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Abstract
Constructing correct concurrent garbage collection algorithms is
notoriously hard. Numerous such algorithms have been proposed,
implemented, and deployed – and yet the relationship among them
in terms of speed and precision is poorly understood, and the
validation of one algorithm does not carry over to others.

As programs with low latency requirements written in garbage-
collected languages become part of society’s mission-critical in-
frastructure, it is imperative that we raise the level of confidence in
the correctness of the underlying system, and that we understand
the trade-offs inherent in our algorithmic choice.

In this paper we present correctness-preserving transformations
that can be applied to an initial abstract concurrent garbage collec-
tion algorithm which is simpler, more precise, and easier toprove
correct than algorithms used in practice — but also more expensive
and with less concurrency. We then show how both pre-existing and
new algorithms can be synthesized from the abstract algorithm by
a series of our transformations. We relate the algorithms formally
using a new definition of precision, and informally with respect to
overhead and concurrency.

This provides many insights about the nature of concurrent
collection, allows the direct synthesis of new and useful algorithms,
reduces the burden of proof to a single simple algorithm, andlays
the groundwork for the automated synthesis of correct concurrent
collectors.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]; D.2.4 [Program Verification]; D.4.2 [Storage Man-
agement]: garbage collection

General Terms Verification, Algorithms

Keywords concurrent garbage collection, concurrent algorithms,
verification, synthesis

1. Introduction
As garbage-collected languages like Java and C# become moreand
more widely used, the long pauses introduced by traditionalsyn-
chronous (“stop the world”) collection are unacceptable inmany
domains. This is true both at the high end, where the collection of
multi-gigabyte heaps causes very long pauses, and at the lowend,
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where systems are used for real-time, embedded, and sensor appli-
cations requiring very low latency. As a result, concurrentcollec-
tors are now available in most major production virtual machines.

However, concurrent collectors are extremely complex and
error-prone. Since such collectors now form part of the trusted
computing base of a large portion of the world’s mission-critical
software infrastructure, such unreliability is unacceptable.

The study of concurrent collectors began with Steele [41], Di-
jkstra [21], and Lamport [31].

Concurrent collectors were quickly recognized as paradigmatic
examples of the difficulty of constructing correct concurrent al-
gorithms: Steele’s algorithm contained an error which he subse-
quently corrected [42], and Dijkstra’s algorithm contained an error
discovered and corrected by Stenning and Woodger [21]. Doligez
and Leroy developed a multiprocessor collector for ML [23] which
was subsequently found to contain an error [22]. Furthermore,
some correct algorithms [9] had informal proofs that were found
to contain errors [37].

Much later, Yuasa [46] introduced the snapshot-based algo-
rithm, which is conceptually simpler and trades earlier termination
and increased concurrency for reduced precision.

Many additional incremental and concurrent algorithms have
been introduced over the last 30 years [30, 1, 2, 3, 4, 5, 6, 11,13, 16,
17, 24, 26, 27, 29, 32, 34, 35, 40, 45], but there has been very little
experimental comparison of the algorithms and no formal study of
their relative merits. While there is now a well-established “bag
of tricks” for concurrent collectors, each algorithm composes them
differently based on the intuition and experience of the designer.
However, because of the complex interactions of the invariants
required by the different “tricks,” many potential combinations of
techniques are not used, leading to an underexplored designspace.
Furthermore, since each algorithm is different, a correctness proof
for one algorithm cannot be re-used for others.

All concurrent collectors must decide how to answer the follow-
ing basic questions:

• Where is the collector in its progress through the heap?
• Which objects must be traced to guarantee that all live objects

will be found?
• How does the collector terminate in spite of allocation?
• Which interleavings are allowed between the mutator and the

collector?

Our long-term research agenda is to be able to generate provably
correct concurrent garbage collectors to meet the particular needs
of the different target systems with respect to latency, throughput,
and space consumption, from a simple base algorithm.

In previous work [44] we hypothesized that the way in which
the above questions are answered could be expressed as transfor-
mations of a single base algorithm, informally described some such



transformations, and evaluated their relative performance experi-
mentally.

In this work we substantiate that hypothesis: we present a single
algorithm (which we call theApexalgorithm) and a set of compos-
able transformations corresponding to each of the above questions.
Each transformation can be applied to arbitrary subsets of the ob-
jects, or to restricted subsets for which we present preciseformula-
tions.

Transformations can be applied at the granularity of a single
object in the heap. This allows enormous flexibility since different
transformations can reliably be applied to different objects depend-
ing on their characteristics.

Furthermore, we formalize for the first time the notion of the
relative precisionof concurrent collectors, and express the transfor-
mations as correctness-preserving and precision-reducing. We also
discuss informally how the reduction in precision providesuseful
tradeoffs in terms of implementation cost, speed of convergence,
and level of concurrency.

Our transformational approach yields a wide range of algo-
rithms. We show derivations for some well-known existing algo-
rithms, and also derive some new algorithms which we expect will
have desirable properties in practice. In particular, our generaliza-
tion and formalization of the tradeoff between incremental-update
and snapshot-at-the-beginning approaches allows a novel approach
to newly allocated objects which yields high precision combined
with rapid termination.

The contributions of this paper are:

• A formal framework for describing concurrent garbage collec-
tion algorithms;
• The simple “Apex” algorithm from which all others are derived;
• A set of transformations that can be applied to it to yield an

enormous number of potential algorithms with different preci-
sion, concurrency, and efficiency properties;
• A formal definition of what constitutes relative precision of

concurrent collectors;
• A proof of correctness for the transformations, which are shown

to be precision-reducing (while improving other aspects ofthe
algorithm);
• The application of the methodology to yield incremental update

collectors in the styles of Dijkstra and Steele, snapshot collec-
tors like that of Yuasa, as well as previously unknown algo-
rithms with high precision, rapid termination, and high concur-
rency.

This work is presented in the context of a mark-and-sweep
style of collector. While we show the synchronization with the
sweep phase, we do not consider the details of its implementation,
which contains a number of its own complexities. We have also
simplified the design space by using a write barrier which is always
atomic. This corresponds to some but not all implementations used
in practice (for instance on a uni-processor safe point based virtual
machine). So in general some manual transformation may still be
required to achieve desired performance in the resulting algorithms.

A key aspect of this work is themodularizationof the proof
obligations. Although we have not yet proved the correctness of the
Apex collector, we have proved the correctness of a broad variety
of transformations needed for the creation of an efficient algorithm.
This breaks the requirements for the creation of a correct algorithm
and implementation into small modular proof components which
can be re-used across an enormous range of algorithms, rather than
requiring a monolithic proof of each new algorithm.

2. A Parametric Concurrent Collector
In this section we present a parametric concurrent collection algo-
rithm that is used to instantiate all of the algorithms in ourframe-
work. The parametric algorithm is parameterized by a function
calledexposethat determines how the collector handles objects that
may be “hidden” due to concurrent mutations.

The exposefunction determines which objects should be used
as starting points for additional tracing, and is based on a log of
mutator and collector operations. This log is the formal analogue
to the information captured by the write barrier (see e.g., [30, Sec
8.2]) in real-world implementations.

2.1 A Trace Model for Concurrent Collectors

We model the heap of a program that uses a (fixed) set of field
identifiersFields = {f1, . . . , fF } as an (unbounded) set of ob-
jectsAL ⊆ U (whereU is the infinite universe of all objects) and
a functionh : AL ⇀ Fields → (AL ∪ {null}) mapping fields
of allocated objects to their values, which may be other allocated
objects or the designated valuenull.

For convenience, we useobj .fi to denote the valueh(obj )(fi).
All reachable objects are reachable from a finite set ofR ⊆ AL

root objects, denotedroot1, . . . , rootR.
For the time being we assume that stack frames are heap-

allocated objects – some systems, especially for functional lan-
guages are in fact implemented in this way.

A global state of the program consists of: (i) the heap; (ii) the
state of the mutator; (iii) the state of the collector. We model the
mutator as a sequence of allocations and mutations of pointers over
a given heap. The state of the mutator is its position in the sequence
of allocations and mutations. The state of the collector consists of
an assignment of values to all its variables.

A program trace is a potentially infinite sequence of program
global states, where asequenceis defined in a standard way as a
map from natural numbers to an alphabetΣ. We denote the empty
sequence byǫ. Given a sequenceS = S0, S1, . . ., we define its
finite prefix P of length |P | = k, to be the firstk letters in the
sequenceS0, S1, . . . , Sk−1, and denote it bypre(S, k).

Given a finite sequence prefixP and a sequenceS, we denote
the concatenation ofP andS by P • S. Similarly, given a finite
sequence prefixP and a letterτ ∈ Σ, we denote byP • τ the
concatenation ofP andτ .

Our algorithm uses aninteraction log to record information
about the combined behavior of the collector and the mutator. This
log is used by the collection algorithm to select the objectsto be
marked. A log of the interleaving of mutator/collector operations
is natural for a concurrent collector because it closely matches the
use of write barriers (see Fig. 2) in practical implementations: the
function of the write barrier is to synchronize the mutator with the
collector, which in some collectors is done using a log of writes.

The interaction log is a sequence of log entries of the following
kinds: (i) atracing entry recording a tracing action of the collector
as it traverses the heap during the marking phase; (ii) amutation
entry recording a pointer redirection action by the mutator; (iii) an
allocation entry recording an allocation of a new object by the
mutator. This is formally defined as follows:

DEFINITION 2.1. A log entryis a tuple〈k, source, fld, old, new〉 ∈
{T,M,A} ×AL×Fields× (AL∪ {null})× (AL∪ {null})
where:
• k identifies the kind of action as one of tracing, mutation, or

allocation, denoted byT, M, andA, respectively.
• source is the object affected by the action.
• fld is the field ofsource affected by the action.
• old is the value of the fieldsource.fld prior to the action.
• new is the value ofsource.fld subsequent to the action.



collect() {
atomic
marked← {root1, . . . , rootR}
pending ←

S
x∈marked fields(x)

log ← ǫ

do {
mark()
addOrigins()
} while (?)

atomic
addOrigins()
mark()

sweep()
}

mark() {
while (pending 6= ∅) {
(obj, fld)← removeElement(pending)
atomic
dst← obj.fld
log ← log • 〈T, obj, fld, dst, dst〉

if (dst 6=null ∧ dst 6∈ marked){
marked← marked ∪ {dst}
pending← pending ∪ fields(dst)
}

}
}

addOrigins() {
atomic
origins← expose(log) \marked

marked← marked ∪ origins

pending ← pending ∪
�S

x∈origins fields(x)
�

}

Figure 1. Parametric Mark-and-Sweep Collector.

mutate(source, fld, new) {
atomic
log ← log • 〈M, source, fld, source.fld, new〉
source.fld← new

}

mutateAlloc(source,fld) {
atomic
new ← allocate new object
log ← log • 〈A, source, fld, source.fld, new〉
source.fld← new

}

Figure 2. Mutator write-barrier and allocation-barrier.

Tracing actions do not change the structure of the heap; therefore
old = new for all tracing entries. Allocation actions allocate the
objectnew, which must not appear previously in the trace.

For convenience, we define selectors for log entry tuples. Given
a tupleτ = 〈K, s, f, o, n〉, we defineτ.kind = K, τ.source = s,
τ.field = f , τ.old = o, andτ.new = n.

2.2 The Parametric Algorithm

Fig. 1 presents the pseudo-code for a parametric concurrentmark-
and-sweep collector. The operation of this collector is defined over
a prefix of the interaction log, recording the collector and mutator
interaction. Recording mutator actions in the log is performed by
the mutator’s write and allocation barriers, as shown in Fig. 2.

Before describing the parametric algorithm in more detail,we
first describe the assumptions we have made for clarity of presen-
tation and the assumptions under which the algorithm operates:
• we do not specify how thesweep() operation proceeds, ex-

cept to ensure that there is the proper synchronization between
the mark and sweep phases. We also do not consider com-
paction, which requires the dynamic relocation of objects.
While these are both important issues, they are beyond the
scope of this work.
• we assume that there is only a single execution of a collection

cycle at any given point in time. That is, theT operations in
the log all belong to a single collection cycle. Multiple (even
overlapped) collections can be performed by differentiating T

entries accordingly.
The parametric collection algorithm does not specify how objects
are selected to be marked. This is defined to be a parameter of
the collector. The algorithm, however, does restrict concurrency by
assuming that write barriers are atomic with respect to collector
operations. This assumption is inline with practical systems as
mutators and the collector are only allowed to interleave atsafe
points, which do not include the write-barriers. Effectively, this
means that a collector cannot preempt a mutator during a write
barrier. Under this assumption, we can restrict attention to a system
with a single mutator thread without loss of generality.

The collection cycle of the algorithm is described in thecollect()
procedure. The collection cycle consists of two phases: (i)the
marking phase, in which the collector marks potentially live ob-
jects; (ii) thesweeping phase, in which unmarked objects are re-
claimed.

The collection cycle starts by atomically selecting the setof root
objects as origins. This operation is executed atomically,and thus
no concurrent mutations could be performed by the mutator.

After selecting the root objects as origins, the collector proceeds
by repeatedly tracing heap objects and marking them (mark()
procedure), and adding origins to be considered by the collector due
to concurrent mutations performed by the mutator (addOrigins()
procedure). These two steps are repeated until a non-deterministic
choice (denoted by ‘?’ in the figure) triggers a move to an atomic
phase in which the remaining origins and objects to be markedare
processed atomically. This atomic phase guarantees the termina-
tion of the algorithm, and is in line with some practical collector
implementations (e.g., [7]). Nevertheless, in Section 5.5, we show
how to derive algorithms in which this atomic marking phase can
be eliminated.

After the marking phase has completed, the sweep phase re-
claims all objects that are not marked.

2.3 Marking Traversal

The mark() procedure implements a collector traversal of the
heap. In the algorithm, we use a pair(obj, fld) to denote the
field fld of an objectobj. We useobj.fld to denote the object
pointed to by the fieldfld of the objectobj, andfields(obj) =
{(obj, f1), . . . , (obj, fF )} to denote the set of all object fields for
a given objectobj.

The procedure uses a setpending of pending fields to be tra-
versed, and performs a transitive traversal of the heap by iteratively
removing an object field from the setpending and tracing from
it. Whenever an object field is traced-from, the procedure inserts a
tracing entry into the log. When the traced object field points to an



unmarked object, the object is marked, and its fields are added to
the pending set. Note that the collector is able to trace object fields
in an arbitrary order, rather than scanning fields of each object in
order.

During this traversal, the mutator might concurrently modify the
heap. These concurrent mutations might cause reachable objects to
behiddenfrom the traversal, and thus may remain unmarked by the
traversal.

2.3.1 The Collector Wavefront

All collectors discussed in this paper rely on cooperation between
the collector and the mutator to guarantee correctness in the pres-
ence of concurrency. A key part of the cooperation is tracking the
progress of the collector through the heap, since mutationscan be
treated differently depending on whether they happened in the por-
tion of the heap already scanned by the collector (behind thewave-
front) or not yet scanned (ahead of the wavefront). The wavefront
consists of the set of object fields (that is,not the values of the
pointers in those fields) that have been traced by the collector thus
far.

DEFINITION 2.2. Given a log prefixP , thecollector wavefrontis
the set of object-fields that have been traced by collector operations
in P , that is:

W(P ) = {(Pi.source, Pi.field) | Pi.kind = T∧ 0 ≤ i < |P |}

Given a log prefixP , we say that an object field(o, f) is behind the
wavefrontwhen(o, f) ∈ W(P ), andahead of the wavefrontwhen
(o, f) 6∈ W(P ).

Most practical collectors use conservative abstractions of the
wavefront rather than the precise definition provided here.That
is, the wavefront is tracked at an object granularity. However, the
precise wavefront is not merely theoretical and has recently been
used in the hardware-assisted collector for the Azul Java server,
which has a “not marked-through” bit in every pointer [18].

EXAMPLE 2.3. Fig. 3 shows an example of a possible mutator
and collector interleaving. In this figure, the progress of collector
tracing through the heap is shown by the tracing actionsT1, . . . , T6,
and by using a darker color for traced fields. The sequence of
mutations is shown asM1, . . . , M7. For brevity, we only present
part of the states and show the effect of multiple operationsin a
single step.

The interaction log prefixP e for this example is:

〈T, r1, f2, A, A〉, 〈T,A, f1, null, null〉, 〈T, r1, f3, null, null〉,
〈M, r1, f1, null, B〉, 〈M, A, f1, null, B〉, 〈M, r1, f3, null, E〉,
〈M,A, f2, C, null〉, 〈M, r1, f1, B, null〉, 〈T,A, f2, null, null〉,
〈T, r1, f1, null, null〉, 〈M, A, f3, D, null〉, 〈M, A, f1, B, null〉,
〈T,A, f3, null, null〉

The wavefront at the end of the shown prefixP e is: W(P e) =
{(r1, f2), (A, f1), (r1, f3), (A, f2), (r1, f1), (A, f3)}

2.4 Adding Origins

TheaddOrigins() procedure uses the interaction log to select
a set of additional objects to be considered as origins. Whenthis
procedure is invoked by the collector, it is possible that a number
of reachable pointers were hidden by the mutator behind the wave-
front during themark() procedure. TheaddOrigins() proce-
dure finds a safe over-approximation of these hidden, but reachable
objects.

The core ofaddOrigins() is the functionexpose which
takes a log prefix and returns a set of objects that should be con-
sidered as additional origins. Each object returned byexpose is
then marked, and its fields are inserted into thepending set.

In the next sections, we present various choices ofexpose
corresponding to different garbage-collection algorithms.

2.4.1 Mutator Barriers

Fig. 2 shows the write-barrier and allocation-barrier usedby the
mutator. The proceduremutate(source,fld,new) is called
by the mutator to mutate a pointer in the heap. The procedure
mutateAlloc(source,fld) is called by the mutator to al-
locate a new object and store it in the given object field. To collab-
orate with the collector, the mutator barriers append theiractions to
the interaction log.

When the mutator performs an assignmentsource.fld← new
with new 6= null, we say that a pointer isinstalled from
(source, fld) to new. When the object field(source, fld) is be-
hind the wavefront, we say that the pointer isinstalled behind the
wavefront. Otherwise, we say that the pointer is installed ahead of
the wavefront.

Similarly, whenever we assign a value to a field(source, fld)
containing an existing pointer, we say that the existing pointer is
deleted. If the field (source, fld) is ahead (behind) of the wave-
front, we say that the pointer isdeleted ahead (behind) of the wave-
front.

EXAMPLE 2.4. In Fig. 3 the mutation(M2) results in a pointer
from (A, f1) to B installed behind the wavefront, and the mutation
(M6) results in the pointer from(A, f3) to D beingdeleted ahead
of the wavefront.

3. The Apex Algorithm
The Apex algorithm is an instance of the parametric collector
presented in Fig. 1 and is the starting point for the derivation steps
described in the rest of the paper.

The Apex algorithm uses a technique calledrescanning. Res-
canning is a technique which given a set of objects, identifies the
object fields that were modified behind the collector wavefront. It
then returns the pointers to the objects residing in those modified
fields, which are subsequently marked and traced from. This ap-
proach is necessary toexpose reachable objects that are hidden by
a sequence in which: (i) a pointer to an object is stored in a field be-
hind the wavefront; and (ii) all other paths to the object ahead of the
wavefront are removed before the collector reaches them. Rescan-
ning provides a high degree of accuracy, since all hidden pointers
are identified precisely.

The specificexpose used by the Apex algorithm is the follow-
ing:

exposeapex(P ) = {o.f | Pi.source = o

∧ Pi.field = f ∧ 0 ≤ i < |P |

∧ Pi.kind ∈ {M, A} ∧ (o, f) ∈ W(pre(P, i))}

Given a log prefixP , exposeapex(P ) returns the current con-
tents of all of the mutated fields behind wavefront.

Note that because the execution ofexposeis performed inside
of anatomic block in the algorithm in Figure 1, the rescanning of
all of the fields ofall of the objects that were modified are scanned
atomically. This means that a pure rescanning algorithm hasvery
low concurrency.

EXAMPLE 3.1. Consider the example, interleaving of Fig. 3. The
function exposeapex(P e) atomically performs rescanning of the
fields (A, f1) and(r1, f3). This results withexposeapex(P e) =
{E}. Unless returned byexposeapex, objectE would have been
lost. Assuming there are no further mutations, the objects marked
by the Apex algorithm in this collection cycle will be:{r1, A,E}.
In future sections, we see that other (less precise) collectors will
consider additional objects as live.
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Figure 3. Example interleaving of mutations and tracing operations.
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Figure 4. Relative precision of part of the existing and newly
derived algorithms. New algorithms are shown in boldface. The
most precise algorithm is shown at the top. For readability,only
derived algorithms with abstracted wavefront are shown. Tuples are
of the form(SR, IS,FL, WC,BC).

Conceptually, Apex is very similar to the Steele algorithm [41]
algorithm, but with an accurateW definition.

In our framework, the Apex algorithm is used as the base
algorithm from which all other algorithms are derived using
correctness-preserving transformations. Fig. 4 shows part of the
derived algorithms, ordered by relative precision.

In this paper, our focus is on unifying the various collection
algorithms, and relating them in terms of precision. We showthat
our transformations are correctness-preserving, but assume that the
Apex algorithm is a correct starting point.

4. Precision of Collection Algorithms
In this section, we introduce the notion of relative precision of
concurrent collection algorithms. This allows us to formally relate
the various algorithms which are instantiated in our parametric
framework.

A correct marking algorithm must satisfy both asafetyproperty
that it marks at least all live objects, and alivenessproperty that
it terminates. These requirements can be satisfied by a variety of
correct collectors with varying degrees of precision, efficiency, and
atomicity.

The algorithmic differences between the various collectors are
manifested in the additional unreachable objects that theymark
(and thus retain). It is therefore natural to define relativeprecision
between two collectors by comparing theirmarked sets at the end
of the marking phase.

There is a trade-off between the precision of a collector andthe
degree of concurrency it provides. For example, a stop-the-world
collector trades all concurrency for obtaining maximal precision
(all unreachable objects are collected). Other algorithmsprovide
a higher degree of concurrency (finer grained atomicity), atthe
expense of retaining more unreachable objects at the end of the
marking phase.

In this paper we focus on the relative precision of algorithms
under a given predetermined kind of atomicity. That is, the atom-
icity constraints of the generic algorithm are fixed and all instan-
tiated algorithms in our parametric framework follow the same
atomicity restrictions, namely theatomic blocks used in Figures 1
and 2. The precision-reducing transformations presented in the next
section create opportunities for concurrency-increasingtransforma-
tions. Although we do not deal with concurrency transformations
which alter atomic sections, the instantiated algorithms do have a
shorter duration of these atomic sections. As future work weplan
on extending the parametric framework in this paper to include
atomicity transformations.

An algorithm in our framework consists of the skeletons of
Figures 1 and 2, instantiated with an arbitraryexpose function.
Note that in general an arbitrary choice for theexpose function
might yield an incorrect algorithm, but as we show later, allof
the expose functions used in our framework result with correct
algorithms.

The correctness of algorithms in our framework hinges on
expose exposing all hidden origins (e.g., object “E” in Exam-
ple 3.1). Intuitively, given a correct algorithm (exposingall hidden
origins), any algorithm that exposes a superset of these origins is
also a correct algorithm. In the next section we presentcorrectness-
preserving transformations that when given a correct algorithm
maintain the property that (at least) all hidden objects areexposed.

We now consider the question of the relative precision of twoal-
gorithms. Intuitively, a more precise algorithm should always mark
fewer objects. However, this isnot the case because the actual set
of objects marked depends on the specific interleaving of mutator
and collector. In fact, there exist algorithms and interleavings such
that an algorithm thatalwaysselects more objects from the muta-
tion log as origins for transitive marking will in fact mark fewer
objects during the collection as a whole.

This apparent anomaly arises because what such a notion of
precision compares is not necessarily the effect of the algorithm
but may be the effect of arbitrary interleavings. Thus, a meaningful
comparison must factor out the non-deterministic effects of partic-
ular executions.



We therefore consider algorithmC2 to be less precise when for
any given global stateit exposes more objects for marking than
algorithm C1. We therefore consider the effect ofexposeC1 on
any interaction log obtained byC2, and show that when transitive
marking is complete (whenpending = ∅), exposeC1 returns a
subset of the objects returned byexposeC2 .

DEFINITION 4.1. Given two collection algorithmsC1 andC2, we
say thatC1 is more precisethanC2, denotedC1 ⊑ C2, when given
any global state ofC2 with an interaction logl and where the set
pendingis empty,exposeC1(l) ⊆ exposeC2(l).

In the following section we present precision-reducing and
correctness-preserving transformations of algorithms inour frame-
work, and show that if the initial algorithmC1 is correct, then the
resulting algorithmC2 is also correct.

5. Correctness-preserving Transformations
In this section, we present various transformations that can be com-
bined to systematically derive safe collection algorithmsfrom the
Apex collector. For each transformation, we show that its applica-
tion iscorrectness-preservingandprecision-reducing.

Each transformation is applied across adimension. Dimensions
are the formal analogue of the basic variables in the design of a
collector as presented informally in the introduction. Specifically,
we parameterize the collector with the following dimensions:

• Wavefront: how far has the collector progressed?
• Policy: how are modified objects behind the wavefront treated?
• Threshold: how large are cross-wavefront counts allowed to

grow before they are “stuck”?
• Protection: which objects are traced to guarantee that all live

objects are found?
• Allocation: how does the collector handle newly allocated ob-

jects to ensure timely termination?

A dimension is described by an ordered partition〈P1, . . . , Pn〉
of the objects inU , where each subset of the partition corresponds
to a different manner of handling objects in the dimension.

The subsets of a partition have the property that moving an ob-
ject to a subset “to the right” yields an algorithm of lower precision.
A transformationin our framework is defined as moving an object
to the right within a partition.

Formally, the relation between subsets is such that ifi < j, x ∈
Pi, algorithmC uses partition〈. . . , Pi, . . . , Pj , . . .〉 and algorithm
C′ uses partition〈. . . , Pi \ {x}, . . . , Pj ∪ {x}, . . .〉, thenC ⊑ C′.

For each dimension, we have generalized the algorithm so that
all of the mechanisms represented by the subsets can be used
simultaneously within a collector. In some dimensions, there is
no restriction on the partitioning ofU ; for others, we specify a
restriction formally.

All theorems stated in the paper have been proved, but due to
space restrictions these proofs are provided in an online supple-
ment [43].

5.1 The Wavefront Dimension

The wavefront denotes the progress of the collector throughthe
heap. We defined the precise wavefront in Section 2.3.1: it consists
of the set of object fields that have thus far been traced by the
collector. Theexposefunction determines how to handle mutations
to the heap depending on whether they occur behind or in frontof
the wavefront.

The wavefront dimension represents different choices for the
granularity at which the collector progress is tracked. Tracking the
wavefront precisely may be inefficient because it requires per-field

information, so it is sometimes desirable to sacrifice some precision
in exchange for a more efficient implementation.

The wavefront dimension is an ordered partition of the objects
in U into:

DW = 〈FL, OL〉

where objects in theFL subset have their wavefront tracked pre-
cisely (at “Field Level”) as in Definition 2.2, while objectsin the
OL subset do not distinguish between fields within an object (and
are tracked at “Object Level”).

One could further generalize this dimension to include all pos-
sible subsets of fields for all objects, but we do not considerthis
here for simplicity of presentation.

There are no restrictions on how the objects may be partitioned
in the wavefront dimension.

5.1.1 Wavefront Abstraction Transformation

This abstracts the exact collector wavefront, and tracks the collec-
tor’s progress at the granularity of an object rather than atthe gran-
ularity of individual fields of objects. Given the wavefrontpartition,
we define the abstracted wavefront as follows:

W>(P ) = {(o, f) | (o, f) ∈ W(P ) ∧ o ∈ FL} ∪

{(o, f) | ∃f ′∈F ields : (o, f ′) ∈ W(P ) ∧

f ∈ Fields ∧ o ∈ OL}

W<(P ) = {(o, f) | (o, f) ∈ W(P ) ∧ o ∈ FL} ∪

{(o, f) | ∀f ′∈F ields : (o, f ′) ∈ W(P ) ∧

f ∈ Fields ∧ o ∈ OL}

The abstracted wavefront consists of two functions,W>(P )
andW<(P ). The functionW>(P ) over-approximates the set of
object fields behind the wavefront. The functionW<(P ) under-
approximates the set of objects fields behind the wavefront (and
thus over-approximates the set of object fields ahead of the wave-
front). Both functions are needed becauseexposefunctions that de-
pend on an object’s field being behind or ahead of the wavefront
must each use a conservative approximation.

EXAMPLE 5.1. Consider a prefix of the example interleaving of
Fig. 3 just before tracing action(T6) is performed and the field
(A, f3) is traced. For this prefixP assumingFL = ∅ we get the
following:

W(P ) = {(r1, f2), (r1, f3), (A, f1), (A, f2), (r1, f1)}
W>(P ) = {(r1, f2), (r1, f3), (A, f1), (A, f2), (r1, f1), (A, f3)}
W<(P ) = {(r1, f2), (r1, f3), (r1, f1)}

The wavefront abstraction transformation moves an objecto
from FL to OL.

THEOREM5.2. The wavefront abstraction transformation is a
correctness-preserving and precision-reducing transformation.

5.2 The Policy Dimension

Traditionally, when deciding how to protect against lost objects,
implementers have thought in terms of the three classical types of
write barriers: those of Dijkstra [21], which records the new pointer
stored into an object; of Steele [41], which records the pointer to
the object being modified; and of Yuasa [46], which records the old
pointer that was overwritten.

However, while this decomposition may seem intuitive it does
not in fact capture the essential properties of the design space in
an orthogonal manner. Therefore, we introduce two separateand
orthogonal dimensions which determine how objects are protected
and do so in a manner that allows the different mechanisms to be
composed.



In the Apex collector of Section 3, we usedrescanningas a
uniform policy for protecting all objects. The key to the simplicity
of rescanning is that it finds all pointers to traverse in an atomic
step of theexpose operator.

However, this atomicity is costly and therefore rescanningis
generally applied to some minimal portions of the memory, such as
the stacks, for which it is practical to do so. The rest of the objects
are processed incrementally from the log.

The policy dimension determines whether the modifications to
a field are found by atomically scanning the heap (called “Scan-
based Reachability”) or by examining the log (called “Log-based
Reachability”).

This dimension is an ordered partition of objects inU into

DP = 〈SR, LR〉

The objects inSR are rescanned as described previously; the ob-
jects in theLR are discovered solely by processing the log, without
accessing the contents of the heap.

There are no restrictions on how the objects may be partitioned
in the policy dimension.

5.2.1 Rescanning

In order to define anexpose function that works along this dimen-
sion, we first have to refine the simplified definition of a rescanning
collector we presented in Section 3 and parameterize it according
to the potentially imprecise wavefront and the partitionedpolicy
dimension:

exposer(P ) = {o.f | Pi.kind ∈ {M, A}

∧ Pi.source = o ∧ Pi.field = f

∧ (o, f) ∈ W>(pre(P, i)) ∧ o ∈ SR ∧ Pi.new ∈ IS

∧ 0 ≤ i < |P | ∧ (o.f) ∈ IS}

For the time being the setIS = U ; non-trivial use will be made of
the setIS below for the protection dimension.

5.2.2 Maintaining Cross-Wavefront Counts

When a field of an object is modified repeatedly, rescanning will
only see the final value when it processes the log. That is, there
may have been intermediate values stored by the mutator and sub-
sequently overwritten. We now describe a different way of discov-
ering the resulting pointers, which is based on counting thenumber
of references to an object from behind the wavefront.

In particular, we observe that if a field initially contains apointer
p0 and then has a sequence of pointersp1, . . . , pn written to it,
then rescanning will find onlypn. If we were to apply a specialized
form of reference counting, then the reference counts of pointers
p1, . . . , pn−1 would remain unchanged: they would be first incre-
mented and then decremented. In the end, only the reference counts
of p0 andpn would change, being decremented and incremented,
respectively. This means that the intermediate reference counting
operations can be ignored.

This observation is originally due to Barth [8], and is central to
the multiprocessor reference counting algorithm of Levanoni and
Petrank [33]. In our formulation, we use this approach to show how
rescanning can be replaced by log-based reachability whichkeeps
a count of references from behind the wavefront in order to identify
exactly the same objects as are found by rescanning.

Note that this isnot a general form of reference counting.
Our framework only covers tracing algorithms. In particular, since
counts are only maintained from behind to in front of the wavefront,
there can be no cycles of objects with non-zero counts.

Existing approaches will subsequently be shown to be degener-
ate cases of reference counting in which the cross-wavefront count
is a single sticky bit (expressed by the threshold dimension).

The counting-based approach has the potential advantage of
not requiring the synchronization of theexpose function; on the
other hand it may performn steps for the mutated field described
above, whereas rescanning would perform exactly one. One area
in which this tradeoff manifests itself is in the treatment of stacks,
whose high mutation rate makes them unsuitable for write barriers
– instead, they are rescanned atomically.

Mutator Count: The mutator count is the number of pointers to
an object from object fields behind the wavefront. This quantity
is computed with respect to a given wavefront. We assume that
some objects in the heap arerescanned objectsthat do not affect
the mutator count. The mutator count computation is therefore
parameterized by a set of objectsLR from which the count should
be computed. To compute the mutator count from a given log
prefixP , we define the mutator-count increment and decrement as
follows:

M+(o, P ) = |{Pi | Pi.kind ∈ {M,A} ∧ Pi.new = o

∧ (Pi.source, Pi.field) ∈ W>(pre(P, i))

∧ Pi.source ∈ LR ∧ 0 ≤ i < |P |}|

M−(o, P ) = |{Pi | Pi.kind ∈ {M,A} ∧ Pi.old = o

∧ (Pi.source, Pi.field) ∈ W<(pre(P, i))

∧ Pi.source ∈ LR ∧ 0 ≤ i < |P |}|

The valueM+(o, P ) is the number of new references intro-
duced by the mutator from object fields that are behind the wave-
front. Similarly, the valueM−(o, P ) is the number of references
removed by the mutator from object fields behind of the wave-
front. The mutator countM(o, P ) is computed by combining the
mutator-count increments and decrements as follows:

M(o, P ) = M+(o, P )−M−(o, P )

EXAMPLE 5.3. Consider the example of Fig. 3 and its correspond-
ing interaction logP e as shown in Example 2.3. Assuming that
LR = {A} andFL = U , the mutator count forB increases to1
when the pointer from(A, f1) is installed, and is decreased back
to 0 as the pointer is deleted. Therefore, at the end of the prefix
P e, M(B, P e) = 0. Note that the installation from(r1, f1) does
not increment the count, as the installation takes place ahead of the
wavefront.

Collection by Counting: Using the formulation of Section 2.2,
a counting-based collector can be instantiated using the following
expose function. We use the superscriptc to denote the fact that
this function is based on counting, and name the functionexposec.

exposec(P ) = {n | n = Pi.new ∧M(n, P ) > 0

∧ n ∈ IS ∧ 0 ≤ i < |P |}

EXAMPLE 5.4. Consider the example of Fig. 3. AssumingLR =
U , FL = U , the functionexposec(P e) = {E}.

However, since counting depends on the wavefront, taking a less
precise wavefront can result with more objects being exposed. For
example, takingFL = U \ {r1} results withexposec(P e) =
{E, B} as the count forB is incremented on the installation from
(r1, f1) that is behind the (overapproximated) wavefront, but can-
not be decremented when the mutationr1.f1 = null takes place,
as(r1, f1) is not behind the (underapproximated) wavefront.

Note that using a less precise wavefront resulted with addi-
tional objects exposed by the algorithm. In particular, in this case
exposec(P e) = {E, B} is a superset of the origins exposed by
Apex algorithm on the same prefix as (see in Example 3.1).

We now formally define anexpose function that works along
theDP dimension:

exposerc(P ) = exposer(P ) ∪ exposec(P )



The following theorem shows that moving along theDP dimen-
sion is a precision reducing transformation.

THEOREM5.5. The rescanning to counting transformation, mov-
ing an object fromSR to LR, is a correctness-preserving and
precision-reducing transformation.

It is interesting to note that in the special case in which a precise
wavefront is maintained for all objects, and under an infinite muta-
tor count, the precision of any partition along theDP dimension is
identical.

5.3 The Threshold Dimension

The threshold dimension represents different choices for the pre-
cision of maintaining the mutator count introduced in the previous
section. In real systems, these counts are usually very small. There-
fore, it would be wasteful to have a very large reference count per
object.

The threshold limits the mutator count to a maximum value, at
which it “sticks” and is not subsequently decremented. Thisallows
counts to be implemented with a fixed (small) number of bits while
still maintaining the correctness properties provided by reference
counting.

The threshold dimension is an ordered partition of the objects
in U into:

DT = 〈C∞, . . . , Ck, . . . , C1〉

where the subsets represent the count with successively less and
less precision, which leads to collectors which are successively less
precise, as we will show below. There are no restrictions on how the
objects may be partitioned in the threshold dimension.

5.3.1 Abstracting Mutator Count

The mutator countM(o, P ) can be abstracted to range over an
interval [0, k) and∞, defined as follows:

Mk(o, P ) =

�
∞, ∃i.M(o, pre(P, i)) ≥ k;
M(o, P ), otherwise.

To the best of our knowledge, all existing algorithms use the
degenerate case wherek = 1 and the mutator count is either0 or
∞, in which case the count is simply a flag that indicates whether a
pointer to the object has been stored behind the wavefront. That is,
immediately after a pointer to an object is stored behind thewave-
front, the mutator count is set to a value that cannot be decremented.

Thus we will use this special case when presenting transfor-
mations to pre-existing algorithms such as those of Dijkstra, but it
should be noted that 2- or 3-bit counts (k = 3 or k = 7) could
be implemented efficiently and would likely provide most of the
potential increase in precision available in practice.

EXAMPLE 5.6. Consider the example of Fig. 3 and its correspond-
ing interaction logP e. Assuming thatLR = U \ {r1}, IS = U ,
andFL = U , the functionexposec(P e) usingM1(o, P ) exposes
B sinceM(B, pre(P e, 3)) = 1.

We now show that the mutator count abstraction transformation
preserves correctness and reduces precision.

THEOREM5.7. The mutator count abstraction, moving an object
fromCk toCk−1 is a correctness-preserving and precision-reducing
transformation.

5.4 The Protection Dimension

Fundamentally, the safety problem of a concurrent collector is to
prevent the mutator from “hiding” an object by moving pointers
to that object that are ahead of the wavefront to locations behind
the wavefront, and then deleting all paths to the object ahead of

the wavefront. Therefore, safety can be guaranteed either by con-
sidering pointers installed behind the wavefront (installation-based
protection), or by considering pointers deleted ahead of the wave-
front (deletion-based protection).

Previously known collectors treat all pointers uniformly:so-
called incremental update collectors (such as that of Dijkstra) use
installation-based protection; snapshot collectors (such as that of
Yuasa) use deletion-based protection. However, our framework al-
lows the two approaches to be mixed, subject to an additionalre-
striction.

The protection dimension is an ordered partition ofU into an
Installation SetIS and a Deletion SetDS:

Dπ = 〈IS,DS〉

The objects inIS are said to beI-protected, while the objects in
DS are said to beD-protected.

The partition is restricted such that every live D-protected ob-
ject is reachable from a sequence of D-protected objects (this is
formalized below).

5.4.1 Snapshot-Based Collector

A snapshot-based collector marks as live all objects that were
reachable at the start of the collection cycle; objects thatbecome
unreachable during the collection cycle are still treated as live [46].

Using the formulation of Section 2.2, a snapshot-based collector
can be defined using the followingexpose function. We use the
superscriptd to denote the fact that this function is based on
deletion, and name the functionexposed.

exposed(P ) = {o | Pi.kind = M ∧ Pi.old = o

(Pi.source, Pi.field) 6∈ W<(pre(P, i)) ∧ o ∈ DS ∧ 0 ≤ i < |P |}

Given a log prefixP , exposed(P ) returns all objects inDS that
were pointed-to by a field that was assigned a new value (possibly
null) before its was scanned by the collector.

EXAMPLE 5.8. Consider the example of Fig. 3. Assuming that
DS = U , andFL = U , exposed(P e) = {B, C, D}.

5.4.2 Combinations of I-protected and D-protected Objects

Using the formulation of Section 2.2, a collector combiningprotec-
tion policies at the granularity of objects can be defined using the
following expose:

exposercd(P ) = exposerc(P ) ∪ exposed(P )

More importantly, we introduce a transformation which changes
an object from I-protected to D-protected.

However, we must place an additional constraint on which ob-
jects in a given graph can be transformed from I-protected toD-
protected. To guarantee that an object can be safely transformed
from I-protected to D-protected, the object has to be transitively
protected by a path of D-protected objects.

DEFINITION 5.9 (Valid Protection Sequence).A valid protection
sequence to an objectx is a sequence of objectso1, . . . , ok = x
such thato1 is a root object, and for every1 ≤ i < k, there is a
fieldf of oi such thatoi.f = oi+1 andoi ∈ DS.

DEFINITION 5.10 (Eligibility). Given an objectx ∈ IS, we say
that x is eligible for membership inDS if there exists a valid
protection sequence tox.

Transformation along the protection dimension is significantly
more complex than previous transformations because the trans-
formed algorithm makes decisions in itsexpose function which
may be locally more precise and yet are globally less precise. In
particular, if a pointer to objecto is stored behind the wavefront,



ando is I-protected, theno will be exposed. But ifo is D-protected,
it will not be exposed. But since the object is D-protected, it will
either be discovered directly or through an overwritten pointer in
its protection sequence.

In practice, all known algorithms assume a strict partition: either
all objects existing at the start of a collection cycle are inDS or
they are inIS. In our framework it is possible to have a mix of
the two. For example, we can use static knowledge such as type
information to select all leaf objects and place them inIS (and
hence all other objects would then belong toDS).

In order to consider relative precision of algorithms with non-
local effects, we need to refine Definition 4.1:

DEFINITION 5.11 (Weak Precision).Given two collection algo-
rithmsC1 andC2, we say thatC1 is weakly more precisethanC2,
denotedC1 E C2, when given any global state ofC2 with an inter-
action logl and where the setpendingis empty,exposeC1(l)

⋆ ⊆
exposeC2(l)

⋆.

That is, the transitive closure of the objects exposed byC1 is a
subset of the transitive closure of the objects exposed byC2.

Weak precision is implied by the strong precision of Defini-
tion 4.1, which only consider the exposed objects and not their tran-
sitive closure. Since the previous transformations have been shown
to be strongly precision reducing, they are also weakly precision
reducing.

Note that there is a direct analogue between strong and weak
precision, and the strong and weak white-black invariants of incre-
mental update and snapshot collectors. In incremental update col-
lectors all objects are I-protected; in snapshot collectors all objects
are D-protected.

Under this refined definition, we show that the protection trans-
formation is weakly precision reducing.

THEOREM5.12. Given an eligible objectx ∈ IS, changing
Dπ from 〈IS,DS〉 to 〈IS \ {x}, DS ∪ {x}〉 is a correctness-
preserving and weakly precision-reducing transformation.

5.5 The Allocation Dimension

To guarantee termination, an algorithm must provide a certain
level of progress on each collector marking step. However, when
objects are allocated white (unmarked), the collector may need
to trace through these newly allocated objects. In the worst-case
the collector will trace through all of the newly allocated objects,
precluding predictable termination with respect to the live data at
the start of the collection cycle.

The parametric collector of Fig. 1 uses a non-deterministic
choice to exit the main collection loop into a synchronous termina-
tion phase. This phase guarantees termination by atomically tracing
from all remaining origins, but therefore introduces an unbounded
atomic phase which is undesirable.

In this section, we explore alternatives that provide a more
predictable termination without requiring an unbounded atomic
phase. This is of particular importance for real-time collectors
where it is vital to guarantee worst-case pause time.

A more predictable termination can be achieved by avoiding
the need for tracing through newly allocated objects. Typically,
objects have been allocated white (require tracing-through) or black
(assumed to be marked, and thus require no tracing-through). We
consider an additional color (yellow) that provides an intermediate
point in the trade-off space between precision and termination.

The allocation dimension is an ordered partition of allocated
objects fromU into:

DA = 〈WC,Y C, BC〉

In our framework, without restriction, it is assumed that all
newly allocated objects are considered to be members ofIS, that
is, they are I-protected objects.

5.5.1 White Objects

The first approach is well-known and is the least conservative
towards marking allocated objects. Objects are allocatedwhite, that
is, unmarked and unprocessed.

The Apex algorithm allocatesall objects white. As previously
mentioned, the negative impact on termination when allocating
white is that the collector may need to trace through these objects.
Allocating white is the primary reason for allowing the collector
to non-deterministically enter the synchronous termination phase
following thewhile loop in Fig. 1. It could enter that phase after a
fixed number of iterations of the while loop. In the Apex algorithm,
this would result in the worst-case pause time being proportional to
the size of the heap.

Unpredictable pause times in the termination of algorithmsthat
allocate white, which is common for incremental update collec-
tors, have been shown experimentally to lead to significant varia-
tion in termination time, making them unsuitable for real-time ap-
plications.

5.5.2 Yellow Objects

The termination problem introduced by white allocated objects is
that the collector needs to trace through these objects to find other
objects that are allocated white.

In order to avoid tracing through these white allocated ob-
jects, we introduceyellowobjects. Yellow objects are allocated un-
marked, but any references to objects inIS stored into a yellow
object will be treated as if the yellow object is behind the wave-
front, effectively, detecting references stored into thisyellow ob-
ject. In particular, it means that it is not possible for the mutator to
create chains of unmarked allocated objects that the collector must
“chase”.

Yellow objects are not to be confused with grey objects, where
the object is marked upon allocation yet the wavefront is notup-
dated [30]. Unlike grey objects and similarly to white objects, yel-
low objects can die during the collection cycle.

The WC to Y C transformation can significantly reduce the
termination problems associated with allocating white: iteliminates
the requirement on the collector to trace through a yellow object. To
that end, when the collector encounters an unmarked yellow object,
it marks the object, but unlike white objects, does not placeits fields
in pending.

In the special case where all objects are allocated yellow pre-
dictable termination can be achieved without the synchronous ter-
mination phase after the while loop.

While it is possible to place yellow objects inSR, they are
meant to be inLR. In our framework, placing some of them in
SR could be thought as a way to process some allocated objects
atomically and some incrementally. Placing all of them inSR
would effectively mean scanning through these objects atomically
and that would make the worst-case pause time similar to thatof
white allocated objects.

To intuitively understand why theWC to Y C transformation
leads to a less precise algorithm, consider the following simple
example.

EXAMPLE 5.13. Consider an objectA for which theWC to Y C
transformations is applied. Now consider the following sequence
of operations: (i) allocate the objectA; (ii) store a pointer fromA
to an unmarked objectB ∈ IS; (iii) delete all other pointers toB
except the pointer fromA; (iv) delete all pointers to the objectA,
makingA unreachable.



After the objectA becomes unreachable in the last step, ifA
is treated as a yellow object, objectB will be retained. However,
objectB will not be retained ifA is allocated white.

THEOREM5.14. TheWC to Y C transformation is a correctness-
preserving and precision-reducing transformation.

5.5.3 Black Objects

Termination predictability can be further improved by taking al-
located objects out of consideration and allocating them asblack.
Allocating objects asblack means that these objects are assumed
to be live for the current collection cycle. Informally, such objects
could be thought of as yellow objects which are allocated marked.

Moving an object fromY C to BC will lead to even less work
for the collector as it does not need to do additional work for
the object. Real-time collectors such as Metronome [4] choose to
allocate all objects black.

THEOREM5.15. TheY C to BC transformation is a correctness-
preserving and precision-reducing transformation.

6. Collector Instantiations
In this section, we explore a small subset of the space of concur-
rent collection algorithms along the dimensions of Section5. The
space we consider is depicted in Fig. 4. We will typically explore
algorithms at the end points of a dimension. That is, we consider
the sets to be eitherU or ∅. For simplicity of presentation, we as-
sume that all derived algorithms use an abstracted wavefront (see
Section 5.1.1) and that the mutator count is abstracted withk = 1.

We first instantiate several collectors which are very similar to
some of the well-known algorithms and we show where they fit into
the lattice. We then discuss several new practical algorithms. The
names of the new algorithms are depicted in boldface in Fig. 4.

In our parametric framework constructing new algorithms isa
matter of choosing values over the various dimensions. For exam-
ple, only recently a collector which uses a precise wavefront defi-
nition has been introduced in [18]. We can instantiate similar col-
lectors which use a precise wavefront definition by settingFL to
U .

In the figure, we use a tuple of the form(SR, IS, FL, WC,BC)
to define the point of the algorithm along the dimensions of Sec-
tion 5. The values for other sets along each dimension are defined
as complements using the values in the tuple, e.g., if WC=∅ and
BC= ∅, then YC=U .

In the tuple, we use the setstacks to denote the set of stack
objects, andA to denote the set of newly allocated objects. Addi-
tionally, every edge represents a precision order relation(strong or
weak depending on which algorithms we are comparing).

From a performance engineering point of view, it is important
to choose the values across each dimension appropriately. This by
itself presents an important item for future work : which concurrent
collector should be used based on the particular application char-
acteristics. For example, it may be known that certain fieldshave
a high mutation rate and therefore it is preferable to perform res-
canning on these fields, rather than counting from them. Also, it
may be known that certain types of objects tend to die young and
therefore it may be preferable to allocate these as white objects.

6.1 Classical Algorithms

In this section, we show how variations of well-known algorithms
are expressed in our framework. It should be noted that these
are adaptations to our concurrency model. That is, the algorithms
follow the predefined skeleton of Fig. 1. The classical algorithms as
presented in [30] are usually more elaborate due to complications
arising from a non-atomic write barrier.

A Steele-style algorithm can be derived from the Apex collector
by applying thewavefront abstractiontransformation to all objects.
Such transformation makes sense when the cost of tracking the
progress of the collector at the field level outweighs the benefits
of increased precision.

A Dijkstra-style algorithm is derived from the Steele-style col-
lector by moving all objects except stacks along theDP dimension,
that is, fromSR to LR. It is less precise than the Steele-style col-
lector. The transformation makes sense when a significant amount
of heap behind the wavefront has been mutated by a relativelysmall
number of mutations and rescanning will require atomic processing
of that memory.

The Yuasa-style algorithm is the least precise of the three ex-
isting algorithms, it allocates all objects black (i.e. BC=U) and in
addition all existing objects areD-protected.

6.2 New Algorithms

Fig. 4 contains several new algorithms of practical importance. In
this section we informally describe some of those new collectors.

The Steele-YC collector is derived from the Steele-like algo-
rithm by applying theWC to YCtransformation to all allocated
objects. This algorithm reduces the likelihood that the synchronous
termination phase will be required, thus addressing the main issue
of algorithms that use a Steele-like write barrier (regardless of the
granularity of rescanning) such as [11, 7]. The disadvantage of this
collector is that it might retain more unreachable objects than a pure
Steele-like collector.

The Steele-BC algorithm makes an even more conservative as-
sumption in regards to allocated objects, and allocates them as
black. This leads to an opportunity to reduce the work for termi-
nation even further while still retaining relatively high precision
for existing objects. This algorithm could be beneficial forappli-
cations where most of the allocated objects are long lived (i.e. do
not die during the collection cycle), such as the mature space of
generational collectors.

The precision of the Steele-BC algorithm can be reduced further
(and hence the potential for concurrency is increased) by moving
along theDP dimension, moving all objects but stacks fromSR to
LR resulting with the Dijkstra-BC algorithm.

The Steele-D algorithm, derived from Steele by moving “to the
right” on theDπ dimension. The algorithm Steele-D-YC which is
derived from Steele-D speeds up termination of the collector but at
the cost of reduced precision due to yellow allocated objects.

7. Related Work
In previous work [44] we observed a common structure between
concurrent collectors and suggested that they can possiblybe
viewed as instances of a more abstract collector. However, the
paper effectively contained two very complex abstract algorithms,
and a few discontinuous “transformations” where their application
was only described informally. Moreover, the resulting collectors
could not be related.

In [10], separation logic is used to prove the correctness ofa
stop-the-world copying garbage collector. However, with the ex-
tension of separation logic to concurrency [14], it may be possible
to formally prove useful algorithms generated from this work.

Another work modeling collectors is [12]. In this paper, theau-
thors use CCS to specify a stop-the-world collector, and tempo-
ral logic to specify its liveness and safety properties. However, the
presented algorithm is not concurrent and although the collector is
specified in CCS, there is no attempt at verifying the presented al-
gorithm. The authors do note however that proving the correctness
of a concurrent collector would be even more challenging.

Several works formally verify the correctness of Ben-Ari’sand
Dijkstra’s algorithms [9, 21]. The focus of Ben-Ari’s algorithm



is correctness rather than efficiency. Ben-Ari’s algorithmhas made
further simplifications to Dijkstra’s algorithm with the sole purpose
of having an algorithm which is easier to prove. However, both
of these algorithms are not practical because their worst-case time
complexity is quadratic in the size of the heap.

In [38], Ben-Ari’s algorithm is verified for both single and
multi-mutator systems using Owicki-Gries’s logic in the HOL theo-
rem proving system. In the work of [25], again Ben-Ari’s algorithm
is verified using the PVS theorem proving system. Similar work
has been done by [39], where he proves Ben-Ari’s algorithm but
this time in Boyer-Moore’s theorem prover. In [28], Dijkstra’s algo-
rithm has been verified again in the PVS theorem prover. The paper
of [15], proves Ben-Ari’s algorithm using the B and Coq systems.
These works are complementary to ours in the sense that they con-
centrate on formally proving a particular collector algorithm. The
works of [19, 20] define a framework to describe generationaland
conservative collectors. However, it only deals with stop-the-world
algorithms. In the future, we plan on extending our work to deal
with moving collectors and it may be possible to integrate some of
the ideas of [19].

Another complementary approach is the work of [36] which
uses the notion of evolving specifications. It starts with a simple
and non-executable declarative specification and extends it to a
more complicated and executable design. This strategy doesnot
explore an algorithm space nor does it provide any insight onthe
relationships between algorithms. However, it presents a structured
approach for deriving correct algorithmic specifications starting
from simpler and more intuitive models.

Another transformational approach to collectors can be found
in [20]. The authors use the SETL wide spectrum language to
specify an initially correct and inefficient implementation of a stop-
the-world collector. Through loop fusion and formal differentiation
transformations, they obtain a more precise implementation of a
well-known stop-the-world algorithm. The transformations in our
work are specific to the world of concurrent marking collectors.

8. Conclusions and Future Work
In this paper we presented a parametric framework for deriving var-
ious correct concurrent garbage collection algorithms. Our frame-
work is based on an initial algorithm serving as a starting point for
the derivation process, and a set of correctness-preserving object-
level transformations. We explore a space of concurrent GC algo-
rithms by repeated application of our transformations. We also in-
troduce a definition of relative precision which allows us tofor-
mally relate algorithms obtained in this framework.

In the future, we plan on extending this work to automatically
derive practical synchronization skeletons from our trace-based
collectors, as well as relaxing the atomicity constraints of the cur-
rent parametric algorithm.
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A. Proofs
In the following, we abuse notation and use the Kleene star to
denote the transitive closure of objects reachable from a given set
of objects. For example, we writeS∗ to denote all objects that are
transitively reachable from the set of objectsS.

A.1 Collector Invariants and Proof Methodology

The correctness of algorithms in our framework hinges onexpose(l)
exposing all hidden origins. An algorithm in our framework is cor-
rect if and only if the following invariants hold immediately after
computing the set of origins by performingexpose(l):

I-Invariant expose(l) contains all unmarked objects inIS pointed-
to by a marked object.

D-Invariant any unmarked object inDS is either returned by
expose(l) or is reachable from aDS object inexpose(l) by
a path of objects inDS.

These invariants imply the intuitive notion of the algorithm
marking a superset of all objects which are required to determine
correct transitive reachability.

Our proofs work by showing that the transformations preserve
the above invariants. We will denote asC1 the algorithm before the
transformation is applied to a single objecto, andC2, the algorithm
after the transformation is applied. The proofs use the correctness
of C1 to show the correctness ofC2. Moreover, the correctness
proofs also show thatC1 is more precise thanC2.

We compare the executions ofC1 andC2 starting from the same
initial heapH , sequence of mutationsM , and set of rootsR.

Besides certain interleavings in the white-to-yellow transforma-
tion, in our framework, algorithms only differ in theirexpose(l)
function and therefore we compare their executions by compar-
ing the correspondingexpose(l) at the point of divergence of the
two traces (that is, whenpending is empty). For all transforma-
tions except white-to-yellow, the divergence point occurswhen the
mark() procedure has finished and the algorithms proceed into
theaddOrigins() procedure and computeexpose(l).

LetexposeC1 denote the origins computed byC1 andexposeC2

the origins computed byC2 with the same logl.
Certainly, if exposeC1 = exposeC2, then the algorithms do

not diverge and they can continue to execute in a lock-step. If
throughout the entire execution, the algorithms do not diverge, then
the execution ofC2 is identical to the execution ofC1 and hence is
shown to be correct. Intuitively, in this case, the algorithms are of
the same precision.

However, ifexposeC1 6= exposeC2, the following invariants
hold (we use the subscriptsC1 andC2 to denote the various sets in
C1 andC2 respectively):

• markedC1 = markedC2

• the I-invariant and the D-invariant hold forC1

The first step to showing thatC2 is correct is proving that I-
and D- invariants hold forC2 at the point ofexpose. For all but
the protection and white-to-yellow transformations, we prove this
by showing thatexposeC1 ⊂ exposeC2. This also shows that
C1 ⊑ C2.

The second step of the proof involves reasoning about the con-
tinuation ofC2. That is, we need to find a corresponding witness
trace which is also correct so that at the next point ofexpose,
we can repeat this process. In all proofs except the protection and
white-to-yellow transformations, the correct witness trace is basi-
cally the restart ofC1 with theorigins resulting fromexposeC2 of
C2. TheC1 algorithm can be restarted with the new state, because
the I- and D- invariants are preserved by the transformations.

Due to space restrictions we only include the proof of the wave-
front transformation in this paper, other proofs follow thesame
methodology and can be found in [43].

A.2 Wavefront Abstraction

The following proof shows the correctness of the wavefront ab-
straction transformation which takes a single objecto ∈ FL in C1



and moves that object so thato ∈ OL in C2. It also shows thatC2

is less precise thanC1 according to 4.1.
Proof:(Theorem 5.2) (sketch)

The application of this transformation on objecto potentially
affects the marking decision for heap objects other thano, but does
not affect the marking decision foro itself. This is because the
transformation takes effect once objecto ∈ marked and at least
one(o, field) ∈ W>.

For this transformation, the divergence point always occurs after
a call toexpose in addOrigins().

Let P be the common prefix ofC1 andC2 just beforeexpose is
called with an interaction logl. At the point after the call toexpose
whereexposeC2 6= exposeC1, the computationM−(x,P ) for
any objectx ∈ IS indicates that any pointer installation tox into o
will be returned byexpose, provided that at least one(o, field) ∈
W and not all fields ofo ∈ W at the time of the mutator operation.
When objecto is in that state, no destruction of a pointer tox in
o can affectM−(x, P ). This is indicated by the requirement for
(Pi.o, Pi.field) ∈ W<(pre(P, i)) in M−(x,P ).

In addition, operations on objects inDS also affect the return of
expose. If a mutator destroys a pointer to an objectd ∈ DS such
that(o, field) ∈ W and(o, field) /∈ W<, then this pointer would
not be returned byexposeC1, but will be returned byexposeC2.

In the case whereo ∈ SR, due to installations ofIS objects
into o, it is possible that more rescanning work will be done in
exposeC2 for o. However, processing the additional fields can only
return a superset of the objects returned byexposeC1.

It is worth noting that althoughexposeC1 ⊂ exposeC2, we
cannot detect whether the objects inexposeC2 - exposeC1 are
unreachable. We have constructed examples which show that it is
possible for all such objects to be unreachable or for all objects to
be reachable or for the mix of the two to occur. However, because
exposeC1 ⊂ exposeC2, we can deduce that at the point in the
trace right after the call toexpose in C2, the I- and D- invariants
are satisfied. This is clear because the invariants are satisfied at the
same point inexpose of C1 and by the subset relation we can now
trivially conclude that they also hold at the correspondingpoint in
C2 since adding pointers cannot cause an invariant violation.

Because the invariants are satisfied at this point, we can restart
the execution ofC1 with the origins as returned byexposeC2.
Additional origins cannot violate the invariants and we therefore
consider this to be a safe witness trace. We compare the possible
continuations ofC2 to the restarted trace ofC1 with additional
origins. However, from this point on, all fields ofo ∈ W< and
o ∈ marked. That is,o will behave identically in both, the set
of restartedC1 traces versus the set of traces representing the
continuations ofC2. Subsequently, the traces of the safe restarted
algorithm ofC1 are exactly the same as the continuations ofC2

and hence we can deduce thatC2 is correct.
The effect of this transformation is manifested at the first point

of divergence (wherepending(C2) is empty) whereexposeC1 ⊆
exposeC2. In any subsequent points wherepending(C2) is empty,
exposeC1 = exposeC2 which is the necessary condition to estab-
lish thatC1 ⊑ C2. However, the converse statement clearly does
not hold, that is,C2 6⊑ C1.
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