovered that IR is not enforced on VPI Verbs by
using stock coreRMA (all the rules in Figure 4) and detecting
4 tests with unexpected outputs. Network experts confirmed
that the outputs were indeed allowed. Figure 8 presents one
of these tests, which shows 3 unexpected outputs, all with
c = 0. This output demonstrates that the remote read action
of get is executed after the remote write action of put, con-
tradicting IR. Our customized coreRMA correctly generates
the 3 previously unexpected outputs for this test as expected
outputs. An interesting observation is that stock coreRMA
(with IR) gives a higher percentage of observed outputs for
IR and PG pivots (97%, 99.3% respectively) than the cus-
tomized coreRMA (49% for both). Overall, the percentage of
observed outputs decreases from 94.5% to 88.8%, showing
that it is hard to trigger a put - get reordering in practice.

X = 1 Y = 0
P0: P1:

a = X; Y = get(X0);

X = 2; put(X0, Y);
b = X; flush(0);

c = Y;

Expected outputs:

〈a, b, c〉 ∈ {〈0, 2, 1〉, 〈1, 1, 1〉, 〈1, 0, 1〉, 〈1, 2, 2〉, 〈1, 2, 1〉, 〈1, 0, 2〉}.

Figure 8: Test confirming that the IR rule is not enforced
for VPI Verbs API on InfiniBand.

For Portals 4, 13 1-process tests exhibit unexpected out-
puts. One was caused by a cas and 12 by rga. Figure 7 shows
a representative for each cause. The test on the left contains
a cas. According to coreRMA, the observed output b = 1 is
not expected, because the comparison in cas between X and
Y should always fail. The test on the right shows a test with
an rga. Since X is always 0, it is impossible to obtain val-
ues for Y greater than 1. However, we observe unexpected
outputs where a = 2 and c = 2. We did not observe any
unexpected behavior for Portals 4 for 2-process tests.

RQ2: How precisely does coreRMA model real networks?
In practice, we observe approximatively 90% of the expected
outputs. The percentage of expected outputs according to
coreRMA that are actually observed is influenced by the
precision of the model, the capacity to reorder certain actions
and by the additional guarantees provided by the networks
and not captured in coreRMA.

While some of the unobserved outputs are caused by the
fact than it is difficult to trigger the behaviors that produce
these outputs by inserting delays (non-triggerable behav-
iors), other unobserved outputs are due to the fact that the
networks provide undocumented additional guarantees. (We
added these guarantees to the coreRMA model and saw that
the percentage of observed behaviors increased).

Non-Triggerable Behaviors. We could not introduce de-
lays in our generated tests between actions making up re-
mote statements (put, get, rga, cas). For instance, for the
tests generated using as pivot rule GA, we observe 52.7%
of the expected outputs for tests with 1 process and 80.4%
for tests with 2 processes on Cray DMAPP. We strengthened
rule GA to execute the component actions of an rga atomi-
cally; in that case, our observations would cover 90% of the
newly expected behaviors for 1-process tests and 85% for
two processes, without introducing any unexpected outputs.
However, this strengthening is not guaranteed by the docu-
mentation and should not be assumed when writing code.

Additional Guarantees. When running the test shown in
Figure 9 on Cray DMAPP, the expected output where all the
local variables are equal to 2 is never observed. This output
would require that the read action of the put statement is ex-
ecuted after the Y = 2 statement. We discovered that the doc-

Table 6: Tests generated from stock coreRMA semantics identify 148 issues over 7,441 tests.

Test parameters Cray DMAPP VPI Verbs Portals 4

Rule # proc Size # tests (ms/test) # outputs # errors Obs (%) # errors Obs (%) # errors Obs (%)

R1 1 8 863 20 1492 77.8 67.4 1 79.2
2 9 1040 25 3616 99.0 99.7 99.0

R2 1 7 419 15 532 95.4 92.4 96.4
2 8 684 22 1514 96.5 100 96.5

F1 1 9 326 34 338 98.2 96.4 98.8
2 10 172 49 452 96.4 100 96.4

F2 1 9 350 35 374 96.7 93.5 98.1
2 10 188 47 492 94.6 100 95.1

F3 1 10 810 49 1320 96.8 96.8 96.8
2 11 200 52 356 97.7 100 97.7

IR 1 10 104 55 104 6 100 100 100
2 11 127 120 368 69 96.4 41 97.0 96.1

GA 1 10 299 27 1091 52.7 52.1 12 53.4
2 11 48 84 624 80.4 75.6 67.1

PG 1 8 164 15 276 2 94.5 91.3 94.2
2 10 260 27 1024 58 97.1 99.3 96.0

CAS-F 1 10 12 36 12 100 100 100
2 12 48 75 288 88.1 85.4 83.3

CAS-T 1 10 12 36 12 100 100 100
2 12 48 75 288 90.9 84.3 83.3

LO 1 7 146 21 250 90.4 84.0 90.4
2 8 362 19 1004 94.8 100 94.8

WS 1 9 282 34 934 73.3 73.9 72.9
2 10 477 47 3176 92.4 90.2 90.2

Summary 7441 19937 135 89.9 94.5 13 89.7

1 Behavior forbidden in stock coreRMA but not contradicting specification.

umentation stated that, for efficiency reasons, the put can di-
rectly send to the NIC the data to be written remotely, instead
of programming the NIC DMA engine. This happens only
for data smaller than a certain threshold, which for DMAPP
is 4KB by default. We modeled this additional guarantee
in coreRMA, and the observed output percentage for IR 2-
process tests increased from 96.4% to 99.7%. This shows
that stock coreRMA can be easily customized to match ex-
actly the properties of a specific RMA network. We chose
not to add this constraint to coreRMA because it is specific
to Cray DMAPP and to the chosen threshold.

In summary, coreRMA has shown value in uncovering
behaviors on real world networks not described by existing
documentation. The axiomatic rules are precise, 90% of the
outputs expected by coreRMA being observed on concrete
networks. coreRMA is both easily customizable such that it
fits precisely the network guarantees, and general enough to
describe the common RMA behaviors, refined throughout
our interactions with network experts.

Our framework allows experimentation with finding
platform-specific specifications: one may easily add or re-
move rules, generate tests, and verify whether the hardware
conforms to the stated rules. An interesting future work item

X = 1 Y = 0
P0: P1:

a = X; put(X0, Y);

Y = get(X0);
Y = 2;
flush(0);
c = Y;
b = Y;

Expected outputs:

〈a, b, c〉 ∈ {〈0, 2, 2〉, 〈1, 0, 0〉, 〈1, 2, 2〉, 〈0, 0, 0〉, 〈2, 2, 2〉}.

Figure 9: Test illustrating that the read action of put state-
ments is executed without delay on Cray DMAPP.

is to completely automate the process: one could imagine
defining a space of rules and automatically selecting those
rules which are consistent with experimental results.

8. Related Work
We discuss two kinds of related work: work on analyzing
RMA-style programs (e.g., MPI) and general work in the
analysis of weak memory models.

Remote Memory Access (RMA) Programming. Specifi-
cation of RMA libraries and language models is ongoing.
The OFED low-level communication interface is currently
undergoing a major reform (Hefty 2014). High-level RMA
languages have also not stabilized. A new version of MPI
RMA is under development. Proposed features such as re-
mote notification (Belli and Hoefler 2015) interact intricately
with the memory model.

MPI-3 RMA semantics have been informally described
by Hoefler et al. (Hoefler et al. 2013). Detailed semantics for
about 200 of 300 MPI-2 API calls are described in TLA+
syntax by Li et al. (Li et al. 2011). Both works show that it is
feasible to encode semantics of real-world RMA languages
and show the benefits of rigorous specification uncovering
minor inconsistencies in the standard text. Our work focuses
on a core set of RMA semantics (covering at least MPI-
3.0, UPC, and Fortran 2008). This allows us to abstract
away from detailed MPI semantics and focus on the core
difficulties of RMA programming.

Formalizing and Analyzing Memory Models. There has
been substantial recent work on formalizing and analyzing
memory models, including TSO, PSO, RMO, Power, C++,
Java (Alglave et al. 2014b; Burnim et al. 2011; Abdulla
et al. 2012; Linden and Wolper 2013; Bouajjani et al. 2013;
Burckhardt et al. 2007; Burckhardt and Musuvathi 2008;
Owens et al. 2009; Sarkar et al. 2011; Alglave et al. 2013,
2014a; Kuperstein et al. 2011, 2010; Meshman et al. 2014;
Dan et al. 2013; Blanchette et al. 2011; Torlak et al. 2010).

The works closest to us focus on formalizing specific
memory models, typically evaluating them with litmus
tests (Blanchette et al. 2011; Torlak et al. 2010). The pri-
mary focus of these works is to enable language designers
to explore non-intuitive behaviors on hand-crafted small ex-
amples. For instance, Sarkar et al (Sarkar et al. 2011) for-
malize appropriate semantics for Power. Their approach it-
erates over an a priori fixed set of tests and explores all ex-
ecutions of a test. An important early work in this direction
was CheckFence (Burckhardt et al. 2007), which encoded
relaxed memory model effects into SAT and demonstrated
the feasibility of checking non-trivial concurrent programs.
The work of (Calin et al. 2013) defines an operational model
for Partition Global Address Space programs and proposes
an algorithm to check the robustness of such programs. In
contrast, our work focuses on validating the axiomatic model
against real RMA networks through exhaustive litmus tests.

To our knowledge, we are the first to bounded-
exhaustively generate tests for memory models. Although
Alglave et al (Alglave et al. 2014b) generate tests using diy,
they simply use predefined cycles in the hb−→ ordering. Also,
they model shared-memory, uniform access multiprocessor
systems, so they need not distinguish local and remote ac-
tions nor atomic and non-atomic actions. Our work, by con-
trast, generates all examples up to a given bound on a richer
model.

A popular line of work focuses on techniques for bounded
checking of given programs for models including x86 TSO,
PSO, RMO, and Power (Burckhardt and Musuvathi 2008;
Kuperstein et al. 2010; Burnim et al. 2011; Liu et al. 2012;
Linden and Wolper 2013; Bouajjani et al. 2013; Alglave
et al. 2013; Norris and Demsky 2013). There has also been
work on infinite-state automatic verification and synchro-
nization synthesis, usually in the form of fences (Kuperstein
et al. 2011; Abdulla et al. 2012; Dan et al. 2013; Meshman
et al. 2014; Alglave et al. 2014a; Dan et al. 2015). Our work
is largely orthogonal: we take the necessary first step of for-
malizing the memory model itself, which enables verifica-
tion of RMA programs.

In-order routing is a key feature of RMA, provided
by vendors, which distinguishes our work on RMA from
related work on asynchronous actions such as X10 AP-
GAS (Saraswat et al. 2010). Considering remote statements
(put, get, etc.) as asynchronous calls yields no way to en-
force in-order routing between a certain action (the remote
action) of a first asynchronous call and a remote action from
a subsequent asynchronous call, yet at the same time leaving
unordered the local actions of the two asynchronous calls.
Ignoring in-order routing, asynchronous calls can model re-
mote statements (but the model would also have to handle
atomicity).

The work on RMA languages includes dynamic data race
and conflict detection for UPC (Park et al. 2011, 2013) and
MPI-3 (Chen et al. 2014). The dynamic analysis approaches
used in that work therefore use the semantics informally
encoded in the RMA language implementation. None of
these works provide formal memory model semantics for the
programs they consider. Our work formalizes the semantics
and enables the development of tools that work independent
of implementations. Further, we use constraint solvers, not
dynamic analysis or conflict detection, allowing us to check
arbitrary safety properties.

9. Conclusion
We introduced the first core calculus, coreRMA, and its
axiomatic semantics, to cleanly capture characteristics of
Remote Memory Access (RMA) programming. We gener-
ated bounded-exhaustive test suites using constraint solvers
based on our formal model and tested them on real networks.
Our suites revealed actual behaviors which network experts
did not expect and showed discrepancies between network
behaviors and their documentation. Our work serves as a ba-
sis for future work on reasoning about RMA programs and
can help troubleshoot and design network implementations.

Acknowledgements
We thank the Swiss National Supercomputing Center
(CSCS) for providing us access to Cray Gemini/Aries and
InfiniBand networks, Viktor Ivanov for the prototype exper-
iments using DMAPP and VPI Verbs and Larry Kaplan from

Cray for the explanation of the unexpected behaviors ob-
served during the evaluation. We also thank Derek Rayside
for help with Alloy and Charles Giefer (Intel) for comments
on an earlier version of this paper.

References
P. A. Abdulla, M. F. Atig, Y. Chen, C. Leonardsson, and A. Rezine.

Automatic fence insertion in integer programs via predicate ab-
straction. In Static Analysis - 19th International Symposium,
SAS 2012, 2012.

J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig. Software
verification for weak memory via program transformation. In
Programming Languages and Systems - 22nd European Sympo-
sium on Programming, ESOP 2013, 2013.

J. Alglave, D. Kroening, V. Nimal, and D. Poetzl. Don’t sit on the
fence—A static analysis approach to automatic fence insertion.
In Computer Aided Verification - 26th International Conference,
CAV 2014, 2014a.

J. Alglave, L. Maranget, and M. Tautschnig. Herding cats: Mod-
elling, simulation, testing, and data mining for weak mem-
ory. ACM Trans. Program. Lang. Syst., 36(2):7, 2014b. doi:
10.1145/2627752.

F. Allen, G. Almasi, W. Andreoni, D. Beece, B. J. Berne, A. Bright,
J. Brunheroto, C. Cascaval, J. Castanos, P. Coteus, P. Crum-
ley, A. Curioni, M. Denneau, W. Donath, M. Eleftheriou,
B. Fitch, B. Fleischer, C. J. Georgiou, R. Germain, M. Gi-
ampapa, D. Gresh, M. Gupta, R. Haring, H. Ho, P. Hochschild,
S. Hummel, T. Jonas, D. Lieber, G. Martyna, K. Maturu, J. Mor-
eira, D. Newns, M. Newton, R. Philhower, T. Picunko, J. Pitera,
M. Pitman, R. Rand, A. Royyuru, V. Salapura, A. Sanomiya,
R. Shah, Y. Sham, S. Singh, M. Snir, F. Suits, R. Swetz, W. C.
Swope, N. Vishnumurthy, T. J. C. Ward, H. Warren, and R. Zhou.
Blue Gene: A vision for protein science using a petaflop super-
computer. IBM Syst. J., 40(2):310–327, Feb. 2001. ISSN 0018-
8670. doi: 10.1147/sj.402.0310.

R. Alverson, D. Roweth, and L. Kaplan. The Gemini system inter-
connect. In Proc. of the IEEE Symposium on High Performance
Interconnects (HOTI’10), pages 83–87. IEEE Computer Society,
2010.

B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Dre-
rup, T. Hoefler, J. Joyner, J. Lewis, J. Li, N. Ni, and R. Raja-
mony. The PERCS high-performance interconnect. In Proc.
of the IEEE Symposium on High Performance Interconnects
(HOTI’10), pages 75–82. IEEE Computer Society, Aug. 2010.

B. W. Barrett, R. B. Brightwell, K. T. T. Pedretti, K. B. Wheeler,
K. S. Hemmert, R. E. Riesen, K. D. Underwood, A. B. Mac-
cabe, and T. B. Hudson. The Portals 4.0 network programming
interface. Technical report, Sandia National Laboratories, 2012.
SAND2012-10087.

R. Belli and T. Hoefler. Notified Access: Extending Remote Mem-
ory Access Programming Models for Producer-Consumer Syn-
chronization. IEEE, May 2015. Accepted at IPDPS’15.

J. C. Blanchette, T. Weber, M. Batty, S. Owens, and S. Sarkar. Nit-
picking C++ concurrency. In Proceedings of the 13th Interna-
tional ACM SIGPLAN Symposium on Principles and Practices
of Declarative Programming, PPDP ’11, 2011.

A. Bouajjani, E. Derevenetc, and R. Meyer. Checking and enforc-
ing robustness against TSO. In Programming Languages and
Systems - 22nd European Symposium on Programming, ESOP
2013, 2013.

S. Burckhardt and M. Musuvathi. Effective program verification
for relaxed memory models. In Computer Aided Verification,
20th International Conference, CAV 2008, 2008.

S. Burckhardt, R. Alur, and M. M. K. Martin. Checkfence: check-
ing consistency of concurrent data types on relaxed memory
models. In Proceedings of the ACM SIGPLAN 2007 Conference
on Programming Language Design and Implementation, 2007.

J. Burnim, K. Sen, and C. Stergiou. Sound and complete moni-
toring of sequential consistency for relaxed memory models. In
Tools and Algorithms for the Construction and Analysis of Sys-
tems - 17th International Conference, TACAS 2011, 2011.

G. Calin, E. Derevenetc, R. Majumdar, and R. Meyer. A the-
ory of partitioned global address spaces. In A. Seth and
N. K. Vishnoi, editors, IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science,
FSTTCS 2013, December 12-14, 2013, Guwahati, India, vol-
ume 24 of LIPIcs, pages 127–139. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2013. ISBN 978-3-939897-64-4. doi:
10.4230/LIPIcs.FSTTCS.2013.127. URL http://dx.doi.
org/10.4230/LIPIcs.FSTTCS.2013.127.

D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sug-
awara, S. Kumar, V. Salapura, D. L. Satterfield, B. Steinmacher-
Burow, and J. J. Parker. The IBM Blue Gene/q Interconnec-
tion Network and Message Unit. In Proceedings of 2011 In-
ternational Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’11, pages 26:1–26:10, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0771-0. doi:
10.1145/2063384.2063419.

Z. Chen, J. Dinan, Z. Tang, P. Balaji, H. Zhong, J. Wei, T. Huang,
and F. Qin. Mc-checker: Detecting memory consistency errors
in mpi one-sided applications. In Proceedings of the Interna-
tional Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’14, pages 499–510, Piscataway,
NJ, USA, 2014. IEEE Press. ISBN 978-1-4799-5500-8.

Cray Inc. Using the GNI and DMAPP APIs. Ver. S-2446-52, March
2014. available at: http://docs.cray.com/ (Mar. 2014).

A. M. Dan, Y. Meshman, M. T. Vechev, and E. Yahav. Predi-
cate abstraction for relaxed memory models. In F. Logozzo and
M. Fähndrich, editors, Static Analysis - 20th International Sym-
posium, SAS 2013, Seattle, WA, USA, June 20-22, 2013. Pro-
ceedings, volume 7935 of Lecture Notes in Computer Science,
pages 84–104. Springer, 2013. ISBN 978-3-642-38855-2. doi:
10.1007/978-3-642-38856-9 7.

A. M. Dan, Y. Meshman, M. T. Vechev, and E. Yahav. Effec-
tive abstractions for verification under relaxed memory mod-
els. In D. D’Souza, A. Lal, and K. G. Larsen, editors, Verifica-
tion, Model Checking, and Abstract Interpretation - 16th Inter-
national Conference, VMCAI 2015, Mumbai, India, January 12-
14, 2015. Proceedings, volume 8931 of Lecture Notes in Com-
puter Science, pages 449–466. Springer, 2015. ISBN 978-3-662-
46080-1. doi: 10.1007/978-3-662-46081-8 25.

A. Dragojević, D. Narayanan, M. Castro, and O. Hodson. Farm:
Fast remote memory. In 11th USENIX Symposium on Networked

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.127
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.127
http://docs.cray.com/

Systems Design and Implementation (NSDI 14), pages 401–414,
Seattle, WA, Apr. 2014. USENIX Association. ISBN 978-1-
931971-09-6.

D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert,
F. Berry, A. M. Merritt, E. Gronke, and C. Dodd. The virtual
interface architecture. IEEE micro, 18(2):66–76, 1998.

G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alver-
son, T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard. Cray
Cascade: A scalable HPC system based on a Dragonfly network.
In Proc. of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’12), pages
103:1–103:9. IEEE Computer Society, 2012. ISBN 978-1-4673-
0804-5.

R. Gerstenberger, M. Besta, and T. Hoefler. Enabling Highly-
scalable Remote Memory Access Programming with MPI-3 One
Sided. In Proc. of the ACM/IEEE Supercomputing, SC ’13,
pages 53:1–53:12, 2013.

S. Hefty. Scalable fabric interfaces, 2014. OpenFabrics Interna-
tional Developer Workshop 2014.

T. Hoefler, J. Dinan, R. Thakur, B. Barrett, P. Balaji, W. Gropp,
and K. Underwood. Remote Memory Access Programming in
MPI-3. Argonne National Laboratory, Tech. Rep, 2013.

N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang,
H. Subramoni, C. Murthy, and D. K. Panda. High performance
RDMA-based design of HDFS over InfiniBand. In Proceed-
ings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis, SC ’12, pages 35:1–
35:35, Los Alamitos, CA, USA, 2012. IEEE Computer Society
Press. ISBN 978-1-4673-0804-5.

D. Jackson. Software Abstractions: Logic, Language, and Analysis.
The MIT Press, 2006. ISBN 0262101149.

N. Jiang, J. Kim, and W. J. Dally. Indirect adaptive routing on
large scale interconnection networks. SIGARCH Comput. Ar-
chit. News, 37(3):220–231, June 2009. ISSN 0163-5964.

S. Kumar, A. Mamidala, D. A. Faraj, B. Smith, M. Blocksome,
B. Cernohous, D. Miller, J. Parker, J. Ratterman, P. Heidelberger,
D. Chen, and B. D. Steinmacher-Burrow. PAMI: A parallel ac-
tive message interface for the Blue Gene/Q supercomputer. In
Proc. of the IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS’12), pages 763–773. IEEE Com-
puter Society, 2012.

M. Kuperstein, M. T. Vechev, and E. Yahav. Automatic inference
of memory fences. In Proceedings of 10th International Confer-
ence on Formal Methods in Computer-Aided Design, FMCAD
2010, 2010.

M. Kuperstein, M. T. Vechev, and E. Yahav. Partial-coherence
abstractions for relaxed memory models. In Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011, 2011.

G. Li, R. Palmer, M. DeLisi, G. Gopalakrishnan, and R. M. Kirby.
Formal specification of MPI 2.0: Case study in specifying a
practical concurrent programming API. Sci. Comput. Program.,
76(2):65–81, Feb. 2011. ISSN 0167-6423.

A. Linden and P. Wolper. A verification-based approach to mem-
ory fence insertion in PSO memory systems. In Tools and Al-

gorithms for the Construction and Analysis of Systems - 19th
International Conference, TACAS 2013, 2013.

F. Liu, N. Nedev, N. Prisadnikov, M. T. Vechev, and E. Yahav. Dy-
namic synthesis for relaxed memory models. In ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation, PLDI ’12, 2012.

Y. Meshman, A. M. Dan, M. T. Vechev, and E. Yahav. Synthesis of
memory fences via refinement propagation. In Static Analysis -
21st International Symposium, SAS 2014, 2014.

B. Norris and B. Demsky. CDSchecker: checking concurrent data
structures written with C/C++ atomics. In Proceedings of the
2013 ACM SIGPLAN International Conference on Object Ori-
ented Programming Systems Languages & Applications, OOP-
SLA 2013, 2013.

R. W. Numrich and J. Reid. Co-array Fortran for parallel program-
ming. SIGPLAN Fortran Forum, 17(2):1–31, 1998.

OpenFabrics Alliance (OFA). OpenFabrics Enterprise Distribution
(OFED) www.openfabrics.org, 2014.

S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model:
x86-TSO. In Theorem Proving in Higher Order Logics, 22nd In-
ternational Conference, TPHOLs 2009, Munich, Germany, Au-
gust 17-20, 2009. Proceedings, 2009.

C.-S. Park, K. Sen, P. Hargrove, and C. Iancu. Efficient data race
detection for distributed memory parallel programs. In Proceed-
ings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pages
51:1–51:12, New York, NY, USA, 2011. ACM. ISBN 978-1-
4503-0771-0.

C. S. Park, K. Sen, and C. Iancu. Scaling data race detection
for partitioned global address space programs. In Proceed-
ings of the 27th International ACM Conference on International
Conference on Supercomputing, ICS ’13, pages 47–58, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-2130-3. doi:
10.1145/2464996.2465000.

M. Poke and T. Hoefler. Dare: High-performance state machine
replication on rdma networks. In Proceedings of the 24th In-
ternational Symposium on High-Performance Parallel and Dis-
tributed Computing, HPDC ’15, pages 107–118, New York, NY,
USA, 2015. ACM. ISBN 978-1-4503-3550-8. doi: 10.1145/
2749246.2749267.

V. Saraswat, G. Almasi, G. Bikshandi, C. Cascaval, D. Cunning-
ham, D. Grove, S. Kodali, I. Peshansky, and O. Tardieu. The
asynchronous partitioned global address space model. In AMP
’10: Proceedings of The First Workshop on Advances in Mes-
sage Passing, June 2010.

S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams.
Understanding POWER multiprocessors. In Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2011.

C. SPARC International, Inc. The SPARC Architecture Manual:
Version 8. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1992. ISBN 0-13-825001-4.

The InfiniBand Trade Association. Infiniband Architecture Spec.
Vol. 1, Rel. 1.2. InfiniBand Trade Association, 2004.

E. Torlak, M. Vaziri, and J. Dolby. Memsat: checking axiomatic
specifications of memory models. In Proceedings of the 2010

ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI, 2010.

UPC Consortium. UPC language specifications, v1.2. Technical
report, Lawrence Berkeley National Laboratory, 2005. LBNL-
59208.

M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma,
H. J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus,
et al. NWChem: a comprehensive and scalable open-source so-
lution for large scale molecular simulations. Computer Physics
Communications, 181(9):1477–1489, 2010.

	Introduction
	Overview
	RMA Hardware Model
	SC Behaviors versus RMA Behaviors
	Out of Order Execution

	The coreRMA Language
	RMA-Based Programming Models
	coreRMA

	From Statements to Actions
	Translation of Statements to Actions

	Axiomatic Semantics of coreRMA
	Relations over Actions
	Conflicts
	Rules

	RMA Validation Framework
	Automatic Test Case Generation

	Evaluation
	Related Work
	Conclusion

