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Abstract

Constructing correct concurrent garbage collection dlgms is
notoriously hard. Numerous such algorithms have been gezho
implemented, and deployed — and yet the relationship antwrg t

in terms of speed and precision is poorly understood, and the
validation of one algorithm does not carry over to others.

As programs with low latency requirements written in gadsag
collected languages become part of society’s missiorcatitn-
frastructure, it is imperative that we raise the level offaence in
the correctness of the underlying system, and that we utaahets
the trade-offs inherent in our algorithmic choice.

In this paper we present correctness-preserving transfoyns
that can be applied to an initial abstract concurrent garlcaec-
tion algorithm which is simpler, more precise, and easigirtve
correct than algorithms used in practice — but also moreresipe
and with less concurrency. We then show how both pre-exgistirdl
new algorithms can be synthesized from the abstract atgority
a series of our transformations. We relate the algorithmsiddly
using a new definition of precision, and informally with respto
overhead and concurrency.

This provides many insights about the nature of concurrent
collection, allows the direct synthesis of new and usefgbathms,
reduces the burden of proof to a single simple algorithm,laysl
the groundwork for the automated synthesis of correct coant
collectors.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming; D.2.4 [Program Verificatiofy D.4.2 [Storage Man-
agement garbage collection

General Terms Verification, Algorithms

Keywords concurrent garbage collection, concurrent algorithms,
verification, synthesis

1. Introduction

As garbage-collected languages like Java and C# becomeandre
more widely used, the long pauses introduced by traditisyat
chronous (“stop the world”) collection are unacceptableniany
domains. This is true both at the high end, where the colleaif
multi-gigabyte heaps causes very long pauses, and at therdw
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where systems are used for real-time, embedded, and sqmbr a
cations requiring very low latency. As a result, concurremitec-
tors are now available in most major production virtual niaes.

However, concurrent collectors are extremely complex and
error-prone. Since such collectors now form part of thetéuis
computing base of a large portion of the world’s missiornicai
software infrastructure, such unreliability is unaccefga

The study of concurrent collectors began with Steele [41], D
jkstra [21], and Lamport [31].

Concurrent collectors were quickly recognized as paradtgm
examples of the difficulty of constructing correct concuatral-
gorithms: Steele’s algorithm contained an error which haseu
quently corrected [42], and Dijkstra’s algorithm contalran error
discovered and corrected by Stenning and Woodger [21] gEpli
and Leroy developed a multiprocessor collector for ML [238{ieh
was subsequently found to contain an error [22]. Furtheemor
some correct algorithms [9] had informal proofs that wenenfi
to contain errors [37].

Much later, Yuasa [46] introduced the shapshot-based algo-
rithm, which is conceptually simpler and trades earliemieation
and increased concurrency for reduced precision.

Many additional incremental and concurrent algorithmsehav
been introduced over the last 30 years [30, 1, 2, 3, 4, 5, 6,.3,11,6,
17,24, 26, 27, 29, 32, 34, 35, 40, 45], but there has been itey |
experimental comparison of the algorithms and no formalystf
their relative merits. While there is now a well-establigtieag
of tricks” for concurrent collectors, each algorithm coraps them
differently based on the intuition and experience of thegtes.
However, because of the complex interactions of the inutsia
required by the different “tricks,” many potential combiiioas of
techniques are not used, leading to an underexplored degape.
Furthermore, since each algorithm is different, a coressrproof
for one algorithm cannot be re-used for others.

All concurrent collectors must decide how to answer theofell
ing basic questions:

e Where is the collector in its progress through the heap?

e Which objects must be traced to guarantee that all live ¢bjec
will be found?

e How does the collector terminate in spite of allocation?

e Which interleavings are allowed between the mutator and the
collector?

Our long-term research agenda is to be able to generatelylyova
correct concurrent garbage collectors to meet the pasticeeds
of the different target systems with respect to latencyughput,
and space consumption, from a simple base algorithm.

In previous work [44] we hypothesized that the way in which
the above questions are answered could be expressed dsrtrans
mations of a single base algorithm, informally describadessuch



transformations, and evaluated their relative perforraagxperi-
mentally.

In this work we substantiate that hypothesis: we presemgesi
algorithm (which we call thé\pexalgorithm) and a set of compos-
able transformations corresponding to each of the abovstigus.
Each transformation can be applied to arbitrary subsetkeobb-
jects, or to restricted subsets for which we present prédoiseula-
tions.

Transformations can be applied at the granularity of a singl
object in the heap. This allows enormous flexibility sinciedent
transformations can reliably be applied to different ot§etepend-
ing on their characteristics.

Furthermore, we formalize for the first time the notion of the
relative precisiorof concurrent collectors, and express the transfor-
mations as correctness-preserving and precision-regludia also
discuss informally how the reduction in precision providisgful
tradeoffs in terms of implementation cost, speed of coremrg,
and level of concurrency.

Our transformational approach yields a wide range of algo-
rithms. We show derivations for some well-known existingaal
rithms, and also derive some new algorithms which we expéct w
have desirable properties in practice. In particular, @megaliza-
tion and formalization of the tradeoff between incremeniadate
and snapshot-at-the-beginning approaches allows a nppedach
to newly allocated objects which yields high precision cored
with rapid termination.

The contributions of this paper are:

¢ A formal framework for describing concurrent garbage avlle
tion algorithms;

¢ The simple “Apex” algorithm from which all others are dexye

¢ A set of transformations that can be applied to it to yield an
enormous number of potential algorithms with differentgpre
sion, concurrency, and efficiency properties;

¢ A formal definition of what constitutes relative precisiof o
concurrent collectors;

o A proof of correctness for the transformations, which amsh

to be precision-reducing (while improving other aspectthef

algorithm);

The application of the methodology to yield incrementalated

collectors in the styles of Dijkstra and Steele, snapshii¢co

tors like that of Yuasa, as well as previously unknown algo-

rithms with high precision, rapid termination, and high cor

rency.

This work is presented in the context of a mark-and-sweep
style of collector. While we show the synchronization wittet
sweep phase, we do not consider the details of its implerienta
which contains a number of its own complexities. We have also
simplified the design space by using a write barrier whicliviggs
atomic. This corresponds to some but not all implementatised
in practice (for instance on a uni-processor safe pointdastial
machine). So in general some manual transformation mdybstil
required to achieve desired performance in the resultipgrgihms.

A key aspect of this work is thenodularizationof the proof
obligations. Although we have not yet proved the correctroéshe
Apex collector, we have proved the correctness of a broaétyar
of transformations needed for the creation of an efficigg@thm.
This breaks the requirements for the creation of a corrgctrdhm
and implementation into small modular proof componentsctvhi
can be re-used across an enormous range of algorithms; tiadine
requiring a monolithic proof of each new algorithm.

2. A Parametric Concurrent Collector

In this section we present a parametric concurrent cotlecigo-
rithm that is used to instantiate all of the algorithms in rame-
work. The parametric algorithm is parameterized by a famcti
calledexposehat determines how the collector handles objects that
may be “hidden” due to concurrent mutations.

The exposefunction determines which objects should be used
as starting points for additional tracing, and is based oogaof
mutator and collector operations. This log is the formallagae
to the information captured by the write barrier (see e3f), Bec
8.2]) in real-world implementations.

2.1 A Trace Modd for Concurrent Collectors

We model the heap of a program that uses a (fixed) set of field
identifiers Fields = {f1,..., fr} as an (unbounded) set of ob-
jects AL C U (wherel{ is the infinite universe of all objects) and

a functionh : AL — Fields — (AL U {null}) mapping fields

of allocated objects to their values, which may be othercalied
objects or the designated valoall.

For convenience, we usgj . f; to denote the valug(obj)(f;).

All reachable objects are reachable from a finite seRaf AL
root objects, denotetboty, . .., rootg.

For the time being we assume that stack frames are heap-
allocated objects — some systems, especially for fundtitama
guages are in fact implemented in this way.

A global state of the program consists of: (i) the heap; (i§ t
state of the mutator; (iii) the state of the collector. We widtthe
mutator as a sequence of allocations and mutations of peioter
a given heap. The state of the mutator is its position in theesece
of allocations and mutations. The state of the collectosixts of
an assignment of values to all its variables.

A program trace is a potentially infinite sequence of program
global states, where sequences defined in a standard way as a
map from natural numbers to an alphabetWe denote the empty
sequence by. Given a sequencé = Sy, S1,..., we define its
finite prefix P of length |P| = k, to be the firstk letters in the
sequenceso, S1, ..., Sk—1, and denote it byre(S, k).

Given a finite sequence preflR and a sequencg, we denote
the concatenation aP and.S by P e S. Similarly, given a finite
sequence prefi and a letterr € X, we denote byP e 7 the
concatenation of andr.

Our algorithm uses ainteraction logto record information
about the combined behavior of the collector and the mutatos
log is used by the collection algorithm to select the obj¢ctbe
marked. A log of the interleaving of mutator/collector cgtons
is natural for a concurrent collector because it closelycimed the
use of write barriers (see Fig. 2) in practical implementagi the
function of the write barrier is to synchronize the mutatdttvthe
collector, which in some collectors is done using a log otegi

The interaction log is a sequence of log entries of the falgw
kinds: (i) atracing entry recording a tracing action of the collector
as it traverses the heap during the marking phase; filugation
entry recording a pointer redirection action by the mutafi@y an
allocation entry recording an allocation of a new object by the
mutator. This is formally defined as follows:

DEFINITION 2.1. Alog entryis a tuple(k, source, fld, old, new) €
{T,M, A} x AL x Fields x (AL U {null}) x (AL U {null})
where:

¢ [ identifies the kind of action as one of tracing, mutation, or
allocation, denoted by, M, andA, respectively.
source is the object affected by the action.
fld is the field ofsource affected by the action.
old is the value of the fieldource. fid prior to the action.

[ ]
L]
[ ]
® new is the value okource. fld subsequent to the action.



collect() {
atomic
marked «— {rooti,...,rootr}
pending — Uy cmarkeq Ji€lds(z)
log «— €

do {

mar k()
addOri gi ns()
} while (?)

atomic
addOri gi ns()
mar k()

sweep()

mar k()
while ( pending # ()
(obj, fld) < removeElement( pending)
atomic
dst < obj. fld
log < log & (T, 0bj, fld, dst, dst)
if (dst#null Adst & marked){
marked «— marked U {dst}
pending «— pending U fields(dst)

}
}

addOrigins() {
atomic
origins «— expose(log) \ marked

marked <— marked U origins
pending «— pending U (UwEOT'igins fields(:v))

}

Figurel. Parametric Mark-and-Sweep Collector.

nut at e( source, fld, new) {
atomic
log < log e (M, source, fld, source. fld, new)
source. fld — new

}

nut at eAl | oc( source, fld) {
atomic
new < al | ocat e new obj ect
log < log @ (A, source, fld, source. fld,new)
source. fld — new

}

Figure2. Mutator write-barrier and allocation-barrier.

Tracing actions do not change the structure of the heapefirer
old = new for all tracing entries. Allocation actions allocate the
objectnew, which must not appear previously in the trace.

For convenience, we define selectors for log entry tuplesiGi
atupler = (K, s, f, 0o,n), we definer.kind = K, T.source = s,
T.field = f, T.0old = o, andr.new = n.

2.2 TheParametric Algorithm

Fig. 1 presents the pseudo-code for a parametric concurark-
and-sweep collector. The operation of this collector israfiover
a prefix of the interaction log, recording the collector anatator
interaction. Recording mutator actions in the log is perfed by
the mutator’s write and allocation barriers, as shown in Eig

Before describing the parametric algorithm in more detad,
first describe the assumptions we have made for clarity cfepre
tation and the assumptions under which the algorithm opgrat

e we do not specify how theweep() operation proceeds, ex-
cept to ensure that there is the proper synchronizationdmatw
the mark and sweep phases. We also do not consider com-
paction, which requires the dynamic relocation of objects.
While these are both important issues, they are beyond the
scope of this work.
we assume that there is only a single execution of a collectio
cycle at any given point in time. That is, tfieoperations in
the log all belong to a single collection cycle. Multiple éev
overlapped) collections can be performed by differem@fl’
entries accordingly.

The parametric collection algorithm does not specify hoyects

are selected to be marked. This is defined to be a parameter of
the collector. The algorithm, however, does restrict corency by
assuming that write barriers are atomic with respect toectiir
operations. This assumption is inline with practical systeas
mutators and the collector are only allowed to interleaveadé
points which do not include the write-barriers. Effectively, ghi
means that a collector cannot preempt a mutator during a writ
barrier. Under this assumption, we can restrict attentiangystem

with a single mutator thread without loss of generality.

The collection cycle of the algorithm is described inttad | ect ()
procedure. The collection cycle consists of two phasesth@)
marking phasgin which the collector marks potentially live ob-
jects; (ii) thesweeping phasén which unmarked objects are re-
claimed.

The collection cycle starts by atomically selecting theoebot
objects as origins. This operation is executed atomicatlg, thus
no concurrent mutations could be performed by the mutator.

After selecting the root objects as origins, the collectocpeds
by repeatedly tracing heap objects and marking themar k()
procedure), and adding origins to be considered by theatolidue
to concurrent mutations performed by the mutagatdOr i gi ns()
procedure). These two steps are repeated until a non-datstim
choice (denoted by ‘?’ in the figure) triggers a move to an &om
phase in which the remaining origins and objects to be maaked
processed atomically. This atomic phase guarantees timnger
tion of the algorithm, and is in line with some practical ealior
implementations (e.g., [7]). Nevertheless, in Section && show
how to derive algorithms in which this atomic marking phaae c
be eliminated.

After the marking phase has completed, the sweep phase re-
claims all objects that are not marked.

2.3 Marking Traversal

The mar k() procedure implements a collector traversal of the
heap. In the algorithm, we use a pdisbj, fid) to denote the
field fid of an objectobj. We useobj.fld to denote the object
pointed to by the fieldfld of the objectobj, and fields(obj) =
{(obj, f1),- .., (obj, fr)} to denote the set of all object fields for
a given objecbbj.

The procedure uses a getnding of pending fields to be tra-
versed, and performs a transitive traversal of the heagebgtively
removing an object field from the sgtnding and tracing from
it. Whenever an object field is traced-from, the proceduseiits a
tracing entry into the log. When the traced object field mtotan



unmarked object, the object is marked, and its fields arechtinle
the pending set. Note that the collector is able to tracecolffigglds
in an arbitrary order, rather than scanning fields of eackatbp
order.

During this traversal, the mutator might concurrently nipthe
heap. These concurrent mutations might cause reachalglet®bp
behiddenfrom the traversal, and thus may remain unmarked by the
traversal.

2.3.1 TheCollector Wavefront

All collectors discussed in this paper rely on cooperatietwleen
the collector and the mutator to guarantee correctnesipris-
ence of concurrency. A key part of the cooperation is tragiire

progress of the collector through the heap, since mutatansbe
treated differently depending on whether they happeneldeimpor-

tion of the heap already scanned by the collector (behinavte-

front) or not yet scanned (ahead of the wavefront). The wanef
consists of the set of object fields (that it the values of the
pointers in those fields) that have been traced by the coli¢lotis

far.

DEFINITION 2.2. Given a log prefixP, the collector wavefronis
the set of object-fields that have been traced by collecteraipns
in P, that is:

W(P) = {(Pi.source, P;.field) | P;.kind = TA0<1i<|Pl|}

Given a log prefixP, we say that an object fiel@, f) is behind the
wavefrontwhen(o, f) € W(P), andahead of the wavefronthen

(0, f) g W(P).

Most practical collectors use conservative abstractidnthe
wavefront rather than the precise definition provided h@&teat
is, the wavefront is tracked at an object granularity. Hosvethe
precise wavefront is not merely theoretical and has regédrgén
used in the hardware-assisted collector for the Azul Jamese
which has a “not marked-through” bit in every pointer [18].

EXAMPLE 2.3. Fig. 3 shows an example of a possible mutator
and collector interleaving. In this figure, the progress afector
tracing through the heap is shown by the tracing actins. . , Ts,

In the next sections, we present various choicesgose
corresponding to different garbage-collection algoristhm

24.1 Mutator Barriers

Fig. 2 shows the write-barrier and allocation-barrier ubgche
mutator. The proceduneut at e( sour ce, f1 d, new) is called

by the mutator to mutate a pointer in the heap. The procedure
nmut at eAl | oc(source, fld) is called by the mutator to al-
locate a new object and store it in the given object field. Tiabe
orate with the collector, the mutator barriers append thetions to

the interaction log.

When the mutator performs an assignmentrce. fld < new
with new # null, we say that a pointer isnstalled from
(source, fld) to new. When the object fieldsource, fld) is be-
hind the wavefront, we say that the pointeiristalled behind the
wavefront Otherwise, we say that the pointer is installed ahead of
the wavefront.

Similarly, whenever we assign a value to a fiéldurce, fld)
containing an existing pointer, we say that the existingtawiis
deleted If the field (source, fld) is ahead (behind) of the wave-
front, we say that the pointer deleted ahead (behind) of the wave-
front.

ExXAMPLE 2.4. In Fig. 3 the mutatior{}/2) results in a pointer
from (A, f1) to B installed behind the wavefrarand the mutation
(Ms) results in the pointer froriA, f3) to D beingdeleted ahead
of the wavefront

3. TheApex Algorithm

The Apex algorithm is an instance of the parametric collector
presented in Fig. 1 and is the starting point for the derivasiteps
described in the rest of the paper.

The Apex algorithm uses a technique calfedcanning Res-
canning is a technique which given a set of objects, ideatifie
object fields that were modified behind the collector wawefrét
then returns the pointers to the objects residing in thosdified
fields, which are subsequently marked and traced from. This a
proach is necessary ta:pose reachable objects that are hidden by
a sequence in which: (i) a pointer to an object is stored ina fie-

and by using a darker color for traced fields. The sequence of hind the wavefront; and (ii) all other paths to the objectaahef the

mutations is shown a8/, ..., M. For brevity, we only present
part of the states and show the effect of multiple operatiors
single step.

The interaction log prefi¥’* for this example is:

(T,rl, f2,A, A), (T, A, f1,null, null), (T, rl, £3, null, null),
(M, r1, f1,null, B), (M, A, f1,null, B), (M, r1, 3, null, E),
(M, A, f2,C,null), (M, r1, f1, B,null), (T, A, f2, null, null),
(T, 71, f1, null, null), (M, A, 3, D,null), (M, A, f1, B, null),
(T, A, 3, null, null)

The wavefront at the end of the shown prefiX is: W(P°¢) =
{(r1, £2), (A, f1), (r1, 3), (A, f2), (r1, f1), (A, f3)}

2.4 Adding Origins

TheaddOri gi ns() procedure uses the interaction log to select
a set of additional objects to be considered as origins. VWhisn
procedure is invoked by the collector, it is possible thatimber

of reachable pointers were hidden by the mutator behind tvew
front during themar k() procedure. ThaddOri gi ns() proce-
dure finds a safe over-approximation of these hidden, bohedsde
objects.

The core ofaddOri gi ns() is the functionexpose which
takes a log prefix and returns a set of objects that should be co
sidered as additional origins. Each object returnecebyose is
then marked, and its fields are inserted intojiheding set.

wavefront are removed before the collector reaches thescdRe
ning provides a high degree of accuracy, since all hiddentprs
are identified precisely.
The specificezpose used by the Apex algorithm is the follow-

ing:
expose™*(P) = {o.f | Pi.source = o

A P;.field= f A0 <i<|P|

A Pi.kind € {M, A} A (o, f) € W(pre(P,1))}

Given a log prefixP, expose®?®(P) returns the current con-
tents of all of the mutated fields behind wavefront.

Note that because the executionexposes performed inside
of anatomic block in the algorithm in Figure 1, the rescanning of
all of the fields ofall of the objects that were modified are scanned
atomically. This means that a pure rescanning algorithmveag
low concurrency.

EXAMPLE 3.1. Consider the example, interleaving of Fig. 3. The
function expose®?*®(P¢) atomically performs rescanning of the
fields (4, f1) and(r1, £3). This results withezpose®?**(P°) =
{E}. Unless returned byzpose®”*”, object E would have been
lost. Assuming there are no further mutations, the objectsked

by the Apex algorithm in this collection cycle will bér1, A, E}.

In future sections, we see that other (less precise) colieatill
consider additional objects as live.
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Figure3. Example interleaving of mutations and tracing operations.
[APEX] The algorithmic differences between the various collecare
@, u U, u, 0) manifested in the additional unreachable objects that thayk
| (and thus retain). It is therefore natural to define relgpixecision
[Steele] between two collectors by comparing theiurked sets at the end
©,u, 0,u,0) of the marking phase.
_— | ~__ There is a trade-off between the precision of a collectorthrd
[Dijkstra] [Steele-D] [Steele-YC] degree of concurrency it provides. For example, a stopatbrd
(stacks, U, 0, U, D) U, A,0,u,0) o, u,0,0,0)

=y

[Stedle-D-YC]
u, A, 0,0,0)

[Dijkstra/old] [Dijkstra-YC] [Stedle-BC]
(stacks, A, 0,U, D) (stacks, U, 0,0, 0) u,u,0,0,u)

[Hybrid-YC] [StedleD-BC] [Dijkstra-BC]
(stacks, A, 0,0, 0) Uu, A, 0,0,uU) (stacks, U, 0,0,U)

T~ |
[Yuasa]

(stacks, A, 0,0,U)

Figure 4. Relative precision of part of the existing and newly
derived algorithms. New algorithms are shown in boldfacee T
most precise algorithm is shown at the top. For readabiityy
derived algorithms with abstracted wavefront are showpl8siare
of the form(SR, IS, FL,WC, BC).

Conceptually, Apex is very similar to the Steele algorithth][
algorithm, but with an accuraté’ definition.

In our framework, the Apex algorithm is used as the base
algorithm from which all other algorithms are derived using
correctness-preserving transformations. Fig. 4 shows gfathe
derived algorithms, ordered by relative precision.

In this paper, our focus is on unifying the various colleatio
algorithms, and relating them in terms of precision. We skiust
our transformations are correctness-preserving, buhassat the
Apex algorithm is a correct starting point.

4. Precision of Collection Algorithms

In this section, we introduce the notion of relative premisif
concurrent collection algorithms. This allows us to foripaélate
the various algorithms which are instantiated in our pateéme
framework.

A correct marking algorithm must satisfy bottsafetyproperty
that it marks at least all live objects, andigenessproperty that
it terminates. These requirements can be satisfied by atyafe
correct collectors with varying degrees of precision, &ficy, and
atomicity.

collector trades all concurrency for obtaining maximalgs®n
(all unreachable objects are collected). Other algoritipnoside

a higher degree of concurrency (finer grained atomicity)that
expense of retaining more unreachable objects at the enldeof t
marking phase.

In this paper we focus on the relative precision of algorghm
under a given predetermined kind of atomicity. That is, ttwra
icity constraints of the generic algorithm are fixed and aditan-
tiated algorithms in our parametric framework follow themsa
atomicity restrictions, namely tretomic blocks used in Figures 1
and 2. The precision-reducing transformations presentdttinext
section create opportunities for concurrency-increasigsforma-
tions. Although we do not deal with concurrency transforiorat
which alter atomic sections, the instantiated algorithmdave a
shorter duration of these atomic sections. As future workplae
on extending the parametric framework in this paper to itelu
atomicity transformations.

An algorithm in our framework consists of the skeletons of
Figures 1 and 2, instantiated with an arbitraypose function.
Note that in general an arbitrary choice for thepose function
might yield an incorrect algorithm, but as we show later, Gll
the expose functions used in our framework result with correct
algorithms.

The correctness of algorithms in our framework hinges on
expose exposing all hidden origins (e.g., object “E” in Exam-
ple 3.1). Intuitively, given a correct algorithm (exposialhidden
origins), any algorithm that exposes a superset of theggneris
also a correct algorithm. In the next section we preserrectness-
preservingtransformations that when given a correct algorithm
maintain the property that (at least) all hidden objectseaposed.

We now consider the question of the relative precision ofalvo
gorithms. Intuitively, a more precise algorithm should ayw mark
fewer objects. However, this i®t the case because the actual set
of objects marked depends on the specific interleaving oftout
and collector. In fact, there exist algorithms and interlegs such
that an algorithm thaalwaysselects more objects from the muta-
tion log as origins for transitive marking will in fact markever
objects during the collection as a whole.

This apparent anomaly arises because what such a notion of
precision compares is not necessarily the effect of theriitgo
but may be the effect of arbitrary interleavings. Thus, amegful
comparison must factor out the non-deterministic effet{santic-
ular executions.



We therefore consider algorith@, to be less precise when for
any given global stat@ exposes more objects for marking than
algorithm C,. We therefore consider the effect efposec, on
any interaction log obtained b¥/>, and show that when transitive
marking is complete (whepending = 0), exposec, returns a
subset of the objects returned dyposec,.

DEFINITION 4.1. Given two collection algorithmé&’; and Cz, we
say thatC is more precis¢hanC-, denoted”; C C5, when given
any global state o> with an interaction logl and where the set
pendingis emptyexposec, (1) C exposec, (1).

In the following section we present precision-reducing and
correctness-preserving transformations of algorithmaiinframe-
work, and show that if the initial algorithr®; is correct, then the
resulting algorithmC; is also correct.

5. Correctness-preserving Transfor mations

In this section, we present various transformations thabescom-
bined to systematically derive safe collection algorithinasn the
Apex collector. For each transformation, we show that igiap-
tion is correctness-preservingndprecision-reducing

Each transformation is applied acrosdimension Dimensions
are the formal analogue of the basic variables in the dedign o
collector as presented informally in the introduction. Sfeally,
we parameterize the collector with the following dimension

o Wavefront: how far has the collector progressed?
¢ Policy: how are modified objects behind the wavefront treated?

e Threshold: how large are cross-wavefront counts allowed to
grow before they are “stuck”?

e Protection: which objects are traced to guarantee that all live
objects are found?

¢ Allocation: how does the collector handle newly allocated ob-
jects to ensure timely termination?

A dimension is described by an ordered partitigh, . . ., P)
of the objects iri{/, where each subset of the partition corresponds
to a different manner of handling objects in the dimension.

The subsets of a partition have the property that moving an ob
ject to a subset “to the right” yields an algorithm of loweegision.
A transformationin our framework is defined as moving an object
to the right within a partition.

Formally, the relation between subsets is such thatifj, « €
P;, algorithmC' uses partition. .., P, ..., P;,...) and algorithm
C’ uses partitio. .., P; \ {z}, ..., P; U{z},...),thenC C C".

For each dimension, we have generalized the algorithm $o tha
all of the mechanisms represented by the subsets can be usegro

simultaneously within a collector. In some dimensions rehis
no restriction on the partitioning dff; for others, we specify a
restriction formally.

All theorems stated in the paper have been proved, but due to

space restrictions these proofs are provided in an onlippleu
ment [43].
5.1 TheWavefront Dimension

The wavefront denotes the progress of the collector thrahgh
heap. We defined the precise wavefront in Section 2.3.1ngists

information, so itis sometimes desirable to sacrifice soraeigion
in exchange for a more efficient implementation.

The wavefront dimension is an ordered partition of the disjec
in U into:

Dw = (FL,0OL)
where objects in thé'L subset have their wavefront tracked pre-
cisely (at “Field Level”) as in Definition 2.2, while objects the
OL subset do not distinguish between fields within an objead (an
are tracked at “Object Level”).

One could further generalize this dimension to include afi-p
sible subsets of fields for all objects, but we do not consitlisr
here for simplicity of presentation.

There are no restrictions on how the objects may be partition
in the wavefront dimension.

5.1.1 Wavefront Abstraction Transformation

This abstracts the exact collector wavefront, and trackstilec-
tor's progress at the granularity of an object rather thahegran-
ularity of individual fields of objects. Given the wavefrguartition,
we define the abstracted wavefront as follows:

W>(P) = {(0,f)|(0,f) €W(P) Ao € FL}U
{(o, f) | 3prericas: (o, f') € W(P) A

f € Fields No € OL}
W<(P) = {(o,f)] (o, f) EW(P)Ao€ FL}U

{(o, f) | Vyrericas: (o, f') € W(P) A
f € Fields No € OL}

The abstracted wavefront consists of two functions; (P)
and W< (P). The functionW~ (P) over-approximates the set of
object fields behind the wavefront. The functid¥i<(P) under-
approximates the set of objects fields behind the waveframd (
thus over-approximates the set of object fields ahead of tew
front). Both functions are needed becaegposdunctions that de-
pend on an object’s field being behind or ahead of the wavefron
must each use a conservative approximation.

ExamPLE 5.1. Consider a prefix of the example interleaving of
Fig. 3 just before tracing actio('6) is performed and the field
(4, f3) is traced. For this prefi¥> assumingF'L = () we get the
following:

W(P) ={(r1, f2), (r1, f3), (A, f1), (4, f2), (r1, f1)}
W= (P) = {(rl, f2), (r1, £3), (A, f1), (A, 2), (r1, f1), (4, f3)}
W=(P) = {(r1, f2), (r1, f3), (r1, f1)}

The wavefront abstraction transformation moves an object
mFLtoOL.

THEOREM5.2. The wavefront abstraction transformation is a
correctness-preserving and precision-reducing transtation.

5.2 ThePolicy Dimension

Traditionally, when deciding how to protect against losjeats,
implementers have thought in terms of the three classipastyf
write barriers: those of Dijkstra [21], which records thevyminter
stored into an object; of Steele [41], which records the tgoito
the object being modified; and of Yuasa [46], which recordsatia

of the set of object fields that have thus far been traced by the pointer that was overwritten.

collector. Theexposdunction determines how to handle mutations
to the heap depending on whether they occur behind or in &bnt
the wavefront.

The wavefront dimension represents different choices Her t
granularity at which the collector progress is tracked cKiieg the
wavefront precisely may be inefficient because it requiersfield

However, while this decomposition may seem intuitive it sloe
not in fact capture the essential properties of the desigeesin
an orthogonal manner. Therefore, we introduce two separade
orthogonal dimensions which determine how objects arespteti
and do so in a manner that allows the different mechanisme to b
composed.



In the Apex collector of Section 3, we useelscanningas a
uniform policy for protecting all objects. The key to the giinity
of rescanning is that it finds all pointers to traverse in amat
step of theexzpose operator.

However, this atomicity is costly and therefore rescanrisg
generally applied to some minimal portions of the memorghsas
the stacks, for which it is practical to do so. The rest of thpcts
are processed incrementally from the log.

The policy dimension determines whether the modifications t
a field are found by atomically scanning the heap (called fiSca
based Reachability”) or by examining the log (called “Loased
Reachability”).

This dimension is an ordered partition of objecté4into

Dp = (SR, LR)

The objects inSR are rescanned as described previously; the ob-
jects in theL R are discovered solely by processing the log, without
accessing the contents of the heap.

There are no restrictions on how the objects may be partition
in the policy dimension.

5.2.1 Rescanning

In order to define anxpose function that works along this dimen-
sion, we first have to refine the simplified definition of a restag
collector we presented in Section 3 and parameterize itrdowp
to the potentially imprecise wavefront and the partitiopedicy
dimension:

expose’ (P) = {o.f | Pi.kind € {M, A}
A P;.source = o N\ P;.field = f
A (o0, f) € W (pre(P,i)) Ao € SR A Pinew € IS
ANO<i<|P|A(o.f) €IS}

For the time being the sétS = U; non-trivial use will be made of
the setl S below for the protection dimension.

5.2.2 Maintaining Cross-Wavefront Counts

When a field of an object is modified repeatedly, rescannin wi
only see the final value when it processes the log. That isethe
may have been intermediate values stored by the mutatondmnd s
sequently overwritten. We now describe a different way etdi-
ering the resulting pointers, which is based on countingitheber
of references to an object from behind the wavefront.

In particular, we observe that if a field initially containp@inter
po and then has a sequence of pointgrs. .., p, written to it,
then rescanning will find only.,. If we were to apply a specialized
form of reference counting, then the reference counts aftpos
p1,--.,Pn—1 Would remain unchanged: they would be first incre-
mented and then decremented. In the end, only the referenoésc

of po andp,, would change, being decremented and incremented,

respectively. This means that the intermediate referenceting
operations can be ignored.

This observation is originally due to Barth [8], and is cahto
the multiprocessor reference counting algorithm of Levarand
Petrank [33]. In our formulation, we use this approach taxsshow
rescanning can be replaced by log-based reachability vkaeps
a count of references from behind the wavefront in ordereatidly
exactly the same objects as are found by rescanning.

Note that this isnot a general form of reference counting
Our framework only covers tracing algorithms. In particutnce
counts are only maintained from behind to in front of the vieo,
there can be no cycles of objects with non-zero counts.

Existing approaches will subsequently be shown to be degene
ate cases of reference counting in which the cross-wavefmmt
is a single sticky bit (expressed by the threshold dimension

The counting-based approach has the potential advantage of
not requiring the synchronization of the:pose function; on the
other hand it may perform steps for the mutated field described
above, whereas rescanning would perform exactly one. Qsee ar
in which this tradeoff manifests itself is in the treatmehstacks,
whose high mutation rate makes them unsuitable for writedyar
— instead, they are rescanned atomically.

Mutator Count The mutator count is the number of pointers to
an object from object fields behind the wavefront. This qityant
is computed with respect to a given wavefront. We assume that
some objects in the heap arescanned objectthat do not affect
the mutator count. The mutator count computation is theeefo
parameterized by a set of objedi$: from which the count should
be computed. To compute the mutator count from a given log
prefix P, we define the mutator-count increment and decrement as
follows:

M™(0,P) = |{P; | Pi.kind € {M, A} A Pi.new = o
A (P;.source, P;.field) € W~ (pre(P, 1))
A Pi.source € LRA0 <14 < |P|}|

M~ (0, P) = |{P; | P.kind € {M, A} A Pr.old = o
A (P;.source, P;.field) € W< (pre(P, 1))
A Pi.source € LRA0 <1 < |P|}|

The valueM ™ (o, P) is the number of new references intro-
duced by the mutator from object fields that are behind theewav
front. Similarly, the valueM ~ (o, P) is the number of references
removed by the mutator from object fields behind of the wave-
front. The mutator cound/ (o, P) is computed by combining the
mutator-count increments and decrements as follows:

M(o,P) =M™ (o, P) — M (o, P)

ExampPLE 5.3. Consider the example of Fig. 3 and its correspond-
ing interaction logP* as shown in Example 2.3. Assuming that
LR = {A} and FL = U, the mutator count foB increases td
when the pointer fronfA, f1) is installed, and is decreased back
to 0 as the pointer is deleted. Therefore, at the end of the prefix
P¢, M(B, P°) = 0. Note that the installation fror(r1, f1) does

not increment the count, as the installation takes placadbéthe
wavefront.

Collection by CountingUsing the formulation of Section 2.2,
a counting-based collector can be instantiated using teniog
expose function. We use the superscripto denote the fact that
this function is based on counting, and name the funetigimse®.

expose(P) ={n|n= P.new A M(n,P) >0
AnelISAN0<i<|P|}

EXAMPLE 5.4. Consider the example of Fig. 3. Assumib§ =
U, FL = U, the functionezpose®(P°) = {E}.

However, since counting depends on the wavefront, takiegs |
precise wavefront can result with more objects being exthdser
example, takingF'L = U \ {rl} results withexpose®(P°) =
{E, B} as the count fo3 is incremented on the installation from
(r1, f1) that is behind the (overapproximated) wavefront, but can-
not be decremented when the mutatidnf1 = null takes place,
as(r1, f1) is not behind the (underapproximated) wavefront.

Note that using a less precise wavefront resulted with addi-
tional objects exposed by the algorithm. In particular,hiis tase
expose®(P¢) = {FE, B} is a superset of the origins exposed by
Apex algorithm on the same prefix as (see in Example 3.1).

We now formally define arzpose function that works along
the Dp dimension:

expose’ “(P) = expose” (P) U expose®(P)



The following theorem shows that moving along fie dimen-
sion is a precision reducing transformation.

THEOREMA.5. The rescanning to counting transformation, mov-
ing an object fromSR to LR, is a correctness-preserving and
precision-reducing transformation.

Itis interesting to note that in the special case in whichezise
wavefront is maintained for all objects, and under an irdiniuta-
tor count, the precision of any partition along the: dimension is
identical.

5.3 TheThreshold Dimension

The threshold dimension represents different choiceshferpre-
cision of maintaining the mutator count introduced in thevwus
section. In real systems, these counts are usually very.sthare-
fore, it would be wasteful to have a very large reference tpen
object.

The threshold limits the mutator count to a maximum value, at
which it “sticks” and is not subsequently decremented. BHmwvs
counts to be implemented with a fixed (small) number of bitdevh
still maintaining the correctness properties provided d&fgrence
counting.

The threshold dimension is an ordered partition of the dbjec
in Y into:

Dr = (Cooy...,Chy...,C1)

where the subsets represent the count with successivedyatesb
less precision, which leads to collectors which are sudgelgdess
precise, as we will show below. There are no restrictionsaamthe
objects may be partitioned in the threshold dimension.

5.3.1 Abstracting Mutator Count

The mutator countV/ (o, P) can be abstracted to range over an
interval [0, k) andoo, defined as follows:
007

Mo ) :{ M(o, P), 3. M (o, pre(P 1)) = k;

otherwise.

To the best of our knowledge, all existing algorithms use the
degenerate case whelte= 1 and the mutator count is eithéror
oo, in which case the count is simply a flag that indicates whethe
pointer to the object has been stored behind the wavefrdait iE,
immediately after a pointer to an object is stored behindithee-
front, the mutator count is set to a value that cannot be dezméed.

Thus we will use this special case when presenting transfor-
mations to pre-existing algorithms such as those of Digkdint it
should be noted that 2- or 3-bit counts & 3 or k = 7) could
be implemented efficiently and would likely provide most bét
potential increase in precision available in practice.

ExamMPLE 5.6. Consider the example of Fig. 3 and its correspond-
ing interaction logP°¢. Assuming thaL R = U \ {r1}, IS = U,
andFL = U, the functionexzpose®(P*) using M (o, P) exposes

B sinceM (B, pre(P<,3)) = 1.

We now show that the mutator count abstraction transfoonati
preserves correctness and reduces precision.

THEOREMA.7. The mutator count abstraction, moving an object
fromCy toC—1 is a correctness-preserving and precision-reducing
transformation.

5.4 TheProtection Dimension

Fundamentally, the safety problem of a concurrent colteistdo

prevent the mutator from “hiding” an object by moving poiste
to that object that are ahead of the wavefront to locatiorsnioe
the wavefront, and then deleting all paths to the object @luda

the wavefront. Therefore, safety can be guaranteed eitheoh-
sidering pointers installed behind the wavefront (instédin-based
protection), or by considering pointers deleted ahead efithve-
front (deletion-based protection).

Previously known collectors treat all pointers uniformbo-
called incremental update collectors (such as that of Baksuse
installation-based protection; snapshot collectorshi{sag that of
Yuasa) use deletion-based protection. However, our frarieal-
lows the two approaches to be mixed, subject to an additie@nal
striction.

The protection dimension is an ordered partitiortofnto an
Installation Set’’.S and a Deletion Seb S

D, = (IS, DS)

The objects i S are said to bé-protected while the objects in
DS are said to b®-protected

The partition is restricted such that every live D-protedoté-
ject is reachable from a sequence of D-protected objecis igh
formalized below).

5.4.1 Snapshot-Based Collector

A snapshot-based collector marks as live all objects thaewe
reachable at the start of the collection cycle; objects liegbme
unreachable during the collection cycle are still treatetive [46].

Using the formulation of Section 2.2, a snapshot-baseéciult
can be defined using the followingepose function. We use the
superscriptd to denote the fact that this function is based on
deletion, and name the functieapose?.

expose’(P) = {o | P,.kind = M A P;.old = o
(P;.source, P;. field) ¢ W< (pre(P,i)) Ao € DS A0 < i < |P|}

Given alog prefixP, expose® (P) returns all objects iD.S that
were pointed-to by a field that was assigned a new value (@gssi
null) before its was scanned by the collector.

EXAMPLE 5.8. Consider the example of Fig. 3. Assuming that
DS =U,andFL = U, expose’(P°) = {B, C, D}.

5.4.2 Combinationsof I-protected and D-protected Objects

Using the formulation of Section 2.2, a collector combingngtec-
tion policies at the granularity of objects can be definecdgishe
following expose:

expose”“(P) = expose”(P) U expose® (P)

More importantly, we introduce a transformation which ajes
an object from I-protected to D-protected.

However, we must place an additional constraint on which ob-
jects in a given graph can be transformed from I-protecteD-to
protected. To guarantee that an object can be safely transtb
from I-protected to D-protected, the object has to be ttaety
protected by a path of D-protected objects.

DEFINITION 5.9 (Valid Protection Sequencé). valid protection
sequence to an objeatis a sequence of objects, ..., o, = =
such thato, is a root object, and for every < i < k, there is a
field f of o, such thabo;.f = 0,41 ando; € DS.

DEFINITION 5.10 (Eligibility). Given an objectr € IS, we say
that z is eligible for membership inDS if there exists a valid
protection sequence to.

Transformation along the protection dimension is signifia
more complex than previous transformations because tims-tra
formed algorithm makes decisions in itgpose function which
may be locally more precise and yet are globally less pretise
particular, if a pointer to objeat is stored behind the wavefront,



andois I-protected, thew will be exposed. But ib is D-protected,
it will not be exposed. But since the object is D-protecteayiil
either be discovered directly or through an overwrittempsi in
its protection sequence.

In practice, all known algorithms assume a strict partitether
all objects existing at the start of a collection cycle arelif or
they are inIS. In our framework it is possible to have a mix of

the two. For example, we can use static knowledge such as type

information to select all leaf objects and place them/ i (and
hence all other objects would then belongé§).

In order to consider relative precision of algorithms wittna
local effects, we need to refine Definition 4.1:

DEFINITION 5.11 (Weak Precision)Given two collection algo-
rithmsC, andCs, we say that”; is weakly more precisthanCs,
denoted”; < Cs, when given any global state 6% with an inter-
action log! and where the sgiendingis emptyezposec, (1)* C
exposec, (1)*.

That is, the transitive closure of the objects exposed’bys a
subset of the transitive closure of the objects expose@-hy

Weak precision is implied by the strong precision of Defini-
tion 4.1, which only consider the exposed objects and nattitz-
sitive closure. Since the previous transformations haea lseown
to be strongly precision reducing, they are also weakly ipi@t
reducing.

In our framework, without restriction, it is assumed thdt al
newly allocated objects are considered to be memberfsSpthat
is, they are I-protected objects.

55.1 White Objects

The first approach is well-known and is the least consemativ
towards marking allocated objects. Objects are allocatgte, that
is, unmarked and unprocessed.

The Apex algorithm allocatesll objects white. As previously
mentioned, the negative impact on termination when alingat
white is that the collector may need to trace through thegects
Allocating white is the primary reason for allowing the eator
to non-deterministically enter the synchronous termoraphase
following thewhile loop in Fig. 1. It could enter that phase after a
fixed number of iterations of the while loop. In the Apex algaon,
this would result in the worst-case pause time being propuat to
the size of the heap.

Unpredictable pause times in the termination of algorittinas
allocate white, which is common for incremental update eml|
tors, have been shown experimentally to lead to significariw
tion in termination time, making them unsuitable for raéatd ap-
plications.

55.2 Yelow Objects
The termination problem introduced by white allocated otgas

Note that there is a direct analogue between strong and weakthat the collector needs to trace through these objectsdamfimer

precision, and the strong and weak white-black invariahisave-
mental update and snapshot collectors. In incrementalteudd:
lectors all objects are I-protected; in snapshot collecatirobjects
are D-protected.

Under this refined definition, we show that the protectiongra
formation is weakly precision reducing.

THEOREM5.12. Given an eligible objectx € IS, changing
D, from (IS,DS) to (IS\ {z}, DS U{z}) is a correctness-
preserving and weakly precision-reducing transformation

5.5 TheAllocation Dimension

To guarantee termination, an algorithm must provide a irerta
level of progress on each collector marking step. Howeveaernw
objects are allocated white (unmarked), the collector magdn
to trace through these newly allocated objects. In the wease
the collector will trace through all of the newly allocatebjects,
precluding predictable termination with respect to the liata at
the start of the collection cycle.

The parametric collector of Fig. 1 uses a non-deterministic
choice to exit the main collection loop into a synchronousitea-
tion phase. This phase guarantees termination by atomicadiing
from all remaining origins, but therefore introduces anaunided
atomic phase which is undesirable.

In this section, we explore alternatives that provide a more
predictable termination without requiring an unboundednac
phase. This is of particular importance for real-time azifbes
where it is vital to guarantee worst-case pause time.

A more predictable termination can be achieved by avoiding
the need for tracing through newly allocated objects. Tgibic
objects have been allocated white (require tracing-thmpagblack
(assumed to be marked, and thus require no tracing-throbgt)
consider an additional color (yellow) that provides aniimtediate
point in the trade-off space between precision and terrioinat

The allocation dimension is an ordered partition of alledat
objects froni/ into:

Da = (WC,YC,BC)

objects that are allocated white.

In order to avoid tracing through these white allocated ob-
jects, we introducgellowobjects. Yellow objects are allocated un-
marked, but any references to objects/ifi stored into a yellow
object will be treated as if the yellow object is behind thevewa
front, effectively, detecting references stored into eédow ob-
ject. In particular, it means that it is not possible for thetator to
create chains of unmarked allocated objects that the tofleaust
“chase”.

Yellow objects are not to be confused with grey objects, wher
the object is marked upon allocation yet the wavefront isupst
dated [30]. Unlike grey objects and similarly to white oltfegel-
low objects can die during the collection cycle.

The WC to YC transformation can significantly reduce the
termination problems associated with allocating whiteliminates
the requirement on the collector to trace through a yellojgaibTo
that end, when the collector encounters an unmarked yelbpact
it marks the object, but unlike white objects, does not pitcields
in pending.

In the special case where all objects are allocated yell@w pr
dictable termination can be achieved without the synchuerter-
mination phase after the while loop.

While it is possible to place yellow objects i8R, they are
meant to be inLR. In our framework, placing some of them in
SR could be thought as a way to process some allocated objects
atomically and some incrementally. Placing all of themSi
would effectively mean scanning through these objects iatlin
and that would make the worst-case pause time similar toahat
white allocated objects.

To intuitively understand why th& C to Y C' transformation
leads to a less precise algorithm, consider the followimgps
example.

ExAMPLE 5.13. Consider an object for which theW C' to YC
transformations is applied. Now consider the following isstre
of operations: (i) allocate the objedt, (ii) store a pointer fromA
to an unmarked objedB € I.5; (iii) delete all other pointers t&
except the pointer fromt; (iv) delete all pointers to the object,
making A unreachable.



After the objectA becomes unreachable in the last stepd if
is treated as a yellow object, objeBt will be retained. However,
object B will not be retained ifA is allocated white.

THEOREM5.14. TheW C to Y C transformation is a correctness-
preserving and precision-reducing transformation.

5.5.3 Black Objects

Termination predictability can be further improved by takial-
located objects out of consideration and allocating therblask
Allocating objects adlack means that these objects are assumed
to be live for the current collection cycle. Informally, $uobjects
could be thought of as yellow objects which are allocatedketar

Moving an object fromy C to BC' will lead to even less work
for the collector as it does not need to do additional work for
the object. Real-time collectors such as Metronome [4] shdo
allocate all objects black.

THEOREMS5.15. TheY C to BC transformation is a correctness-
preserving and precision-reducing transformation.

6. Collector Instantiations

In this section, we explore a small subset of the space ofurenc
rent collection algorithms along the dimensions of SecBoifhe
space we consider is depicted in Fig. 4. We will typically lexg
algorithms at the end points of a dimension. That is, we clamsi
the sets to be eithé¥ or (). For simplicity of presentation, we as-
sume that all derived algorithms use an abstracted wavefsee
Section 5.1.1) and that the mutator count is abstractedAnvithl.

We first instantiate several collectors which are very sinid
some of the well-known algorithms and we show where theyftfit in
the lattice. We then discuss several new practical algosthrhe
names of the new algorithms are depicted in boldface in Fig. 4

In our parametric framework constructing new algorithma is
matter of choosing values over the various dimensions. kame
ple, only recently a collector which uses a precise wavéfdei-
nition has been introduced in [18]. We can instantiate sintgbl-
lectors which use a precise wavefront definition by setfitig to
U.

Inthe figure, we use a tuple of the folf§ R, I.S, F L, WC, BC)
to define the point of the algorithm along the dimensions af-Se
tion 5. The values for other sets along each dimension arpedkfi
as complements using the values in the tuple, e.g., if WG&nd
BC=0, then YC=U{.

In the tuple, we use the setacks to denote the set of stack
objects, and4 to denote the set of newly allocated objects. Addi-
tionally, every edge represents a precision order relggtrong or
weak depending on which algorithms we are comparing).

From a performance engineering point of view, it is impartan
to choose the values across each dimension appropriatés/by
itself presents an important item for future work : which comrent
collector should be used based on the particular applicati@r-
acteristics. For example, it may be known that certain fiblase
a high mutation rate and therefore it is preferable to perfogs-
canning on these fields, rather than counting from them. ,Atso
may be known that certain types of objects tend to die youn an
therefore it may be preferable to allocate these as whitectdhj

6.1 Classical Algorithms
In this section, we show how variations of well-known al¢joms

A Steele-style algorithm can be derived from the Apex cadlec
by applying thewvavefront abstractiotransformation to all objects.
Such transformation makes sense when the cost of trackimg th
progress of the collector at the field level outweighs theefie
of increased precision.

A Dijkstra-style algorithm is derived from the Steele-stybol-
lector by moving all objects except stacks alongfhe dimension,
that is, fromSR to LR. It is less precise than the Steele-style col-
lector. The transformation makes sense when a significaotiam
of heap behind the wavefront has been mutated by a relatvedyi
number of mutations and rescanning will require atomic essing
of that memory.

The Yuasa-style algorithm is the least precise of the three e
isting algorithms, it allocates all objects black (i.e. B@¥and in
addition all existing objects arB-protected.

6.2 New Algorithms

Fig. 4 contains several new algorithms of practical impuréa In
this section we informally describe some of those new ctilsc

The Steele-YC collector is derived from the Steele-likeoalg
rithm by applying theWC to YCtransformation to all allocated
objects. This algorithm reduces the likelihood that theckyanous
termination phase will be required, thus addressing the risaue
of algorithms that use a Steele-like write barrier (regesslof the
granularity of rescanning) such as [11, 7]. The disadvantdghis
collector is that it might retain more unreachable objduasita pure
Steele-like collector.

The Steele-BC algorithm makes an even more conservative as-
sumption in regards to allocated objects, and allocates tas
black. This leads to an opportunity to reduce the work fomter
nation even further while still retaining relatively highiegision
for existing objects. This algorithm could be beneficial &mpli-
cations where most of the allocated objects are long lived ¢io
not die during the collection cycle), such as the mature espmdic
generational collectors.

The precision of the Steele-BC algorithm can be reducetiéurt
(and hence the potential for concurrency is increased) byingo
along theD » dimension, moving all objects but stacks fréh®k to
LR resulting with the Dijkstra-BC algorithm.

The Steele-D algorithm, derived from Steele by moving “te th
right” on the D, dimension. The algorithm Steele-D-YC which is
derived from Steele-D speeds up termination of the coltdmtiv at
the cost of reduced precision due to yellow allocated object

7. Related Work

In previous work [44] we observed a common structure between
concurrent collectors and suggested that they can posbibly
viewed as instances of a more abstract collector. Howeter, t
paper effectively contained two very complex abstract milgms,
and a few discontinuous “transformations” where their egapion
was only described informally. Moreover, the resultinglectiors
could not be related.

In [10], separation logic is used to prove the correctnesa of
stop-the-world copying garbage collector. However, whb £x-
tension of separation logic to concurrency [14], it may besgilnle
to formally prove useful algorithms generated from this kvor

Another work modeling collectors is [12]. In this paper, the
thors use CCS to specify a stop-the-world collector, andotem
ral logic to specify its liveness and safety properties. Eosv, the
presented algorithm is not concurrent and although thecilf is

are expressed in our framework. It should be noted that these specified in CCS, there is no attempt at verifying the preskat-

are adaptations to our concurrency model. That is, the idhgas
follow the predefined skeleton of Fig. 1. The classical atbats as
presented in [30] are usually more elaborate due to conjaita
arising from a non-atomic write barrier.

gorithm. The authors do note however that proving the comess

of a concurrent collector would be even more challenging.
Several works formally verify the correctness of Ben-Asid

Dijkstra’s algorithms [9, 21]. The focus of Ben-Ari's algthm



is correctness rather than efficiency. Ben-Ari’s algorithas made
further simplifications to Dijkstra’s algorithm with thelsgpurpose
of having an algorithm which is easier to prove. Howeverhbot
of these algorithms are not practical because their warse-time
complexity is quadratic in the size of the heap.

In [38], Ben-Ari's algorithm is verified for both single and
multi-mutator systems using Owicki-Gries’s logic in the Htheo-
rem proving system. In the work of [25], again Ben-Ari’s aligiom
is verified using the PVS theorem proving system. Similarkwor
has been done by [39], where he proves Ben-Ari's algorithin bu
this time in Boyer-Moore’s theorem prover. In [28], Dijka’ algo-
rithm has been verified again in the PVS theorem prover. Thempa
of [15], proves Ben-Ari’s algorithm using the B and Coq syste
These works are complementary to ours in the sense that ¢imey c
centrate on formally proving a particular collector algfam. The
works of [19, 20] define a framework to describe generatianal
conservative collectors. However, it only deals with sthe-world
algorithms. In the future, we plan on extending our work talde
with moving collectors and it may be possible to integrat®sof
the ideas of [19].

Another complementary approach is the work of [36] which
uses the notion of evolving specifications. It starts withinapse
and non-executable declarative specification and extentts a
more complicated and executable design. This strategy does
explore an algorithm space nor does it provide any insighthen
relationships between algorithms. However, it presentauatsired
approach for deriving correct algorithmic specificationarting
from simpler and more intuitive models.

Another transformational approach to collectors can badou
in [20]. The authors use the SETL wide spectrum language to
specify an initially correct and inefficient implementatiof a stop-
the-world collector. Through loop fusion and formal dietiation
transformations, they obtain a more precise implementatioa
well-known stop-the-world algorithm. The transformagan our
work are specific to the world of concurrent marking collesto

8. Conclusionsand Future Work

In this paper we presented a parametric framework for degivar-
ious correct concurrent garbage collection algorithmg. feéame-
work is based on an initial algorithm serving as a startinigigfor
the derivation process, and a set of correctness-pregeotiject-
level transformations. We explore a space of concurrent 3¢ a
rithms by repeated application of our transformations. We -
troduce a definition of relative precision which allows usfao-
mally relate algorithms obtained in this framework.

In the future, we plan on extending this work to automaticall
derive practical synchronization skeletons from our tribased
collectors, as well as relaxing the atomicity constrairftthe cur-
rent parametric algorithm.
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A. Proofs

In the following, we abuse notation and use the Kleene star to
denote the transitive closure of objects reachable fronvengset

of objects. For example, we writ&" to denote all objects that are
transitively reachable from the set of objeéts

A.1 Coallector Invariantsand Proof M ethodology

The correctness of algorithms in our framework hinges@svse(l)
exposing all hidden origins. An algorithm in our framewoskcir-
rect if and only if the following invariants hold immediayehfter
computing the set of origins by performirgpose(l):

I-Invariant expose(l) contains all unmarked objectsi$ pointed-
to by a marked object.

D-Invariant any unmarked object irDS is either returned by
expose(l) or is reachable from &S object inexpose(l) by
a path of objects iDS.

These invariants imply the intuitive notion of the algonith
marking a superset of all objects which are required to deter
correct transitive reachability.

Our proofs work by showing that the transformations preserv
the above invariants. We will denote @s the algorithm before the
transformation is applied to a single objecandC, the algorithm
after the transformation is applied. The proofs use theectmess
of C; to show the correctness @f.. Moreover, the correctness
proofs also show that'; is more precise tha€s.

We compare the executions@f andC- starting from the same
initial heap H, sequence of mutation®/, and set of rootsz.

Besides certain interleavings in the white-to-yellow sfanma-
tion, in our framework, algorithms only differ in theitzpose(l)
function and therefore we compare their executions by compa
ing the correspondingzpose(l) at the point of divergence of the
two traces (that is, whepending is empty). For all transforma-
tions except white-to-yellow, the divergence point ocaurgen the
mar k() procedure has finished and the algorithms proceed into
theaddOri gi ns() procedure and computerpose(l).

Letexposec: denote the origins computed B} andexposeca
the origins computed bg'> with the same log.

Certainly, if exposec: exposece, then the algorithms do
not diverge and they can continue to execute in a lock-step. |
throughout the entire execution, the algorithms do notrdegthen
the execution of’; is identical to the execution @; and hence is
shown to be correct. Intuitively, in this case, the alganihare of
the same precision.

However, ifexposec1 # exposecz, the following invariants
hold (we use the subscrips andC- to denote the various sets in
C1 andC> respectively):

e markedc, = markedc,
o the l-invariant and the D-invariant hold far,

The first step to showing that'; is correct is proving that I-
and D- invariants hold foC’ at the point ofexpose. For all but
the protection and white-to-yellow transformations, wewver this
by showing thatexposeci C exposece. This also shows that
C1 C Cs.

The second step of the proof involves reasoning about the con
tinuation of C». That is, we need to find a corresponding witness
trace which is also correct so that at the next pointopose,
we can repeat this process. In all proofs except the proteeind
white-to-yellow transformations, the correct withessérds basi-
cally the restart of; with theorigins resulting fromezposecs of
C>. The(C; algorithm can be restarted with the new state, because
the I- and D- invariants are preserved by the transformation

Due to space restrictions we only include the proof of theawav
front transformation in this paper, other proofs follow teeme
methodology and can be found in [43].

A.2 Wavefront Abstraction

The following proof shows the correctness of the wavefrdmt a
straction transformation which takes a single objeet F'L in Cy



and moves that object so thate OL in Cs. It also shows thaf’s
is less precise thaft; according to 4.1.
Proof:(Theorem 5.2) (sketch)

The application of this transformation on objecpotentially
affects the marking decision for heap objects other thdut does
not affect the marking decision far itself. This is because the
transformation takes effect once objece marked and at least
one(o, field) € W~.

For this transformation, the divergence point always csefter
a call toexpose in addOri gi ns() .

Let P be the common prefix af'y andC’, just beforeexpose is
called with an interaction lo§ At the point after the call texpose
where ezposece # exposec:, the computationV! ™ (z, P) for
any objectr € 1S indicates that any pointer installationtdnto o
will be returned byexpose, provided that at least or(e, field) €
W and not all fields ob € W at the time of the mutator operation.
When object is in that state, no destruction of a pointeraton
o can affectM ~ (z, P). This is indicated by the requirement for
(P;.0, P;.field) € W< (pre(P,4)) in M~ (x, P).

In addition, operations on objectsInS also affect the return of
expose. If a mutator destroys a pointer to an objdce DS such
that(o, field) € W and(o, field) ¢ W<, then this pointer would
not be returned byzposec1, but will be returned byzposeca.

In the case where € SR, due to installations of S objects
into o, it is possible that more rescanning work will be done in
exposecs for o. However, processing the additional fields can only
return a superset of the objects returnedtbyosec .

It is worth noting that althouglezposec1 C exposecz, we
cannot detect whether the objectsdmposecs - exposec: are
unreachable. We have constructed examples which showttisat i
possible for all such objects to be unreachable or for akbatsjto
be reachable or for the mix of the two to occur. However, bseau
exposec1 C exposecsz, we can deduce that at the point in the
trace right after the call texpose in C2, the |- and D- invariants
are satisfied. This is clear because the invariants ardiedtéat the
same point irezpose of C1 and by the subset relation we can now
trivially conclude that they also hold at the correspondbaint in
C> since adding pointers cannot cause an invariant violation.

Because the invariants are satisfied at this point, we caartes
the execution ofC; with the origins as returned byrposeca.
Additional origins cannot violate the invariants and weréfere
consider this to be a safe witness trace. We compare thebpmssi
continuations ofC; to the restarted trace af; with additional
origins. However, from this point on, all fields of ¢ W< and
o € marked. That is,o will behave identically in both, the set
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