
Dynamic Synthesis for Relaxed Memory Models

Feng Liu
Princeton University

fengliu@princeton.edu

Nayden Nedev
Princeton University

nnedev@princeton.edu

Nedyalko Prisadnikov
Sofia University

nedy88@gmail.com

Martin Vechev
ETH Zürich

martin.vechev@inf.ethz.ch

Eran Yahav ∗

Technion
yahave@cs.technion.ac.il

Abstract
Modern architectures implement relaxed memory models which
may reorder memory operations or execute them non-atomically.
Special instructions called memory fences are provided, allowing
control of this behavior.

To implement a concurrent algorithm for a modern architecture,
the programmer is forced to manually reason about subtle relaxed
behaviors and figure out ways to control these behaviors by adding
fences to the program. Not only is this process time consuming and
error-prone, but it has to be repeated every time the implementation
is ported to a different architecture.

In this paper, we present the first scalable framework for han-
dling real-world concurrent algorithms running on relaxed archi-
tectures. Given a concurrent C program, a safety specification, and
a description of the memory model, our framework tests the pro-
gram on the memory model to expose violations of the specifica-
tion, and synthesizes a set of necessary ordering constraints that
prevent these violations. The ordering constraints are then realized
as additional fences in the program.

We implemented our approach in a tool called DFENCE based
on LLVM and used it to infer fences in a number of concurrent al-
gorithms. Using DFENCE, we perform the first in-depth study of the
interaction between fences in real-world concurrent C programs,
correctness criteria such as sequential consistency and linearizabil-
ity, and memory models such as TSO and PSO, yielding many in-
teresting observations. We believe that this is the first tool that can
handle programs at the scale and complexity of a lock-free memory
allocator.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]; D.2.4 [Program Verification]

General Terms Algorithms, Verification

Keywords Concurrency, Synthesis, Relaxed Memory Models,
Weak Memory Models

∗Deloro Fellow

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’12, June 11–16, 2012, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1205-9/12/06. . . $10.00

1. Introduction
Modern architectures use relaxed memory models in which mem-
ory operations may be reordered and executed non-atomically [2].
These models enable improved hardware performance but pose a
burden on the programmer, forcing her to understand the effect that
the memory model has on their implementation. To allow program-
mer control over those executions, processors provide special mem-
ory fence instructions.

As multicore processors increasingly dominate the market,
highly-concurrent algorithms become critical components of many
systems [28]. Highly-concurrent algorithms are notoriously hard
to get right [22] and often rely on subtle ordering of events, which
may be violated under relaxed memory models [14, Ch.7].

Placing Memory Fences Manually reasoning where to place
fences in a concurrent program running on a relaxed architecture
is a challenging task. Using too many fences (over-fencing) hin-
ders performance, while missing necessary fences (under-fencing)
permits illegal executions. Manually balancing between over- and
under- fencing is very difficult, time-consuming and error-prone
[4, 14]. Furthermore, the process of placing fences is repeated
whenever the algorithm changes, and whenever it is ported to a
different architecture.

Our goal is to automate the task of fence placement and free the
programmer to focus on the algorithmic details of her work. Au-
tomatic fence placement is important for expert designers of con-
current algorithms, as it lets the designer quickly prototype with
different algorithmic choices. Automatic fence placement is also
important for any programmer trying to implement a concurrent al-
gorithm as published in the literature. Because fence placement de-
pend on the specific architecture, concurrent algorithms are usually
published without a detailed fence placements for different archi-
tectures. This presents a nontrivial challenge to any programmer
trying to implement an algorithm from the literature on relaxed ar-
chitectures.

Dynamic Synthesis Existing approaches to automatic fence in-
ference are either overly conservative [26], resulting in over-
fencing, or have severely limited scalability [17, 18]. The main
idea in this paper is to break the scalability barrier of static ap-
proaches by performing the synthesis based on dynamic execu-
tions. To identify illegal executions, we introduce a flush-delaying
demonic scheduler that is effective in exposing illegal executions
under relaxed memory models.

Given a program P , a specification S, and a description of the
memory model M , guided execution (using the flush-based sched-
uler) of P under M can be used to identify a set of illegal execu-

1 void put(int task) {
2 t = T;
3 items[t] = task;
4 fence(st-st); //F2
5 T = t + 1;
6 fence(st-st); //F3
7 }

1 int steal() {
2 while (true) {
3 h = H;
4 t = T;
5 if (h >= t)
6 return EMPTY;
7 task = items[h];
8 if(!cas32(&H,h,h+1))
9 continue;

10 return task;
11 }
12 }

1 int take() {
2 while (true) {
3 t = T - 1;
4 T = t;
5 fence(st-ld); //F1
6 h = H;
7 if (t < h) {
8 T = h;
9 return EMPTY;

10 }
11 task = items[t];
12 if (t > h)
13 return task;
14 T = h + 1;
15 if(!cas(&H,h,h+1))
16 continue;
17 return task;
18 }
19 }

Figure 1: Simplified version of the Chase-Lev work-stealing queue.
Here, store-load fence F1 prevents the non-SC scenario of Fig. 2a
under TSO; F1 combined with store-store fence F2 prevents the
non-SC scenario of Fig. 2b under PSO. F1, F2 and store-store fence
F3 prevent the linearizability violation of Fig. 2c under PSO.

tions (violating S). The tool will then automatically synthesize a
program P ′ that avoids the observed illegal executions (under M),
but still permits as many legal executions as possible.

Evaluation Enabled by our tool, we perform the first in-depth
study of the subtle interaction between: i) required fences in a num-
ber of real-world concurrent C algorithms (including a lock-free
memory allocator), ii) correctness criteria such as linearizabiltiy
and (operation-level) sequential consistency [14], and iii) relaxed
memory models such as TSO and PSO.

Main Contributions The main contributions of this paper are:

• A novel framework for dynamic synthesis of synchronization
under relaxed memory models. The framework breaks the scal-
ability barrier of static synthesis approaches by performing the
synthesis based on dynamic executions.
• A flush-delaying demonic scheduler which delays the effect of

global stores on shared memory and attempts to expose illegal
executions under relaxed memory models.
• An implementation of our tool in LLVM. The implementation

required a number of extensions of the LLVM interpreter (e.g.
adding support for multi-threading) which are useful for general
concurrency analysis and for plugging-in new memory models.
• An evaluation on a range of real world concurrent C algorithms,

including work-stealing queues and a lock-free memory alloca-
tor. We believe this to be the first tool that can handle algorithms
at the scale of a lock-free memory allocator.
• An in-depth study on the connection between: i) relaxed mem-

ory models such as TSO and PSO, ii) required fences in prac-
tical concurrent algorithms, and iii) correctness criteria such as
linearizabiltiy and (operation-level) sequential consistency. Our
results yield a number of insights, useful in understanding the
interplay between relaxed memory models and concurrency.

2. Overview
In this section, we show how different synchronization require-
ments arise for different memory models and specifications. We
use a practical work-stealing queue algorithm as an example.

Motivating Example Fig. 1 shows a pseudo-code of the Chase-
Lev work-stealing queue [7] (note that our implementation handle
the complete C code). A work-stealing queue is a special kind of
double-ended queue that provides three operations: put, take, and
steal. A single owner thread can put and take an item from the
tail of the queue, and multiple thief threads can steal an item from
the head of the queue.

In the implementation of Fig. 1, H and T are global shared
variables storing head and tail indices of the valid section of the
array items in the queue. The operations put and take operate on
one end of the array, and steal operates on the other end.

The put operation takes a task as parameter, and adds it to the
tail of the queue by storing it in items[t] and incrementing the
tail index T. The take operation uses optimistic synchronization,
repeatedly trying to remove an item from the tail of the queue,
potentially restarting if the tail and the head refer to the same item.
take works by first decrementing the tail index, and comparing the
new value with the head index. There are three possible cases:
• new tail index is smaller than head index, meaning that the

queue is empty. In this case, the original value of tail index is
restored and the take returns EMPTY (line 9).
• new tail index is larger than head index, take then uses it to

read and return the item from the array.
• new tail index equals to head index, in which case, the only item

in the queue may be potentially stolen by a concurrent steal
operation. A compare-and-swap (CAS) instruction is used to
check whether the head has changed since we read it into h. If
the head has not changed, then there is no concurrent steal, and
the single item in the queue can be returned, while the head is
updated to the new value h+1. If the value of head has changed,
take restarts by going to the next loop iteration.

Similarly, the implementation of steal reads the head and tail
indexes of the array first, and if the head index is larger or equal
to the tail index, either the queue is empty or the only item is taken
by the owner, and the thief returns EMPTY. Otherwise, it can read
the items pointed by the head. In case no other thieves are stealing
the same element, a CAS instruction is used to update the head
index atomically. If the CAS succeeds, the item can be returned,
otherwise, the steal function needs to retry.
Correctness Criteria and Terminology The implementation of
Fig. 1 works correctly on an ideal processor without memory model
effects. Under this ideal processor, the two CAS instructions in the
algorithm are sufficient for correctly updating the head index H.

In this work, we focus on two important specifications: (operation-
level) sequential consistency and linearizability. Note that the term
operation-level sequential consistency refers to the behavior of the
algorithm and not to the memory model itself. Precise definitions
and extensive discussion comparing (operation-level) sequential
consistency and linearizability can be found in [14, Ch. 3.4-3.5].
As we focus on relaxed memory models, in the rest of the paper
we use the term sequential consistency to mean operation-level
sequential consistency (and not hardware-level sequential consis-
tency). Informally, both, (operation-level) sequential consistency
and linearizability can be expressed as follows:
• Sequential consistency requires that for each concurrent execu-

tion, there exists a serial execution that yields the same result.
• Linearizability requires that for each concurrent execution,

there exists a serial execution that yields the same result and
maintains the ordering between non-overlapping operations in
the concurrent execution.
We believe this work is the first detailed comparison between

linearizability and sequential consistency specifications for real
concurrent algorithms.

:

L3: ld, T, 1

:

L4: st, 0, T

L5: ld, H, 0

:

:

L11: ld, items[0], 1

:

:

return 1

:

:

L3: ld, H, 0

L4: ld, T, 1

:

L7: ld, items[0], 1

:

:

return 1

:

ta
k
e
(1
)

s
te
a
l(1
)

Thread 1: Thread 2:

H=0, T=1, items[0]=1

(a) Sequential Consistency Violation on TSO

:

L2: ld, T, 0

L3: st, 1, items[0]

L5: st, 1, T

:

:

:

:

:

:

:

:

:

L3: ld, H, 0

L4: ld, T, 1

:

L7: ld, items[0], 0

:

:

return 0

:

p
u
t(
1
)

s
te
a
l(0
)

Thread 1: Thread 2:

H=0, T=0, items[0]=0

(b) Sequential Consistency Violation on PSO

:

L2: ld, T, 0

L3: st, 1, items[0]

L5: st, 1, T

:

:

:

:

:

:

:

L3: ld, H, 0

L4: ld, T, 0

:

return EMPTY

:

p
u
t(
1
)

s
te
a
l(-1
)

Thread 1: Thread 2:

H=0, T=0, items[0]=0

(c) Linearizability Violation on TSO/PSO. Note
that the execution satisfies Sequential Consis-
tency

Figure 2: Executions of a work-stealing queue violating different specifications under different memory models. Arguments of take and
steal are the return values of the operations.

Returning to our algorithm, unfortunately, a relaxed memory
model may reorder accesses to shared variables, leading to unex-
pected results. For example, in the total store order (TSO) memory
model, loads can bypass earlier stores in the same thread, thus an-
other thread can load an inconsistent value and produce an incorrect
result. In the partial store order (PSO) memory model, both loads
and stores can bypass earlier stores.
Correctness under TSO Fig. 2a shows an execution of the Chase-
Lev queue under the TSO memory model violating sequential con-
sistency. In this execution, thread 1 performs a take(1) operation,
and thread 2 performs steal(1), trying to steal the same item.
Thread 1 first updates the tail index of the queue to 0, and then loads
1 from the head index. For thread 1, the head equals to the tail, and
it takes the first element of the queue, 1, successfully. However,
since the update of the tail index by thread 1 is buffered (noted in
boldface), thread 2 can only load the original 1 from the tail in-
dex, and returns the same item 1. The same element is popped by
two different threads, and we cannot find a serial execution that has
the same result. The original implementation violates the sequen-
tial consistency on TSO memory model. To fix this problem, we
need to guarantee that the buffered store of the tail index in thread
1 is committed to main memory and visible to other threads before
the head index is loaded. This can be accomplished by inserting a
memory fence after the store (F1 in Fig. 1), which enforces a flush
of the buffered store to main memory.
Correctness under PSO Unfortunately, fence F1 is not sufficient
when running the algorithm on the PSO memory model. Under
PSO, a possible store-store reordering can still lead to violation of
sequential consistency as shown in Fig. 2b. In this execution, thread
1 performs put(1) and thread 2 performs steal(1). Thread 1
tries to store the item 1 in the first position of the queue and updates
the tail index in main memory. Concurrently, thread 2 loads the new
tail index, finds there is a single item in the queue and loads the
item. However, the real value of the item is buffered by thread 1,
and thread 2 reads an uninitialized value 0. For this execution, we
cannot find a serial execution that can fetch an item which has not
been put by any of the threads. To fix this problem, before thread
1 updates the tail index, we need to ensure that the corresponding
item is updated first. Thus a memory fence F2 is added after the
item store instruction. In general, this store-store reordering can
also lead to a memory safety violation if for instance we use the
value to index some array.

load(x, r) load contents of global variable x into local variable r.
store(r, x) store value of local variable r into global variable x.
cas(x, r, s, q) an atomic compare-and-swap action. If the value in global

variable x is as same as that in local variable r, then store in
x the value in local variable s and set local variable q to true.
Otherwise, do nothing and set q to false.

call(f,~a) function call of f with argument list ~a.
return(f, r) return from a function f with value r.
fork(t, l) create a new thread t to execute statement starting at label l.
join(t, u) thread t joins to thread u.
fence memory fence instruction.
self() return the id of the calling thread.
flush(x) flush the value of shared variable x to main memory (specific

to a given memory model, defined later). This statement is
inserted by the scheduler, and we use it to model the relaxed
memory model effect.

Table 1: Basic statements of our language.

Linearizability Linearizability is stricter than sequential consis-
tency. Linearizability requires at least one additional fence in this
algorithm.

Fig. 2c shows an execution of the implementation that satisfies
SC under PSO (Fig. 2b), and shows that it violates linearizability.
The schedule is similar to the one of Fig. 2b: thread 1 executes
put(1), and thread 2 executes steal(-1) after thread 1 finishes
put(1). Even though the store to the first item by thread 1 is
committed to main memory before the tail index is updated, thread
2 can load an incorrect value of the tail index due to the buffering
in thread 1, resulting in an empty steal. Because put(1) of thread
1 and steal(-1) of thread 2 are non-overlapping, we cannot find
a serial execution where the thief fails to steal from a queue that is
non-empty. The violation occurs because the update to tail is not
committed to main memory. To flush the value of the tail index to
main memory, another fence (F3 in Fig. 1) needs to be inserted
before the method returns. This violation can also occur under
TSO, and a memory fence is required there as well.

3. Language
In this section, we present the syntax of our language and the
semantics of the two memory models used in the paper: Total Store
Order (TSO) and Partial Store Order (PSO).

Syntax We consider a basic concurrent programming language
augmented with procedure calls, where the basic statements are
listed in Tab. 1. We denote the set of statements by Stmt. Given
a program, we use Label to denote the set of program labels. We
also use the special labels Inactive and Finished to denote that
a thread has not yet started or has completed execution. Statements
in the program are uniquely labeled and for a label l ∈ Label, we
use stmt(l) to denote its corresponding statement in the program.

Semantics 1 Operational semantics under PSO.

stmt(pc) = load(x, r) B(x) = ε G(x) = v

L
′
(r) = v pc

′
= n(pc)

(LOAD-G)

stmt(pc) = load(x, r) B(x) = b · v
L

′
(r) = v pc

′
= n(pc)

(LOAD-B)

stmt(pc) = store(r, x) B(x) = b L(r) = v

B
′
(x) = b · v pc

′
= n(pc)

(STORE)

B(x) = v · b
B

′
(x) = b G

′
(x) = v

(FLUSH)

stmt(pc) = fence ∀x.B(x) = ε

pc
′
= n(pc)

(FENCE)

stmt(pc) = cas(x, r, s, q)
G(x) = L(r) L(s) = v B(x) = ε

G
′
(x) = v L

′
(q) = true pc

′
= n(pc)

(CAS-T)

stmt(pc) = cas(x, r, s, q) G(x) 6= L(r) B(x) = ε

L
′
(q) = false pc

′
= n(pc)

(CAS-F)

stmt(pc) = fork(t, l) pc(t) = Inactive

∀x.B(t, x) = ε pc(t) = l ∀l.L(t, l) = 0 pc
′
= n(pc)

(FORK)

stmt(pc) = join(t, u)
pc(u) = Finished ∀x.B(u, x) = ε

pc
′
= n(pc)

(JOIN)

Semantics We use Thread to denote a finite set of thread identi-
fiers and tid ∈ Thread to denote a thread identifier. A transition
system is a tuple 〈s0,Σ, T 〉, where Σ is the set of program states,
s0 ∈ Σ is the initial program state, and T is the transition relation:
T ⊆ Σ× Thread× Stmt× Σ.

A transition s tid : stmt−−−−−−→ s′ ∈ T holds if s, s′ ∈ Σ and if
executing statement stmt in state s by thread tid results in state
s′. For a transition t, we use tr(t) to denote its executing thread,
label(t) for the label whose statement was executed, and stmt(t)
(overloaded) to obtain the statement.

A finite execution π is a sequence of transitions starting from
the initial state:

π = s0
tid1 : stmt1−−−−−−−−→ s1

tid2 : stmt2−−−−−−−−→ . . .
tidn : stmtn−−−−−−−−→ sn.

A program state s is defined as a tuple 〈pc, L,G〉, where:
• pc ∈ PC, where PC = Thread→ Label is a map of threads

to program labels.
• L ∈ Env where Env = Thread → Local → D is a map

from threads to local variables to values.
• G ∈ GV ar where GV ar = Shared → D is a map from

global shared variables to values.
Here D represents the domain from which the program vari-

ables take values. When updating mappings, we use M ′(x) = v
as a shorthand for M ′ = M [x 7→ v]. Given a function pc ∈ PC,
if the thread tid is clear from the context, we use pc for pc(tid),

stmt(pc) to denote the statement at pc, and n(pc) to denote the
statement following pc.
Semantics under Memory Models The full small-step (interleav-
ing) transition semantics on sequentially consistent machines is
standard. Here, we only give semantics for the statements affected
by the memory model: TSO and PSO. To accomplish that, we aug-
ment the program state with a store buffer B, which is used to
model the memory model effects:
• PSO: B ∈ Thread → Shared → D∗. That is, we keep a

buffer of values for each (thread, shared variable) pair.
• TSO: B ∈ Thread → (Shared × D)∗. That is, we keep a

single buffer of values for all variables in a thread.
The semantics of the relevant statements for PSO are given in

Semantics 1. The semantics of TSO are the same except that we
work with the per-thread buffer, and so they are more restrictive.
For instance, in the global load rule LOAD-G, instead of checking
that B(x) = ε, we will check that ∀(y, d) ∈ B.y 6= x.

Given a program P and memory model M , we use [[P]]M to
denote the set of all possible program executions starting from the
initial state.

4. Dynamic Synthesis
In this section, we discuss the algorithm for dynamically synthe-
sizing memory fences. This algorithm can be combined with any
demonic scheduler that tries to expose violating executions. The
basic idea is to repair the program iteratively: whenever bad exe-
cutions are encountered, they are repaired so that new executions
cannot repeat the same errors.

The high level dynamic synthesis approach is shown in Algo-
rithm 1. The input to the algorithm is a concurrent program P , a
memory model M and a specification S. First, the algorithm at-
tempts to trigger an execution that violates the specification. If such
an execution is found, then the function avoid computes all possi-
ble ways to avoid the execution and adds that to the formula ϕ.
Next, we have a non-deterministic choice “?” between enforcing
the possible solutions from ϕ into the program or choosing to ac-
cumulate repairs from more violating executions. In practice, “?”
can be determined in various ways: user-specified bound, dynam-
ically computed value, a heuristic, and so on. When the algorithm
finds no violating execution, it aborts with the program P ′ (and if
necessary, enforces any outstanding constraints left in ϕ). Next, we
elaborate on the details of avoid and enforce.

Algorithm 1: Dynamic Synchronization Synthesis

Input: Program P , Specification S, Memory Model M
Output: Program P ′ with restricted synchronization

1 P ′ = P ;
2 ϕ = true;

3 while true do
4 select π ∈ [[P ′]]M such that π 6|= S

5 if no such π exists then
6 return enforce(ϕ, P ′)
7 δ = avoid(π,M)
8 if δ = false then
9 abort “cannot be fixed”

10 ϕ = ϕ ∧ δ
11 if ? then
12 P ′ = enforce(ϕ, P ′)
13 ϕ = true;

Semantics 2 Instrumented semantics under PSO.

stmt(pc) = load(x, r) ψ = v

ψ
′
= v ∨

∨
{[ly ≺ pc] | y 6= x ∧ B\

(y) 6= ε ∧ ly ∈ B\
(y)}

(LOAD-G)

stmt(pc) = store(r, x) B
\
(x) = l ψ = v

ψ
′
= v ∨

∨
{[ly ≺ pc] | y 6= x ∧ B\

(y) 6= ε ∧ ly ∈ B\
(y)})

B
′\
(x) = l · pc

(STORE)

B
\
(x) = l · b

B
′\
(x) = b

(FLUSH)

stmt(pc) = fence

∀x.B′\
(x) = ε

(FENCE)

stmt(pc) = cas x, r, s, q B
\
(x) = l ψ = v

ψ
′
= v ∨

∨
{[ly ≺ pc] | y 6= x ∧ B\

(y) 6= ε ∧ ly ∈ B\
(y)})

B
′\
(x) = ε

(CAS)

4.1 Avoiding Executions
When avoiding an execution, we would like to build all of the
possible ways of repairing it. To accomplish that, we first define
an ordering predicate that captures one way to repair an execution.

Ordering Predicates Given a pair of program labels l and k (in
the same thread), we use [l ≺ k] to denote an ordering predicate.
Informally, the intended meaning of [l ≺ k] is that in any execution
involving these two labels, the statement at label l should have a
visible effect before the statement at label k. Next we define what
it means for an execution π to violate an ordering predicate [l ≺ k],
denoted as π 6|= [l ≺ k].

An execution π 6|= [l ≺ k] if and only if: ∃i, j. 0 ≤ i < j < |π|
such that:
1. label(πi) = l, label(πj) = k and tr(πi) = tr(πj).

2. stmt(l) = store(r, x) and stmt(k) ∈ {store(p, y), load(y, p)}
3. x 6= y.

4. ∀f. i<f <j: stmt(πf) 6=flush(x), and tr(πf) = tr(πi).
Informally, if we have an execution where a store is followed

by some later store or a load (all by the same thread), where
there is no flush of the first store to main memory in between
the two operations, then the execution violates the predicate. The
intuition is as follows: if the second operation is a read, then the
read took effect before the first store became visible; if the second
operation is a store, then, because flush can trigger at any point in
an execution, it is possible to perform a flush of the second store
immediately after the second store and make it visible before the
first store is made visible. The above is a formulation for PSO.
For TSO, we only need to change the second point to stmt(k) ∈
{load(y, p))}.

If π does not violate [l ≺ k], we say that π satisfies [l ≺ k], and
write π |= [l ≺ k].

Computing a Repair for an Execution Given an execution, we
would like to compute all possible ways to avoid it. We accomplish
this by defining the instrumented semantics of Semantics 2 (here,
we show the semantics for PSO, the semantics for TSO are simi-
lar). The semantics update an auxiliary map B\ which records the
program labels of statements accessing the buffer:

B\ ∈ Thread→ Shared→ Label∗

In the initial state, the buffers are empty, i.e. ∀x.B\(x) = ε,
and ψ = false. Let us look at the STORE rule. The premise
says that if the (auxiliary) buffer contains the sequence l, then

(i) the program counter pc will be appended to the buffer, and
(ii) we will create an ordering predicates between pc and each label
belonging to other buffers with the same thread: the idea is that if
there are pending stores in the other buffers (i.e. their labels are
in their respective auxiliary buffer), then we can repair the current
execution by ordering any of those stores before pc. The reason that
we use ∨ when building ψ is that any of the enumerated ordering
predicate is sufficient to repair the execution.

We note that even though in this work we only apply this repair
procedure, by avoid function in the algorithm, for a violating exe-
cution (under some specification), the procedure is independent of
whether the execution is violating or not. Hence, we can easily use
this procedure as-is for any execution. For instance, recent work has
shown that it may be interesting to repair correct executions [31].

Computing a Repair for a Set of Executions Finally, in Algo-
rithm 1, we combine repairs for each execution into a global repair
formula ϕ. The reason we use ∧ when combining individual avoid
predicates is because we need to make sure that each execution
is eliminated. When the algorithm terminates, the formula ϕ will
contain all of the possible ways to repair all of the (violating) ex-
ecutions seen during this algorithm invocation. Next, we discuss
how to enforce the formula ϕ into the program.

4.2 Enforcing Constraints
Given the repair formula ϕ, a satisfying assignment of the formula
is a set of truth assignments to ordering predicates. Such an as-
signment represents a potential solution for all of the violating ex-
ecutions that contributed to the formula. There are various ways to
enforce such an assignment in the program.
Enforce with Fences In this work, we chose to enforce the assign-
ment [l ≺ k] : true by inserting a memory fence between the
labels l and k. This prohibits the reordering of the memory ac-
cesses at these two labels. Algorithm 2 takes in a formula ϕ and a
program, finds a minimal satisfying assignment to the formula and
enforces the predicates with a fence. In practice, we insert a more
specific fence (store-load or store-store) depending on whether the
statement at k is a load or a store.
Enforce with Atomicity We can enforce [l ≺ k] : true as an
atomic section that includes both labels l and k. Such an atomicity
constraint (that may require more than two shared accesses) can be
realized in various ways: with locks, or with hardware transaction
memory (HTM) mechanisms [9] (HTM is especially suitable if the
number of shared locations is bounded).
Enforce with CAS On TSO, we can enforce the fence with CAS
to a dummy location. That is, we can use cas(dummy, r, s, q),
where dummy is a location not used by the program (similarly
r, s and q are never read in the thread). Regardless of whether
such a CAS fails or succeeds on the dummy location, in order to
proceed, it requires that the buffer is flushed (similarly to a fence).
On PSO, it is also possible to use CAS to enforce the predicate, by
having a CAS on the same location as the first store in the predicate,
i.e., cas(x, r, s, q). However, we would need to make sure that the
CAS always fails (so does not modify x). Hence, enforcing order
using CAS on PSO will only work when the contents of x and r
are provably different.

5. Implementation
5.1 Architecture
Our framework is based on the LLVM infrastructure. To support
our dynamic analysis and synthesis framework, we extended the
LLVM interpreter (called lli) with the following features, not sup-
ported by the original LLVM framework:

Algorithm 2: enforce(ϕ, P)
Input: Formula ϕ, Program P
Output: Program P ′ with fences that ensure an assignment

satisfying ϕ
1 if ϕ = true then return P
2 I = {[l1 ≺ k1]...[ln ≺ kn]} be an assignment to predicates such

that I |= ϕ and I is a minimal satisfying assignment of ϕ.
3 P ′ = P

4 foreach [l ≺ k] ∈ I do
5 insert a fence statement right after label l in P ′

6 return P ′

LLVG-GCC

LLVM Interpreter
Trace Analysis

Enforce Constraints

Memory Model Specifications

SAT Solver

C code Client
Fixed bytecode &

fence location report

.bc

CFG

modified

.bc

order

formula

Scheduler

traces
Threading

Our externsion

Existing work

Figure 3: Schematic view of the structure of our tool. Rectangles
denote existing work, while oval shapes denote our work.

• Multi-Threading: we added support for user-level threads. This
includes support for statements fork and join as outlined in Sec-
tion 3 as well as the self statement and per-thread local execu-
tion contexts.
• Relaxed Memory Models: we added support for both TSO and

PSO memory models. This includes the relevant write buffers
(outlined earlier), and extending LLVM intermediate instruc-
tions (e.g., stores and loads) to work with the memory model.
We also support compare-and-swap (CAS) instructions, often
used to implement locks and concurrent algorithms.
• Scheduler: we added scheduling support allowing us to plug-in

different (demonic) schedulers for controlling the actions of the
memory system (i.e., flushing) and thread operations.
• Specifications: we added support for checking memory safety

errors such as array out of bounds and null dereferencing. We
also added support for checking conditions such as linearizabil-
ity and sequential consistency [14] (this required us to write a
number of executable (sequential) specifications for all of the
concurrent algorithms we analyzed).
• Synthesis: to repair a violating execution, we recorded all shared

memory accesses in the violating execution. The resulting ac-
cess history will be used to build a repair formula ψ as outlined
in Semantics 2.
We believe that these extensions are of wide interest: for in-

stance, we can use the framework for testing sequential programs
for memory safety errors. Our extensions are parametric and the
user simply selects the relevant parameters (e.g., which memory
model, what properties to test) and runs their concurrent program
with our version of the LLVM interpreter lli.

Figure 3 shows the overall structure of our synthesis framework.
The input to DFENCE is a concurrent C algorithm and a (concurrent)

client that calls the methods of the algorithm. LLVM-gcc then
compiles both into a single bytecode file. Then, the interpreter can
exercise the program with the given scheduler and memory model.
The sequence of calls and returns that appear in the execution is
collected, and is then checked against the given specification (e.g.,
linearizability). If the execution violates the specification, a repair
for this single execution is calculated. A global repair for a set
of violating executions can be calculated via a SAT solver and
enforced into the given bytecode by inserting fences, producing
a new bytecode representation. The new bytecode is fed back to
the interpreter and the process repeats until no more violations are
found or a user-specified timeout (or other bound e.g., number of
times the program has run) is reached. All the phases of the flow in
Figure 3 are completed by the framework automatically.

5.2 Extensions
The following provides additional details on each extension.
Multi-Threaded Support Supporting user level threads requires
handling fork, join, and self. As outlined in Section 3, fork
creates a new thread, join is used to wait for a thread to complete
before proceeding and self returns the thread identifier of the
caller. The reason we added fork and join is for handling clients
that exercise concurrent algorithms. The reason we added selfwas
because some concurrent algorithms require this method.

In the interpreter, we added a new map data structure, called
ThreadStacks that maps a thread identifier to a list of execution
contexts (stack frames). When the thread terminates, the vector
becomes empty.

When fork is encountered, a new thread ID and a list of execu-
tion contexts is created in ThreadStacks. The execution of normal
bytecodes proceed as-is (they access the particular execution con-
text), and when a new function is called, a new execution context
will be created. The call to join completes only if the target thread
has finished, that is, its execution context list is empty, otherwise,
the caller will block.

We added a function called GetEnabledThreads which returns
the set of enabled threads. A thread is enabled if its list of execu-
tion contexts is not empty. This function is typically used by the
scheduler to decide which thread to schedule next.
Relaxed Memory Model Support We maintain a write buffer for
each thread (TSO) or each shared variable (PSO). The write buffer
is simulated with a FIFO queue. The write buffers are managed
by a dynamic map, and a new write buffer will be created when
the memory address is visited for the first time. In this “lazy”
approach, we do not need to change the functions that allocate
memory such as malloc and mmap. Note that functions which de-
allocate memory, such as free and munmap, do not flush the write
buffers.

Write buffers are only assigned to shared variables and thread-
local variables access the memory directly. The implementation of
shared variable accesses follows closely Semantics 1. To handle
programs with locks, we implement lock acquire as a loop calling a
CAS instruction to write 1 to the lock variable, and the function
returns when CAS succeeds. Lock release writes 0 to the lock
variable and returns. Both functions are wrapped with memory
fences before and after the bodies, simulating the volatile feature
of the lock variable.
Scheduler Support In our framework, the scheduler is designed as a
plug-in, and is relatively independent of the interpreter. This allows
experimenting with different schedulers for exposing violations.

To control scheduling, the probability of stores being delayed in
the write buffer is gated by a parameter we call flush probability.
The scheduler considers this parameter when deciding on the next
step. At each step in the execution, based on the flush probability,

the scheduler can decide which thread will take a step or which
flushing action should be performed (for instance, for PSO, it can
chose to flush only values for a particular variable):
• To reduce scheduling overhead, we use a form of partial-order

reduction where a thread is not context switched if it keeps
accessing local memory (thread-local variables).
• At each scheduling point, an enabled thread is selected ran-

domly, and execution proceeds with the selected thread.
• Once a thread is selected, if its write buffers are empty, the

thread makes a step. Otherwise, the scheduler randomly decides
(with a user-provided flush probability) whether to flush the
write buffer or proceed to the next step.
In our work, we found this strategy to be effective in expos-

ing violations, but the framework allows the user to try out other
scheduling strategies.
Specifications DFENCE supports both checking for memory safety
properties such as array out of bounds, and null de-referencing, as
well as properties such as linearizability and sequential consistency.

For space reasons, we do not elaborate on the precise definition
of sequential consistency and linearizability. These, as well as ex-
tensive discussion comparing the two can be found in [14, Ch. 3.4-
3.5]. Here we only discuss the essence of these conditions. Given
a program execution, both of these criteria require us to first obtain
a history (call it H) by extracting the sequence of calls and returns
that appear in the execution. To check whether H is sequentially
consistent, we compute two items: (i) sequentialization of H , call
it seq(H), and (ii) a witness history W that simply executes the
relevant specification on the sequence of method calls appearing in
seq(H). If we find a sequentialization of H , where W = seq(H),
then we say that H is sequentially consistent, otherwise, if we can-
not find any sequentialization of H which matches a witness, we
say that H is not sequentially consistent. Linearizability is a more
restricted variant of sequential consistency: it restricts how seq(H)
is computed. However, linearizability is compositional, while se-
quential consistency is not.

There are three key points to take away:
• Checking linearizability or sequential consistency requires a se-

mantic sequential specification of the algorithm, e.g., specify-
ing how the push method of a stack behaves sequentially. In-
deed, we had to provide such specifications for our experiments.
The specifications are reusable for analyzing other concurrent
algorithms: for instance, once we have the specification of a
queue, we can use it to analyze any concurrent queue algorithm.
• Linearizability is a more restricted property than sequential

consistency and is the one commonly used in the literature for
concurrent algorithms. However, the interplay between sequen-
tial consistency, linearizability and relaxed memory models has
not yet been well studied, and as we will see, interestingly, there
are algorithms that look to be sequentially consistent, yet are
non-lineraizable under relaxed memory models. The advantage
of such algorithms is that they require less synchronization.
• Checking both of these properties requires computing all
seq(H)’s of a history H , an operation clearly exponential in
the length of H .
To check for linearizability and sequential consistency, the tool

records a concurrent history and checks whether the concurrent
history has a witness sequential history, as discussed above.

To detect memory safety violations, we keep auxiliary informa-
tion such as the starting address and length, for global and heap
memory units. For globals, this can be obtained by scanning the
global segment of the intermediate bytecode. For heap, we can ob-

tain the information from calls to malloc and mmap (the auxiliary
state is deleted upon calling free or munmap).

When a load or a flush instruction occurs, the analysis checks
whether the (to be) accessed address is within the current avail-
able memory (by checking in the auxiliary state). To reduce the
overhead of the checking, we record each memory unit in a self
balanced binary tree with the starting addresses as the keys. If we
find that the target address is not inside any memory units, then a
memory safety violation is triggered.
Synthesis Following Algorithm 1 from Section 4, once a violating
execution π is discovered, the global avoid formula ϕ is updated
to take avoiding π into account. In Algorithm 1, “?” indicates the
non-deterministic choice of when the enforce procedure is invoked
to produce a new program with a fix covering all violating execu-
tions accumulated so far. In DFENCE, we realized “?” as an iteration
count, counting up to a user-defined threshold. To reduce overhead,
DFENCE only records the relevant (shared memory accessing) in-
structions and not the whole execution.

To compute a satisfying assignment for the boolean formula ϕ,
we use the off-the shelf MiniSAT [10] solver. Each (non-repeated)
clause in the formula is assigned a unique integer. The satisfying
assignment produced by MiniSAT has no guarantee of minimality.
To obtain (all) minimal solutions, we call MiniSAT repeatedly
to find out all solutions (when we find a solution, we adjust the
formula to exclude that solution), and then we select the minimal
ones.
Enforcing Once a minimal solution is selected, the labels in the
ordering predicates are used to index the instruction pointers in
the LLVM IR. The synchronization (e.g., fences) is then inserted
into the IR by calling LLVM’s instruction manipulation methods.
The new IR is well-formed and is used for the next synthesis
iteration. We optimize the insertion further by applying a merge
phase which combines certain redundant fences: we apply a simple
static analysis which eliminates a fence if it can prove that it always
follows a previous fence statement in program order, with no store
statements on shared variables occurring in between.

6. Evaluation
In this section, we evaluate the effectiveness of DFENCE in auto-
matically inferring fences for realistic concurrent algorithms.

We used LLVM-GCC version 4.2 for compiling C programs
into LLVM bytecode and LLVM runtime version 2.7 [19] for our
implementation. Our implementation is designed to hook at the
relevant places in LLVM and hence we expect it to be portable to
newer versions. We used the open-source MiniSAT [10] solver.

6.1 Methodology
We applied DFENCE to a number of challenging concurrent C algo-
rithms under different settings by varying four dimensions: (i) the
memory model (TSO, PSO) (ii) the specification (memory safety,
sequential consistency, and linearizability) (iii) the clients, and
(iv) scheduler parameters.

In the first part of the evaluation, we evaluate the quality of
fence inference under different choices along these four dimen-
sions. Many of the algorithms used in our experiments have already
been extensively tested on one memory model, usually TSO (x86).
In this case, we first removed the fences from the algorithms and
then ran DFENCE to see if it could infer them automatically. When
we did not have the available fences for a given model, say PSO,
we ran our tool and inspected the results manually to make sure the
inferred fences were really required.

In the second part of our evaluation, we explore some of the
connections between the different dimensions. In particular, we set
out to answer the following questions:

1. Memory Model: How does the choice of memory model affect
the choice of scheduler used to expose violations? How does it
affect the choice of clients?

2. Client: How does the choice of client affect the ability to
expose a violation, and how does it relate to the choice of
specification and memory model?

3. Specification: How does the choice of specification affect the
resulting fence placements?

6.2 Benchmarks
For our experiments, we used 13 concurrent C algorithms described
in Tab. 2: five work-stealing queues (WSQs), three idempotent
work-stealing queues (iWSQ’s), two queue algorithms, two set al-
gorithms, and one lock-free concurrent memory allocator. All eight
of the work-stealing queues share the same operations: put, take
and steal. The Chase-Lev WSQ example has already been dis-
cussed in Section 2.

We chose WSQs because they are a key technique for sharing
work and are at the heart of many runtimes. We are not aware of any
previous study which discusses extensive analysis or inference for
WSQs. Further, we believe that this is the first study to analyze and
infer fences for Michael’s lock-free memory allocator, arguably one
of the largest and most complex concurrent C algorithms available.
DFENCE consumes the C code directly and handles all low-level
features of the implementation.

6.3 Results
Tab. 3 summarizes our results. Under each of the three specifica-
tions, we show the fences that DFENCE synthesized for a given
memory model (we note that memory safety checking is always on,
hence, Linearizability and Sequential Consistency columns include
fences inferred due to memory safety violations). We describe each
fence with the triple (m, line1 : line2) to mean that we discovered
the need for a fence in method m between lines line1 and line2.
We use ”−” to indicate the end of the method in the triple.

For Chase-Lev’s WSQ, we use the locations indicated in Fig. 1.
For Cilk’s THE WSQ, the line numbers correspond to our C imple-
mentation. For all WSQ and iWSQ, the line numbers are the same
as those found in [24]. Similarly for the rest of the algorithms.

For all iWSQ algorithms, the “Memory Safety” column also
includes the “no garbage tasks returned” specification. Analysis
of iWSQ algorithms under Linearizability or SC requires more
involved sequential specifications and is left as future work.

The last column shows the number of locations where a fence
can be potentially inserted — this corresponds to the total number
of store instructions in the LLVM bytecode. Note that this number
is an order of magnitude greater than the actual number of inferred
fences, meaning that without any help from the tool, we would need
to manually examine an exponential number of location combina-
tions. By Source Lines of Code (LOC), we mean the actual C code
and by Bytecode LOC we mean the LLVM bytecode (which is a
much larger number).

6.3.1 Additional and Redundant Fences
The iWSQ algorithms of [24] are designed to not require store-
load fences in the owner’s operations (on TSO). Our experimental
results support this claim: the tool did not find the need for store-
load fences on both TSO and PSO.

On PSO, for all three iWSQ’s, our tool finds the need for an
additional “inter-operation” fence (store-store) at the end of take.
In addition, for FIFO iWSQ, the tool suggests an additional “inter-
operation“ fence at the end of put. We call these fences “inter-
operation“ as they appear at the end of operations (and can even
be placed right outside the end of a method return). These “inter-

operation” fences are not mentioned in [24] and the C code was
only tested on TSO. Also, for the C implementation of the THE
algorithm, our tool discovered a redundant (store-load) fence in
the take operation. We believe these results suggest that the tool
may be helpful to a designer in porting concurrent algorithms to
different memory models.

6.3.2 Number of Executions
In Algorithm 1, we used “?” to denote a non-deterministic choice
of when to stop gathering violating executions and implement their
repair. This lets us control the number of executions (say K) we
gather before performing a repair on the incorrect subset of those
executions. We refer to each repair phase as a round. Our analysis
terminates whenever we see K executions and in those K execu-
tions there are no incorrect executions. For example, one scenario
with K = 1000 per round can be:

• Round 1: run the program with 1000 executions, discover 500
bad executions and repair them using 2 fences.
• Round 2: run the new program again for 1000 executions,

discover 100 bad execution and repair them using 1 fence.
• Round 3: run the new program again for 1000 executions and

discover no bad executions. The analysis terminates (having in-
troduced a total of three fences to repair the observed execu-
tions).

Fig. 4 shows how the number of executions per round affects
the synthesis results of Cilk’s THE algorithm with sequential con-
sistency specification on the PSO memory model (the x-axis is log).
The “multiple rounds” points should be interpreted as follows:

• Take a value on the x-axis, say K. This value stands for the
number of executions per round.
• Take the corresponding value on the y-axis, say F . This value

stands for the number of inferred fences. The number of rounds
is always less than F + 1. The “+1” is to account for the last
round which does not find any violations and verifies the fixing.
• For example, if we take K = 1000, the corresponding y-axis

value is F = 3. Hence, the number of rounds is certainly ≤ 4.

We observe that with about 1000 executions per round, and with
at most four rounds, we can infer all three of the required fences.

Alternatively, we can try to gather as many executions as possi-
ble and repair them all at once. In that experiment we set the num-
ber of rounds to one. The results are the “one round” points in the
figure. These results indicate that we will need at least 200,000 ex-
ecutions to infer all of the three fences, an increase of about 65x in
the number of executions one needs to consider!

The intuition is that once we find some violations and repair
them, we eliminate many executions that need not be inspected fur-
ther. If we do not eliminate violating executions relatively quickly,
then we can keep seeing the same executions for a while (or exe-
cutions caused by the same missing fence(s)), and it may take sig-
nificanly longer to find all distinct violating executions. Therefore,
DFENCE invokes the repair procedure after examining a (relatively)
small number of executions.

6.4 Client
The choice of client is an important factor in our experiments. If
the client cannot exercise the inputs which could trigger violations,
even an ideal scheduler would be unable to expose errors.
Client vs. Specification The worst case time required for checking
linearizability or sequential consistency of an execution is expo-
nential in the length of the execution.

Algorithm Description
Chase-Lev’s WSQ [7] put, take operate on the same end of the queue, steal works at the opposite end. Both take and steal

implemented using CAS.
Cilk’s THE WSQ [12] put and take operate on the same end of the queue, steal works at the opposite end. Both take and steal

use locks. This is the core algorithm used in the MIT’s Cilk runtime.
LIFO iWSQ (Fig.1, [24]) put, take and steal operate on the same end of the queue. Only steal uses CAS.
FIFO iWSQ (Fig.2, [24]) put operates on one end of the queue, take and steal work at the opposite end. Only steal uses CAS.
Anchor iWSQ (Fig.3 [24]) put and take operate on the same end of the queue, steal works at the opposite end. Only steal uses CAS.
LIFO WSQ same as LIFO iWSQ except that all operations use CAS.
FIFO WSQ same as FIFO iWSQ except that take uses CAS to update the head variable.
Anchor WSQ same as Anchor iWSQ except that all operations use CAS.
MS2 Queue [23] enqueue and dequeue operate at different ends of a linked list. Both use locks.
MSN Queue [23] enqueue and dequeue operate at different ends of a linked list. Both use CAS.
LazyList Set [13] add, contains and remove operate on a sorted linked list. All three use locks.
Harris’s Set [8] add, contains and remove operate on a sorted linked list. All three are implemented with CAS.
Michael’s Allocator [21] The C lock-free memory allocator exports two functions: malloc and free. These operations use CAS.

Table 2: Algorithms used in our experiments. We use iWSQ as a shortcut for idempotent work stealing queues.

Memory Safety Sequential Consistency Linearizability Source Bytecode Insertion
Benchmark TSO PSO TSO PSO TSO PSO LOC LOC Points
Chase-Lev’s WSQ 0 0 F1 F1, F2 F1, F2 F1, F2, F3 150 696 96

(put, 11:13) (put, 11:13)
Cilk’s THE WSQ 0 0 (take, 5:7) (take, 5:7) - - 167 778 105

(steal, 6:8)
(put, 4:5)

FIFO iWSQ 0 (put, 5:-) - - - - 149 686 102
(take, 5:-)

LIFO iWSQ 0 (put, 3:4) - - - - 152 702 101
(take, 4:-)

Anchor iWSQ 0 (put, 3:4) - - - - 162 843 107
(take, 4:-)

FIFO WSQ 0 0 0 (put, 4:5) (put, 4:5) (put, 4:5) 143 789 91
(put, 5:-) (put, 5:-)

LIFO WSQ 0 0 0 (put, 3:4) 0 (put, 3:4) 136 693 92
Anchor WSQ 0 0 0 (put, 3:4) 0 (put, 3:4) 152 863 101
MS2 Queue 0 0 0 0 0 0 62 351 46
MSN Queue 0 0 0 (enqueue, E3:E4) 0 (enqueue,E3:E4) 81 426 43
LazyList Set 0 0 0 0 0 0 121 613 68
Harris’s Set 0 0 0 (insert, 8:9) 0 (insert, 8:9) 155 695 86

(MFNSB, 11:13) (MFNSB, 11:13) (MFNSB, 11:13)
Michael’s Memory 0 (DescAlloc, 5:8) 0 (DescAlloc, 5:8) 0 (DescAlloc, 5:8) 771 2699 244

Allocator (DescRetire, 2:4) (DescRetire, 2:4) (DescRetire, 2:4)
(free, 16:18) (free, 16:18)

Table 3: Fences inferred for each algorithm under different specifications and memory models. The table also shows the size of each algorithm
in terms of Source LOC, LOC in bytecode, and insertion points. MFNSB stands for MallocFromNewSB. “0” in the table means that the tool
did not find any fences; “-” means “cannot satisfy the property (like Cilk’s THE WSQ)” or that “a specification is not yet available”. For
WSQ’s and iWSQ’s, the numbers do not include fences in the expand function.

For linearizability, the complexity can be reduced to linear if the
programmer provides linearization points, as commonly required in
verification [29]. However, for many algorithms finding lineariza-
tion points is very difficult. Further, for properties such as sequen-
tial consistency, the concept of a linearization point is not applica-
ble. This means that when we are checking these two properties, it
is important to have the client produce relatively short executions,
yet rich enough to expose violations.
Client vs. Coverage A good client should achieve good coverage,
at the least, it would allow for all program points in each method
to be visited. For example, in the case of a WSQ, it is important to
explore schedules where concurrent threads interact in a queue that
is sometimes empty and sometimes not. This is because different
violations can occur in both cases. Thus it is important that a client
can generate both cases.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 100 1000 10000 100000 1e+06

#
 o

f
In

fe
rr

e
d

 F
e

n
c
e

s

of Executions

one round
multiple rounds

Figure 4: Number of Inferred Fences vs. Number of
Rounds/Executions-per-Round.

 0

 1

 2

 3

 4

 5

 6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 10

 20

 30

 40

 50

 60

#
 o

f
In

fe
rr

e
d

 F
e

n
c
e

s

#
 o

f
P

re
d

ic
a

te
s

Flush Probability

of Inferred Fences
of Predicates

Figure 5: Effect of Flush Probability for Cilk’s THE WSQ on PSO.

6.5 Scheduler vs. Memory Model
We find that setting the right flush probability (described in Sec. 5.2)
is a key parameter for effectively triggering violations. With small
values for the flush probability, meaning less flushing of the write
buffers, we expose more violations and hence synthesize more
missing fences, than we do with greater values. If the flush proba-
bility is too high, then the behavior of the program becomes as if
the memory model is sequentially consistent (the intuition is that
we are flushing more frequently, so the buffers are mostly empty),
and hence it is more difficult to find violations.

Fig. 5 illustrates how the number of synthesized fences corre-
lates with the flush probability for Cilk’s THE WSQ under PSO
with K = 1000. We can observe two tendencies:
• When the flush probability is large, i.e., greater than 0.8,

the number of discovered ordering predicates decreases. With
fewer predicates, some required fences cannot be inferred.
• When the flush probability is small, i.e., less than 0.4, the same

unnecessary predicates may appear in most buggy executions,
causing redundant fences. Thus the number of redundant fences
is increased.
There are two ways to eliminate redundant fences. First, we can

increase the flush probability. Second, we can collect more vio-
lating executions by increasing the execution number per round.
If one of the violating executions does not contain the reordering
which caused the generation of a redundant fence, then the redun-
dant fence will not be inferred.
Flush Probability vs. PSO For PSO, we found that a flush prob-
ability around 0.5 is suitable for optimal inference for all bench-
marks and specifications. With this value, the number of execu-
tions should be set high enough to collect sufficient predicates. For
an accurate inference, we find that the number of collected vio-
lating executions should be around 10 times greater than the maxi-
mum number of possible predicates collected for the program. This
maximum number can be obtained by testing executions with a low
flush probability, and in Fig. 5 this number is 36.
Flush Probability vs. TSO Interestingly, we find that the optimal
flush probability for the same program on TSO can be quite a bit
smaller than the value used for PSO. In our experiments, the flush
probability for TSO is usually set to 0.1. The intuition is that for
the same program, the number of write buffers in TSO is usually
much smaller than the number of buffers in PSO. This means that
with the same flush probability, the chance that a buffer is flushed
in TSO is higher than in PSO. It follows that if we use too high
of a flush probability for write buffers, we are less likely to find
violations caused by memory model reorderings.

We find that for the same specification, under PSO, the program
requires more fences than under TSO. This is reasonable, since

PSO allows both store-store and store-load reordering, while TSO
only allows a store-load reordering.

6.6 Fences vs. Specification

Memory Safety is Ineffective As we see in the table of results, and
perhaps counter-intuitively, we find that memory safety specifica-
tions are almost always not sufficiently strong to trigger violations.
For instance, with WSQ’s, this is because a violating execution is
more often exhibited in the form of losing an item or in returning
duplicate items, rather than in accessing out of bounds memory. We
note that one trick that may make memory safety more effective in
triggering violations is to use a specific client: instead of elements
of a primitive type, one stores pointers to newly allocated memory
in the queue. Then, the client frees the pointer immediately after it
has fetched it from the queue. In that way, one may be able to detect
duplicate items. We leave this experiment as future work.

We find that safety specifications are useful for the memory
allocator as there are many pointer dereferences performed in the
code, and the buffering of an updated pointer value can cause a
dereference of NULL pointer in another thread.
Linearizability vs. Sequential Consistency Another interesting
point is that for the same memory model, linearizability gener-
ally requires more fences than sequential consistency. On one side,
this can be expected as linearizability is a stronger property, but on
the other, it is not obvious that by slightly weakening linearizability
to sequential consistency, one does not end up with a completely
“incorrect” algorithm (in the sense of losing items for WSQ’s or
violating memory safety). For the four WSQ’s (excluding THE),
the fence added to guarantee linearizability is used to trigger the
flushing at the linearization point.
Algorithm without fences on TSO Interestingly, by weakening the
correctness criteria from linearizability to sequential consistency,
we obtain an algorithm, FIFO WSQ on TSO, for which the tool
does not find any fences (except the slow path expand function).
Note that unlike iWSQ algorithms, we did not weaken the actual
specification of FIFO, that is, we did not need an idempotent vari-
ant of FIFO. Our finding is also inline with a recent result which
shows that it is impossible to eliminate certain orders with lineariz-
ability [3], but by slightly weakening it, that may be possible.
Cilk’s THE is not linearizable As our tool can check properties
without any relaxed memory model effects, we were able to de-
tect that Cilk’s THE WSQ is not linearizable with a deterministic
sequential specification (even without any relaxed memory model
effects). However, the tool indicates that the algorithm is sequen-
tially consistent and is indeed accepted to be correct [1]. DFENCE

infers the necessary fences under the sequential consistency speci-
fication.

6.7 Memory Allocator
For the memory allocator, we used the client sequence mmmfff |mfmf,
where m stands for malloc and f stands for free. In this sequence,
the free function always frees up the oldest memory unit allocated
by the same thread. As far as we know, no previous work can syn-
thesize synchronization for concurrent algorithms of this scale. For
the allocator, we found that three fences were required to satisfy
the memory safety property, i.e., running to termination without
segmentation fault. If we specified the additional criteria such as
sequential consistency or linearizability, one additional fence in
the free function is inferred. All four of the fences that our tool
inferred are discussed in the paper which describes the memory al-
locator algorithm [21]. The C implementation of the allocator has
11 store-store memory fences and DFENCE was able to infer only 4
of them. The problem of how to uncover the other 7 fences is left
as future work.

7. Related Work
Exhaustive Approaches for Relaxed Memory Models The works
in [16, 25] describe explicit-state model checking for the Sparc
RMO model, but neither of these approaches perform fence infer-
ence. The work in [15] describes an explicit-state model checker
and a simple inference technique for the .NET memory model.
Recent work [17, 18] focuses on fence inference based on model
checking (with abstraction). In [4], a different approach is taken
where instead of working with explicit state, they convert programs
into a form that can be checked against an axiomatic model specifi-
cation. Collectively, the fundamental limitation of these exhaustive
approaches is that they are not inherently scalable for larger con-
current programs and often require manual intervention (to specify
abstractions or a model of the program). In contrast, our focus is
squarely on handling large concurrent C implementations, which in
turn dictates our dynamic synthesis approach.
Delay Set Analysis A number of works on fence inference [11,
20, 27] rely on concepts such as delay sets and conflict graphs [26].
Particularly, the Pensieve project implements fence inference based
on delay set analysis. This kind of analysis is necessarily more
conservative than ours for two reasons: first, it is static in nature,
and second, the correctness criteria are more restrictive than the
ones used in this work. For instance, their criteria would prevent
behaviors that are linearizable and should be allowed.
Other Approaches The works in [5, 6] present algorithms that
find violations under the TSO and PSO memory models based
on correctness criteria similar to the ones used in the delay set
analysis approaches mentioned above, meaning that [5, 6] can
be needlessly conservative. Further, both of these works do not
support fence inference. In [30], the authors propose algorithms
that automatically infer synchronization constructs such as atomic
sections. Their work does not deal with relaxed memory models.

8. Conclusion
We introduced dynamic synthesis for concurrent programs running
on relaxed memory models. The key idea is to break the scalability
barrier of standard synthesis approaches by instead focusing on dy-
namic executions: when a set of violating executions is discovered,
the program is automatically repaired to avoid these executions,
and the synthesis procedure continues with the repaired program.

We implemented our techniques in LLVM and evaluated its ef-
fectiveness on a comprehensive list of concurrent C algorithms in-
cluding a complex lock-free memory allocator. Each algorithm was
evaluated with two memory models (TSO and PSO), three specifi-
cations (linearizability, sequential consistency and memory safety),
various repair strategies, and different scheduling parameters (e.g.
flush probability). We demonstrated the effectiveness of our ap-
proach by automatically synthesizing necessary fences for each of
the concurrent algorithms.

As future work, we plan to extend our tool with more advanced
demonic schedulers to discover violations even quicker. We also
plan to add support for other memory models and to evaluate our
tool on a wider set of concurrent C programs.

References
[1] Personal Communication with the Cilk Team, 2011.

[2] ADVE, S. V., AND GHARACHORLOO, K. Shared memory consis-
tency models: A tutorial. IEEE Computer 29 (1995), 66–76.

[3] ATTIYA, H., GUERRAOUI, R., HENDLER, D., KUZNETSOV, P.,
MICHAEL, M. M., AND VECHEV, M. Laws of order: expensive
synchronization in concurrent algorithms cannot be eliminated. In
POPL’11 (New York, NY, USA), ACM, pp. 487–498.

[4] BURCKHARDT, S., ALUR, R., AND MARTIN, M. M. K. Check-
Fence: checking consistency of concurrent data types on relaxed mem-
ory models. In PLDI (2007), pp. 12–21.

[5] BURCKHARDT, S., AND MUSUVATHI, M. Effective program verifi-
cation for relaxed memory models. In CAV (2008), pp. 107–120.

[6] BURNIM, J., SEN, K., AND STERGIOU, C. Testing concurrent pro-
grams on relaxed memory models. In ISSTA (2011), pp. 122–132.

[7] CHASE, D., AND LEV, Y. Dynamic circular work-stealing deque. In
SPAA (2005), pp. 21–28.

[8] DETLEFS, D. L., FLOOD, C. H., GARTHWAITE, A. T., GARTH-
WAITE, E. T., MARTIN, P. A., SHAVIT, N. N., JR., AND STEELE,
G. L. Even better dcas-based concurrent deques. In DISC’00.

[9] DICE, D., LEV, Y., MARATHE, V. J., MOIR, M., NUSSBAUM, D.,
AND OLESZEWSKI, M. Simplifying concurrent algorithms by exploit-
ing hardware transactional memory. In SPAA’10, ACM, pp. 325–334.

[10] EÉN, N., AND SÖRENSSON, N. An extensible sat-solver. In SAT
(2003), pp. 502–518.

[11] FANG, X., LEE, J., AND MIDKIFF, S. P. Automatic fence insertion
for shared memory multiprocessing. In ICS (2003), pp. 285–294.

[12] FRIGO, M., LEISERSON, C. E., AND RANDALL, K. H. The imple-
mentation of the cilk-5 multithreaded language. In PLDI ’98.

[13] HELLER, S., HERLIHY, M., LUCHANGCO, V., MOIR, M.,
SCHERER, W., AND SHAVIT, N. A lazy concurrent list-based set
algorithm. In OPODIS ’05, pp. 3–16.

[14] HERLIHY, M., AND SHAVIT, N. The Art of Multiprocessor Program-
ming. Morgan Kaufmann, Apr. 2008.

[15] HUYNH, T. Q., AND ROYCHOUDHURY, A. Memory model sensitive
bytecode verification. Form. Methods Syst. Des. 31, 3 (2007).

[16] JONSSON, B. State-space exploration for concurrent algorithms under
weak memory orderings. SIGARCH Comput. Archit. News 36, 5
(2008), 65–71.

[17] KUPERSTEIN, M., VECHEV, M., AND YAHAV, E. Automatic infer-
ence of memory fences. In FMCAD’10.

[18] KUPERSTEIN, M., VECHEV, M., AND YAHAV, E. Partial-coherence
abstractions for relaxed memory models. In PLDI’11, pp. 187–198.

[19] LATTNER, C., AND ADVE, V. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In CGO’04, pp. 75–87.

[20] LEE, J., AND PADUA, D. A. Hiding relaxed memory consistency
with a compiler. IEEE Trans. Comput. 50, 8 (2001), 824–833.

[21] MICHAEL, M. M. Scalable lock-free dynamic memory allocation. In
PLDI ’04 (2004), pp. 35–46.

[22] MICHAEL, M. M., AND SCOTT, M. L. Correction of a memory
management method for lock-free data structures. Tech. rep., 1995.

[23] MICHAEL, M. M., AND SCOTT, M. L. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In PODC
(1996), pp. 267–275.

[24] MICHAEL, M. M., VECHEV, M. T., AND SARASWAT, V. A. Idem-
potent work stealing. In PPoPP (2009), pp. 45–54.

[25] PARK, S., AND DILL, D. L. An executable specification and verifier
for relaxed memory order. IEEE Trans. on Computers 48 (1999).

[26] SHASHA, D., AND SNIR, M. Efficient and correct execution of
parallel programs that share memory. ACM Trans. Program. Lang.
Syst. 10, 2 (1988), 282–312.

[27] SURA, Z., WONG, C., FANG, X., LEE, J., MIDKIFF, S., AND
PADUA, D. Automatic implementation of programming language
consistency models. LNCS 2481 (2005), 172.

[28] SUTTER, H., AND LARUS, J. Software and the concurrency revolu-
tion. Queue 3, 7 (2005), 54–62.

[29] VECHEV, M., YAHAV, E., AND YORSH, G. Experience with model
checking linearizability. In SPIN’09, pp. 261–278.

[30] VECHEV, M., YAHAV, E., AND YORSH, G. Abstraction-guided
synthesis of synchronization. In POPL (2010).

[31] WEERATUNGE, D., ZHANG, X., AND JAGANATHAN, S. Accentu-
ating the positive: atomicity inference and enforcement using correct
executions. In OOPSLA’11, pp. 19–34.

