
Chameleon: Adaptive Selection of Collections

Ohad Shacham
Tel Aviv University

Martin Vechev
IBM Research

Eran Yahav
IBM Research

Abstract
Languages such as Java and C#, as well as scripting languages like
Python, and Ruby, make extensive use of Collection classes.

A collection implementation represents a fixed choice in the
dimensions of operation time, space utilization, and synchroniza-
tion. Using the collection in a manner not consistent with this fixed
choice can cause significant performance degradation.

In this paper, we present CHAMELEON, a low-overhead auto-
matic tool that assists the programmer in choosing the appropri-
ate collection implementation for her application. During program
execution, CHAMELEON computes elaborate trace and heap-based
metrics on collection behavior. These metrics are consumed on-the-
fly by a rules engine which outputs a list of suggested collection
adaptation strategies. The tool can apply these corrective strategies
automatically or present them to the programmer.

We have implemented CHAMELEON on top of a IBM’s J9 pro-
duction JVM, and evaluated it over a small set of benchmarks. We
show that for some applications, using CHAMELEON leads to a sig-
nificant improvement of the memory footprint of the application.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]; D.3.3 [Language Constructs and Features]

General Terms Performance, Languages

Keywords bloat, collections, java, semantic profiler

1. Introduction
Programming languages such as Java, C#, Python and Ruby include
a collection framework as part of the language runtime. Collection
frameworks provide the programmer with abstract data types for
handling groups of data (e.g, Lists, Sets, Maps), and hide the details
of the underlying data-structure implementation.

Modern programs written in these languages rely heavily on
collections, and choosing the appropriate collection implementa-
tion (and parameters) for every usage point in a program may be
critical to its performance.

Real-world applications may be allocating collections in thou-
sands of program locations, making any attempt to manually select
and tune collection implementations into a time-consuming and of-
ten infeasible task. It is therefore not surprising that recent studies
[22] have shown that in some production systems, the utilization
of collections might be as low as 10%, that is, 90% of the space
consumed by collections in the program is overhead.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’09, June 15–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00.

Existing profilers ignore collection semantics and memory lay-
out, and aggregate information based on types. Offline approaches
using heap-snapshots (e.g., [21, 22]) lack information about access
patterns, and cannot correlate heap information back to the relevant
program site.

In this paper, we present the first practical tool that automati-
cally selects the appropriate collection implementations for a given
application. Our tool uses what we call semantic profiling together
with a set of collection selection rules to make an informed choice.
This approach is markedly different from existing profiling tools
where the user is forced to manually filter massive amounts of ir-
relevant data, typically offline, in order to make an educated guess.

Semantic Collections Profiling The semantic profiler consists
of a tightly integrated collections-aware production virtual ma-
chine and a runtime library. During program execution, these two
components collect a myriad of complementary context-specific
collection-usage statistics such as continuous space utilization and
access patterns for each object. This information is obtained online
and transparently to the programmer, without any need for an of-
fline analysis of a general (non-targeted) heap dump. The ability of
CHAMELEON to map all statistics back to the particular allocation
context in the program is extremely useful as it enables the devel-
oper to focus on collections with maximum benefit. We have also
pre-equipped our tool with a set of collection selection rules which
are evaluated on the dynamic statistics. The output of the tool is a
set of suggestions on how to improve the collections allocated at
a particular allocation context. We are not aware of any other tool
that can automatically produce such effective information in a low-
overhead manner.

Selection from Multiple Implementations In this work, we as-
sume that we are given a set of interchangeable implementations
for every collection type. The requirement is that the different im-
plementations have the same logical behavior. For example, a Set
may be implemented using an underlying array, or a linked-list, but
all implementations have to maintain the functional behavior of a
set (e.g., have no duplicates). We focus on optimizing the choice of
collection implementation, and do not address the orthogonal prob-
lem of showing that two collection implementations are logically
equivalent (as done, e.g., in [20]).

Our library provides a number of alternative implementations,
and we allow the user to add her own implementations, and imple-
mentations obtained from other sources (e.g., [1, 2, 3, 4]).

1.1 Main Contributions
The main contributions of this paper can be summarized as follows:

• A semantic profiler which tracks useful collection usage pat-
terns across space and time. The profiler aggregates and sorts
data for each collection allocation-context.

• A collection-aware garbage collector which continuously gath-
ers statistics for a collection ADT rather than individual objects.

Figure 1. Tool overview

This is very useful as collection ADTs usually consists of sev-
eral objects (that can be described by maps). The collector is
parametric on the semantic ADT maps, and can be reused for
any (including user-specific) collection implementation.

• A flexible rule engine that selects the appropriate collection im-
plementation based on the profiling information. Our rule en-
gine allows the programmer to write implementation selection
rules over the collected profile information using a simple, but
expressive implementation selection language.

• A complete implementation of our tool over a production JVM.
• Evaluation of our tool on a small set of benchmarks where we

show that following CHAMELEON recommendations can lead
to significant improvement in program space requirements, as
well as running time.

2. Overview
In this section we provide a high-level overview of CHAMELEON by
demonstrating how it is applied to an example, and briefly discuss
some of the tradeoffs of collection implementations.

2.1 Motivating Example
TVLA [18] is a flexible static analysis framework from Tel-Aviv
University. The framework performs abstract interpretation with
parametric abstractions, and computes a set of abstract states that
over-approximate the set of all possible concrete program states.
TVLA is a memory-intensive application, and its ability to tackle
key verification challenges such as concurrent algorithms (which
have large state spaces) is mostly limited by memory consumption.
The TVLA framework makes extensive use of collections.

Our goal in this example is to optimize the collections usage in
TVLA. The first step towards that goal is to check the potential for
collection optimizations in the application.

Fig. 1 shows an overview of CHAMELEON. The tool works in
two automated phases: (i) semantic collection profiling—gathering
a wide range of collection statistics during a program run; (ii) auto-
matic selection using a rule engine—using a set of selection rules
evaluated over the collected statistics to make implementation se-
lection decisions. The tool is parametric on the semantic maps used
for profiling (Sec. 3.2), and on the set of selection rules (Sec. 3.3).

Fig. 2 shows the percentage of live-data that is consumed by
collections in TVLA running on a particular analysis problem—-
showing that Lindstrom’s binary-search-tree traversal preserves the
shape of the underlying tree. This figure is the actual output as
produced by the semantic profiler in CHAMELEON.

The figure shows three measures as percentage of the live data:
(i) total live data consumed by collections (live); (ii) total size
of the used parts of collections (used); (iii) lower-bound space
consumption of the actual collection content (core).

The gap between live and core is the best-case potential space
saving for collections (see more details on the nature of this space

0

10

20

30

40

50

60

70

80

1 25 49 73 97 121 145 169 193 217 241 265 289 313 337 361 385 409 433 457

%
 L

iv
e

D
at

a

GC

Live Collections
Used Collections
Core Collections

Figure 2. Percentage of live data consumed by collections in TVLA.

max 15 26 7 7
avg 11.33 6.31 4.8 4.8
stddev 1.36 5.05 1.17 1.17

P
o

te
n

ti
al

O
p

er
at

io
n

s
S

iz
e

�

�

�

�

�

��

��

� � � �

��
Li

ve
 D

at
a

Context

over

used

Figure 3. Combined results for top 4 allocation contexts in TVLA.

overhead in Section 2.2). Of course, some collection implementa-
tions, such as hash tables, introduce additional space in order to
facilitate efficient operations, so comparison to core is non realis-
tic. We provide the core measure as a lower-bound for the space
requirement, and to see how changes to the volume of the actual
stored data affect the space consumed by collections.

The gap between live and used corresponds to the total space
allocated by the collection implementation that is not used to store
application entries. In the figure, we see that collections constitute
up to 70% of the live data, and the part used to store collection
elements is only up to 40% of the live data.

At this stage, it seems that there is a realistic potential for space
saving, but the question is — how do we realize this potential? In
particular, how do we relate this information to the program? What
can be done in order to avoid this space overhead? What points in
the program should be modified?

Using several heap-snapshots taken during program execution
may reveal the types that are responsible for most of the space con-
sumption. However, a heap snapshot does not correlate the heap
objects to the point in the program in which they are allocated.
Therefore, finding the program points that need to be modified re-
quires significant effort, even for programmers familiar with the
code. Moreover, once the point of collection allocation is found,
it is not clear how to choose an alternative collection implementa-
tion. In particular, choosing an alternative collection implementa-

tion with lower space overhead is not always desirable. Some struc-
tures, such as hash-tables, have inherent space overhead to facili-
tate more time-efficient operations. In order to pick an appropriate
implementation, some information about the usage pattern of the
collection in the particular application is required.

CHAMELEON is the first tool to integrate heap-information with
information about the usage-pattern of collections. The semantic
profiler in CHAMELEON produces a ranked list of allocation con-
texts in which there is a potential for space saving. For each such
allocation context, the profiler CHAMELEON provides comprehen-
sive information such as the distribution of operations performed
on collections allocated at the context, the distribution of collection
sizes, etc. Fig. 3 shows an example for such a summary. It shows the
top 4 allocation contexts in TVLA, with their corresponding space
saving potential. For example, for context 1, there is a space poten-
tial of roughly 10 percent of total live heap. Additionally, for each
context, the tool provides the distribution of operations (represented
as circles in the figure). For brevity, we don’t show the names of the
operations. For contexts 1, 3 and 4, the operation distribution is en-
tirely dominated by get operations, while for context 2 there is
also a small portion of add and remove operations. In addition
to profiling information for each context, CHAMELEON produces
suggestions on which collection implementations to use. For this
example, we get the following succinct messages (for brevity we
only show suggestions for contexts 1 and 4):

• 1: HashMap:tvla.util.HashMapFactory:31;tvla.core.base.BaseTVS:50

replace with ArrayMap

• 4: ArrayList:BaseHashTVSSet:112; tvla.core.base.BaseHashTVSSet:60

set initial capacity

To produce this report, CHAMELEON combines information
on how the collections are used, with information on the poten-
tial saving in each context. The combined information is used by
CHAMELEON’s rule-engine, to yield collection tuning decisions
that are presented to the user. The final report usually includes the
precisely tracked context, which in our case consists of the call-
stack when allocation occurred (usually of depth 2 or 3). This is
often required when the application uses factories for creation of
collections (as is done sometimes in TVLA).

Next, we apply the collection decisions CHAMELEON advocated
in 5 top allocation sites in TVLA, and re-run the application. The
overall effect on the total space required by the application is dra-
matic. In particular, the minimal heap-size required to run the ap-
plication has been reduced by 50%. The effect on the overall run-
ning time is also significant. The total time required to complete the
verification by using the modified version based on the collection
implementations advocated by CHAMELEON is more than 2.5 times
faster than the original one (from 49 to 19 minutes). Further sav-
ing of time and space is possible by modifying additional program
points.

In contrast to standard profiling tools which require heavy
manual involvement, by using the semantically focused, context-
specific suggestions provided by CHAMELEON, we were able to
achieve dramatic performance improvements quickly and with lit-
tle manual effort.

2.2 Tradeoffs in Collection Implementations
Selecting an appropriate collection implementation is more com-
plicated than it seems at first sight.

Time It is possible to base the selection on asymptotic time com-
plexity of collection operations. However, the asymptotic time
complexity of collection operations is not a good measure of their
behavior when the collections contain a small number of items. In

the realm of small sizes, constants matter. Furthermore, in prac-
tice, the actual performance of a collection is affected by different
aspects, such as the locality of the selected structure, the cost of
computing a hash function, cost of resizing the structure etc.

Space Collections vary in how much space overhead is consumed
for storing a specific amount of data. They typically have different
fixed overhead per element in the collection. For example, every el-
ement stored in the LinkedList implementation has an Entry
object associated with it, where the Entry object stores a reference
to the actual element, and two references to the next and previous
entries in the list.

At each allocation site in the program, we define the utilization
of a data structure as the ratio between the size of the data that
it represents and the total amount of memory that this instance
currently uses. Similar utilization metrics are used in the context
of memory health measures [22]. As utilization varies during the
execution, we consider both the utilization along points of program
execution, and the overall average utilization of the collection.

There are several causes of low utilization: (i) the initial capacity
of the collection is not suited to the average size of data stored in
it; (ii) the collection is not compacted when elements are removed
from it; (iii) high overhead per item in the collection.

For example, an ArrayList expands its capacity whenever
it runs out of available space. The capacity grows by the func-
tion newCapacity = (oldCapacity ∗ 3)/2 + 1. Consider an
ArrayList that has an initial capacity of 100 and contains 100
elements. Adding another element increases the size of the allo-
cated array to 151 while only containing 101 elements.

Space/Time Tradeoffs It is key to note the tradeoff between time
and utilization (space). We can improve utilization by taking more
time to perform operations. For example, given an ArrayList
implementation, we can resize the array on every operation exactly
to the number of elements it contains. This would incur a signifi-
cant time penalty, but would keep the utilization at close to 100%
(accounting for the meta-data in the collection object header etc.).
Conversely, if we don’t care about utilization, we can pre-allocate
the array at the maximal number of elements, which would yield a
very low utilization, but would avoid the need for resizing the ar-
ray. Similarly, choosing an array over a linked-list would improve
utilization, but would make update operations more costly.

2.3 Possible Solutions for Low Utilization
There are several seemingly reasonable solutions that can be used
to tackle the poor utilization of data structures.

First, we can set the initial size of all allocated collections
to one and then resize the collection size whenever an insertion
or removal operation takes place. Second, we can use a hybrid
collection mechanism. Initially the structure is implemented as an
array. Then, whenever, the size of the collection increases beyond
a certain bound, we can convert the array structure to the original
implementation.

The advantage of both of these solutions is that they operate
based only on local knowledge. That is, decisions for the collec-
tions implementation and size are determined within the specific
collection object and are not based on any kind of global informa-
tion such as allocation context.

Unfortunately, we were unable to reduce the memory footprint
using these solutions with a reasonable time penalty.

Using small initial sizes does not reduce the memory footprint
due to the fact that in Hash-based ADT, such as HashMap, each
hash entry is represented by a new object containing three pointer
fields. The first is a next pointer referencing the next entry. The
second is a prev pointer referencing the previous entry. The third
is a pointer to the data itself. The entry object alone on a 32-bit

architecture consumes 24 bytes (object header and three pointers).
Therefore, even when starting with a small initial size, significant
memory not related to actual data is consumed, in this case, due to
the large entry size.

The second (hybrid) solution can be effective in reducing foot-
print; however, choosing the size when the conversion from an ar-
ray based implementation should take place is very tricky with-
out causing significant runtime degradation. In TVLA for example,
making the conversion of ArrayMap to HashMap at size 16 pro-
vides a relatively low footprint with 8% performance degradation.
However, increasing the conversion size to a larger number than
16 does not provide a smaller footprint and leads to performance
degradation. Moreover, reducing the conversion size to 13 provides
the same footprint as the original implementation does.

3. Automated Collection Selection
In this section, we discuss our solution for automatically selecting
the appropriate collections for a given user program. First, in Sec-
tion 3.1, we define the problem. Then, we show how we address
this problem with a combination of semantic collection profiling
(Section 3.2), and a rule engine (Section 3.3).

3.1 Optimal Selection of Collection Implementations
Given a program that uses collections, our goal is to find an as-
signment of collection implementations that is optimal for that pro-
gram. An optimal choice of collection implementations tries to bal-
ance two dimensions: minimizing the time required to perform op-
erations while also minimizing the space required to represent ap-
plication data.

The problem of optimal collection selection can be viewed as a
search problem: for every point in a program allocating a collection,
for each possible collection implementation, run the program, and
compare the results in terms of space consumption and overall run-
ning time. However, this approach is not likely to scale for anything
but the smallest programs. Furthermore, comparing results across
executions is a daunting task in the presence of non-determinism
and concurrency.

An alternative approach is to select collection implementations
based on collection usage statistics extracted from the client pro-
gram. Since there is no a priori bound on the number of collection
objects in a program, and there is no a priori bound on the sequence
of operations applied on a collection object, it is not practical to
represent all operation sequences directly, and an abstraction of the
usage patterns is required.

In principle, an abstraction of the collection usage pattern in a
program can be obtained either statically or dynamically. However,
static approaches to this problem typically abstract away the oper-
ation counts, which are a crucial component of usage patterns, and
are not likely to scale to realistic applications. Seeking a scalable
approach, we focus our attention on selection based on dynamic in-
formation. A dynamic approach would have to track, in a scalable
manner, enough information on the usage of collections to enable
the choice of appropriate implementations.

3.2 Semantic Collections Profiling
In this section we describe the information collected by the seman-
tic collections profiler of CHAMELEON and how this information is
used in order to make collection selection decisions.

3.2.1 Allocation Context
Our work is based on the hypothesis that the usage patterns of col-
lection objects allocated at the same allocation context are similar.
More precisely, we define the allocation context of an object o to
be the allocation site in which o was allocated, and the call stack at
the point when the allocation occurred.

Name Description
Overall live data Total/Max size of all reachable objects
Collection live data Total/Max size of collection objects
Collection used data Total/Max used part of collection objects
Collection core data Total/Max core part of collection objects
Collection object number Total/Max # of live collection objects
Number of operations Total number of operations performed
Avg/Var operation count Average # of times an operation was per-

formed, and its standard deviation.
Avg/Var of maximal Size Average maximal size of collections al-

located, and its standard deviation.

Table 1. Heap and trace statistics gathered by CHAMELEON for
each execution. Information is aggregated per allocation context.

For allocation contexts in which we observe similarity between
usage patterns to hold within reasonable statistical confidence, we
determine the type of collections that should be allocated in the
context based on the average usage pattern.

DEFINITION 3.1 (Stability). We define the stability of a metric in a
partial allocation context c as the standard deviation of that metric
in the usage profile of collections allocated in c.

Examples of metrics are: the number of times a certain oper-
ation is performed on a collection instance and the maximal size
of the collection during its lifetime. For every metric we define a
threshold that determines the limit under which the metric is con-
sidered stable.

Practically, the full allocation context is rarely needed, and
maintaining it is often too expensive. Therefore, we use a partial
allocation context, containing only a call stack of depth two or
three. The observation that (a small) allocation context is crucial
to object behavior is inline with the recent study of Jones et. al
[15]. In that study, the authors observed that objects allocated in
the same context tend to behave similarly and a garbage collection
strategy should be made aware of this correlation. In our work, we
exploit this insight for optimizing collection usage.

3.2.2 Collection Statistics
CHAMELEON records a wide range of statistics indicating how col-
lections in the program are used. Much of the information recorded
by the tool is per allocation context, and is an aggregation of the
information collected for objects allocated at that context.

Dynamically Tracked Data The tracked data is shown in Table 1.
The collected information is a combination of information about
the heap (e.g., the maximal heap size occupied by collection objects
during execution), and information about the usage pattern (e.g.,
the total number of times contains was invoked on collections
in the context).

Heap Information The heap information provides a comprehen-
sive summary of the space behavior of collections during program
execution. This information is collected on every garbage collec-
tion (GC) cycle. The GC computes the total and maximal live data
of the program where the total live data is the sum of all live data’s
accumulated over all of the GC cycles and the maximal live data
is the largest live data seen in any GC cycle. The GC has been
augmented with semantic maps and routines to compute various
context-specific collection information (discussed further in Sec-
tion 4). First, it computes the total and maximal space consumed by
reachable collection objects across all GC cycles. Second, it com-
putes the total and maximal space actually used by these collection
objects (collection used data). This is important for knowing how
much of the collection object is really utilized. Thirdly, it computes
the total and maximal collection core size, which would be the ideal

rule := srcType cond implType|
srcType cond implType(capacity)

srcType := Collection | ArrayList | LinkedList | . . .

implType := ArrayList | ArrayMap |HashSet | . . .

cond := comparison | cond ∧ cond | . . .

comparison := expr ≤ constant | expr == constant | . . .

expr := opCount | opV ar | data | expr + expr | . . .

opCount := #add |#get(int) |#get(Object) | . . .

opV ar := @add | @remove | . . .

data := tracedata | heapdata

tracedata := size |maxSize | initialCapacity

heapdata := maxLive | totLive |maxUsed | totUsed . . .

capacity := INT |maxSize

Figure 4. Simple language for implementation selection rules.

space that would be required to store the core elements of the col-
lection object in an array. This statistic is useful to provide a lower
bound on the space requirement for the content of the collection
(hence indicating the limit of any optimization). Finally, the total
and maximum number of live collection objects are computed.

Trace Information As mentioned earlier, recording the full se-
quence of operations applied to a collection object has a prohibitive
cost. Instead, our trace information records the distribution of op-
erations, as well as the maximal size observed for collections at
the given context. The average operation counts provide a count of
all possible collection operations. For brevity, we do not list all of
them here. For some operations, those that involve interactions be-
tween collections, we introduce additional counters that count both
sides of the interaction. For example, when adding the contents of
one collection into another using the c1.addAll(c2) operation, we
record the fact that addAll was invoked on c1, but also the fact that
c2 was used as an argument for addAll. Similarly, we record when
a collection was used in a copy constructor. These counters are par-
ticulary important for identifying temporary collection objects that
are never operated upon directly, other then copying their content.

Using Profiling Information The statistics from the tool can be
used in several ways. For example, as the program runs, the user
can request the tool to output the current top allocation contexts,
sorted by maximum benefit. In the case where the user wants
to make manual changes, she can focus on the most beneficial
contexts instantly. Alternatively, she can use the recommendations
automatically computed by the tool, which are based on a set of
selection rules. To allow flexibility in querying the information
collected by the tool, and select appropriate implementations based
on it, we let the user write rules in a simple language. We describe
those next.

3.3 Rule Engine
A Simple Rule Language We allow the user to write replacement
rules, using the language of Fig. 4. The language is pretty standard,
and in the figure we abbreviate rules that contain standard combi-
nations of operations, such as boolean combinations for cond and
arithmetic operators for expr. The language allows to write condi-
tional expressions under which a replacement takes place. The con-
ditional expressions use the metrics of Table 1 as the basic vocabu-
lary. The language allows to write conditional expressions compar-
ing the ratios between operation counts (e.g., the ratio of contains
operations #contains/#allOps), the operation count itself (e.g.,
#remove == 0) etc. It also allows the user to check the variance
of counts (e.g, @add). The language also allows the user to query
the live-data occupied by collections at the context, and the used-

data occupied by collections at the context. These are typically used
to figure out whether the potential saving in this allocation context
(totLive− totUsed) is greater than some threshold.

3.3.1 Chameleon Collection Selection
Table 2 shows several examples of selection rules that are built into
CHAMELEON. The constants used in the rules are not shown, as
they may be tuned per specific environment. For example, the rule

ArrayList :#contains>X∧maxSize>Y→LinkedHashSet

specifies that if the type allocated at this context is an ArrayList,
and the average number of contains operations performed on
collections in this context is greater than some threshold X , and
the average maximal size of the collection is greater than some
threshold Y , then the selected type should be a LinkedHashSet.
This rule corresponds to the fact that performing a large number of
contains operations on large-sized collections is better handled
when the collection is a LinkedHashSet. Of course, the rule
can be refined to take other operations into account. The user can
write various expressions in this language that dictate which im-
plementation to select. For example, when the potential space sav-
ing is high, one may want to apply a different collection selection
even if it results in a potential slowdown. For instance, the space
benefit of the rule selecting an ArraySet instead of HashSet
may outweigh the time slowdown when the potential space sav-
ing (totLive− totUsed) is greater than some threshold. Conversely,
we can avoid any space-optimizing replacement when the potential
space savings seems negligible.

Section 5 shows that using CHAMELEON recommendations
based on rules such as those of Table 2 can yield significant perfor-
mance improvements.

Stability If stability is not specified explicitly in the rule, it is as-
sumed that any metric has to have its standard deviation less than
a fixed constant (in the current implementation, size values are re-
quired to be tight, while operation counts are not restricted). Gen-
erally, different metrics may require different measures of variance
based on their expected distribution. For example, while the opera-
tion counters usually distribute normally, maximal collection sizes
are often biased around a single value (e.g., 1), with a long tail.
Our current implementation uses standard-deviation as the stabil-
ity measure, but in the future we plan to evaluate the suitability of
other measures of variance for different metrics.

3.3.2 Towards Complete Automation
The current operation mode in which CHAMELEON is used is to
evaluate all selection rules at the end of program execution, when
complete information has been obtained for all collections allo-
cated at a given context. The suggested implementations can then
be applied by the programmer (or by the tool) and the program can
be executed again (with or without profiling).

An interesting challenge is whether the act of replacement can
be applied while the program is running. Such an online solution
may be beneficial for several reason:

Lack of Stability: It is possible that collection objects from
a given allocation context exhibit wide variation in behavior,
for example due to different program inputs, phasing or non-
determinism. Hence, detecting these cases and allocating the ap-
propriate collection object may be more advantageous than sticking
to a single implementation for all cases.

Optimization of Underlying Framework: Most real-world soft-
ware makes use of framework code. The framework code itself
may make extensive use of collection. Online selection can special-
ize the collection-usage in underlying frameworks, that is typically
outside the scope of programmer’s manual modifications. In gen-

Type Condition Category: Message Suggested Fix
ArrayList #contains > X ∧maxSize > Y Time: Inefficient use of an ArrayList: large volume of contains

operations on a large sized list
LinkedHashSet

LinkedList #get(int) > X Time: Inefficient use of a LinkedList: large volume of random
accesses using get(i)

ArrayList

LinkedList
(#add(int, Object)+
#addAll(int, Collection)+
#remove(int) + #removeF irst) < X

Space: LinkedList overhead not justified when adding/removing
elements from the middle/head of the list is hardly performed ArrayList

Collection maxSize == 0 Space: Redundant collection allocation LazyArrayList
HashSet maxSize < X Space: ArraySet more efficient than an HashSet. Time: opera-

tions on a small array might be faster than on an HashSet
ArraySet

Collection #allOps = 0 Space/Time: redundant collection avoid allocation
Collection #allOps == #copied Space/Time: redundant copying of collections eliminate temporaries
Collection maxSize > initialCapacity Space/Time: incremental resizing set initial capacity
Iterator collection.size == 0 Space: Redundant iterator remove

Table 2. Example of built-in CHAMELEON rules.

eral, this follows a theme of specializing the library for a particular
client, as part of the client’s execution in the runtime environment.

No Programmer Effort: Manual replacement may require non-
trivial code-modifications to deal with factories and deep allocation
contexts. Dynamic selection is performed as part of the runtime en-
vironment and requires no manual modifications to the source code.

Dealing with completely automatic replacement is challenging
because decisions may have to be based on partial information:
at what point of the execution can we decide to select one col-
lection implementation over another? For example, if the tool re-
places the type allocated at a given context from a HashMap to
an ArrayMap on the premise that objects allocated at that con-
text have small maximal sizes, even a single collection with large
size may considerably degrade program performance. Additionally,
such a tool must run with sufficiently low overhead to be enabled
during production deployment. Therefore, it is crucial to reduce
overhead costs and in particular, it is vital to be able to obtain allo-
cation context cheaply.

Towards the vision of fully automatic management of collec-
tions at runtime, we performed preliminary experiments where we
used CHAMELEON in a mode where all replacements are done com-
pletely automatically at runtime, without any user involvement. We
describe our results in Section 5.

4. Implementation
In this section we present the design and implementation of our
tool. The tool consist of two complementary components: the li-
brary and the virtual machine, which are integrated in a manner
that is transparent to the end user. The design of these components
is such that they can be used separately by switching on and off
each component on demand. However, for maximal benefit we typ-
ically use them together. By selectively instrumenting the library,
we are able to record various useful statistics such as frequency
of operations and distributions of operations for a given collection
size. While this information is useful, it still does not provide us
with a relative view of how collections behave with respect to the
whole system. However, such global information can be extracted
from the virtual machine and in particular from the garbage collec-
tor (GC). By instrumenting the GC to gather semantic information
about collections, we are able to answer questions such as the total
live data occupied by collections at a specific point in time. Such
information, while cheap to obtain from the GC, is very costly to
obtain at the library level. Next, we describe each component sep-
arately as well as how they interact with each other.

4.1 Design Choices
One of the core principles that we followed in our approach is to
avoid as much as possible any changes to the original program.
A key place where a dilemma between portability and slightly
better efficiency occurs is during allocation of a collection ob-
ject. For example, if the user program requests an allocation of a
HashMap object and the system determines that for this context, it
is best to implement that HashMap object with an ArrayMap, we
are faced with two possible implementation choices. First, we can
make ArrayMap a subtype of HashMap and then return ArrayMap.
The problem is, that ArrayMap would then inherit all fields from
HashMap. Further, any program expressions that depend on the
precise type being HashMap may work incorrectly. Another so-
lution is to have ArrayMap and HashMap as sibling types, but to
return an object of type ArrayMap. In that case, we need to make
sure that all type declarations in the program match ArrayMap (that
were HashMap before) and that all semantic behavior depending on
a specific type is preserved. This is the approach taken by Sutter et.
al for details [25]. However, statically re-writing the type decla-
rations of the program is intrusive, challenging, can lead to subtle
errors due to language features such as dynamic typing, and is gen-
erally difficult to scale on large programs. Our solution in that case
has been true to Lampson’s statement that all problems in com-
puter science can be solved by another level of indirection. Hence,
we add another level of indirection between the program and the
collection implementation. That is, each allocation of a collection
object requires a wrapper. In our example, whenever HashMap is
allocated, it will be a small wrapper object. Then, internally, the
wrapper object can point to any implementation of HashMap. We
believe that a small delta in inefficiency is worth the software re-
liability gains. Further, we believe that with VM support we can
reduce this inefficiency further (e.g. via object inlining)

4.2 Library Architecture
Fig. 5 shows the architecture of the CHAMELEON libraries.

Our wrappers delegate collection operations to the underly-
ing selected collection implementation (similar to the Forwarding
types in Google’s Collections [2]). The only information kept in the
wrapper object is a reference to the particular implementation. In
our solution, the actual backing implementation can be determined
statically by the programmer (by explicitly providing the construc-
tor with an appropriate constant), left as the default choice that the
programmer indicated, or determined dynamically by the system.

As the wrapper allocates the backing implementation object,
it also obtains the call stack (context) for this allocation site and
constructs a VMContextKey object that records it (via the loca-
tionId fields inside it). This object is then used to look up the cor-

Wrapperimpl Implementation

HashMap

MapArrayImpl

Object Context Info Context Info

x = new HashMap()

OCI
locationId0locationId1locationId2

VMContextKey CK0CK1CKn …

contextinfo1contextinfokcontextinfo0ContextInfoLookupTable

Program
Library livedatatypesoperationsoperations variancemaxSizeCIImpl fields...

Figure 5. CHAMELEON library architecture. Shaded fields are up-
dated by the VM.

responding ContextInfo object, which records aggregate infor-
mation for this context. In order to collect information on the col-
lection usage pattern for this context, the backing implementation
may allocate an ObjectContextInfo. This object is used to
store the various operation counters, collection maximal size, etc.
When the collection implementation object dies, the contents of
its object information object are aggregated into the corresponding
ContextInfo object (via finalizers as described later).

Obtaining Allocation Context CHAMELEON tracks information
at the level of an allocation context. This requires that an allocation
context be obtained whenever a collection object is allocated. We
have implemented two methods for obtaining the allocation con-
text: (i) a language-level method based on walking the stack frames
of a Throwable object; (ii) a method using JVMTI.

The JVMTI-based implementation is significantly faster than
the Throwable-based implementation which requires the expen-
sive allocation of a Throwable object, and the manipulation of
method signatures as strings (our native implementation works di-
rectly with unique identifiers, without constructing intermediate
objects to represent the sequence of methods in the context).

We are currently working on a third implementation using a
modification of the JVM to obtain bounded context information in
a lightweight manner. In addition, there are many approaches that
target the problem of obtaining context [7, 9, 10, 28], we intend to
explore some of these in future work.

Sampling of Allocation Context: To further mitigate the cost of
obtaining the allocation context, CHAMELEON can employ sam-
pling of the allocation contexts. Moreover, when the potential space
saving for a certain type is observed to be low, CHAMELEON can
completely turn off tracking of allocation context for that type.
(Technically, sampling is controlled at the level of a specific con-
structor.)

Available Implementations Our goal in this work is to study the
problem of collection implementation selection, and not to improve
the default collection implementations. There are many alterna-
tive open-source collection implementations [1, 2, 3, 4], varying
in terms of robustness, compatibility, and performance. In princi-
ple, these implementations can be swapped-in as additional possi-
ble implementations for the collection interfaces, with appropriate
selection rules on when they should be used.

In our experiments, however, we used our own alternative im-
plementations for collections, for example:
• List:

ArrayList - resizable array implementation.
LinkedList - a doubly-linked list implementation.

LazyArrayList - allocate internal array on first update.
IntArray - array of ints. (Similar for other primitives)

• Set (and similarly for Map):
HashSet (default) - backed up by a HashMap
LazySet - allocates internal array on first update
ArraySet - backed up by an array
SizeAdaptingSet - dynamically switch underlying imple-
mentation from array to HashMap based on size.

Further performance improvements can be achieved by swap-
ping additional implementations under the appropriate conditions.
However, some of these conditions are subtle. For example, select-
ing an open-addressing implementation of a HashMap (e.g., from
the Trove collections) requires some guarantees on the quality of
the hash function being used to avoid disastrous performance im-
plications. This is hard to determine in Java, where the programmer
can (and does) provide her own hashCode() implementation.

Context Information As mentioned previously, the
ObjectContextInfo object collects the usage pattern for
collection instances. This information is aggregated into the
ContextInfo maintained for the corresponding allocation con-
text. As we will see later, with VM support, the context information
can also contain information about the heap usage of collections
allocated at the given allocation context. As we mentioned already,
our design allows us to benefit from VM support, but can also be
used when such VM support is absent.

4.3 VM Support
While gathering information at the library level is useful, it is often
very difficult to obtain any kind of global view of how collections fit
into the whole behavior of the program. For example, even though
a particular context allocates memory at a high rate, it is still not
clear whether there is much benefit globally in tracking collection
usage, for it may be the case that it is a small percent of total
memory. Also, it may often be useful to monitor the application
with very low overhead, without tracking any library usage, in order
to determine whether there is any potential whatsoever in changing
the implementation of collections.

One place where much of this global information can be ac-
cessed is during the GC cycle. By examining the program heap
during a GC cycle, we can calculate various collection parameters
such as distribution of live data and collection utilization. More-
over, with careful techniques, this valuable information can be ob-
tained with virtually no additional cost to the program execution
time, and as part of normal operation of the collector. To that end,
we extended the GC to gather valuable semantic information per-
taining to collections. At the end of each cycle, the collector aggre-
gates this information in the ContextInfo object (which also
contains trace-based information). The library can then inspect the
combination of trace and heap information at the same time.

4.3.1 Context-Sensitive Collection Data
Note that simply examining the heap is often not enough, espe-
cially in large applications with thousands of program sites allo-
cating collections. In particular, we would like to focus on specific
allocation sites in the program which have the highest potential for
gain. To that end, if the library maintains context information, the
collector will automatically take advantage of this and record vari-
ous context-specific information into the ContextInfo object.

4.3.2 Collector Modifications
In our implementation, we used the base parallel mark and sweep
garbage collector, which works in the standard way. First, the
roots of the program are marked (thread stacks, finalizer buffers,

Name Description
Live Data The size of all reachable objects
Collection Live Data Total occupied size of collection objects
Collection Used Data Total used size of collection objects
Collection Core Data Total core size of collection objects
Collection Object Number Total number of live collection objects
Type Distribution Live size breakdown for each type

Table 3. Statistics gathered on every garbage collection cycle for
each allocation context

static class members, etc). Then, several parallel collector threads
perform the tracing phase and compute transitive closure from these
roots, marking all objects in that transitive closure. Finally, during
the sweeping phase, all objects which are not marked are freed.
In our system, the number of parallel threads is the same as the
number of cores available in hardware. We note that our choice
of this specific collector can possibly lead to different results than
if we had used for example a generational collector. However, the
improvements in collection usage are orthogonal to the specific GC.

We have instrumented the base collector to compute various
semantic metrics during its marking phase. The set of metrics
computed by collector is shown in Table 3. From these metrics,
we can compute aggregate per-context metrics over all GC cycles
as described in Section 3.2.2 and shown in Table 1.

Semantic ADT Maps Typically, a collection object may contain
several internal objects that implement the required functionality.
For example, an ArrayList object may contain an internal array of
type java.lang.Object[] to store the required data. This means that if
we blindly iterate over the heap, we will not be able to differentiate
object arrays that are logically part of ArrayList and those object ar-
rays that have nothing to do with collections (e.g. allocated outside
of ArrayList methods). This lack of semantic correlation between
objects is a common limitation of standard profilers. Therefore, to
efficiently obtain accurate statistics (such as size) about collections,
we use what we call semantic maps. In brief, every collection type
is augmented with a semantic map which describes the offsets that
the collector use to find information such as the size of the ob-
ject (which may involve looking up the size of the underlying ar-
ray), the actual allocated size and its underlying allocation context
pointer. Semantic maps are pre-computed for all collection types
on VM startup. Using semantic maps allows us to obtain accurate
information by avoiding expensive class and field name lookups
during collection operation. Further, because the whole process is
parametric on the semantic maps, we can run the system on any
collection implementation (including custom implementations).

Operation Every time the collector visits a non-marked object,
it checks whether it is an object of interest (a collection object).
In that case, it consults the semantic map of its type and quickly
gathers the necessary statistics such as the live data occupied by
the object (and its internal objects), the used data and the core data
(the ideal space if we had only used a pointer array to represent the
application data). Further, if the object tracks context information,
using the semantic map, the collector finds the ContextInfo
object and records the necessary information for that allocation
context (as described in Table 3).

4.4 Discussion
By augmenting the GC with semantic ADT maps, we were able
to automatically and continuously compute various useful context-
sensitive utilization metrics specific to the semantics of collections.
Moreover, because the statistics are gathered during normal collec-
tion operation, no additional performance overhead is incurred.

The information obtained from the collector can be used in
various ways. In our case, we propagate the information back to the
ContextInfo object in the library in order to allow the tool to
make a more informed decision by combining this with the library
trace-based information. In addition, we also record the results for
each cycle separately (it is up to the user to specify what they
want to sort the results by as well as how many contexts to show)
for further analysis. This information can be readily used by the
programmer to quickly focus on contexts which have the most
potential for further improvement.

Finalizer Usage In our early versions of this tool, we extended
all collection implementation types with finalizer methods. How-
ever, we found that finalizers noticeably slowed the system down.
One of the main reasons for this is that finalizer objects live for an
additional collector cycle and hence all objects transitively reach-
able from the finalizable object will also live for an additional cycle
(even if they are never referred by the finalize() method). We
still rely on selective usage of finalizers and we use them only for
ObjectContextInfo objects. These objects are usually very
small (few words) and do not have other objects in their transitive
closure. Moreover, in the online version, ObjectContextInfo
objects are not always allocated, further mitigating any costs asso-
ciated with finalizers. Note that for our purposes, we can also easily
compute these statistics in the sweeping phase of the garbage col-
lection cycle (and not rely on finalizers).

5. Experimental Results
5.1 Benchmarks
Because our tool runs on top of a production virtual machine and
requires no changes to the application program, we were able to
quickly run CHAMELEON on various applications. In our results,
we focus on space-critical applications such as SOOT [26], TVLA

[18] and FINDBUGS [14]. We also ran CHAMELEON on all of the Da-
capo benchmarks [8]. Most of the Dacapo benchmarks do not make
intensive use of collections, and hence our tool showed little poten-
tial saving for those. However, it did show that there is potential on
the benchmarks BLOAT, FOP, and PMD. Hence, we concentrated our
efforts on the results for these benchmarks and we present those
later in this section. The inputs we used for our benchmarks are
an internal Dacapo version for SOOT, TVLA source code for FIND-
BUGS, the large inputs for Dacapo benchmarks, and an analysis
problem—-showing that Lindstrom’s binary-search-tree traversal
preserves the shape of the underlying tree for TVLA. Also, in our
experiments we did not track the potential in benchmarks such as
HSQLDB which use their own collection classes. However, with very
little manual effort in the library, we can also profile such appli-
cations. The collection-aware GC can profile them already as it is
parametric in the semantic maps that describe the custom collection
classes.

5.2 Methodology
For each benchmark, we took the following steps towards optimiz-
ing collection usage:
1. Run CHAMELEON on the application. Based on the results,

evaluate whether there is any saving potential. If there is no
potential, move on to the next application, otherwise, proceed
to the next step.

2. For benchmarks with potential, CHAMELEON reports the allo-
cation contexts in sorted order with the appropriate suggestions.

3. Modify the top allocation contexts using the tool suggestions.
This is a replacement step and hence can be easily automated.

4. Repeat steps 1-3 on the modified version.

10

20

30

40

50

60

70

80

90

100

TVLA FindBugs PMD Bloat Fop Soot

M
in

im
al

 H
ea

p
(%

)

Figure 6. Improvement of minimal heap size required to run the
benchmark, shown as percentage of the original minimal heap size.

10

20

30

40

50

60

70

80

90

100

TVLA FindBugs PMD Bloat Fop Soot

T
im

e
(%

)

Figure 7. Improvement of running times of the benchmarks after
applying fixes suggested by CHAMELEON, shown as percentage of
the original running time. Running times were obtained by running
each benchmark with its corresponding original minimal-heap size.

5. Compare the gains for the top allocation contexts in the before
and after versions.

6. Evaluate the effect of collection optimizations in terms of the
minimal-heap size required to run the program, and the execu-
tion time when running with the original minimal-heap size.

5.3 Results
Fig. 6 shows the improvement of minimal space required to run the
benchmark after applying fixes suggested by CHAMELEON. Fig. 7
shows the improvement of running times of the benchmarks after
applying fixes suggested by CHAMELEON. The running times were
obtained by running each benchmark with its corresponding origi-
nal minimal-heap size requirement. Our experiments were obtained
on an Intel Xeon 3.8Ghz dual hyper threaded CPUs, 5GB RAM
platform running a 64 bit Linux. Next, we discuss each application
we considered in more details.

bloat The potential for bloat is shown in Fig. 8. The x-axis is
the number of the GC cycle, while the y-axis is the percentage of
the total live data computed at the end of the GC. This output is ob-
tained directly from the collection-aware GC. The figure shows that
bloat’s footprint is dominated by a spike of collections (at GC#656
in the figure), where the true required space for the collections is
significantly lower.

The top allocation context reported by CHAMELEON for BLOAT

corresponds to this spike of collections, and had a potential

0

10

20

30

40

50

60

70

80

90

1 39 77 115 153 191 229 267 305 343 381 419 457 495 533 571 609 647 685 723 761 799 837

GC

%
 L

iv
e

 D
a

ta

Live Collections

Used Collections

Core Collections

Figure 8. Percentage of collections in original version of bloat

that dominated the potential of all other contexts. Furthermore,
CHAMELEON reported that most of the LinkedLists allocated
at that context remained empty and were never used. Around
25% of the heap at that point of execution was consumed by
LinkedList$Entry objects that are allocated as the head of
an empty linked list. More than 20% of space can be saved by
making the lists into LazyArrayLists, but a simple manual
modification in the code can make the allocation itself lazy, which
reduces the minimal-heap size required to run the program by 56%.

FOP In FOP (v0.95), based on the tool recommendations,
some HashMaps were replaced with ArrayMaps and ini-
tial sizes of other collections were tuned. There was also
one context that allocated collections that were never used (in
InlineStackingLayoutManager). The result is a 7.69% re-
duction in the minimal-heap size required to run the program.

Findbugs Based on CHAMELEON suggestions, we replaced some
HashMaps by ArrayMaps, HashSets by ArraySets, and
the initial sizes of other collections were tuned. We also performed
lazy allocation for HashMaps in contexts where large percentage
of the collections remain empty. The overall result is a reduction of
13.79% in the minimal-heap size required to run the program.

PMD PMD was already manually optimized to a correct collec-
tion usage. EMPTY LIST was assigned to List pointers when
needed and the initial size of many ArrayLists was manu-
ally set. CHAMELEON discovered many empty and small sized
ArrayLists that were mistakenly initialized to a high number.
We manually performed lazy allocation for these ArrayLists
which reduced more than 20 million ArrayList allocations. In
addition, we set the tuned size of lists and replaced ArrayList
allocation by SingletonList. And also replaced some HashSets
by SizeAdaptingSet (similarly for maps). Unfortunately, all
these changes did not reduce the minimal heap size required to run
PMD. There are two main reasons for this. The first is that most of
the reduced collections are short lived. The second is that most of
the long-lived collection data in PMD is large and stable HashSets
as well as large ArrayLists. However, even though our modifi-
cations did not reduce the minimal heap size. The number of GCs
reduced by 16% which led to a runtime improvement of 8.33%.

Soot SOOT’s heap consists of many small objects that are long-
lived. It’s intermediate representation of program entities makes
intensive use of Collection classes. For the most part, SOOT uses
ArrayLists for flexibility. However, the initial capacity of the
lists is rarely provided, and the overall utilization of the lists is

rather low (overall, around 25%). For cases in which lists are
known to be singletons, SOOT sometimes uses a designated type
SingletonList to reduce space overhead.

The collection choices we applied in SOOT were simple. Using
our tool, we first observed that in the few top contexts in which
ArrayLists were used to store singletons (by construction), the
constructed collections are never modified, and replaced them with
immutable SingletonList (e.g., in JIfStmt). We note that
the SOOT team has made a similar selection for other commonly
used types. The second suggestion CHAMELEON pointed out is the
large potential saving for ArrayLists created in useBoxes
methods. The idiom there is one of aggregation of used values
up a tree. Every node creates an ArrayList of its uses, and
aggregates uses from its children. The result is the creation of many
ArrayLists that are being rolled into other ArrayList using
addAll. Avoiding all temporaries requires a major rewrite of the
code, but even without rewriting the code, we selected proper initial
sizes for these lists. The overall result for SOOT was a saving of 6%
in space, and 11% improvement in the running time.

TVLA Most of the heap in TVLA is dedicated to storing the ab-
stract program states that arise during abstract interpretation. The
abstract program states use collections to store the state informa-
tion. Most of the collection data is stored in HashMaps from seven
contexts. CHAMELEON points this collections as ones that can be
replaced by ArrayMaps. Replacing these collections provides a
minimal-heap reduction of 53.95%. CHAMELEON also pointed an
initial size setting for several contexts and LinkedList that can
be replaced by an ArrayList.

5.4 Discussion
Experience with Fully Automatic Replacement Our tool can
run in fully-automatic mode in which replacement of collections
is performed during program execution. Due to the high cost of
obtaining allocation contexts, we expected the tool to incur a high
time overhead, and only evaluated its effectiveness in terms of
space reduction. We ran the tool in the fully automatic mode for
all of our benchmarks to evaluate the quality of its replacement
decisions. Much to our surprise, for most benchmarks, the overall
slowdown was noticeable, but not prohibitive.

For TVLA, the space saving achieved was identical to the one
we got with the manual modification. However, the impact on
running time was significant, due to the cost of obtaining allocation
contexts. Overall, TVLA suffered a slowdown of 35%. For space-
critical applications such as TVLA this may be an acceptable tradeoff
in practice. The only benchmark for which the slowdown was
prohibitive (6x slowdown) was PMD, which performs massive rapid
allocation of short-lived collections, which amplified the cost of
obtaining allocation contexts.

Our experiments indicate that the performance bottleneck stand-
ing in the way to fully automatic replacement is the task of obtain-
ing an allocation context. We believe that with better VM support
for this functionality, fully online replacement is within reach.

Iterators In many of our benchmarks, we have observed the
(somewhat expected) massive creation of iterator objects. Quite
often, the iterators were created over empty collections. For some
of the collection interfaces (e.g., Set), the creation of a new iterator
object can be avoided in this case in favor of returning a fixed static
empty iterator. However, some collection interfaces allow addition
of new items through an iterator, and therefore require that a new
iterator object will be created even when the collection is empty.

Specialized Partial Interfaces The Java collection interfaces are
rather rich, and pose significant restrictions on the underlying im-
plementations. More efficient implementations could be introduced

if collection interfaces are minimized, or at least separated. For ex-
ample, the List interface currently supports a list iterator that can
traverse the list both forward and backward. For practical purposes,
such interface precludes an underlying implementation of using a
singly-linked list. While we can leverage static analysis to show
place, it seems more desirable to modify the library interfaces to
permit additional implementations.

6. Related Work
Recent work by Jones and Ryder [15] suggests that allocation
context is indicative of object behavior and argues that GC should
take advantage of this (rather than relying on fixed heuristics). We
use a similar observation to gather semantic-oriented object metrics
and perform corrective actions accordingly.

The challenge of freeing the user from managing and choosing
the right data structure for their application is not a new one. For
example, in the context of the high-level language SETL, Dewar et.
al [12] suggest the usage of a special sublanguage to declaratively
specify the type of a data structure that a set or a map of a SETL
program should use. A compiler then takes as input the SETL
program and the data structure specification in the sublanguage and
outputs an efficient implementation. More work on this subject by
Schonberg et. al [23] focuses on eliminating the need for manually
specifying the structures in a sub-language. It proposes an analysis
that takes as input a pure SETL program and automatically infers
suitable data structures for it. A similar line of work based on static
analysis is presented by Low [19]. In contrast, our work is done in
the context of a lower-level language (Java) where the operations
on the data-structure (collection) are explicit. Further, our work is
centered around dynamic (rather than static) analysis. The mere
size of current programs combined with modern language features
make it challenging to statically optimize collection usage.

Active Harmony [11] is a system for automatic tuning of pro-
grams. The system contains a layer for automatic tuning of parame-
ters as well as a library specification layer that helps the application
select the right library to execute. Active Harmony requires each
library to provide a performance-evaluation function, and a cost-
estimate function. The functions are used by the tuning algorithm
to evaluate the performance of the library, or estimate its possible
behavior. In contrast, our work targets general purpose object ori-
ented programs where the program is executed in a runtime envi-
ronment, and optimizes this environment to collect valuable infor-
mation. In addition, we use allocation contexts to share historical
information between objects as well as gain some metric of stability
of collection behavior. Moreover, our work combines the GC and
VM information per context to decide which contexts are worthy
to optimize.

More recent work dealing with the challenges of using custom
collections in Java is that of Sutter et. al [25]. They apply static
analysis to determine when a replacement of an existing collec-
tion type with a custom type is possible without violation of type
constraints. Further, they profile several applications to determine
where a replacement may be possible. Subject to the type con-
straints, their analysis automatically replaces existing types with
custom types. Their replacement is based on allocation site (rather
than context as is in our case). Their profiling information does not
include heap information (as we do via VM support). We see our
work as complementary. We can provide a more detailed profiling
information and then use a static analysis to determine when it is
safe to replace one type with another. However, because our sys-
tem supports wrappers, we are able to always make a replacement
as the type safety cannot be violated.

Recently, there has been work on application-specific selection
of GCs, see Soman and Krintz [24] for details. The challenges they
face are broadly similar to ours: when should one switch from one

GC to another and what application characteristics should switch-
ing take into account. For example, the authors describe a scenario
of switching to a GC that is tuned for resource-constrained en-
vironments when the memory becomes scarce. GC switching oc-
curs at pre-defined points when all application threads are stopped.
Switching GCs is complex as it may involve on stack replacement
to adjust methods to the specific GC (e.g. use write barriers for gen-
erational GC). In our case, switching is localized as it occurs when
a collection object is allocated which does not require us to stop ap-
plication threads. An interesting item of future work is looking into
GC strategies that have semantic knowledge of collection objects.
For example, the GC may allocate ArrayList and its internal object
array together for locality purposes.

Recently, there has been work on semantically modifying the
GC to detect various correctness properties, see [5, 6]. In our case,
we extended the GC to gather context-specific collection informa-
tion. We believe that exploring conceptually small but highly ben-
eficial semantic extensions to the VM is a fruitful area of research.

Additional research were done in the field of automatic tuning.
A works for automatically tuning linear algebra was done by Wha-
ley and Dongarra [27] in the ATLAS project. Their work automat-
ically generates efficient linear algebra routines for a given micro-
processor. They show an automatic generation of matrix multipli-
cation routines for different hardware architectures. A work for au-
tomatically choosing a decision heuristic for a SAT solver was done
by Lagoudakis and Littman [17]. In their work a decision heuris-
tic is chosen according to a value function, which is calculated on
the current state of the search. The value function is created before-
hand, using a training set. There are also works on dynamic pre-
tenuring in GC [13, 16]. These works use the same notion as ours
of automatic tuning, however, these works do not try to select and
manage data structures and tackle different problems in a different
domain.

Acknowledgments
We thank Matthew Arnold, Nick Mitchell, Mooly Sagiv, and Gary
Sevitsky.

References
[1] Apache collections. http://commons.apache.org/collections/.
[2] Google collections. http://code.google.com/p/google-collections/.
[3] Javolution collections. http://javolution.org/.
[4] Trove collections. http://trove4j.sourceforge.net/.
[5] AFTANDILIAN, E., AND GUYER, S. Z. GC assertions: Using the

garbage collector to check heap properties. In MSPC (2008), ACM.
[6] ARNOLD, M., VECHEV, M., AND YAHAV, E. QVM: an efficient

runtime for detecting defects in deployed systems. In OOPSLA ’08:
Proceedings of conference on Object oriented programming systems
languages and applications (2008), pp. 143–162.

[7] BARRETT, D. A., AND ZORN, B. G. Using lifetime predictors to
improve memory allocation performance. In PLDI ’93: Proceedings
of the ACM SIGPLAN 1993 conference on Programming language
design and implementation (New York, NY, USA, 1993), ACM,
pp. 187–196.

[8] BLACKBURN, S. M., GARNER, R., HOFFMAN, C., KHAN, A. M.,
MCKINLEY, K. S., BENTZUR, R., DIWAN, A., FEINBERG, D.,
FRAMPTON, D., GUYER, S. Z., HIRZEL, M., HOSKING, A., JUMP,
M., LEE, H., MOSS, J. E. B., PHANSALKAR, A., STEFANOVIĆ,
D., VANDRUNEN, T., VON DINCKLAGE, D., AND WIEDERMANN,
B. The DaCapo benchmarks: Java benchmarking development and
analysis. In OOPSLA ’06: conf. on Object-Oriented Programing,
Systems, Languages, and Applications (2006), pp. 169–190.

[9] BLACKBURN, S. M., SINGHAI, S., HERTZ, M., MCKINELY,
K. S., AND MOSS, J. E. B. Pretenuring for java. In OOPSLA
’01: Proceedings of the 16th ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and applications (New
York, NY, USA, 2001), ACM, pp. 342–352.

[10] BOND, M. D., AND MCKINLEY, K. S. Probabilistic calling context.
SIGPLAN Not. 42, 10 (2007), 97–112.

[11] CHUNG, I.-H., AND HOLLINGSWORTH, J. K. Runtime selection
among different api implementations. Parallel Processing Letters 13,
2 (2003), 123–134.

[12] DEWAR, R. K., ARTHUR, LIU, S.-C., SCHWARTZ, J. T., AND
SCHONBERG, E. Programming by refinement, as exemplified by the
setl representation sublanguage. ACM Trans. Program. Lang. Syst. 1,
1 (1979), 27–49.

[13] HARRIS, T. L. Dynamic adaptive pre-tenuring. In ISMM ’00:
Proceedings of the 2nd international symposium on Memory
management (New York, NY, USA, 2000), ACM, pp. 127–136.

[14] HOVEMEYER, D., AND PUGH, W. Finding bugs is easy. In OOPSLA
’04: Companion to the conference on Object-oriented programming
systems, languages, and applications (2004), pp. 132–136.

[15] JONES, R. E., AND RYDER, C. A study of java object demographics.
In ISMM ’08: Proceedings of the 7th international symposium on
Memory management (2008), pp. 121–130.

[16] JUMP, M., BLACKBURN, S. M., AND MCKINLEY, K. S. Dynamic
object sampling for pretenuring. In ISMM ’04: Proceedings of the 4th
international symposium on Memory management (New York, NY,
USA, 2004), ACM, pp. 152–162.

[17] LAGOUDAKIS, M. G., AND LITTMAN, M. L. Learning to select
branching rules in the dpll procedure for satisfiability. In SAT (2001).

[18] LEV-AMI, T., AND SAGIV, M. TVLA: A framework for Kleene
based static analysis. In Saskatchewan (2000), vol. 1824 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 280–301.

[19] LOW, J. R. Automatic data structure selection: an example and
overview. Commun. ACM 21, 5 (1978), 376–385.

[20] MITCHELL, J. C. Representation independence and data abstraction.
In POPL ’86: Proceedings of the 13th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages (New York, NY,
USA, 1986), ACM, pp. 263–276.

[21] MITCHELL, N., AND SEVITSKY, G. Leakbot: An automated
and lightweight tool for diagnosing memory leaks in large java
applications. In ECOOP 2003 - Object-Oriented Programming, 17th
European Conference (2003), vol. 2743 of Lecture Notes in Computer
Science, pp. 351–377.

[22] MITCHELL, N., AND SEVITSKY, G. The causes of bloat, the limits
of health. In OOPSLA ’07: Proceedings of the 22nd annual ACM
SIGPLAN conference on Object oriented programming systems and
applications (New York, NY, USA, 2007), ACM, pp. 245–260.

[23] SCHONBERG, E., SCHWARTZ, J. T., AND SHARIR, M. Automatic
data structure selection in setl. In POPL ’79: Proceedings of the 6th
ACM SIGACT-SIGPLAN symposium on Principles of programming
languages (New York, NY, USA, 1979), ACM, pp. 197–210.

[24] SOMAN, S., AND KRINTZ, C. Application-specific garbage
collection. J. Syst. Softw. 80, 7 (2007), 1037–1056.

[25] SUTTER, B. D., TIP, F., AND DOLBY, J. Customization of java
library classes using type constraints and profile information. In
ECOOP 2004 - Object-Oriented Programming, 18th European
Conference, Oslo, Norway, June 14-18, 2004 (2004), vol. 3086 of
Lecture Notes in Computer Science, pp. 585–610.

[26] VALLÉE-RAI, R., CO, P., GAGNON, E., HENDREN, L., LAM,
P., AND SUNDARESAN, V. Soot - a java bytecode optimization
framework. In CASCON ’99: Proceedings of the 1999 conference of
the Centre for Advanced Studies on Collaborative research (1999),
IBM Press, p. 13.

[27] WHALEY, C. R., AND DONGARRA, J. J. Automatically tuned linear
algebra software. In Supercomputing (1998).

[28] ZHUANG, X., SERRANO, M. J., CAIN, H. W., AND CHOI, J. D.
Accurate, efficient, and adaptive calling context profiling. In PLDI
’06 (2006), pp. 263–271.

