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ABSTRACT

Recent math benchmarks for large language models (LLMs) such as MathArena
indicate that state-of-the-art reasoning models achieve impressive performance on
mathematical competitions like AIME, with the leading model, O3-MINI, achiev-
ing scores comparable to top human competitors. However, these benchmarks
evaluate models solely based on final numerical answers, neglecting rigorous rea-
soning and proof generation which are essential for real-world mathematical tasks.
To address this, we introduce the first comprehensive evaluation of full-solution
reasoning for challenging mathematical problems. Using expert human annota-
tors, we evaluated several state-of-the-art reasoning models on the six problems
from the 2025 USAMO within hours of their release. Our results reveal that all
tested models struggled significantly, achieving less than 5% on average. Through
detailed analysis of reasoning traces, we identify the most common failure modes
and find several unwanted artifacts arising from the optimization strategies em-
ployed during model training. Overall, our results suggest that current LLMs are
inadequate for rigorous mathematical reasoning tasks, highlighting the need for
substantial improvements in reasoning and proof generation capabilities.

1 INTRODUCTION

The advancement of reasoning models has significantly improved the mathematical capabilities of
large language models (LLMs). Evaluation efforts like MathArena (Balunović et al., 2025) demon-
strate that these models achieve impressive performance on mathematical competitions such as
AIME and HMMT. However, these competitions only evaluate final numerical answers and do not
require rigorous proof-based reasoning essential for most mathematical tasks.

Current benchmarks that mitigate this issue either rely on formal verification tools like Lean (Zheng
et al., 2022; Liu et al., 2023; Tsoukalas et al., 2024) or focus on the evaluation of constructive proofs
(Balunovic et al., 2025). While these approaches are useful, the former does not take advantage of
LLMs’ strong natural language generation capabilities, and the latter covers only a limited subset of
proofs. Therefore, it remains uncertain whether LLMs can reliably address complex mathematical
questions requiring rigorous reasoning, which are crucial in real-world mathematical contexts.

To overcome these limitations, we conduct the first evaluation of natural language proofs by LLMs
on challenging problems from the 2025 USA Mathematical Olympiad (USAMO). The USAMO
represents one of the highest tiers of high school mathematics competitions in the United States,
demanding detailed proofs and explanations analogous to the International Mathematical Olympiad
(IMO). Participants qualify through prior competitions, including the AIME, but USAMO problems
require significantly more rigorous and well-explained solutions.

Overall, we find that current LLMs struggle significantly on USAMO problems, with the best-
performing model achieving an average score of less than 5%. Our evaluation reveals several critical
failure modes, including flawed logic, unjustified assumptions, and a lack of creativity in reasoning.
These findings underscore the substantial limitations of current LLMs in generating rigorous math-
ematical proofs. In this report, we first outline our methodology in §2, present detailed results and
identify critical weaknesses in §3, and discuss several qualitative observations in §4.
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Problem 1: Let k and d be positive in-
tegers. Prove that there exists a positive
integer N such that for every odd integer
n > N , the digits in the base-2n represen-
tation of nk are all greater than d.

Problem 5: Determine, with proof, all
positive integers k such that
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is an integer for all positive integers n.

Figure 1: Two problems of USAMO 2025. The other problems are available in App. B

2 METHODOLOGY

This section outlines the methodology used for evaluating the mathematical reasoning capabilities of
the selected LLMs. Our approach prioritized accuracy, fairness, and transparency throughout each
step, involving careful preparation and grading procedures.

2.1 PROBLEM SELECTION AND PREPARATION

We selected the USAMO 2025, a highly prestigious mathematics competition comprising six proof-
based problems administered over two days, as our benchmark. This competition aligns perfectly
with our evaluation objectives, as the questions are challenging, require detailed proofs for full
credit, and are uncontaminated. In Fig. 1, we present two problems from the competition, with the
remaining four available in App. B.

For evaluation, we provided each model with the problems, prompting them explicitly to produce
comprehensive and detailed proofs formatted in LATEX. The full prompt instructions and details
of used hyperparameters are available in App. A.2. To reduce variance, each model solved every
problem four separate times. Solutions, excluding thought traces, were anonymized and converted
into PDF format for grading.

2.2 JUDGE SELECTION AND TRAINING

Our grading team consisted of four experts, each having substantial mathematical problem-solving
experience as former national IMO team members or having participated in final-stage team se-
lection processes for their countries. Prior to the grading, judges received instructions detailing
evaluation goals and methodologies. These guidelines are accessible in our GitHub repository. A
trial run with three USAMO 2024 problems was conducted to familiarize evaluators with the grading
approach and resolve ambiguities. Small misunderstandings were clarified during this session.

2.3 GRADING PROCEDURE

Each of the six problems from USAMO 2025 was independently evaluated by two evaluators, with
each judge responsible for grading three unique problems. This double grading method, modeled
after the IMO’s evaluation process, ensures consistency in our grading and decreases personal biases.

Since the official USAMO does not release standard solutions or grading schemes, we carefully de-
veloped a standardized grading scheme for each problem, drawing from reliable mathematical com-
munity resources, particularly the Art of Problem Solving (AoPS) forums. All solutions from these
sources were verified by our evaluators for accuracy before creating the grading scheme. Follow-
ing USAMO conventions, each solution was graded out of a maximum of seven points with partial
credit given for significant and meaningful progress. The finalized grading schemes are available in
our GitHub repository and displayed on our website. An example can be found in App. A.3.

Judges independently reviewed each assigned solution against the pre-established grading scheme.
When a solution did not perfectly align with the scheme, the approach was awarded points where
appropriate. Each judge documented their reasoning, including justification for each partial credit
awarded. These notes are also accessible on our website, with an example provided in App. A.3.

Evaluators also documented prominent failure modes observed during grading. A "failure mode"
was defined as the first instance of incorrect or inadequately explained reasoning, such as flawed
logic, unjustified assumptions, mathematical inaccuracies, or computational mistakes. Specifically,
mistakes were categorized into four classes:
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Table 1: Main results of our evaluation. Problems are scored out of 7 points, with the total score
being at most 42. Listed scores are averaged over all four runs. We measure cost in USD, and report
the average score across all generations and graders for each problem.

Model P1 P2 P3 P4 P5 P6 Total Cost
R1 0.5 0.0 0.0 1.5 0.0 0.0 2.0 2.03
FLASH-THINKING 1.5 0.0 0.0 0.0 0.2 0.0 1.8 N/A
CLAUDE 3.7 0.5 0.5 0.0 0.0 0.0 0.6 1.5 9.03
QWQ 1.2 0.0 0.0 0.0 0.0 0.0 1.2 0.42
O1-PRO 0.5 0.0 0.0 0.0 0.2 0.4 1.2 203.44
O3-MINI 0.5 0.1 0.0 0.0 0.0 0.2 0.9 1.11

• Logic: Errors due to logical fallacies or unjustified leaps disrupting the reasoning.
• Assumption: Errors coming from the introduction of unproven or incorrect assumptions that

undermined subsequent steps.
• Creativity: Errors resulting from fundamentally incorrect solution strategies due to the in-

ability to identify the correct approach.
• Algebra/Arithmetic: Errors arising from critical algebraic or arithmetic miscalculations.

We show examples of these errors in App. C.1.

Additionally, noteworthy behaviors or trends in model-generated solutions were systematically
logged for further analysis. These observations were used to identify common pitfalls and areas
for improvement in the models’ reasoning capabilities and are presented in §4.

3 RESULTS

We now present the results of our evaluation. In §3.1, we detail our primary findings, demonstrating
that all models perform poorly on USAMO problems. In §3.2, we analyze common failure patterns
in depth, identifying typical mistakes and trends in the models’ reasoning. Finally, in §3.3, we try
and fail to automatically grade the models’ solutions by giving a judge model the grading scheme
and a ground-truth solution.

3.1 MAIN RESULTS

We evaluate six state-of-the-art reasoning models on the 2025 USAMO problems. Specifically, we
chose QWQ (Qwen, 2025), R1 (Guo et al., 2025), FLASH-THINKING (Reid et al., 2024), O1-PRO,
O3-MINI (OpenAI, 2025), and CLAUDE 3.7 (Anthropic, 2025). For brevity, we use a shorthand
notation for each model in the main text, and we refer to App. A.1 for the full model names. The
chosen hyperparameters and prompt can be found in App. A.2.

We provide a detailed, per-problem breakdown of model performance in Table 1, with average scores
computed across four evaluation runs. Each USAMO problem is scored out of 7 points, with a total
maximum score of 42 points per run. The table also includes the total cost of running each model
over all problems and evaluation runs.

While current state-of-the-art LLMs achieve performance comparable to top human competitors on
numerical-answer-focused competitions such as AIME and HMMT, our evaluation uncovers a sig-
nificant gap in their ability to generate rigorous proofs. The highest average score achieved by any
evaluated model falls below 5%, indicating substantial limitations in handling the complexity and
rigor of USAMO problems. Notably, among nearly 150 evaluated solutions from all models, none
attained a perfect score. Although the USAMO presents more difficult problems compared to pre-
viously tested competitions, the complete failure of all models to successfully solve more than one
problem underscores that current LLMs remain inadequate for rigorous olympiad-level mathemat-
ical reasoning tasks. Additionally, this limitation suggests that existing optimization methods like
GRPO (Shao et al., 2024) may currently be insufficient for tasks requiring detailed logical precision.
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Figure 2: Distribution of first encountered failure mode.

3.2 FAILURE MODES

The most frequent failure mode among human participants is the inability to find a correct solution.
Typically, human participants have a clear sense of whether they solved a problem correctly. In
contrast, all evaluated LLMs consistently claimed to have solved the problems. This discrepancy
poses a significant challenge for mathematical applications of LLMs as mathematical results derived
using these models cannot be trusted without rigorous human validation. To further investigate this
limitation, we conducted a thorough analysis of the errors identified during the grading process using
the categories defined in §2.

Figure 2 illustrates the distribution of these error categories as determined by our judges. The most
common errors were related to flawed logic, with solutions frequently using unjustified reasoning
steps, incorrect rationale, or misinterpretations of previous progress. Another significant issue was
the models’ tendency to treat certain critical proof steps as trivial or standard procedure without
proper justification. Notably, O3-MINI, despite being one of the best reasoning models, frequently
skipped essential proof steps by labeling them as "trivial", even when their validity was crucial.

Another important observation is the lack of creativity in the models’ reasoning. Each model often
attempted the same (and wrong) solution strategy across all attempts, failing to explore alternative
approaches. One exception to this observation was FLASH-THINKING, which attempted multiple
strategies in the same run, but as a consequence only shallowly explored each one, failing to reach a
valid conclusion. An example of this behavior is shown in App. C.2.

However, the models generally demonstrated strong performance in algebraic and arithmetic com-
putations, successfully performing symbolic manipulations without external computational support.
Still, R1 showed a notably higher frequency of algebraic or arithmetic errors, indicating a clear area
for targeted improvement in this model.

3.3 AUTOMATED GRADING

We explored the feasibility of replacing human graders with LLM-based evaluators, selecting O3-
MINI and CLAUDE 3.7 as grading models. Both models were provided with a grading scheme
developed by our evaluators, along with a verified solution and an example evaluation for reference.
In App. A.2, we provide the full prompt used for this evaluation.

As detailed in Table 2, neither model accurately graded the solutions, consistently overestimating
their quality. Specifically, the models frequently awarded points for incorrect or unjustified reason-
ing, inflating the scores by a factor of up to 20.

Notably, FLASH-THINKING received significantly lower scores from the automated evaluation com-
pared to other models. We hypothesize this discrepancy arises because FLASH-THINKING tends to
generate multiple solutions per attempt, potentially confusing the LLM-based judges and resulting
in lower scores. Conversely, QWQ achieved considerably higher scores, likely because it often
generates simpler solution attempts, which are easier for the automated judges to interpret.
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Table 2: Results of automated grading executed by O3-MINI and R1. The table shows the average
total score which is at most 42.

Model Ours O3-MINI CLAUDE 3.7
R1 2.0 19.3 14.9
FLASH-THINKING 1.8 10.5 14.1
CLAUDE 3.7 1.5 19.0 18.4
QWQ 1.2 23.8 18.8
O1-PRO 1.2 19.3 21.0
O3-MINI 0.9 19.5 17.1

4 QUALITATIVE DISCUSSION

During the evaluation, judges also documented common issues and noteworthy behaviors exhibited
by the models. In this section, we discuss some of the most prominent issues that we observed.

Answer Boxing Current reinforcement learning optimization techniques rely on extracting re-
wards from a clearly identifiable final answer. To facilitate accurate reward extraction, models are
typically instructed to enclose their final answers within a \boxed{} environment. However, this
requirement often produces unintended artifacts in the solutions for the USAMO problems. Specifi-
cally, even though most of the evaluated problems do not require a final boxed answer, many models
consistently provided answers within a boxed environment. In a particularly notable instance from
problem 5, QWQ confused itself by dismissing the possibility of a non-integer solution, despite
no such restriction existing in the problem statement. Consequently, it incorrectly insisted that the
final answer was 2, even though it had otherwise correctly deduced that all even numbers satisfy
the given conditions (see App. C.3). This behavior illustrates how alignment techniques like GRPO
(Shao et al., 2024) inadvertently encourage models to treat every mathematical problem as requiring
an explicitly boxed final answer, negatively affecting their overall reasoning.

Generalizing Patterns Models frequently exhibited a tendency to overgeneralize patterns ob-
served in smaller numerical cases to larger, untested cases. While this heuristic approach might
be effective for problems that only require a numerical answer, it is fundamentally flawed for prob-
lems that demand rigorous proof. Models often incorrectly asserted that these patterns observed for
small cases would hold generally, without providing a formal proof for such a claim (see App. C.4).

Solution Structure and Clarity There was significant variation in the clarity and structural coher-
ence of the solutions provided by different models. Models such as O3-MINI and O1-PRO generally
presented their solutions clearly, logically, and in an easily interpretable manner. Conversely, models
like FLASH-THINKING and QWQ frequently produced chaotic and barely interpretable responses,
sometimes confusing multiple unrelated ideas within a single solution. The noticeable clarity in
models trained by OpenAI suggests that additional training focused on solution coherence substan-
tially improved their readability, an aspect evidently less emphasized in other models.

5 CONCLUSION

In this study, we comprehensively analyzed the performance of six state-of-the-art LLMs on prob-
lems from the USAMO 2025 competition. Using a rigorous human evaluation setup, we found that
all evaluated models performed very poorly, with even the best-performing model achieving an av-
erage accuracy of less than 5%. Through detailed examination of the models’ reasoning traces, we
identified several critical failure modes, including significant artifacts arising from the optimization
strategies employed during model training. These findings underscore the substantial limitations
of current LLMs in the rigorous mathematical reasoning required for high-level olympiad competi-
tions, highlighting the need for substantial improvements in proof generation capabilities.
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arena: Evaluating llms on uncontaminated math competitions, February 2025. URL https:
//matharena.ai/.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju,
Chuanyang Zheng, Yichun Yin, Lin Li, Ming Zhang, and Qun Liu. FIMO: A challenge formal
dataset for automated theorem proving. CoRR, abs/2309.04295, 2023.

OpenAI. Openai o3-mini system card, January 2025. URL https://cdn.openai.com/
o3-mini-system-card-feb10.pdf.

Qwen. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL https:
//qwenlm.github.io/blog/qwq-32b/.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy P. Lillicrap, Jean-
Baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, Ioannis
Antonoglou, Rohan Anil, Sebastian Borgeaud, Andrew M. Dai, Katie Millican, Ethan Dyer,
Mia Glaese, Thibault Sottiaux, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong
Xu, James Molloy, Jilin Chen, Michael Isard, Paul Barham, Tom Hennigan, Ross McIlroy,
Melvin Johnson, Johan Schalkwyk, Eli Collins, Eliza Rutherford, Erica Moreira, Kareem Ay-
oub, Megha Goel, Clemens Meyer, Gregory Thornton, Zhen Yang, Henryk Michalewski, Za-
heer Abbas, Nathan Schucher, Ankesh Anand, Richard Ives, James Keeling, Karel Lenc, Salem
Haykal, Siamak Shakeri, Pranav Shyam, Aakanksha Chowdhery, Roman Ring, Stephen Spencer,
Eren Sezener, and et al. Gemini 1.5: Unlocking multimodal understanding across millions of
tokens of context. CoRR, abs/2403.05530, 2024. doi: 10.48550/ARXIV.2403.05530. URL
https://doi.org/10.48550/arXiv.2403.05530.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. CoRR, abs/2402.03300, 2024. doi: 10.48550/ARXIV.2402.03300. URL
https://doi.org/10.48550/arXiv.2402.03300.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings, Ami-
tayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-provers on the
putnam mathematical competition. CoRR, abs/2407.11214, 2024.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: a cross-system benchmark for
formal olympiad-level mathematics. In ICLR. OpenReview.net, 2022.

6

https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf
https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf
https://doi.org/10.48550/arXiv.2502.10197
https://matharena.ai/
https://matharena.ai/
https://cdn.openai.com/o3-mini-system-card-feb10.pdf
https://cdn.openai.com/o3-mini-system-card-feb10.pdf
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://doi.org/10.48550/arXiv.2403.05530
https://doi.org/10.48550/arXiv.2402.03300


A ADDITIONAL EXPERIMENTAL DETAILS

Here we describe any additional information related to our evaluation setup and details.

A.1 MODEL NAMES

For brevity and visual clarity, we have shortened the model names as follows:

• O3-MINI (HIGH) as O3-MINI

• O1-PRO (HIGH) as O1-PRO

• DEEPSEEK R1 as R1
• QWQ-32B as QWQ
• GEMINI-2.0-FLASH-THINKING-EXP as FLASH-THINKING

• CLAUDE-3.7-SONNET-THINKING as CLAUDE 3.7

A.2 HYPERPARAMETERS AND PROMPT

Model Hyperparameters For O3-MINI, O1-PRO, CLAUDE 3.7, and FLASH-THINKING, we used
the default hyperparameters provided by their official API. For O3-MINI and O1-PRO, we used the
high reasoning setting, which provides the highest available reasoning budget. For CLAUDE 3.7and
FLASH-THINKING, we set the maximum reasoning token limit to 32000.

As recommended by the authors of R1 and QWQ, we used a temperature of 0.6 and a top-p value
of 0.95. Additionally, for QWQ, we set top-k to 40. These hyperparameters sets correspond to
the default hyperparameters used by the official HuggingFace models1. The token limit was set to
32000. We use the TogetherAPI for both these models.

Prompt Every problem was ran with the following user prompt:

Prompt

Give a thorough answer to the following question. Your answer will be graded by human judges based on
accuracy, correctness, and your ability to prove the result. You should include all steps of the proof. Do
not skip important steps, as this will reduce your grade. It does not suffice to merely state the result.
Use LaTeX to format your answer.

{problem}

Judge Prompt To judge model solutions, we used the same hyperparameters for generation as
before. Additionally, we use the following prompt:

Judge Prompt

# Instruction

You are an expert mathematician that grades solutions of high-school olympiad-level problems. You will be
given a mathematical problem, as well as a grading scheme that you should adhere to. Your task is to
accurately grade a solution according to that grading scheme.

# Problem and Scheme

##Problem statement

{problem_statement}

## Grading scheme

{grading_scheme}

# Example

1See https://huggingface.co/deepseek-ai/DeepSeek-R1 and https://huggingface.co/Qwen/
QwQ-32B
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Here how an example grading can look like:

## Example solution:

{correct_solution}

## Example grading

{example_grading}

# Evaluation

Produce a scoring using the same format for the following solution. Reason carefully about the contents of
the solution and make sure that all steps of the proof are included and rigorous.

## Formatting instructions

Follow a JSON-style formatting as the above example, namely:

- The categories should be in the same order
- The awarded number of points for each category should follow after the 'points' key
- The reasoning for each decision should be explained after the 'desc' key.
- Output only the JSON response.

Here is the solution you should grade:
{solution}

Both the grading scheme and example grading are provided in json format. Examples of these can
be found in App. A.3.

A.3 EXAMPLE GRADING SCHEME AND GRADING

Example Grading Scheme The grading scheme for each problem was developed by our expert
judges. The grading scheme for Problem 1 is shown below:

Grading Scheme

{
"id": "1",
"points": 7,
"scheme": [

{
"title": "Initial closed form expression for each digit",
"points": 1,

"desc": "Uses the base-2n representation of nk to find a closed form expression of each digit

ai =
⌊

nk

(2n)i

⌋
mod (2n)"

},
{

"title": "Interchanging the floor and mod",
"points": 3,
"desc": "Transforms the digit expression into a easily boundable one by interchanging the floor
and modulo operations."

},
{

"title": "Bounding the expression",
"points": 2,
"desc": "Correctly bounds the aforementioned expression, usually by showing the numerator is

divisible by n, so that ai >=
⌊

n

2i

⌋
∥."

},
{

"title": "Finishing",
"points": 1,
"desc": "Chooses a provably sufficiently large N. The point is not awarded if it has not
proven that n^k has at most k digits."

}
]

}

Example Grading An example grading for Problem 1 is shown below for a (human-generated)
completely correct solution:
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Example Grading

{
"points": 7,
"details": [

{
"title": "Initial closed form expression for each digit",
"points": 1,
"desc": "Correctly uses the base-2n representation of n^k to find a closed form expression of each

digit ai =
⌊

nk

(2n)i

⌋
mod(2n)"

},
{

"title": "Interchanging the floor and mod",
"points": 3,
"desc": "Transforms the digit expression into a easily boundable one by interchanging the floor
and modulo operations."

},
{

"title": "Bounding the expression",
"points": 2,
"desc": "Correctly bounds the aforementioned expression, usually by showing the numerator is

divisible by n, so that ai >=
⌊

n

2i

⌋
."

},
{

"title": "Finishing",
"points": 1,

"desc": "Chooses a provably sufficiently large N and has proven that nk has more than k digits."
}

]
}

B USAMO PROBLEMS

We show the six problems from the USAMO 2025 competition in this section.

Problem 1

Let k and d be positive integers. Prove that there exists a positive integer N such that for every odd

integer n > N, the digits in the base-2n representation of nk are all greater than d.

Problem 2

Let n and k be positive integers with k < n. Let P (x) be a polynomial of degree n with real
coefficients, nonzero constant term, and no repeated roots. Suppose that for any real numbers

a0, a1, . . . , ak such that the polynomial akx
k + · · · + a1x + a0 divides P (x), the product a0a1 · · · ak

is zero. Prove that P (x) has a nonreal root.

Problem 3

Alice the architect and Bob the builder play a game. First, Alice chooses two points P and Q in the
plane and a subset S of the plane, which are announced to Bob. Next, Bob marks infinitely many points in
the plane, designating each a city. He may not place two cities within distance at most one unit of

each other, and no three cities he places may be collinear. Finally, roads are constructed between the
cities as follows: for each pair A, B of cities, they are connected with a road along the line segment
AB if and only if the following condition holds:
\begin{center}
For every city C distinct from A and B, there exists R ∈ S such
that △PQR is directly similar to either △ABC or △BAC.
\end{center}
Alice wins the game if (i) the resulting roads allow for travel between any pair of cities via a finite
sequence of roads and (ii) no two roads cross. Otherwise, Bob wins. Determine, with proof, which player
has a winning strategy.

Note: △UVW is directly similar to △XY Z if there exists a sequence of rotations, translations,
and dilations sending U to X, V to Y , and W to Z.
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Problem 4

Let H be the orthocenter of acute triangle ABC, let F be the foot of the altitude from C to AB,
and let P be the reflection of H across BC. Suppose that the circumcircle of triangle AFP
intersects line BC at two distinct points X and Y . Prove that C is the midpoint of XY .

Problem 5

Determine, with proof, all positive integers k such that\frac{1}{n+1} \sum_{i=0}^n \binom{n}{i}^kis an
integer for all positive integers n.

Problem 6

Let m and n be positive integers with m ≥ n. There are m cupcakes of different flavors arranged
around a circle and n people who like cupcakes. Each person assigns a nonnegative real number score to
each cupcake, depending on how much they like the cupcake. Suppose that for each person P , it is
possible to partition the circle of m cupcakes into n groups of consecutive cupcakes so that the sum of
P 's scores of the cupcakes in each group is at least 1. Prove that it is possible to distribute the m
cupcakes to the n people so that each person P receives cupcakes of total score at least 1 with

respect to P .

C EXAMPLE TRACES

C.1 EXAMPLES OF DIFFERENT ERROR MODES

C.1.1 EXAMPLE OF LOGICAL ERROR

Here, CLAUDE 3.7 generalizes over all indices j, when it has proven it for a single one - a clear leap
in logic.

CLAUDE 3.7

...
Since P (x) has at least n distinct real roots and k < n, we have at least n − (k − 1) ≥ 2 choices for
sk. If we choose sk = rm and then sk = rl (where rm, rl ̸∈ {s1, s2, . . . , sk−1}), we get:

For sk = rm: σj = Tj + rm · Tj−1

For sk = rl: σj = Tj + rl · Tj−1

If both of these result in σj = 0 for the same j, then:
Tj + rm · Tj−1 = 0 and Tj + rl · Tj−1 = 0

Subtracting, we get: (rm − rl) · Tj−1 = 0

Since rm ̸= rl (as the roots of P (x) are distinct), we must have Tj−1 = 0.

Continuing this logic, we would find that all Tj = 0, which is impossible, especially since T0 = 1.

Therefore, we can always find a choice of sk such that all σj ̸= 0 for j = 1, 2, . . . , k, which means all
coefficients of our divisor are nonzero.
...

C.1.2 EXAMPLE OF CREATIVITY ERROR

On problem 3, which is a game between 2 players - Alice and Bob, O3-MINI (and most other
models) argued that Bob should win from the beginning while it can be proven that Alice has an
optimal strategy.

O3-MINI

We will show that regardless of how Alice chooses the two fixed points P,Q ∈ R2 and the "template-set"

S ⊂ R2, Bob can place his cities so that the resulting road network fails to meet at least one of the two
winning conditions for Alice. (Alice wins only if the road network is both connected and drawn with no two
roads crossing.) In other words, Bob has a winning strategy.
...
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C.1.3 EXAMPLE OF ASSUMPTION ERROR

On problem 4, many assumption errors are made, like this one from O3-MINI, where it assumes (not
explicitly) that C is external to the circumcircle of AFP , which is incorrect.

O3-MINI

...
A key step is to prove the following claim:

----------------------------

CA is tangent to ω = ⊙(AFP ).

----------------------------

Once we have tangency, the radius drawn to the tangency point is perpendicular to the tangent line. Since
that radius (from the center of ω) lies on the perpendicular bisector of any chord, we will see that the
perpendicular from the center of ω to BC must pass through C.

...

C.1.4 EXAMPLE OF ALGEBRAIC/ARITHMETIC ERROR

Here, R1 incorrectly computes a sum of combinations and arrives at the incorrect conclusion. The
correct value of the sum is 3,395,016, which is divisible by 8.

R1

...
4. **Case k = 4**:
- Testing small values of n (up to n = 6) shows the expression is an integer. However, for n = 7:

- The sum
∑7

i=0

(7
i

)4
= 1, 894, 391.

- The expression 1,894,391
8 = 236, 798.875 is not an integer.

- Thus, k = 4 fails for n = 7.
...

C.2 FLASH-THINKING STRUGGLING ON PROBLEM 6

Below, we see FLASH-THINKING attempting multiple strategies in the same run, leading to a con-
fusing solution that fails to reach a valid conclusion.

FLASH-THINKING

Consider a bipartite graph. People on one side, cupcakes on the other side.
Let's consider a different network flow approach.
Source S, Sink T . Nodes P1, . . . , Pn. Nodes C1, . . . , Cm.
For each person Pi, consider the partitions. Let's fix one partition for each person Pi, say
Gi,1, . . . , Gi,n.
Nodes Gi,k for i = 1, . . . , n, k = 1, . . . , n.
Edge S → Pi capacity 1. Edge Pi → Gi,k capacity 1. Edge Gi,k → Cj if Cj ∈ Gi,k capacity 1. Edge
Cj → T capacity 1.
We want to show max flow is n.

Assume for contradiction that it is impossible to distribute the cupcakes as required.
We will use Hall's Marriage Theorem, but need to define the sets correctly.
For each person Pi, let Gi be the set of all consecutive groups of cupcakes that give score at least 1 to
person Pi. We need to select Ai ∈ Gi such that Ai ∩ Aj = ∅.

Let's reconsider the network flow approach. Construct a network as follows:
Source S, Sink T . Nodes for people P1, . . . , Pn. Nodes for cupcakes C1, . . . , Cm.
For each person Pi and each cupcake Cj, create an edge from Pi to Cj.
Edge S → Pi capacity 1 for i = 1, . . . , n. Edge Pi → Cj capacity 1 for i = 1, . . . , n, j = 1, . . . ,m. Edge
Cj → T capacity 1 for j = 1, . . . ,m.
Cost on edge (Pi, Cj) is −sij. Cost on other edges is 0.
We want to send flow of value n from S to T with minimum cost.
If we can send flow of value n, then we have selected n paths from S to T . Each path is
S → Pi → Cj → T . Let xij be the flow on edge (Pi, Cj). Then∑m

j=1 xij ≤ 1,
∑n

i=1 xij ≤ 1,
∑n

i=1

∑m
j=1 xij = n. This is not right.
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Consider a different graph. Bipartite graph with people P1, . . . , Pn on one side, and cupcakes C1, . . . , Cm

on the other side. Edge between Pi and Cj. We want to select a matching M such that for each Pi,∑
Cj∈M and (Pi,Cj)∈M sij ≥ 1. This is not matching.

Let's use Hall's Theorem. For each person Pi, let Fi be the family of sets of consecutive cupcakes F such
that

∑
Cj∈F sij ≥ 1. We want to choose Ai ∈ Fi for each i = 1, . . . , n such that Ai ∩ Aj = ∅ for i ̸= j.

For any subset of people X ⊆ {P1, . . . , Pn}, let F(X) =
⋃

Pi∈X Fi. We need to show that for any

X ⊆ {P1, . . . , Pn}, we can choose |X| disjoint sets from F(X). This is not Hall's theorem directly.

We need to show that there exist disjoint sets A1, . . . , An such that Ai is a consecutive group from some
partition for Pi and score for Pi from Ai is at least 1.
Since for each person Pi, there is a partition into n groups Gi,1, . . . , Gi,n with score ≥ 1. Let's
consider these groups as possible choices.
For each person Pi, we have n choices Gi,1, . . . , Gi,n. We need to select one choice Ai ∈ {Gi,1, . . . , Gi,n}
for each i such that Ai ∩ Aj = ∅ for i ̸= j.

Consider a bipartite graph. People P1, . . . , Pn on one side, and n2 groups Gi,j on the other side. Edge
from Pi to Gij. We need to find a matching of size n such that each Pi is matched to some Gi,ji

, and

G1,j1
, . . . , Gn,jn are disjoint.

Final Answer:
We will prove this by contradiction. Suppose it is impossible to distribute the cupcakes such that each
person Pi receives cupcakes of total score at least 1.
For each person Pi, we are given that there exists a partition of the circle of m cupcakes into n
consecutive groups Gi,1, Gi,2, . . . , Gi,n such that for each k = 1, . . . , n,

∑
Cj∈Gi,k

sij ≥ 1.

Consider a bipartite graph B = (U ∪ V,E) where U = {P1, . . . , Pn} and V =
⋃n

i=1{Gi,1, Gi,2, . . . , Gi,n}
. We add an edge between Pi ∈ U and G ∈ V if and only if G ∈ {Gi,1, Gi,2, . . . , Gi,n}. We want to show
that there exists a matching of size n in B. By Hall's Marriage Theorem, we need to show that for any
subset X ⊆ U, |N(X)| ≥ |X|, where N(X) =

⋃
Pi∈X{Gi,1, Gi,2, . . . , Gi,n}.

For any X ⊆ U,
|N(X)| = |

⋃
Pi∈X{Gi,1, Gi,2, . . . , Gi,n}| ≤

∑
Pi∈X |{Gi,1, Gi,2, . . . , Gi,n}| =

∑
Pi∈X n = n|X|. This

does not help.

Let's consider a different approach using flows. Consider the network constructed earlier... Further
investigation is needed to construct the correct argument.

Final Answer: The final answer is Y es

C.3 QWQ BOXES AN INTEGER

Here, we show QWQ confusing itself by requiring an integer answer, even though the solution is the
set of all even integers.

QWQ

...
### Conclusion:
The expression is an integer for all n if and only if k is even. Therefore, the solution is all positive
even integers.

### Final Answer:

The positive integers k are all even numbers. Thus, the solution is 2m for any positive integer m.

However, since the problem requires a boxed answer and the minimal solution is typically expected, the

answer is 2 . But strictly speaking, the correct answer is all even positive integers. Given the problem's

requirements, the boxed answer is:

2

C.4 OVERGENERALIZING PATTERNS

Here, FLASH-THINKING chooses an explicit polynomial to test out on problem 2, but then decides
to generalize its conclusion to all polynomials.
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FLASH-THINKING

Now, let us choose specific real roots for P (x). Let ri = i for i = 1, 2, . . . , n. Let
P (x) = c(x − 1)(x − 2) · · · (x − n) for some nonzero real number c. Then P (x) is a polynomial of degree
n with real coefficients, nonzero constant term, and no repeated roots.

Consider the divisor Q(x) = (x − 1)(x − 2) · · · (x − k) =
∑k

i=0 aix
i.

Then r1 = 1, r2 = 2, . . . , rk = k. For this choice, ai = (−1)k−iek−i(1, 2, . . . , k).
Since 1, 2, . . . , k are all positive, ej(1, 2, . . . , k) > 0 for j = 1, 2, . . . , k. Also e0(1, 2, . . . , k) = 1 > 0
.

Thus, for i = 0, 1, . . . , k, ai = (−1)k−iek−i(1, 2, . . . , k) ̸= 0.

Therefore, for this divisor Q(x) = akx
k + · · · + a0, the product a0a1 · · · ak ̸= 0.

However, the given condition states that for any real numbers a0, a1, . . . , ak such that

akx
k + · · · + a1x + a0 divides P (x), the product a0a1 · · · ak is zero.

This is a contradiction.
Hence, our assumption that P (x) has only real roots must be false.
Therefore, P (x) has a nonreal root.

Final Answer: The final answer is P (x) has a nonreal root
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