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To implement quantum algorithms on quantum computers it is crucial to decompose their operators into the
limited gate set supported by those computers. Unfortunately, existing works automating this essential task are
generally slow and only applicable to narrow use cases. We present Synthetiq, a method to synthesize quantum
circuits implementing a given specification over arbitrary finite gate sets, which is faster and more versatile
than existing works. Synthetiq utilizes Simulated Annealing instantiated with a novel, domain-specific energy
function that allows developers to leverage partial specifications for better efficiency. Synthetiq further couples
this synthesis method with a custom simplification pass, to ensure efficiency of the found circuits.

We experimentally demonstrate that Synthetiq can generate better implementations than were previously
known for multiple relevant quantum operators including RCCCX, CCT, CCiSWAP, C

√
SWAP, and C

√
iSWAP.

Our extensive evaluation also demonstrates Synthetiq frequently outperforms a wide variety of more special-
ized tools in their own domains, including (i) the well-studied task of synthesizing fully specified operators
in the Clifford+T gate set, (ii) n-approximate synthesis of multi-qubit operators in the same gate set, and
(iii) synthesis tasks with custom gate sets. On all those tasks, Synthetiq is typically one to two orders of
magnitude faster than previous state-of-the-art and can tackle problems that were previously out of the reach
of any synthesis tool.
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1 INTRODUCTION

Quantum computing promises to gain a significant advantage over classical computing by leveraging
the principles of quantum mechanics [Arute et al. 2019; de Wolf 2017; Shor 1997]. However, for such
an advantage to be realized in practice, quantum algorithms must be implemented and executed on
a quantum computer. This requires bridging the gap between the high level constructs used in the
description of those quantum algorithms, and the limited set of operations that can be executed on
a quantum computer.
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Decomposing Arbitrary Operators. Typically, quantum algorithms rely on arbitrary operators,
described by input-output pairs. Such operators may act on many qubits simultaneously. In contrast,
quantum computers, both existing [Alvarez-Rodriguez et al. 2018; Arute et al. 2019; Steffen et al.
2011] and planned [Bravyi et al. 2022; Gill et al. 2022] can only execute a limited set of operations
acting on one or two qubits, often referred to as gates. Hence, implementing a quantum algorithm
requires decomposing its operators into these supported gates. We refer to the resulting decompo-
sition as a circuit. Crucially, the performance of quantum algorithms hinges on the efficiency of the
circuits resulting from the decomposition.

Compilation to Finite Gate Sets. We focus on the problem of operator decomposition to a finite
gate set. This is in particular relevant for fault-tolerant quantum computing, which invariably
depends on finite gate sets, most frequently the Clifford+T gate set. Almost all existing synthesis
tools [Gheorghiu et al. 2022a,b; Matteo and Mosca 2016; Mosca and Mukhopadhyay 2021; Niemann
et al. 2020] for finite gate sets only support decomposition to this gate set. Further, they are generally
slow and limited to decomposing fully specified operators, adding unnecessary constraints when an
operator is only specified on selected inputs. Only three works [Amy et al. 2013; Chou et al. 2022;
Kang and Oh 2023] allow for custom gate sets or partially specified operators. They are however
prohibitively slow, and can therefore only handle really short decompositions of at most 20 gates.

This Work: Simulated Annealing for Circuit Synthesis. We present Synthetiq, a method to syn-
thesize circuits over arbitrary finite gate sets using Simulated Annealing (SA), which iteratively
modifies circuits until they meet a given specification. Our key insight is that SA is particularly
well-suited for this problem when instantiated with a novel, domain-specific energy function that
allows for partial specifications of quantum operators. Due to the inherent parallelizability of SA,
Synthetiq is not only more versatile but also significantly faster than existing works, typically by
one to two orders of magnitude on common synthesis tasks.

Versatility. Unlike prior works, Synthetiq can be employed in a wide range of different scenarios.
First, as it does not rely on properties specific to the Clifford+T gate set, it supports adding custom
gates or even changing the gate set completely. Crucially, composite gates, that is small operators
whose decomposition in the original gate set is already known, can be added to the gate set in
order to speed up Synthetiq.

Second, Synthetiq naturally supports partially specified operators. This is essential, as requiring
developers to arbitrarily refine an underspecified operator restricts the search space and results in
sub-optimal decompositions.

Third, Synthetiq can synthesize efficient circuits for many performance metrics, from total gate
count to a specific gate depth. We note that, like most existing methods, Synthetiq cannot guarantee
optimal circuits, but empirically succeeds in finding them given enough time.
Finally, for the cases where an operator cannot be exactly decomposed into the chosen finite

gate set, Synthetiq can synthesize quantum circuits that approximate the given operator with a
specified accuracy level.

Results. Leveraging Synthetiq, we can effectively synthesize a broader range of operators than
any previous work. This allows us to uncover more efficient implementations of the operators
RCCCX, CCT, CCiSWAP, C

√
SWAP, and C

√
iSWAP using the Clifford+T gate set. When applied

to five problems from StackExchange, Synthetiq outperforms the expert-written accepted answer
twice and matches its efficiency otherwise.

Additionally, our evaluation shows that Synthetiq surpassesmore specialized tools in performance
and results, despite addressing a broader range of synthesis tasks. First, Synthetiq outperforms
synthesis tools for both partially specified operators in custom gate sets [Kang andOh 2023] and fully
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specified operators in the Clifford+T gate set [Gheorghiu et al. 2022a; Mosca and Mukhopadhyay
2021] by a factor of one to two orders of magnitude, often producing more efficient circuits.
Second, Synthetiq’s performance is on par with the state-of-the-art approach for n-approximate
synthesis of fully specified multi-qubit operators in the Clifford+T gate set [Gheorghiu et al. 2022b].
Finally, Synthetiq stands out as the first tool to successfully synthesize relative phase operators,
an important case of incomplete specification. Those operators are in particular crucial for the
efficient implementation of operators with multiple controls [Maslov 2016], and are used by Qiskit
as one of the standard decompositions of the MCX operator [Qiskit 2023].

Main Contributions. To summarize, our main contributions are:

• Synthetiq, a fast and versatile synthesis algorithm for quantum operators over finite gate
sets based on Simulated Annealing (§3–§4),
• a natural framework for partial specifications addressing common synthesis tasks (§5),
• an implementation1 and thorough evaluation of Synthetiq, showing that it outperforms more
specialized tools and can tackle synthesis problems that were previously out of reach (§6).

In the following, we present the necessary background (§2), exemplify Synthetiq on an exam-
ple (§3), formally describe Synthetiq (§4) and how it handles partial specifications (§5), evaluate
Synthetiq (§6) and discuss related work (§7).

2 BACKGROUND

We now present the necessary background on quantum computation and Simulated Annealing.

Qubit. A qubit is the quantum counterpart of a classical bit. The state i of a qubit G is a linear
combination of the basis states |0⟩G and |1⟩G , which we can write as i = W0 |0⟩G + W1 |1⟩G with
W0, W1 ∈ C. In the following, we often omit the subscript G indicating the qubit name when it is not
relevant. The state of qubit G can equivalently be described by a state vector i =

[ W0
W1

]
.

To describe a system with multiple qubits, we use the tensor product ⊗. For instance, we can
write the state of a system with two qubits G and ~ as

i = W0 |0⟩G ⊗ |0⟩~ + W1 |1⟩G ⊗ |0⟩~ + W2 |0⟩G ⊗ |1⟩~ + W3 |1⟩G ⊗ |1⟩~ , or i =

[ W0
W1
W2
W3

]

with W8 ∈ C. We often abbreviate |0⟩G ⊗ |1⟩~ to |01⟩G~ . We say the state vector describes i in the
computational basis {|00⟩ , |10⟩ , |01⟩ , |11⟩}.

Quantum Gates and Circuits. Quantum compiling aims to produce circuits to be run on a quantum
computer. Quantum circuits consist of a fixed number of qubits, and gates to be applied to some
of those qubits. For instance, the X gate acts on one qubit and flips its value, or more formally
X |0⟩ = |0 ⊕ 1⟩. More generally, X maps the state W0 |0⟩ + W1 |1⟩ to W0 |1⟩ + W1 |0⟩. Using the state
vector representation, this operation can be described by the following matrix in C2

1×21 , which we
refer to as ⟦X⟧:

⟦-⟧ =
[
0 1
1 0

]

Applying gate X to a qubit described by the state vector i yields the new state vector ⟦X⟧i . Some
quantum gates act on multiple qubits at the same time. For instance, the controlled X gate CX maps
|01⟩ to |0⟩ X0 |1⟩ = |0⟩ |0 ⊕ 1⟩; the second qubit is flipped iff the first one is 1. Again, the effect of
CX can be described as a matrix. We finally introduce the identity gate I. It is the no-op of quantum
gates, and its matrix representation when applied to = qubits is the identity matrix in C2

=×2= .

1Our implementation is available at https://github.com/eth-sri/synthetiq.
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Quantum Circuit Semantics. We can think of a quantum circuit as a list of gates and qubits to
which each gate is applied. For instance, we can consider the circuit � on two qubits which applies
the X gate to its first qubit, followed by the CX gate on both of its qubits. The effect of this circuit
on two qubits can again be described by a matrix, which is simply the product of the matrices of
each of its gates: ⟦�⟧ = ⟦CX⟧ · (⟦X⟧ ⊗ ⟦I⟧). Note how we used the tensor product of ⟦X⟧ with the
identity I to extend the semantics of this one qubit gate to two qubits. In slight abuse of notation,
we will typically write � instead of ⟦�⟧ throughout this work.

Quantum Operators. In the above, we described how the effect of a quantum gate or circuit on
= qubits can be described by a matrix in C2

=×2= . It is worth noting that all matrices representing
the action of gates or circuits are unitary2. We say a quantum operator is an operation on qubits
described by a unitary matrix* . We then say that a circuit � implements this operator if ⟦�⟧ = * .

Clifford+T Gate Set. To implement a general quantum operator on a given quantum computer,
we must decompose it into gates from the gate set G supported by this computer. Such gate sets G
are usually universal, meaning that every quantum operator can be decomposed into gates from G,
with arbitrary precision n > 0. More formally, for any unitary matrix* ∈ C2=×2= and n > 0, there
exists some circuit� on = qubits using only gates from G such that � (* ,�) ⩽ n , for some distance
metric � . Fault-tolerant quantum computers will likely rely on the so-called Clifford+T gate set
[Terhal 2015], which consists of the following gates:

H =
1√
2

[
1 −1
1 1

]
, S =

[
1 0
0 i

]
, S† =

[
1 0
0 −i

]
,

T =

[
1 0
0 4 ic/4

]
, T† =

[
1 0
0 4−ic/4

]
, and CX =

[
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

]
.

The Clifford+T gate set is known to be universal [Nielsen and Chuang 2002]. Further, Giles and
Selinger [2013] showed that based on the coefficients of an operator * we can decide whether
it can be decomposed exactly in the Clifford+T gate set, meaning there is a circuit � such that
� (* ,�) = 0. Based on the determinant of* , we can decide if this decomposition requires an ancilla,
that is if* acts on = qubits, its decomposition will be a circuit � acting on = + 1 qubits, where the
last extra qubit is assumed to be in state |0⟩ initially, and must be returned to this state at the end.

Simulated Annealing. Simulated Annealing (SA) allows to efficiently find a state G which approxi-
mately minimizes an energy function � (G), often referred to as an energy. Starting from some initial
state, each SA step picks a randomly sampled neighbor state G ′ ∼ N(G) of the current state G , and
selects G ′ as the current state with some probability % (G, G ′,) ). Here, ) ∈ R>0 denotes a progres-
sively decreasing temperature. In this work, we set the acceptance probability % using the common

approach % (G, G ′,) ) = min
(
1, exp

(
−� (G ′)−� (G)

)

))
. Thus a better G ′ (meaning � (G ′) < � (G)) ensures

% (G, G ′,) ) = 1 and therefore is always accepted. In contrast, a worse G ′ has % (G, G ′,) ) < 1 and thus
can be rejected or accepted, where acceptance is particularly likely initially, at high temperatures
) .

3 OVERVIEW

We now explain the approach of Synthetiq by synthesizing a circuit over the Clifford+T gate set
for an example operator. First, we introduce this operator and translate it to a partial specification
(§3.1). We then show how Synthetiq finds an implementation for it (§3.2) and how composite gates
can be used to speed up this search (§3.3). We describe Synthetiq in more detail in later sections.

2We say a matrix � is unitary if ��† = � , where �† is the conjugate transpose of �.
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3.1 Creating a Partial Specification

Controlled-T. The Controlled-T (CT) operator acts on two qubits, and applies the T gate to the
second qubit if and only if the first qubit is 1. More formally, for ?, @ ∈ {0, 1}:

CT |?⟩ |@⟩ = |?⟩ T? |@⟩ .

In matrix notation, CT corresponds to the operator shown below:
[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 4 ic/4

]

Wenote that CT can be represented exactly by a Clifford+T circuit [Giles and Selinger 2013, Theorem
1], but only if its circuit can make use of an ancilla [Giles and Selinger 2013, Corollary 2]. We now
show how to encode the CT specification, taking into account this ancilla.

Encoding Ancillae. The effect of CT when given an ancilla is the following, again for ?, @ ∈ {0, 1}:

CT |?⟩ |@⟩ |0⟩ = |?⟩ T? |@⟩ |0⟩ (1)

CT |?⟩ |@⟩ |1⟩ = ? (2)

Note how the operator is undefinedwhen the ancilla is not in state |0⟩. This specification corresponds
to the following underspecified matrix3:

1 0 0 0 ? ? ? ?

0 1 0 0 ? ? ? ?

0 0 1 0 ? ? ? ?

0 0 0 4 ic/4 ? ? ? ?

0 0 0 0 ? ? ? ?

0 0 0 0 ? ? ? ?

0 0 0 0 ? ? ? ?

0 0 0 0 ? ? ? ?





CT |000⟩ = |000⟩
CT |110⟩ = 4 ic/4 |110⟩

CT |101⟩ = ?

(3)

Here we denote all unspecified elements with “?”. When comparing such an underspecified matrix
to the operator induced by a given circuit, Synthetiq only takes the specified elements into account.
More precisely, we say a circuit � satisfies the specification if the matrix of the circuit operator
matches all specified coefficients of the underspecifiedmatrix. Although our examplematrix consists
of only fully known or fully unknown columns (i.e., isometries), we note that Synthetiq can also
handle partially specified columns.

3.2 Running Synthetiq

We now describe how Synthetiq builds a quantum circuit from a gate set and a partial specification,
following Fig. 1.

Sampling an Initial Circuit. For a given input, Synthetiq executes multiple separate runs of SA.
Each run starts by sampling a random circuit � . To this end, Synthetiq first samples a circuit size
within the circuit size bounds ℓmin and ℓmax, and then a gate from the gate set (augmented with the
identity gate) for each position in the circuit. Then, Synthetiq runs SA starting from � .

3We use the little-endian convention, i.e., input state |?@A ⟩ corresponds to column A · 4 + @ · 2 + ? · 1 in Eq. (3). This is
analogous to existing tools such as Qiskit [Abraham et al. 2019].
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Parallel runs of simulated annealing

Circuit size bound
ℓmin, ℓmax

Circuit�

Circuit�′

Best circuit

Gate set
G = {H, S..}

Specification
S =

[
1 ?
0 ?

]

C sat. S?

#iter < "

Update circuit size bounds

Probabilistically
Accept/Reject�′

No

Yes: Randomly
change one gate

Sample
init circuit

Yes: Simplify
and update best

No:
restart

Fig. 1. Synthetiq overview. Here" = 200 · len(�) is the maximum number of iterations of each SA run.

Simulated Annealing. Each SA step randomly replaces one gate in the current circuit � , yielding
the circuit� ′. Synthetiq decides whether to keep� or replace it by� ′ using a custom energy function
�. Specifically, if � ′ is strictly better, we always replace � , otherwise we do so probabilistically.

Energy Function. We describe our energy function in detail in §4.4. In a nutshell, it measures
how close the operator implemented by the circuit is to the given specification. The key insight of
Synthetiq is the extension of an energy function used in e.g. [Chou et al. 2022; Khatri et al. 2019;
Meister et al. 2023] to work for partial specifications. Such an extension is non-trivial, as it must
gracefully decrease for circuits that "almost" satisfy a specification in order to guide SA efficiently.
Further, it must be scaled to work for all possible underspecified operator sizes without requiring
tuning of Synthetiq to each underspecified case.

Found Circuit. At every step of the SA algorithm, we check whether the current circuit satisfies
this specification. If so, we run a simplification pass on it. This simplification is a simple and fast
algorithm that heuristically optimizes both the total gate cost and the depth of user specified gates.
Here, the total gate cost is the sum of the implementation cost for each gate, which is specified
by the user. If the simplified circuit is the best one found so far, we record it. Finally, we use this
best circuit to update the circuit size bounds for the next initial circuit. If no circuit is found in a
reasonable number of steps, we abort SA and start a new run from a fresh random circuit.

Parallelization. As Synthetiq executes many short runs of SA, we can easily parallelize it. This
leads to an almost linear speedup in the number of cores, greatly increasing Synthetiq’s speed and
allowing it to synthesize larger circuits than previous work, as demonstrated in §6.

3.3 Speeding up Synthetiq with Composite Gates

The versatility of Synthetiq extends beyond the Clifford+T gate set, as it is designed to work
with any finite gate set. This includes the ability to integrate composite gates, that is operators
whose decomposition in the gate set is already known. This stratified synthesis [Heule et al. 2016]
significantly broadens the size of operators that Synthetiq can decompose as it can dramatically
boost the speed of the search process. This is because a single circuit mutation can introduce a
complex operator that would otherwise require a large amount of precise mutations. For instance,
the inclusion of the RCCX operator as a composite gate enabled us to find an optimal implementation
of the CT-operator within seconds, while finding one without the composite gate took 12 hours.

However, it is important to note that while the direct insertion of a complex gate can speed up the
search process, it may not always yield the most efficient circuits. There could be a simpler, more
efficient implementation that could only be discovered after a more thorough run of Synthetiq.
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Algorithm 1 Our main algorithm, Synthetiq.

1: function Synthetiq(G: Gate set, S: Circuit specification)
2: �best ← ∅
3: for 8 = 1, ...,<iter do

4: ℓ ← uniform(ℓmin, ℓmax)
5: � ← RandomCircuit(G, ℓ)
6: for 9 = 1, ..., =steps do

7: �′ ← RandomMutation(�, G)
8: 4, 4′ ← � (�, S), � (�′, S)
9: if Accept(4, 4′) then
10: � ← �′

11: if � satisfies S then

12: � ← Simplify(�)
13: if Cost(�) < Cost(�best) then
14: �best ← �

15: ℓmin, ℓmax ← UpdateBounds(�best)
16: break

17: return�best

4 SYNTHETIQ

We now describe our method in more detail. For more details on hyperparameter optimization and
values, we refer to Tab. 3 in §6.1.

End-to-End Procedure. Alg. 1 describes our main algorithm, Synthetiq. It takes as input a gate
set (§4.1) and a (partial) specification (§4.2). Lin. 3–16 then execute multiple separate runs of SA.
The starting point of each run is a fresh random circuit � (Lin. 5) made of ℓ randomly chosen gates.
We select the number of gates ℓ uniformly at random within the current circuit size bounds ℓmin

and ℓmax (Lin. 4). Lin. 6–16 then run =steps SA steps from this initial circuit.
At each SA step, Lin. 7 creates a new candidate circuit � ′ by randomly changing one gate in the

current circuit� (§4.3) and scores the two circuits using the energy function � (Lin. 8). This energy
function captures how close the circuit is to the given specification (see §4.4). Lin. 9 then accepts
the new circuit � ′ with a probability depending on the energy of both � and � ′ (see §4.5).
If the current circuit does not satisfy the specification, Synthetiq proceeds to the next SA step

(Lin. 11). Otherwise, Lin. 12 simplifies it (§4.6). If it is the best circuit found so far (Lin. 13), Lin. 14
records it. Finally, Lin. 15 uses the best circuit to update the circuit size bounds ℓmin and ℓmax (§4.3).

4.1 Gate Sets

Synthetiq searches for a circuit implementing the given specification using the gates in the input
gate set G. This can be any finite set of gates, for instance the Clifford+T gate set or a user supplied
custom gate set. As discussed in §3.3, we can also add composite gates to G to speed up Synthetiq.

4.2 Expressing Partial Specifications

A partial specification S = (* ,") consists of two matrices * ∈ C2=×2= and " ∈ {0, 1}2=×2= . * is
the operation we aim to implement and" is a boolean mask specifying which elements of* should
be matched (marked with 1) and which can be ignored (marked with 0). Note that elements of*
corresponding to a 0 in" can be omitted in S—we typically write them as “?”. We say a unitary
matrix + ∈ C2=×2= matches the specification S = (* ,") if and only if " ·* = exp(8\ )" ·+ for
some \ ∈ R, where “·” denotes element-wise multiplication and \ is a global phase difference. Of
course, there may be many such matrices. We will show in §5 how this natural framework for
underspecification can be used to specify various useful applications in quantum computing.
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ℓmin 3< 3ℓbest

(a) Case: ℓmin ≤ 3< ≤ 3ℓbest.

3< ℓmin 3ℓbest

(b) Case: 3< ≤ ℓmin ≤ 3ℓbest.

3< 3ℓbest ℓmin

(c) Case: 3< ≤ 3ℓbest ≤ ℓmin.

Fig. 2. Updating bounds on circuit size.

4.3 Building Circuits

We now explain how Synthetiq builds and modifies circuits.

Randomly Mutating Gates. To mutate a given circuit � into a new candidate � ′, Synthetiq picks
a gate position uniformly at random, and replaces it with a randomly selected gate.

To this end, Synthetiq first decides whether or not to replace the selected gate by a placeholder
"identity" gate, with probability %Id ∈ [0, 1]. This replacement step is analogous to deleting a gate,
while replacing an identity gate by another is analogous to inserting a gate. Hence, this approach
allows us to work with fixed size circuits, while keeping the flexibility of gate insertion and deletion.

If the identity gate was not selected, Synthetiq chooses which gate to insert. It picks a gate in G
uniformly at random and then select the qubits it acts on. Further, we multiply the probability of
sampling composite gates by %comp ∈ [0, 1] in order to avoid inserting these more expensive gates
into the circuit too frequently.

Building the Initial Circuit. To build the initial circuit, we select a circuit size ℓ , and generate a
circuit by randomly selecting ℓ gates as described above.
We have found empirically that Synthetiq performs best when ℓ is around 3 times the length

of the optimal circuit for the given specification, which we denote here by<. As< is not known
when running Synthetiq, we use an adaptive scheme to pick ℓ . To this end, we define minimal and
maximal sizes ℓmin and ℓmax, and sample ℓ uniformly between the two for each new initial circuit. If
a circuit is found that implements the specification in an SA step, we use the length of the current
optimal circuit ℓbest to move ℓmin closer to 3<, and analogously for ℓmax:

ℓmin =

{
5min ℓbest if 5min ℓbest ≤ ℓmin

ℓmin +max
(
1,

⌊
V (5min ℓbest − ℓmin )

⌋ )
otherwise

(4)

ℓmax =

{
5maxℓbest if 5maxℓbest ≤ ℓmax

ℓmax +max
(
1,

⌊
V (5maxℓbest − ℓmax)

⌋ )
otherwise

(5)

We now explain how Eq. (4) moves ℓmin closer to 3<; the intuition behind Eq. (5) is analogous.
Suppose for now that we set 5min = 3, then Fig. 2 illustrates three possible situations. In all

three situations, 3< ≤ 3ℓbest, as < is the theoretical best circuit size, while ℓbest is the best size
found so far. Fig. 2a shows the typical case in the first steps of SA: as we pick ℓmin to be small, it is
typically smaller than 3<. Then, the second case in Eq. (4) increases ℓmin slightly, where the gray
part accounts for rounding and increments smaller than 1. Fig. 2b shows a case where ℓmin was
increased to surpass 3<, but still lies below 3ℓbest. In this case, the second case in Eq. (4) further
increases ℓmin, which moves us further from 3<, but eventually Synthetiq will find better circuits,
thus decreasing 3ℓbest. Finally, Fig. 2c shows a case where ℓmin is larger than 3ℓbest. Then, we know
for sure that 3ℓbest is closer to the optimal value 3<, so we directly update ℓmin to 3ℓbest.
We note that since our estimate ℓbest of< becomes better with every circuit found (no matter

whether the current circuit improved ℓbest or not), we apply this update rule every time a circuit is
found. When Synthetiq is run on multiple threads, ℓmin and ℓmax are synchronized across threads.
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4.4 Evaluating Circuits

To evaluate a circuit � with respect to a specification S, we need to define an energy function
� (S,�) that measures the distance between � and S.
Various works have used measures inspired by fidelity to compare the matrices of quantum

operators [Chou et al. 2022; Khatri et al. 2019; Meister et al. 2023]. Such measures are typically

of the shape4 � (* ,�) = 1 − |Tr(* †�) |
2=

and have the important property that if * and � differ by a

global phase, i.e., if* = 4 i\� for some \ ∈ R, then � (* ,�) = 0.
Intuitively, we want to generalize � (* ,�) to account for partial specifications by replacing *

and � by" ·* and" ·� , respectively. Unfortunately, the resulting energy �̃ is useless if only 0s
are specified in* , which is relevant, e.g., when specifying relative phase operators (§5). In such a
case, since" ·* = 0, the suggested energy �̃ is constant regardless of the current circuit:

�̃ (* ,�) = 1 − |Tr( (" ·* )† (" ·�)) |
2=

= 1 − |Tr(0) |
2=

= 1.

To address this problem, we first rewrite � (* ,�) to5 (derived in App. A.1):

� (* ,�) = 1

2




* − Tr(�†* )
|Tr(�†* ) |�





2

�

2=
. (6)

After this rewrite, we generalize � to account for partial specifications by replacing* and �:

�̄ (S,�) = 1

2




" ·* − Tr( (" ·�)† (" ·* ))
|Tr( (" ·�)† (" ·* )) |" ·�





2

�

2=
. (7)

Here, we define 0/0 := 1 to account for the fact that Tr((" ·�)† (" ·* )) could be zero. If S only

specifies 0s, that is" ·* = 0, �̄ simplifies to 1
2

∥" ·� ∥2�
2=

, which still provides valuable information;
at the entries where* is 0 (and" is 1), � might not be and the higher its values, the higher �̄ is.
Further, we also adapt the normalization factor of 2= in �̄ . This is crucial, as an incorrect

normalization would make the magnitude of � (* ,�) sensitive to the number of specified elements
| |" | |2

�
. To this end, we note that 2= is equal to ∥1= ∥� , where 1= is the matrix of dimension 2= × 2=

with all ones, that is the boolean mask for a complete specification. Therefore, we replace the
normalization of 2= by | |" | |� . Taking the square root of all squared norms and dropping the factor
of 1

2
for simplicity then yields:

� (S,�) =




" ·* − Tr( (" ·�)† (" ·* ))
|Tr( (" ·�)† (" ·* )) |" ·�





�√

∥" ∥�
. (8)

Measuring Distance Between Circuit and Specification. To speed up the search for circuits, we
always evaluate not only the current circuit � against the specification S = (",* ), but also all the
circuits �f that can be built from � by permuting its qubits following some permutation f . Note
that this is equivalent to evaluating � against any permutation Sf = ("f ,*f ) of the specification.
Here"f (resp.*f ) is defined as �−1f "�f (resp. �−1f *�f ) where �f is the change-of-basis matrix
from the original qubit order to their permutation. This gives finally:

� (S,�) = min
f ∈(=

� (Sf ,�),

4For a matrix" , Tr(") is its trace and"† its conjugate transpose.
5For a matrix" , ∥" ∥� = Tr(""†) is its Frobenius norm.
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where (= is the set of all permutations of {1, ..., =}. This is inspired by the equality metric for
classical programs presented in [Heule et al. 2016]. There, if a program gives the correct result in
the wrong register, the penalty is much smaller than if the result is not present at all.

Efficiently Computing the Circuit Matrix. To compute �, we need the matrix of the operator
implemented by � . To compute it efficiently, we maintain a binary tree over the matrices of the
list of gates in � . Hence, as each mutation only modifies one gate, we can update the complete
matrix in only O(log(len(�))) matrix multiplications. This comes at the cost of an extra memory
requirement, but this is not a limiting factor in practice.

Approximate Synthesis. Synthetiq can be readily adapted for approximate circuit synthesis. We
simply treat a circuit as discovered once the condition � ((,�) ⩽

√
2n is met (see Lin. 11 in Alg. 1).

In the context of a complete specification, this corresponds exactly to the global phase invariant
distance employed in previous studies, such as Gheorghiu et al. [2022b].

4.5 Updating the Current Circuit

As mentioned in §2, SA accepts a new circuit � ′ with a certain probability depending on a tem-
perature function ) . Modifications leading to a better circuit (� (S,�) < � (S,� ′)) are therefore
always accepted, whereas modifications leading to a worse circuit are only accepted occasionally.
The temperature function) (8) governs the acceptance rate of such worse modifications: increasing
it means that worse modifications are more likely to be accepted. We define ) as:

) (8) = ) (0) exp
(−=accept
ℓ=norm

)
,

where =accept is the total number of accepted modifications since the start of the SA run, ℓ is the
number of gates in the circuit currently under consideration, and ) (0) and =norm are hyperparame-
ters. Intuitively, after many modifications were accepted, acceptance of a worse circuit becomes
less likely, allowing to focus on a local optimum.

4.6 Simplifying a Circuit

SA allows Synthetiq to discover many new circuits implementing the given specification. However,
in many cases, we are specifically looking for efficient circuits implementing this specification. The
circuits found by SA can often be trivially simplified, for instance by replacing two consecutive
gates that cancel out by the no-op identity gate I. We therefore developed a fast simplification pass
to remove such inefficiencies from the found circuits. We first discuss two ways of measuring the
efficiency of a circuit and then describe our simplification pass.

Cost of a Circuit. The first way of measuring efficiency is by looking at the number of gates the
circuit is made of. Typically, if each gate has a cost of execution on the quantum computer (be it in
time or loss of precision), the cost of a circuit is simply the sum of the cost of each of its gates. For
some applications (see §6.3), we assume the cost of all gates is the same and equal to 1. In contrast,
for fault-tolerant quantum computing, the T gate is much more expensive to implement than any
of the other gates in the Clifford+T gate set. To compute the cost of a circuit in this gate set, we use
the following gates costs, roughly reflecting gate complexity on hardware:

Cost(T) = Cost(T†) = 1,Cost(CX) = 0.1 and Cost(H) = Cost(S) = Cost(S†) = 0.01. (9)

In all gate sets, the identity gate has cost 0, as it does not apply any operation to the qubits.
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Algorithm 2 Simplification applied as post-processing. �8 denotes the i-th gate in � , � [8,: ] is the
subset of � consisting of its i-th to k-th gates, and �8↔: is � after swapping the i-th and k-th gates.

1: function Simplify(� : Circuit, G: Gate set)
2: 8, 9 ← 0, 0

3: while 8 < len(�) do
4: for : = 1, 2, . . . , 12 do

5: if
�

� [8,8+: ]
�

= ⟦6⟧ with 6 ∈ G and Cost(� [8,8+: ] ) > Cost(6) then
6: � [8,8+: ] ← [6, � , ..., � ]
7: 8 ← 8 − 1
8: if �8 and�8+1 commute and�8+1 ≺ �8 then

9: � ← �8↔8+1
10: 8 ← 8 − 2
11: 8 ← 8 + 1
12: � ← reverse(�)
13: while 9 < len(�) do
14: if � 9 and� 9+1 commute then
15: 3diff = Depth(� 9↔9−1) − Depth(�)
16: if 3diff < 0 or (3diff = 0 and� 9+1 ≺ � 9 ) then
17: � ← � 9↔9+1
18: 9 ← 9 − 2
19: 9 ← 9 + 1
20: return reverse(�)

Depth of a Circuit. The second way of defining a circuit cost takes parallelism in its execution
into account. If a circuit applies one gate on its first qubit and another on its second qubit, those
two gates can often be executed at the same time. Therefore, the cost of the execution is only the
cost of one gate, and not the sum of the two. The depth of a circuit reflects this cost. It is the length
on the execution of the circuit, assuming all operations that can be are parallelized6. Further, in
cases where some gates take much longer to execute than others, we may use as cost for the circuit
its depth when only considering those expensive gates. This is typically the case for the Clifford+T
gate set, where we measure T-depth.

Optimizing Found Circuits. We show our simplification pass in Alg. 2. It consists of two main
parts. The first aims at minimizing the gate cost of the circuit (Lin. 3–11). More specifically, it
replaces sequences of gates in the circuit with gates from G that have the same semantics if this
gate has a lower cost than the complete sequence (Lin. 4–7). Note that we only consider sequences
of up to 12 gates since higher values did not result in more efficient circuits. The second part aims
at minimizing the depth of the circuit (Lin. 13–19). Here, it swaps gates that commute7 if doing so
would reduce the depth of the circuit. Finally, to create more opportunities for both optimizations,
Alg. 2 also swaps any gates that commute, in both parts (Lin. 8–10 and Lin. 17). To ensure we don’t
endlessly swap gates back and forth, we only do so according to a custom total order on gates ≺.
We give more details about this order in App. A.2.

A Custom Pass. We note that this simplification pass is specifically tuned to our SA algorithm. It
is both fast and focused on simple optimizations that are easily missed by SA and can be applied for
any finite gate set. Further, we found in practice that for a given circuit, optimizing for gate count
and depth were not at odds. We therefore always optimize for both. This simplification pass is an
essential part of the algorithm and is not meant to be used as a standalone procedure. Indeed, when
applied to circuits found by other synthesis tools, it most often does not find any simplifications.

6This can be computed in time linear in the number of gates in the circuit.
7That is applying one then the other has the same effect on qubits as doing the opposite.
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Table 1. Translating common tasks to incomplete specifications.

Task Full Isometry Element-wise

State Preparation
Relative Phase Operators
Ancillae
Oracles
Dirty Qubits
Isometry + Ancilla

5 LEVERAGING PARTIAL SPECIFICATIONS

We now show how to leverage our partial specification framework to express common tasks when
implementing quantum algorithms.

Classification. Recall that in a partial specification S = (* ,"), the boolean matrix" specifies
which elements of matrix * should be matched. When each column of " is either all ones or
all zeros (i.e., each column is fully specified or not at all), the partial specification is an isometry.
Otherwise, we refer to the specification as element-wise.

Tasks. Tab. 1 summarizes the tasks discussed in §5.1–§5.5, and whether they can be expressed as
a full specification, an isometry, or require element-wise specification in the general case. We note
that multiple tasks can be combined. For instance, allowing an isometry to use an ancilla yields a
new, element-wise specification.

5.1 State Preparation

The task of state preparation asks to implement an operator that brings qubits from some initial
state (typically |0...0⟩) to some target state i . This operator is only specified for the input |0...0⟩
and can be written as * =

[
i ?

]
, where i denotes the vector representation of the target state.

State preparation applications include quantum chemistry ([Cao et al. 2019]), quantum machine
learning ([Araujo et al. 2021]), and solving systems of linear equations ([Harrow et al. 2009]). For
example, the specification to prepare the GHZ state for two qubits |GHZ⟩ = 1√

2
( |00⟩ + |11⟩) is



1√
2
? ? ?

0 ? ? ?
0 ? ? ?
1√
2
? ? ?


.

5.2 Relative Phase Operators

We say an operator * ′ is a relative phase operator for operator * if for any input state in the
computational basis |:⟩ there exists some phase \: such that* ′ |:⟩ = 4 i\:* |:⟩. Such relative phase
operators often have a shorter circuit implementation than their non-relative original. Therefore, it
can be interesting to replace* with its relative counterpart when it is used in a bigger computation,
if this replacement does not change the overall computation. Common use cases for relative phase
operators include their use in more efficient implementations of their non-relative counterpart
[Maslov 2016], replacing the CCX gate by a relative RCCX gate when it is later uncomputed [Paradis
et al. 2021], or when the non-relative counterpart is used in a circuit that is measured directly after
the application of the operator.

When* can be described classically, i.e., when it maps all computational basis states to another
basis state, we know that its matrix representation consists of 0s and 1s. In this case, we can simply
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replace each “1” with a question mark. As any operator built by Synthetiq is unitary, any circuit it
produces matching the specification will have values of norm 1 in place of the question marks.
For example, the partial specification for a relative phase operator of CCX transforms:



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0



to



? 0 0 0 0 0 0 0
0 ? 0 0 0 0 0 0
0 0 ? 0 0 0 0 0
0 0 0 ? 0 0 0 0
0 0 0 0 ? 0 0 0
0 0 0 0 0 ? 0 0
0 0 0 0 0 0 0 ?
0 0 0 0 0 0 ? 0



.

5.3 Operators with Ancillae

As discussed in §3, an ancilla is an extra qubit used to help implementing an operator on the other
qubits. We assume the ancilla is initially in state |0⟩ and must be returned to the same state. In
some cases, such an ancilla is necessary to implement the given operator using the chosen gate
set [Giles and Selinger 2013]. In other cases, ancillae are not necessary but may allow for a shorter
circuit implementation, e.g., CCX has lower T-depth when implemented with one ancilla [Amy
et al. 2013]. To represent an operator* with ancillae �, we observe that any state i ⊗ |0⟩� maps to
(*i) ⊗ |0⟩�, while the result on any state i ⊗ |1⟩� is unspecified. The resulting specification is
thus:

[
* ?
0 ?

]
, where 0 is the null matrix.

More generally, for an already partial specification S = (* ,"), adding an ancilla changes the
specification toS′ =

( [
* ?
0 ?

]
,
[
" 0
1 0

] )
,where 1 is the all ones matrix of appropriate size. For example,

adding an ancilla to an isometry gives an element-wise underspecification. An example of ancilla
underspecification for the CT operator can be found in §3.

5.4 Oracles

Quantum algorithms often require computing a classical boolean function 5 . For instance, in
Grover’s algorithm [Grover 1996] 5 decides if a candidate value G is a solution to a given task. The
quantum circuit implementation of 5 is called an oracle. Typically, this oracle O is assumed to be
such that for any computational basis state |G⟩, we have O |G⟩ |−⟩ = (−1) 5 (G) |G⟩ |−⟩ where |−⟩ is
the shorthand notation for the state 1√

2
(|0⟩ − |1⟩). Using that (� ⊗� ) |G⟩ |−⟩ = |G⟩ |1⟩, we can build

this oracle as O = O′ ◦ (� ⊗ � ), where O′ is such that O′ |G⟩ |1⟩ = (−1) 5 (G) |G⟩ |−⟩. Such an O′ can
easily be specified in our framework.
Take for instance the classical identity function 5 : G ↦→ G , where the corresponding O′ is

undefined on inputs |G⟩ |0⟩ for G ∈ {0, 1}. For the other computational basis states, we have that
O′ |0⟩ |1⟩ = (−1)0 |0⟩ |−⟩ = 1√

2
|0⟩ (|0⟩ − |1⟩), and O′ |1⟩ |1⟩ = (−1)1 |1⟩ |−⟩ = 1√

2
|1⟩ (− |0⟩ + |1⟩).

This corresponds to the following incomplete specification:

1√
2

[
? ? 1 0
? ? 0 −1
? ? −1 0
? ? 0 1

]
.

5.5 Dirty �bits

Dirty qubits are similar to ancillae, with the difference that they can initially be in any state and must
return to that same state after the computation. Therefore, they allow for less underspecification,
but have the advantage of not requiring any preparation for the extra qubit. Dirty qubits are for
example used in Low et al. [2018] to do state preparation, allowing them to achieve significantly
shorter circuits.

Given a specification S = (* ,"), we can allow for an extra dirty qubit by using the specification
S′ =

( [
* 0
0 *

]
,
[
" 1
1 "

] )
, where 1 is the all-ones matrix of appropriate size. The null matrices 0 in S
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ensure that the dirty qubits remain in the same state before and after the computation, since a state
flip of the dirty qubits would require a non-zero element at any of the positions of the null matrices.
Note that dirty qubits only lead to underspecification if S is already underspecified, and are

therefore especially useful in this case. When we allow the use of a dirty qubit in the implementation
of the example in §5.4, we get the specification:

1√
2



? ? 1 0 0 0 0 0
? ? 0 −1 0 0 0 0
? ? −1 0 0 0 0 0
? ? 0 1 0 0 0 0
0 0 0 0 ? ? 1 0
0 0 0 0 ? ? 0 −1
0 0 0 0 ? ? −1 0
0 0 0 0 ? ? 0 1



.

6 EXPERIMENTAL EVALUATION

We now experimentally evaluate Synthetiq. We first explain our process for optimizing the hyper-
parameters occurring in the SA algorithm (§6.1). We then demonstrate that due to its versatility
and speed, Synthetiq can push the limits of circuit synthesis, synthesizing previously unknown
decompositions of relevant quantum operators (§6.2). We finally evaluate the versatility of Synthetiq
by running it in different modes (§6.3–§6.6) and comparing the results to synthesis tools specialized
for each of these modes. Overall, our main findings are:

§6.2 Better operator decompositions. We show that Synthetiq finds better implementations than
the currently best known ones for RCCCX, CCT, CCiSWAP, C

√
SWAP, and C

√
iSWAP.

§6.3 Custom gates. We show that Synthetiq can efficiently synthesize circuits with user-supplied
custom gate sets, and outperforms the state-of-the-art [Kang and Oh 2023] in 50% of the cases
(including 27% of cases where Kang and Oh [2023] fails to return any decomposition) while being
equally optimal in all other cases.

§6.4 Clifford+T gate set. We show that when synthesizing completely specified operators over
the Clifford+T gate set, Synthetiq outperforms the specialized state-of-the-art [Gheorghiu et al.
2022a; Mosca and Mukhopadhyay 2021]. Synthetiq is able to find circuits for more operators and
those circuits are often more efficient and typically found one to two orders of magnitude faster.

§6.5 Approximate synthesis for the Clifford+T gate set. We show that for approximate synthesis
on the Clifford+T gate set, Synthetiq is 6 times faster than the state-of-the-art approach specialized
to this task [Gheorghiu et al. 2022b] for complex multi-qubit operators and, while slower, can find
circuits that are on par with Gheorghiu et al. [2022b] for simpler single qubit operators.

§6.6 Relative phase gates. Finally, we show how using Synthetiq to synthesize small components
of a bigger circuit allows for more efficient implementations. Specifically, by synthesizing a relative
phase carry operator, we can reduce the T-count of the Cirq Adder [Cirq 2023] by more than 3x.

Implementation. We implemented Synthetiq using C++17 with the Eigen matrix library [Guen-
nebaud et al. 2010] and openMP [OpenMP Architecture Review Board 2021] for parallelization.
All experiments are conducted on a Linux machine with 500 GB RAM and two AMD EPYC 7601
2200MHz processors, with a total of 64 cores. In the practical implementation of Synthetiq, we
do not specify<iter (see Alg. 1). Instead, we report the average runtime averaged over 100 runs,
where each run finishes as soon as a circuit with the desired property (e.g., T-count optimal) is
found. For particularly time-consuming tasks, we instead average on as many runs as fit within
a set time-limit (12 hours per task). Unless specified otherwise, we run Synthetiq on all 64 cores.
Finally, for Tab. 4, we do not average over multiple runs and instead mention the total timeout
instead, as well as the best circuit found within this time-out.
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Table 2. Ablation study of Synthetiq. We report the average speedup of Synthetiq compared to Synthetiq

with a specific component removed.

Full Specification Isometry Element-Wise Averaged

Circuit Cost Rewrite 0.94 1.30 47.01 16.42
Permutation of Qubits in Cost 1.12 1.25 1.41 1.26
Simplification Pass 3642.10 2056.13 2387.31 2695.18

Results Format and Correctness. The energy function of Synthetiq naturally checks correctness
of the synthesized circuits, as we only consider a circuit to be found if its distance to the specifi-
cation is 0. Further, Synthetiq explicitly produces the found circuit in the standard OpenQASM
2.0 language [Cross et al. 2017] and can therefore easily be imported to other frameworks such as
Qiskit [Abraham et al. 2019]. Note that this is in contrast to other tools which often only output a
resource count [Gheorghiu et al. 2022a,b; Mosca and Mukhopadhyay 2021]. Finally, all synthesized
implementations from this section are made available with our implementation.

6.1 Hyperparameter Optimization

We describe how we validated Synthetiq’s design choices and fine-tuned its hyperparameters, using
a randomly generated benchmark of operators.

Generating Random Operators. To optimize Synthetiq’s hyperparameters without overfitting to
a specific domain, we built a set of random operators covering the many use cases of Synthetiq.
The benchmark consists of 90 operators acting on 2, 3, or 4 qubits, whose shortest decomposition
contains 10 gates in the Clifford+T gate set8. A third of these operators have full specifications,
another third are isometries, and the last third have element-wise specifications. The performance
metric for circuits is T-count for the remainder of this section.

Ablation Study. To evaluate our design choices, we ran Synthetiq on the benchmark described
above (i) without rewriting the energy function (instead using Eq. (6)), (ii) without using qubit
permutations to speed up the search (outlined in §4.4) and (iii) without the simplification pass
(outlined in §4.6). The results, shown in Tab. 2, demonstrate the significant impact on runtime
of each of these choices. In particular, the simplification pass is essential, increasing Synthetiq
speed by orders of magnitude. Note that the speedup is less than one in only one case, namely
not applying cost rewriting for full specification. As the two energy functions (Eq. (6) and Eq. (8))
are equivalent for fully specified operators, the slowdown is solely due to the slightly higher
computational complexity of the rewritten energy function.

Optimizing Hyperparameters. We optimize the hyperparameters for Synthetiq, recalled in Tab. 3.
We first optimize the optimal number of starting gates ℓ on our random benchmark where all

operators have shortest decomposition length 10. ℓ = 30 was the optimal value. Optimizing ℓ on a
few other random operators of different lengths, we confirmed that the optimal ℓ was consistently
around three times the decomposition length size. As we aim to synthesize decompositions of 10 to
40 gates, we use this factor 3 and set ℓmin,init to 30 and ℓmax,init to 120.

Since 5min and 5max only start playing a large role for bigger operators, we could not optimize
them efficiently on our benchmark. We chose to set 5min to 2.5 and 5max to 3.5, to achieve a higher
variety of initial number of starting gates and while staying close to the optimal value 3.

Subsequently, we conduct a grid search for every parameter but V , scanning over a range of
plausible values for each parameter and optimizing the average time taken to solve the random
operators introduced above.

8More precisely, we ran Synthetiq for 10 minutes for each of those operators, and made sure that no decomposition shorter
than 10 gates was found. It is hence likely that no shorter one exists.
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Table 3. Hyperparameter values used in Synthetiq. = is the number of qubits (fixed by the operator specifica-

tion) and ℓ the number of starting gates in a run (randomly sampled in [ℓmin, ℓmax] for each run).

Parameter name Parameter value Description

=steps 40=ℓ number of SA steps
%Id 0.3 probability of replacing a gate by the identity gate
) (0) 0.1

2= initial temperature in SA
=norm 80.0 normalization constant in the temperature function
[ℓmin,init, ℓmax,init ] [30, 120] initial circuit size bounds
[5min, 5max ] [2.5, 3.5] factors in the update of the circuit size bounds
V 0.05 moving average factor in the update of the circuit size bounds
%comp 0.2 factor for reduced mutation selection of composite gates

For the hyperparameters %Id and %comp we follow a slightly adjusted grid search procedure to
ensure the found values perform well for larger operators too. First, as small operators do not
require composite gates, optimizing %comp directly is impossible. Instead, we add the RCCX gate as
a composite gate and set %comp to the highest value that does not slow down the synthesis speed by
more than a factor of 2. This ensures that the inclusion of a unneeded composite gate does not slow
down the synthesis process too much, while ensuring composite gates are still likely to be used for
operators that do require this additional gate. In the case of %Id, we observe that its optimal value is
heavily influenced by the ratio of the optimal circuit size to the number of initial gates, ℓ . Indeed,
as ℓ increases, the proportion of identity gates in the optimal circuit also increases, which in turn
raises the optimal value of %Id. Therefore, when optimizing %Id, we set ℓ to 30 for all operators,
which is the optimal value of ℓ for operators with 10 gates.

Lastly, we optimize V , the moving average factor used in updating circuit size bounds. As V
is largely dependent on the size of the found circuits and is not significantly influenced by the
specifications, we use one larger operator - the 4-qubit adder operator - to optimize this parameter.

6.2 Be�er Operator Decompositions

Using Synthetiq, we were able to provide new and more efficient decompositions of multiple
relevant operators, shown in Tab. 4.

Operators. We briefly describe each of the operators in Tab. 4. The first is RCCCX, that is a relative
controlled X with three controls. For any 0, 1, 2, 3 in {0, 1}, it maps |012⟩ |3⟩ to |012⟩ 4 iq0123X012 |3⟩,
flipping the last qubit 3 with unspecified phase q0123 ∈ R if and only if all three controls are 1.
This gate is extremely useful to decompose controlled X operators with more than three controls,
as described in Maslov [2016]. Hence, finding a better implementation of RCCCX directly gives a
better implementation of the controlled X with four controls, when using only Clifford+T gates.
The next operator is CCT, that is the T gate with two controls, mapping |01⟩ |2⟩ to |01⟩ T01 |2⟩.
CCiSWAP maps |01⟩ |23⟩ to i |01⟩ |32⟩ if both 0 and 1 are 1, and to |01⟩ |23⟩ otherwise. C

√
SWAP is√

SWAP controlled by one qubit and C
√
iSWAP is

√
iSWAP controlled by one qubit where we used:

√
SWAP =

[ 1 0 0 0
0 1

2 (1+8) 1
2 (1−8) 0

0 1
2 (1−8) 1

2 (1+8) 0
0 0 0 1

]

and
√
iSWAP =



1 0 0 0

0
1√
2

i
1√
2

0

0 i
1√
2

1√
2

0

0 0 0 1



.

Baselines. No existing circuit synthesis tool could synthesize the operators in Tab. 4. First, Kang
and Oh [2023] is the only tool that can express the partially specified synthesis problems of RCCCX,
CCT, and C

√
SWAP. It is however too slow to obtain results within any reasonable timeframe, as it

times out for the much simpler circuit CCX after 1 day. The remaining operators (CCiSWAP and
C
√
iSWAP) are beyond the capabilities of all existing tools due to their size: the fastest synthesis
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Table 4. New operator decompositions found with Synthetiq, using 64 cores. For each operator we gave

Synthetiq the composite gate RCCX, except for CCiSWAP where we used CCX. Previous Best is the result of

a best-effort search either found in previous work or using a standard decomposition as discussed in §6.2.

Operator Synthetiq Previous Best

Ancillae T-depth Time Ancillae T-depth

RCCCX 0 5 8h 0 8
CCT 1 9 2h 2 9
CCiSWAP 0 9 4h 1 6

C
√
SWAP 1 6 4h 1 29

C
√
iSWAP 0 6 4h 1 27

tool for T-depth, Gheorghiu et al. [2022a] again fails to find any result in 2 days for CCiSWAP,
and yields incorrect results for C

√
iSWAP9. We hence had to manually combine existing operator

decompositions and generic decomposition techniques for each of the operators in Tab. 4. We
describe this manual effort in App. A.3.

Results. Qubits are often the scarcest resource in quantum computers. Reducing the number of
ancillae, and hence qubits used by a quantum operator is crucial. For three of the operators shown
in Tab. 4, Synthetiq was able to find a decomposition using fewer ancillae than previous state of
the art10. Only for the CCiSWAP operator does this come at the cost of a slightly higher T-depth.
For the two operators where state of the art decompositions already used the minimum amount
of ancillae, Synthetiq was able to significantly reduce the T-depth of the operators: from 8 to 5
for RCCX, and 29 to 8 for C

√
SWAP. Further, note that all those results were obtained in only a

few hours. Finally, now that those decompositions are known, they can easily be reused by any
quantum compiler.

Exploiting Versatility. To generate the decompositions in Tab. 4, we heavily relied on the versatility
of Synthetiq. First, incomplete specification was necessary for all operators requiring an ancilla and
for RCCCX. Further, we used composite gates to speed up synthesis and hence boost the chances
of success. More precisely, we added to the Clifford+T gate set the RCCX gate for all operators
but CCiSWAP, where we instead added CCX. This allows the synthesis to directly leverage those
complex gates, and hence speeds up the search. To pick which composite gate to add to the gate
set, we consistently used the following procedure. If after running for one minute Synthetiq could
not find any circuit satisfying the specification, we added RCCX to the gate set. If no circuit was
found after running one more minute with RCCX, we replaced RCCX with CCX in the gate set.
Note that these intermediate runs take at most 2 minutes, which is negligible compared to the total
runtime for each operator.

6.3 Mode: Custom Gates

As mentioned above, Synthetiq can synthesize circuits using any finite custom gates set. The most
recent work on quantum circuit synthesis also allowing for custom finite gate sets is Kang and Oh
[2023]. We evaluate the applicability of both tools on the benchmark described below.

9More precisely, the implementation requires a circuit of the given operator, but different circuits all representing C
√
iSWAP

are encoded differently. This indicates something in the encoding phase of the implementation is wrong.
10We used the characterization from Giles and Selinger [2013] (mentioned in §2) to find out which operators can be
implemented on Clifford+T with 0 (resp. one) ancilla. We then ran Synthetiq with the corresponding complete (resp. partial)
specification.
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Fig. 3. Comparison between Synthetiq and [Kang and Oh 2023] on the benchmark used by [Kang and Oh

2023]. A time-out of 1 day was set for both tools, but Synthetiq always reached a solution within 1 hour. N/A

means that the tool returned an empty solution set.

Table 5. Operators synthesis for several questions on StackExchange. Expensive gate count is the count of

the most expensive gate (highlighted in bold). Time for Synthetiq is on 64 cores. [Kang and Oh 2023] was le�

out as it timed out (1 day) or returned an empty solution set for every problem.

Source Operator Qubits Gate Set Expensive Gate Count Time Ours (s)

Ours StackExchange

[StackExchange 2018]
√
SWAP 2 H, S, S−1, CX, T, T−1 3 3 0.04

[StackExchange 2021] CX 2 H, S, S−1, T, T−1, U 1 1 0.02
[StackExchange 2022] Oracle 4 H, S, S−1, CX, T, T−1 4 8 3.08

[StackExchange 2023]
√
iSWAP 2 H, S, S−1, T, T−1,

√
CZ 2 4 0.09

[StackExchange 2020] Permutation 3 H, S, S−1, CX, T, T−1 7 7 0.32

Benchmark. Each element in the benchmark consists of a circuit specification and a custom gate
set. The first part of the benchmark (three_superpose to bit_measure in Fig. 3) is the evaluation
benchmark from Kang and Oh [2023]. However, these synthesis problems are not entirely realistic.
They assume the gates required to build a circuit for the specification are known ahead of time, and
supply exactly those gates in the gate set. This results in small gate sets (three or less gates for 11 of
the 17 problems), and hence easier synthesis. We therefore complete the benchmark with real-world
problems taken directly from Quantum Computing Stack Exchange. Gate sets and specifications
are taken directly from the questions, resulting in bigger gate sets, where some gates are not used
in the optimal decomposition.

Results. We show the results in Fig. 3 and Tab. 5. Fig. 3 shows the results when optimizing for
gate count. We see that Synthetiq outperforms Kang and Oh [2023] in 50% of cases, and matches
it on the rest. Further, Kang and Oh [2023] is not able to find any decomposition for one of their
problems as well as the more complex problems we added to the benchmark, even with a one day
time out. This shows that Kang and Oh [2023] is not scalable to those new complex problems,
whereas Synthetiq still easily handles those in less than 4 seconds.

In Tab. 5, we focus on the questions taken from StackOverflow, for the more realistic objective of
minimizing the use of the most expensive gate in the gate set. We compare Synthetiq results to the
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Table 6. Synthesis of common fully specified operators using Clifford+T. We denote Mosca and Mukhopad-

hyay [2021] as Mosca and Gheorghiu et al. [2022a] as Gheorghiu. Speedup is the ratio of the time taken by

the other tool to the time taken by Synthetiq. Times were measured on 64 cores for Synthetiq and Gheorghiu,

and on a single core for Mosca.

T-count Time T-depth Time

Operator Synthetiq Mosca Synthetiq (s) Speedup Synthetiq Gheorghiu Synthetiq (s) Speedup

CCX 7 7 0.1 107.5 3 3 0.3 449.1

CCH 9 - 6.4 - 4 4 55.9 0.5
Adder 7 7 11.0 78.9 2 - 43 200.0 -

U1 11 11 2273.7 6.2 5 6 6171.4 6.5

U1 var. 11 14 2700.0 6.0 5 - 6171.4 -

U2 7 7 12.9 62.3 3 - 111.0 -

expert accepted answer on StackExchange. Note that we do not show results from Kang and Oh
[2023] as they could not find any of the circuits within a day. We find that Synthetiq outperforms
the expert answer in two out of five cases, and matches it in the remaining three cases. Further,
all results were found within a few seconds, confirming the usefulness of Synthetiq for quantum
programmers.

6.4 Mode: Clifford+T Gate Set

We now compare Synthetiq to the state of the art for the well-studied problem of synthesizing fully
specified quantum operators over the Clifford+T gate set. When optimizing T-count, the current
state of the art is Mosca and Mukhopadhyay [2021], while for T-depth it is Gheorghiu et al. [2022a];
we provide a broader overview of existing tools in §7.

Overall, we find that Synthetiq is generally faster than both tools, and finds strictly better or
equally good implementations compared to either of them.

Benchmarks. Tab. 6 shows the comparison of Synthetiq to both works on a benchmark of common
quantum operators, which is based on the original benchmark of Mosca and Mukhopadhyay
[2021]. CCX, Adder, U1, and U2 are taken directly from their benchmark, where U1 is defined as
CCX(0, 1, 2);CCX(2, 1, 3) and U2 as CCX(0, 1, 2);CCX(0, 3, 1);CCX(0, 1, 2). We exclude the other
3-qubit operators from the original benchmark as they are affine equivalents of CCX and add the
CCH operator to the benchmark instead. Based on U1, we additionally introduce U1 var. which
we define as CCX(0, 1, 2);CCX(1, 2, 3), allowing us to evaluate the sensitivity of all tools to simple
changes of specifications.
We additionally show in Fig. 4 the comparison of Synthetiq with both tools on a benchmark of

3-qubits permutations, following Gheorghiu et al. [2022a]11. We built this benchmark by clustering
all 40320 permutations on 3 qubits by Clifford equivalence12, and picking one representative for
each of the resulting 30 equivalence classes.

Results for Common Operators. We find that Synthetiq consistently finds the best implementation
for each operator in the benchmark, outperforming Mosca and Mukhopadhyay [2021] in 33% of the
cases and Gheorghiu et al. [2022a] in 66% of the cases. Further, Synthetiq finds these implementations
faster than both tools in every example but one (CCH for T-depth).

11Gheorghiu et al. [2022a] only evaluated their tool on a few randomly generated permutations. We here systematize this
benchmark.
12We say two permutations %1 and %2 are Clifford equivalent iff there exists some circuit� made of the Clifford gates H, S,
CX and S† such that %1 = ⟦�⟧%2.
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Fig. 4. Comparison between Synthetiq and previous works on 3-qubit permutation synthesis. Each bar

represents one of the 30 evaluated permutations. Speedups are only included for cases where both tools

return a result. Time-out set at 1h per example for all tools.

More importantly, Synthetiq does not time out (> 2 days compute) on any of the examples
whereas Mosca and Mukhopadhyay [2021] and Gheorghiu et al. [2022a] do, showing that Synthetiq
can handle more difficult problems than what could previously be done. We also note that Synthetiq
is the first to automatically synthesize a T-depth 2 circuit for the Adder operator.

Results for Permutations. The results are shown in Fig. 4. For the largest eight operators. We added
RCCX to the gate set for Synthetiq, following the procedure described in §6.2. Note that neither
Mosca and Mukhopadhyay [2021] nor Gheorghiu et al. [2022a] allow for composite gates, and
hence cannot be extended when used for complex operators. We find that Synthetiq significantly
outperforms both tools. Synthetiq finds a better T-count than Mosca and Mukhopadhyay [2021] in
43% cases, including 27% where their tool times out. Further, Synthetiq is one order of magnitude
faster on problems where Mosca and Mukhopadhyay [2021] does not time out.

For T-depth, Synthetiq finds more efficient circuits than Gheorghiu et al. [2022a] in 93% of cases,
including 50% where Gheorghiu et al. [2022a] fails to find any. Excluding the cases where Gheorghiu
et al. [2022a] times out, Synthetiq is two orders of magnitude faster than Gheorghiu et al. [2022a].

6.5 Mode: Approximate Circuit Synthesis

We compare Synthetiq with Gheorghiu et al. [2022b], the state-of-the-art method for approximate
synthesis of multi-qubit operators in the Clifford+T gate set. Approximate synthesis is important as
many operators cannot be implemented exactly with Clifford+T gates, but all can be approximated
up to an arbitrary distance n (see for instance [Nielsen and Chuang 2002, Chap. 4.5.3]).

Tab. 7 shows the results of this comparison on the benchmark from Gheorghiu et al. [2022b]. We
report results for all operators present in their evaluation, except for trivial operators with T-count
less than 2 or for operators where neither tool reported any result.13

13Further, we note that Gheorghiu et al. [2022b] reports finding a circuit with 26 gates for the operators 'I
(
2c/210

)
and

'I
(
2c/211

)
with n = 0.001, but we were not able to reproduce this result using their implementation. We confirmed with

the authors that their reported result may indeed have been erroneous and we therefore dropped these operators as well.
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Table 7. Results for approximate synthesis compared to [Gheorghiu et al. 2022b]. We run Synthetiq and

[Gheorghiu et al. 2022b] for an hour on 1 or 2 qubit tasks and for two hours on the 3 qubit task and report the

best found circuit. Synthetiq is run on 64 cores and [Gheorghiu et al. 2022b] is run on one. We tried running

the code of [Gheorghiu et al. 2022b] on 64 cores, but this resulted in runtimes about 50 times slower.

Operator Qubits n k T-Count Time

Synthetiq Gheorghiu Synthetiq Speedup

'/ (2c/2: ) 1 0.05 4 7 8 0.059 0.085
5 9 9 0.825 0.015

0.01 4 16 18 3600 0.004
5 - 17 - x
6 16 16 1800 0.001
7 11 11 19.883 0.003

2'/ (2c/2: ) 2 0.05 2 2 2 0.001 11.048
0.01 2 2 2 0.004 4.847

2': 2 0.05 2 3 3 0.001 8.981
0.01 2 3 3 0.005 2.296

22'/ (2c/2: ) 3 0.001 2 12 - 1800 -
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Fig. 5. Adder circuit performance with the original carry operator (−) and with the Synthetiq synthesized

relative carry operator (−).

For operators on one qubit, Synthetiq finds more efficient circuits than Gheorghiu et al. [2022b]
for two out of six operators, despite their claim of optimality14. Synthetiq is only outperformed once,
when it fails to find any circuit. It is however several orders of magnitude slower than Gheorghiu
et al. [2022b]. For operators on two qubits, Synthetiq is five times faster than Gheorghiu et al.
[2022b] and finds circuits as efficient as Gheorghiu et al. [2022b] does. Further, Gheorghiu et al.
[2022b] could not synthesize the three qubits operator, whereas Synthetiq succeeds.

6.6 Mode: Relative Phase Operators

We now showcase the use of Synthetiq for relative phase operators, and their use in bigger circuits.
We do so using the Adder implementation from Cirq [Cirq 2023]. This implementation relies on the
interleaving of three small operators: sum, carry, and uncarry (which uncomputes carry). To build
an adder for two operands of = qubits with = ancilla qubits, this implementation uses = of each of
the three operators. As we explained in §5.2, relative phase operators can be used to replace their
non-relative counterpart in a circuit when this counter-part is later uncomputed. We can hence
replace the carry operator by a relative implementation, and uncarry by the inverse of the relative
operator, without changing the semantics of the resulting Adder circuit.

14We confirmed with the authors that their implementation may indeed return sub-optimal results, which they conjecture
may be due to various optimizations implemented but not discussed in the publication.
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We used Synthetiq to synthesize such relative operators. This yielded two circuits: one optimized
for T-count and T-depth, and one optimized for CX-count and CX-depth, each synthesized in less
than 1h. Using those relative operators, we built the complete Adder circuit for different number
of qubits. Note that all Adder circuits, no matter the number of qubits, use the same carry and
uncarry operators. We therefore only synthesized two operators, and were able to use them for all
adder operators.
We show the resulting circuit performance in Fig. 5. Using the relative operators allowed for

significantly more efficient circuits; with a reduction in T-count by 3.5, in T-depth by 2.3, in CX-
count by 2 and in CX-depth by 1.5. This demonstrates the usefulness of relative phase operators,
and the need for a synthesis tool that can easily synthesize such operators for any specification.

7 RELATED WORK

We now discuss works related to Synthetiq.

Clifford+T Synthesis. Meet-in-the-middle (MITM) algorithms have been extensively explored
for synthesizing circuits with finite gate sets. The original implementation by Amy et al. [2013]
ensures gate-depth or T-depth optimality but is much slower than other methods, taking over
four days to find a T-depth optimal CCX circuit. It supports ancillae by treating specifications that
allow for ancillae as isometries, but does not discuss extending it to element-wise specifications. A
later iteration of MITM [Gosset et al. 2013] focuses on optimizing T-count rather than T-depth,
but sacrifices the use of ancillae. Matteo and Mosca [2016] improved upon Gosset et al. [2013] by
introducing a parallel framework, thereby reducing runtime. Overall, those three MITM algorithms
are extremely slow. For instance, the most efficient among them, Matteo and Mosca [2016], requires
approximately 30 seconds to execute on 4096 cores for the smallest operator we considered, which
is the CCX gate. Due to these excessive runtimes, they were not incorporated in the evaluation
conducted in §6.4.

The more recent Mosca and Mukhopadhyay [2021] and Gheorghiu et al. [2022a] further refined
the original MITM algorithm, optimizing for T-count and T-depth, respectively. However, they
lost the original algorithm’s optimality guarantees and cannot deal with ancillae15. It is worth
noting that the former cannot be parallelized, and the latter gains only marginal benefits from
parallelization. In §6.4, we demonstrate that Synthetiq outperforms both of those works, in terms
of runtime and efficiency of the generated circuits.

Another work [Giles and Selinger 2013] suggests an algorithm to synthesize any circuit that can
be exactly synthesized over Clifford+T. However, this work does not target efficient decompositions,
instead often producing expensive ones. Niemann et al. [2020] implement and evaluate an improved
version of this approach. Unfortunately, we were unable to compare their results to Synthetiq
because we could not run their implementation and their publication does not report results on the
circuits we consider here. 16

Synthesis on Other Gate Sets. We now discuss methods capable of handling gate sets other than
Clifford+T and compare their capabilities with Synthetiq. Kang and Oh [2023] recently proposed a
new circuit synthesis method focusing on finite gate sets and provide a framework for specifying
isometries in any basis. Synthetiq, on the other hand, naturally handles partial specifications like
relative phase operators that cannot be specified as isometries in any basis. More importantly, we
demonstrated in §6.3 that Synthetiq significantly outperforms Kang and Oh [2023] in all tasks, both

15The ancillae mentioned by Gheorghiu et al. [2022a]; Mosca and Mukhopadhyay [2021] correspond to our notion of dirty
qubits—any work that can handle full specification can trivially handle this.
16While the authors shared their implementation with us, we were unable to compile it, despite being in contact with them
for over two months.
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in terms of speed and efficiency of the generated circuits, even when restricted to a single core.
Allowing Synthetiq to use multiple cores would only increase the performance gap further.

Chou et al. [2022] suggested an evolutionary algorithm that incrementally modifies a circuit to
meet a specification. Even though it exploits known aspects of an optimal CCX gate decomposition,
its reported runtime on CCX is orders of magnitude higher than Synthetiq, namely 600s. Unfor-
tunately, its implementation is not available, so we were unable to compare it to Synthetiq. 17 Its
publication does not address parallelization, partial specifications, or ancillae. Further, it assumes
incorrect definitions of gate depth and T-depth. 18

n-Approximate Clifford+T Synthesis. Since not all unitaries can be implemented exactly in the
Clifford+T gate set, some works have focused on implementing circuits up to a distance n , where the
distance can be measured using distances that allow for a global phase difference (e.g., [Gheorghiu
et al. 2022b; Kliuchnikov et al. 2016]) or not (e.g., [Ross and Selinger 2016; Selinger 2014]). Most of
these works [Kliuchnikov et al. 2016; Ross and Selinger 2016; Selinger 2014] focus on single qubit
operators; only Gheorghiu et al. [2022b] considers multi-qubit operators. While the latter claims
its algorithm produces optimal circuits, our experiments demonstrate its implementation is not
optimal for all tasks. As shown in §6.5, Synthetiq performs similarly to Gheorghiu et al. [2022b] on
the subdomain of n-approximate Clifford+T synthesis.

Synthesis in Other Settings. In contrast to the finite gate sets assumed by Synthetiq, various works
have studied synthesis using parametrized gate sets such as CX+Rot [Davis et al. 2019; Khatri et al.
2019; Meister et al. 2023; Smith et al. 2023; Younis et al. 2021]. However, synthesis over CX+Rot
relies on the optimization of the parameters in the rotational gates, which is not possible for finite
gate sets such as Clifford+T. State preparation synthesis for the CX+Rot gate set has also been
studied extensively, see e.g., [Araujo et al. 2021; Iten et al. 2016; Plesch and Brukner 2011].

A plethora of works synthesizes circuits for specific use cases. Various works decompose classical
oracles into quantum circuits [Amy et al. 2017; Biswal et al. 2018; Green et al. 2013; Parent et al.
2015, 2017; Rand et al. 2019], or help with this task [Bhattacharjee et al. 2019; Paradis et al. 2021].
In contrast to these specialized algorithms, Synthetiq synthesizes general circuits.

8 CONCLUSION

We presented Synthetiq, a novel method and tool to synthesize quantum circuits over finite gate sets.
Synthetiq is based on Simulated Annealing (SA) and allows us to solve a wide range of synthesis
tasks from relative phase operators over Clifford+T to operators with ancillae over custom gates.
Our evaluation shows that Synthetiq (i) is able to synthesize more efficient implementations

of relevant quantum operators, (ii) frequently outperforms more specialized synthesis tools such
as synthesis for complete specification in the Clifford+T gate set, and (iii) can use relative phase
operators to build more efficient implementations large = qubit operators.
We believe there are many more applications of Synthetiq worth exploring, such as topology-

aware synthesis [Davis et al. 2020] or incomplete specifications of operators in different bases.

DATA-AVAILABILITY STATEMENT

The implementation of Synthetiq and all evaluations results are available on github19 and Zen-
odo[Paradis et al. 2024].

17We asked the authors for the implementation but did not receive a response within six months.
18The T-depth is measured as the number T-gates in different vertical layers in a drawing of the circuit. We tried to confirm
this mistake with the authors but did not receive a response within six months.
19https://github.com/eth-sri/synthetiq
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A APPENDIX

A.1 Energy Function Derivation

Here, we demonstrate our rewrite of the typical energy function used by e.g. [Chou et al. 2022;
Khatri et al. 2019; Meister et al. 2023].

Lemma 1. Let* ,� ∈ C2=×2= be two unitary matrices. Then

1 − |Tr(*
†�) |

2=
=
1

2




* − Tr(�†* )
|Tr(�†* ) |�





2

�

2=

Proof. We show that

2=+1 − 2|Tr(* †�) | =




* −

Tr(�†* )
|Tr(�†* ) |�







2

�

. (10)

The lemma follows by multiplying Eq. (10) with 1
2=+1 .

We first note that for any matrix �, � ∈ C2=×2= , the following well-known properties hold:

(1) | |�| |2
�
= Tr(�†�)

(2) Tr(�)† = Tr(�†)
(3) Linearity of the trace, Tr(� + _�) = Tr(�) + _Tr(�)
(4) If � is also a unitary matrix, then | |�| |2

�
= 2= .

We can use these properties to prove the lemma. Starting from the right-hand side in Eq. (10) we
get:





* −
Tr(�†* )
|Tr(�†* ) |�







2

�

=Tr

((
* − Tr(�†* )
|Tr(�†* ) |�

)† (
* − Tr(�†* )
|Tr(�†* ) |�

))

=Tr(* †* ) − Tr(�†* )
|Tr(�†* ) |Tr(*

†�) − Tr(�†* )†
|Tr(�†* ) |Tr(�

†* ) + Tr(�†* )†
|Tr(�†* ) |

Tr(�†* )
|Tr(�†* ) |Tr(�

†�)

=∥* ∥2� + ∥� ∥2� − 2|Tr(* †�) |
=2 · 2= − 2|Tr(* †�) |

which proves the equality. □

A.2 Simplification Order

We define the order ≺ that is used in Alg. 2 to determine if two gates should be swapped in a circuit
� . The goal of ≺ is to ensure that as many gates as possible can be swapped and to define some
strict order on the set of gates.
We therefore first define the functions #comm, #act and �. #comm (6, 8,�) is the number of con-

secutive gates that commute with 6 starting from 68 and going down until 61. Mathematically, this
means

#comm (6, 8,�) = max
{
8 − 9

��0 ⩽ 9 ⩽ 8 ∧ 68 commutes with 6 9
}
.

#act (6) is the number of qubits on which gate 6 acts and�(6) is the indices of the qubits on which 6
acts. We then define ≺alpabet as the alphabetical order on the name of the gates (e.g. H, S, CX, ...) and
≺= as the standard order on R= . Alg. 3 shows the definition of ≺. As shown, the order prioritizes a
difference between commutating gates, than acting qubits, than the alphabetical order of the gates
and finally the order of the qubits on which the gates act.
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Algorithm 3 Definition of the order ≺.
1: function 68 ≺ 68+1
2: if #comm (68 , 8,�) ≠ #comm (68+1, 8,�) then
3: return #comm (68 , 8,�) < #comm (68+1, 8,�)
4: if #act (68 ) ≠ #act (68+1) then
5: return #act (68 ) < #act (68+1)
6: if 68 ≠ 68+1 then
7: return 68 <alphabet 68+1
8: if �(68 ) ≤= �(68+1) then
9: return true

10: return false

A.3 Baseline for Operators Decomposition

We describe our best effort construction of the baselines for Tab. 4.
[Maslov 2016] gives the best decomposition of RCCCX we could find, with a T-depth of 8.
We were unable to find any explicit decomposition of CCT in published work. We therefore used

the construction from [Maslov 2016] and the minimal implementation of the CT gate from [Amy
et al. 2013], decomposing CCT(0, 1, 2) as RCCX(0, 1, C);CT(C, 2);RCCX(0, 1, C) where C is an ancilla
qubit. Altogether, this yields an implementation with T-depth 9 and 2 ancilla qubits, as CT requires
its own extra ancilla.

For CCiSWAP, we used the same construction as above, with CiSWAP decomposed as in [Crooks
2023] instead of CT. This yields an implementation with 1 ancilla.

For C
√
SWAP (resp. C

√
iSWAP), we could not find a better existing implementation than control-

ling every gate in the best known decomposition of
√
SWAP (resp.

√
iSWAP). This yields for each

of those two gates a decomposition with an ancilla and a T-depth higher than 25.
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