
Race Detection for Web Applications

Boris Petrov
Sofia University

boris.petrov.petrov@gmail.com

Martin Vechev
ETH Zürich

martin.vechev@inf.ethz.ch

Manu Sridharan Julian Dolby
IBM T.J. Watson Research Center
{msridhar,dolby}@us.ibm.com

Abstract
Modern web pages are becoming increasingly full-featured, and
this additional functionality often requires greater use of asyn-
chrony. Unfortunately, this asynchrony can trigger unexpected con-
currency errors, even though web page scripts are executed sequen-
tially.

We present the first formulation of a happens-before relation
for common web platform features. Developing this relation was
a non-trivial task, due to complex feature interactions and browser
differences. We also present a logical memory access model for
web applications that abstracts away browser implementation de-
tails.

Based on the above, we implemented WEBRACER, the first dy-
namic race detector for web applications. WEBRACER is imple-
mented atop the production-quality WebKit engine, enabling test-
ing of full-featured web sites. WEBRACER can also simulate cer-
tain user actions, exposing more races.

We evaluated WEBRACER by testing a large set of Fortune 100
company web sites. We discovered many harmful races, and also
gained insights into how developers handle asynchrony in practice.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Reliability; D.2.5 [Soft-
ware Engineering]: Testing and Debugging—Monitors,Testing
tools; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs

Keywords concurrency, asynchrony, web, race detection, non-
determinism

1. Introduction
Modern web pages are increasingly becoming full-featured web
applications, with rich user interfaces and significant client-side
code and state. The web platform has significant advantages for
application development, including quick deployment of updates,
easier portability across desktops and mobile devices, and seamless
client-server integration.

Due to the increasing popularity and complexity of web appli-
cations, there is a growing need for programming tools and reason-
ing techniques that match those for more mature platforms. This
paper presents techniques to help developers make safer use of
asynchronous constructs in the web platform. Web applications are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’12, June 11–16, 2012, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1205-9/12/06. . . $10.00

making greater use of these constructs as their functionality be-
comes richer. For example, user interactions and completion of cer-
tain network requests can be processed in an asynchronous, event-
driven style. Also, sites are making increasing use of delayed or
asynchronous loading of JavaScript code itself, to speed initial page
rendering and increase perceived responsiveness [24].

Use of asynchrony can lead to serious concurrency errors in web
applications. Since the JavaScript code in web pages runs sequen-
tially, there is less awareness of these concurrency errors than for
languages like Java that have shared-memory multi-threading. Nev-
ertheless, such errors can arise, due to non-determinism in event
dispatch, network bandwidth, CPU speed, etc. (we give concrete
examples in Section 2).

Such errors have caused serious bugs in real-world web ap-
plications. Developers at Mozilla noticed that many of the non-
deterministic failures in their regression test suite were due to race
conditions in the unit test inputs [20], leading to documentation on
how to avoid such problems [19]. The Hotmail email service was
broken in the Firefox web browser for some time due to a race, with
the bug causing a loss of message content.1 Race conditions lead-
ing to data loss have been discovered in this paper and have also
been reported in previous work [25].

To clarify the behavior of asynchrony in web applications, we
present the first formulation of a happens-before relation [16] for
the most commonly-used JavaScript and HTML features. While
various types of web-application concurrency errors have been dis-
cussed previously [15, 19, 24, 25], we are unaware of any discus-
sion that formulates these issues over a common model. Further-
more, while there are ongoing efforts to specify the web platform
more carefully [10], defining a useful happens-before relation is
still non-trivial, due to complex interactions between JavaScript
and standard HTML features and browser deviations from the spec-
ification. The happens-before relation presented here was devel-
oped based on an in-depth study of relevant specifications, browser
behaviors, and how constructs are used in practice.

Another key contribution of our work is a model of which logi-
cal memory locations are being accessed by various web platform
features, necessary for building tools like a race detector. Typi-
cally, memory accesses can simply be defined as those reads and
writes occurring at the machine or virtual-machine level. However,
for web applications, there is no obvious definition of machine-
level accesses, as operations may access JavaScript heap loca-
tions, browser-specific native data structures, or both. Our model of
logical memory locations enables reasoning about these memory-
access operations in a browser-independent manner.

Based on our models of the happens-before relation and logical
memory locations, we implemented WEBRACER, a dynamic race
detector for web applications.2 The dynamic approach lets WEB-

1 https://bugzilla.mozilla.org/show_bug.cgi?id=538892
2 Apart from dynamic race detection, our models are also a suitable basis for
other concurrency analyses, e.g., static race detection or atomicity checking.

RACER precisely handle many complex features of web applica-
tions that would be difficult to handle with static analysis alone. The
JavaScript language has many difficult-to-analyze constructs, like
prototype chains and eval, that are used frequently in real-world
applications [22]. WEBRACER can simply observe the relevant ef-
fects of these constructs, side-stepping difficult static analysis is-
sues. Further, WEBRACER precisely handles interactions between
JavaScript and HTML via the Document Object Model (DOM)
data structure, a tree representation of the HTML often queried
via string matching of node identifiers. WEBRACER is able to
find races at the level of concrete DOM tree nodes (i.e., individ-
ual HTML elements) by observing accesses to memory addresses.
WEBRACER is also able to simulate certain user interactions, ex-
posing more races.

We implemented WEBRACER atop WebKit [3], a robust ren-
dering engine used in many production browsers (e.g., Safari3 and
Google Chrome4). Using a production engine allowed for WEB-
RACER to be tested on full-featured, real-world web sites. In an
experimental evaluation, we ran our tool on a large set of Fortune
100 company web sites and detected thousands of race conditions.
A manual inspection of a subset of reported races showed that
many of them reflected real bugs. We also gained insights into how
web developers manage asynchrony in practice, applicable to future
tools. Note that finding real bugs on deployed web sites was quite a
challenging test for WEBRACER due to our unfamiliarity with the
sites’ code and frequent code obfuscation; we expect WEBRACER
to be even more effective for a developer debugging her own site.

This paper makes the following contributions:

• We give the first formulation of a happens-before relation to
capture the asynchronous behaviors of most commonly-used
web platform constructs.

• We define a model of how operations in web applications access
logical memory locations, independent of browser implementa-
tion details.

• We present WEBRACER, a dynamic race detector based on our
models and built on the production-quality WebKit engine.

• We describe an evaluation of WEBRACER on a large set of
production web sites, in which we discovered many harmful
races and gained insights into how asynchronous constructs are
used in practice.

This paper is organized as follows. Section 2 gives examples of
web site concurrency errors. Section 3 presents our happens-before
relation. Section 4 shows our logical memory access model. Sec-
tion 5 describes our race detection algorithm and implementation.
Section 6 presents our evaluation. Section 7 discusses limitations.
Section 8 discusses related work, and Section 9 concludes.

2. Motivation
In this section, we explain in more detail how data races can arise
in web applications, give several motivating examples illustrating
possible types of races, and show the potential harm caused by
such races. We also use the examples to illustrate the happens-
before relationships and logical memory accesses that our model
must include.

2.1 Sources of Races
For our purposes, the execution of a web application can be roughly
seen as consisting of two types of activities: (1) conversion of
HTML into a DOM tree [1] and (2) execution of scripts containing

3 http://www.apple.com/safari/
4 http://www.google.com/chrome

<script>x = 1;</script>
<iframe src="a.html" />
<iframe src="b.html" />

<!-- a.html -->
<script>x = 2;</script>

<!-- b.html -->
<script>alert(x);</script>

Browser Server

x = 1

<iframe src="a.html"/>

<iframe src=“b.html"/>

b.html: alert(x)

a.html: x = 2;

request a.html

request b.html

Figure 1. On the left is a simple example containing a race on x.
On the right is an execution of the code showing the race on x.

JavaScript code. In most modern browsers, these activities are
always interleaved in a single thread of execution, prohibiting many
types of true concurrency (e.g., two distinct scripts cannot execute
concurrently).5 So, the traditional definition of a data race involving
two unordered memory accesses (one of which must be a write)
from distinct execution threads does not apply directly.

Instead, races in web application arise from environmental
asynchrony, typically triggered via event dispatch. The web plat-
form employs an event-based programming model to handle a va-
riety of external events—pages may register handler code to be
executed after user interactions (e.g., a mouse click) or the comple-
tion of some page loading operation, etc. Scripts may also explic-
itly queue functions to execute after some amount of time via the
setTimeout or setInterval methods [2]. These event handler func-
tions may execute in a non-deterministic order due to a variety of
factors, e.g., variation in network bandwidth, CPU resources, or the
timing of user input events.

Asynchronous events often lead to race conditions in conjunc-
tion with a web browser’s rendering of a partially-loaded page.
During the page load process, modern browsers aggressively at-
tempt to render the HTML and JavaScript code downloaded so
far, thereby improving perceived browser performance. When a
partially-loaded page is rendered, user interactions may be inter-
leaved with the remainder of the page load process in an unex-
pected manner, leading to race conditions. Furthermore, web appli-
cation authors often exploit partial page rendering by deliberately
delaying the download and execution of certain script code. In such
cases, the page appears to load quickly, but some code required for
user interaction may not yet be loaded, again leading to races.

We shall now illustrate these issues with examples of four types
of data races. We start with standard data races on JavaScript mem-
ory locations, similar to those seen in other languages like Java.
We then illustrate three types of races which are more specific to
the web platform: HTML races, function races, and event dispatch
races. These race types are worth distinguishing since the racing
accesses do not always appear as standard memory accesses in the
JavaScript code.

2.2 Variable Races
As in many other languages, web applications may have data races
on program variables, i.e., JavaScript memory locations. A very
simple example appears on the left side in Fig. 1. Here, a variable x

is set to 1 in the global scope. Then, two iframe elements are created;

5 The Opera web browser (http://www.opera.com) may execute scripts
from different frames concurrently; we do not consider this case in the
current work, as all other major browsers avoid such behavior.

<input type="text" id="depart" />
...
<script type="text/javascript">
// add a hint to the box
document.getElementById("depart").value =

"City of Departure";
// code to remove hint when user clicks
...
</script>

Figure 2. Southwest: A data race on a form field value.

<script type="text/javascript">
function show(emailTo,EmailC) {

...
EmailC.value = emailTo;
v = $get(’dw’);
v.style.display = "block";

}
</script>

....

<a href=
"javascript:show(’x@x.com’, a)">

Send Email

...

<div id=dw style="display:none">
// HTML form to send email

</div>

Browser User

invoke show()

 access dw (JavaScript crash !)

 <div id=“dw” …>

render link

Figure 3. On the left is an example containing an HTML race on
dw. On the right is an execution of the code showing the race on
HTML element dw that causes a JavaScript error (crash).

an iframe contains the content of some other HTML file, loaded
asynchronously. In this case, the iframes cause a.html and b.html to
be loaded asynchronously. The script in b.html may display 1 or 2

depending on when the script in a.html is executed, a clear data race
on variable x. The trace shown on the right in Fig. 1 illustrates the
case where b.html displays 1.

Note that in Fig. 1, the first write x = 1 does not race with the
write x = 2 in a.html, since the first script will always execute be-
fore the iframes are loaded. Our happens-before relation accurately
captures such orderings between HTML element parsing and script
execution.

Data races may also occur on properties of a DOM node (repre-
senting an HTML element), potentially making them more directly
visible (and annoying) to the user. Consider the example of Fig. 2, a
simplified version of a real bug discovered in the southwest.com
web site.6 First, an input element is created in which the user can
type their departure city for a flight search. Later in the page, a
script sets the value in the input box to “City of Departure”, as a
hint to the user, and adds code to make the hint text disappear when
the user clicks in the box (not shown). Here, the non-determinism
stems from partial page rendering: the user may see and interact
with the input text box before the script loads and runs, and if this
occurs, the script will simply overwrite any text that the user has
entered! Our race detection tool is able to discover this type of
bug automatically by simulating certain user interactions (details
in Section 5.2.2).

2.3 HTML races
Certain web application data races are more unique to the semantics
of the web platform and JavaScript. An HTML race occurs when an

6 This bug appears to have been fixed in the latest version of the site.

<iframe id="i" src="bug413310-subframe.html"
onload="setTimeout(doNextStep, 20)">

...
<script type="text/javascript">
...
function doNextStep() {...}
</script>

Figure 4. An example of a function race.

access of a DOM node representing an HTML element may occur
before or after its creation. Consider the left side of Fig. 3, based on
code with a race from valero.com discovered by our tool. Here,
the div at the end of the example with id dw holds an HTML form
for sending email, hidden by default (since the value of the style

attribute is display:none). When the user clicks the “Send Email”
link, the show() JavaScript function executes and the style of dw

is changed, making the form appear. (The $get function employed
by show() is essentially equivalent to the document.getElementById()

function.)
Here, the problem arises if the user clicks the “Send Email” link

before the dw element has loaded, as shown in the trace in the right
part of Fig. 3. In this case, the show() function will attempt to set
the style of a non-existent element, leading to an exception being
thrown and termination of JavaScript execution. Web browsers are
designed to hide many “bad” JavaScript behaviors, and in this case,
the JavaScript crash will not be shown to the user—the link will
simply appear to do nothing when clicked, and subsequent scripts
will continue to be executed. These hidden crashes can mask more
serious problems, as mutations to global JavaScript state preceding
the crashes persist, possibly leaving objects in an inconsistent state.
In Fig. 3, the effect of the statement EmailC.value = emailTo in show()

will remain even if the subsequent statement accessing dw crashes,
potentially affecting execution of subsequent scripts on the page.

Note that for this case, it is not obvious which “memory loca-
tion” the operations race upon. Within a browser implementation,
the concrete memory location(s) involved may depend on how ex-
actly the DOM data structure is implemented. In our model, we
define a logical HTML element location l for the dw element, with
the JavaScript $get call reading l and the browser’s parsing of the
div node writing l. In this manner, the data race can be modeled
independent of browser implementations.

2.4 Function races
Similarly to an HTML race, a function race occurs when an in-
vocation of function f may occur before or after the parsing of f .7

Fig. 4 gives an example of a function race, extracted from a Mozilla
Firefox unit test that was failing non-deterministically. Here, we
have an iframe whose onload handler (executed after the src HTML
file is loaded) uses setTimeout() to perform a delayed invocation
of doNextStep(), declared in the later script tag. The problem is
that even with the 20ms delay, doNextStep() may be invoked be-
fore its declaring script is loaded if the iframe’s HTML loads too
fast. Invoking a non-existent function in JavaScript causes an ex-
ception, which in this case would cause the corresponding unit test
to fail. In general, these exceptions may lead to the same types
of problems described in Section 2.3 with HTML races, due to
JavaScript code possibly being terminated in an inconsistent state.
Here, the race can be fixed by moving the script element above the

7 One site we ran WEBRACER on contained this code comment, indicating
awareness of function races:
/* Duplicated the JS function to get rid of race condition
happening in the dashboard page. */
We do not endorse their solution.

<iframe id="i" src="a.html" />
...
<script>
document.getElementById("i").onload = function() {...}
</script>

Figure 5. An example of an event dispatch race.

iframe, in which case our happens-before relation would show that
doNextStep() is always parsed before being invoked.

2.5 Event dispatch races
An event dispatch race occurs when an event may fire before or
after some handler for that event is added. Fig. 5 gives a small
example of such a race. Here, the onload handler for an iframe is
set in a separate script, rather than directly in the iframe tag via
the onload attribute. Third-party scripts often add event handlers in
this way, since they cannot modify attributes in the HTML source
directly. With this example, it is possible that the iframe’s load event
will fire even before the script executes (if the iframe loads very
quickly), in which case the installed onload handler will never run.

Note that for this example, one racing “access” is the read of the
iframe’s onload attribute by the browser when the iframe’s load event
is dispatched—this read is not explicit in the HTML or JavaScript
code. Our model of happens-before and logical memory can both
expose this race and also show that there is no race if the iframe’s
onload attribute is set in the tag itself.

3. Happens-Before
In this section we formulate a happens-before relation that captures
key ordering constraints for the most common web-platform fea-
tures. First, we give a brief background on the relevant HTML
and script constructs. Then, we define operations that comprise
(atomic) execution. Finally, we define the happens-before relation
between operations.

We note that defining the happens-before relation can be quite
challenging because relevant specifications can be vague and some-
times browsers differ on how they implement the specification. This
section represents our best effort to define a happens-before relation
that agrees with both the specification [10] and how most major
browsers work. In cases, where the specification was unclear or be-
havior differed significantly across browsers, we erred on the side
of not adding happens-before edges in order to not miss races.

3.1 Background
First, we give some brief, informal background on the web platform
constructs discussed in this section. Due to space constraints, we
cannot give a complete treatment of all relevant features; the reader
should consult online documentation and specifications for further
details [10, 17].
HTML An HTML page consists of a tree of elements. Each
element is typically delimited with an opening and a closing tag,
e.g., <p>...</p> for a paragraph element. Within an HTML page,
we say that element e1 precedes element e2 if e1’s opening tag
appears syntactically earlier than e2’s opening tag. For instance,
in the example below, element a precedes elements b and c, and
element b precedes element c:
<div id="a">
<div id="b"></div>

</div>
<div id="c"></div>

A static HTML element is declared syntactically in the page;
elements may also be inserted by scripts, as discussed below.

Scripts and the DOM JavaScript code is added to a page via
<script> elements. A static script element is inline if its code is

declared in its body, e.g., <script>x = 10;</script>. Otherwise, a
script element is external, and its code resides in a file specified
via the src attribute, e.g., <script src="code.js"></script>. We elide
a detailed description of the JavaScript programming language for
space; see external resources for further details [6, 17].

The Document Object Model (DOM) tree [1] is a parsed rep-
resentation of a page’s elements that gets rendered by the web
browser and possibly accessed or mutated by scripts. Each node
in the DOM tree has attributes to hold meta-data, including at-
tributes that mirror those seen in the corresponding HTML tag (e.g.,
a node representing a <script> element may have a src attribute).8

Scripts can add or remove nodes from the DOM, leading the web
browser to update its page rendering. Scripts may also insert new
script nodes into the DOM to make the browser load and execute
new code (possibly asynchronously); we say a script added in this
manner is script-inserted. As with static <script> elements, a script-
inserted script is inline if its code is present as a child node and
external if the code location is in its src attribute.

Asynchronous and deferred scripts Both static script elements
and script-inserted scripts may be declared as asynchronous or de-
ferred via attributes. Intuitively, a deferred script should run after
all static HTML elements have been parsed, while an asynchronous
script may run at any time (we capture the constraints more pre-
cisely in Section 3.3). An asynchronous script has a boolean async
attribute with value true, and a deferred script has a similar defer
attribute, e.g.:
<script src="code1.js" async="true"></script>
<script src="code2.js" defer="true"></script>

Asynchronous and deferred scripts must be external (i.e., their
src attribute must be set), and a script cannot be both asynchronous
and deferred. An external script that is neither asynchronous nor
deferred is a synchronous script.

Frames HTML pages may be embedded in inline frames in other
pages via the <iframe> tag, e.g.:
<iframe src="nested.html"></iframe>

The HTML in an inline frame is loaded asynchronously, making
iframes interesting from a happens-before perspective. The root
HTML page and each (transitive) inline frame has its own win-
dow object, and each window has an associated document object,
essentially the root of the corresponding DOM tree.

Events and Handlers Web applications must be written in an
event-driven style, registering handler scripts to be executed when
various types of events occur. Events are dispatched, e.g., for user
interactions (clicks, typing, etc.) and the completion of loading
various elements (images, scripts, etc.). Every event has a target
denoting the object upon it was dispatched (e.g., for a click event,
the DOM node for the button that was clicked).

Asynchronous networks requests (so-called “AJAX” requests)
are made by invoking send() on some XmlHttpRequest object o. At
various stages of the request (including completion), the readystate-

change event is dispatched with target o.
For simplicity, we ignore two features of event dispatch in this

section (though they are fully handled by our implementation):

1. Inline event dispatch, where a script explicitly fires an event via
a method call.

2. Propagation of events through a DOM tree, via “capturing” and
“bubbling” [5].

These features, and corresponding minor modifications to the
happens-before rules, are discussed further in Appendix A.

8 Strictly, elements have content attributes, while DOM nodes have IDL
attributes; we call both attributes here.

DOM content and window load Two events of particular interest
are the DOMContentLoaded event on a document, indicating (roughly)
that the static HTML for the document has been parsed, and the
load event on a window object, fired after resources like images
and inline frames have fully loaded. Scripts very often register han-
dlers on these events to perform additional computation once other
resources have been loaded, so capturing their happens-before re-
lationships precisely is important.

Timed execution The setTimeout and setInterval functions can
be used to perform delayed execution of some script code. A call
setTimeout(f,i) causes f to be executed i milliseconds or later.
setInterval(f,i) is similar, but it executes f every i milliseconds.
Due to their timing-dependent behavior, capturing happens-before
for these functions is crucial.

3.2 Operations
Next, we define the kinds of operations we consider in this work.
These operations will be used to specify the happens-before rela-
tion in Section 3.3. Each operation has a unique identifier taken
from the set OpId.

Strictly speaking, we have only two types of atomic operations
during web page loading: (1) parsing of HTML or (2) execution of
script code. We write parse(E) for the operation that parses a static
HTML element E. For convenience, we separate script execution
operations into several types:

• exe(E): the operation executing the source in a script element
E (either static or script-inserted).

• The execution of an event handler due to an event dispatch.
• cb(E): the execution of the callback script E resulting from a

setTimeout(E, _) call.
• cbi(E): the execution of the i’th invocation (i ≥ 0) of a

callback script E resulting from a setInterval(E, _) call.

We also introduce some helper functions related to operations:

• create(E) denotes the operation that inserts an element E into
a document (i.e., a DOM tree). If E is a static HTML element,
then create(E) = parse(E). Otherwise, create(E) is the
operation associated with the script that inserts E.

• dispi(E, T) denotes the set of operations that execute all event
handlers for the ith dispatch of event E at target T .

• ld(T) denotes disp0(load, T), if T has a load event.
• dcl(D) denotes disp0(DOMContentLoaded, D) for a document D.

3.3 Building the Happens-Before
Here, we give a complete definition of our happens-before relation
for the web features described in Section 3.1. As stated earlier, we
developed this relation based both on studying the specifications [5,
10] and common browser behaviors, aiming to only introduce rules
where all of them mostly agreed (with fewer happens-before edges,
more possible races are exposed).

The happens-before relation, denoted ≺, is a binary relation on
operation identifiers, i.e. ≺ ⊆ OpId × OpId. As a shortcut we
use A ≺ B to mean (A,B) ∈≺ and A 6≺ B to mean (A,B) 6∈≺.
When we say that that two operations are in the happens-before, we
mean the identifiers of these operations.

Sometimes we need to define a happens-before between an
operation A and all operations found in a set B. In that case, we
overload A ≺ B to mean ∀(a, b) ∈ {A} × B. a ≺ b. The
definitions of A ≺ B when A is a set and B is an operation or
when both A and B are sets is similar. In the rules below, only the
identifiers disp0, ld and dcl represent sets.

We group our rules for constructing the happens-before in
roughly the same order as the order in which the corresponding
features are described in Section 3.1.

Static HTML Elements in static HTML are essentially processed
in syntactic order, i.e.:

1. Let E1 and E2 be two static HTML elements in the same
document, such that E1 precedes E2 (see Section 3.1). Then:

(a) parse(E1) ≺ parse(E2).

(b) if E1 is an inline script, exe(E1) ≺ parse(E2).

(c) if E1 is a synchronous script, ld(E1) ≺ parse(E2).

Script Parsing, Execution, and Loading The following basic
rules govern all script elements E:

2. create(E) ≺ exe(E)

3. exe(E) ≺ ld(E) (except for inline scripts, which have no load

event).

Note that script-inserted inline scripts execute synchronously and
their code does not execute as part of a new operation.9

Asynchronous and Deferred Scripts Static deferred scripts ex-
ecute in syntactic order after the DOM content has been loaded,
captured with the following rules.

4. Let E be any element in a document D such that create(E) ≺
dcl(D) and let S be a static deferred script element in D. Then
create(E) ≺ exe(S).

5. If E1 and E2 are static deferred script elements, and E1 pre-
cedes E2, then ld(E1) ≺ exe(E2).

Asynchronous scripts and external script-inserted scripts may ex-
ecute in any order. Apart from rules 2 and 3, such a script is only
governed by rule 15, relating its load event to that of the containing
window.

Inner Frames The HTML nested in an iframe element I loads
asynchronously, with the following constraints:

6. For any element E in the nested document for I , create(I) ≺
create(E).

7. I’s load event fires after the load event for the nested window
WI , i.e., ld(WI) ≺ ld(I).

Event Handlers Some basic rules apply to event handler execu-
tion. Consider A ∈ dispi(e, T) for some i ≥ 0, event e, and target
T .

8. The target must have been created previously: create(T) ≺ A.

9. For any B ∈ dispj(e, T), where 0 ≤ j < i, B ≺ A.

We also have the following rule for AJAX requests:

10. Let A be the operation invoking send() on an XmlHttpRequest

object T . Then, A ≺ disp0(readystatechange, T).

DOM Content and Window Load These rules define happens-
before relationships for the DOMContentLoaded event on a document
and the load event on a window (in addition to rule 7). We begin
with a basic rule relating the two:

11. Let D be the document of a window W . Then dcl(D) ≺
ld(W).

The following rules indicate which operations must happen before
the DOMContentLoaded event for a document D:

9 Recent browser versions adhere to this rule, but older versions of Firefox
did not [23].

12. Let E be a static HTML element in D. Then parse(E) ≺
dcl(D).

13. Let E be a static inline script element in D. Then exe(E) ≺
dcl(D).

14. Let E be a static synchronous or deferred script element in D.
Then ld(E) ≺ dcl(D).

Finally, this rule shows which events must precede the load

event for a window W :

15. Let E be an element in the document of W s.t. create(E) ≺
ld(W) holds and E has a load event (e.g., an img or script

element). Then ld(E) ≺ ld(W).

Note that due to rule 3, rule 15 also relates the execution of scripts
and the window load event.

Timed Execution The following two rules govern setTimeout and
setInterval executions:

16. Let A be an operation which calls setTimeout(B, _). Then A ≺
cb(B).

17. Let A be an operation which calls setInterval(B, _). Then
A ≺ cb0(B) and ∀i ≥ 0.cbi(B) ≺ cbi+1(B).

Finally, we note that the happens-before relation is transitive: if
A ≺ B and B ≺ C, then A ≺ C. Hence, the final relation ≺ is
built by taking the transitive closure of all pairs given above.

4. Memory Accesses
In this section, we describe the shared memory accesses that an
operation can perform. The notion of memory access is compli-
cated by the fact that the web platform has no natural definition of
“machine-level” accesses, as common operations manipulate both
JavaScript heap locations and browser-internal data structures (e.g.,
DOM operations). Here, in addition to the usual JavaScript vari-
ables, we identify HTML elements in the DOM and event handlers
as key logical locations accessed by operations. We define accesses
to these locations in a browser-independent manner, easing high-
level reasoning. We discuss each type of location in turn.

4.1 Accesses on Variables
Let JSV ar be the set of JavaScript variables that could potentially
be shared among different operations. Such variables may include:

• Local variables (which could be shared between different oper-
ations via a closure).

• Object properties (instance fields and array element).
• Global variables (which are technically properties of a “global

object”).

By JSV ar we mean the set of concrete runtime memory ad-
dresses corresponding to these JavaScript variables. Reads and
writes of these addresses are potential shared memory accesses.

Functions We treat a declaration of a function namedF (i.e. not a
lambda function) in JavaScript scope S as a write of an anonymous
function with F ’s body to a local variable named F , where the
local variable assignment is placed at the beginning of scope S, in
accordance with JavaScript semantics. For example, the following:

{ // scope S
some_statements A;
function foo() { some_statements B; }
some_statements C;
function bar() { some_statements D; }

}

is treated as:

{ // scope S
var foo = function() { some_statements B; };
var bar = function() { some_statements D; };
some_statements A;
some_statements C;

}

Additional Cases The following accesses are modeled as writes
to properties of DOM objects in the JavaScript heap:

• Adding/removing a child element B to/from an element A
(whether statically or dynamically) is considered a write to B’s
parentNode property and a write to A’s childNodes[i] property,
where i is the index of B in the childNodes list.

• Modification of an HTML form element is treated as a write to
the corresponding DOM node attribute. For example, the user
typing into an input or textbox element is considered a write
to the element’s value attribute, clicking a checkbox writes its
checked property, etc.

4.2 Accesses on HTML Elements
Let HElem denotes the set of HTML elements. Then:

Write Accesses The following write to an HTML element e:

• Inserting e (either via static parsing or dynamic JavaScript in-
sertion) into a document. Dynamic insertion of an HTML el-
ement also dynamically inserts all of its child elements. The
appendChild and insertBefore functions in JavaScript are exam-
ples of ways to dynamically insert elements.

• Removing e (dynamically via JavaScript) from a document
(which also removes its child elements). The removeChild func-
tion in JavaScript is an example of a way to dynamically remove
an element.

Read Accesses JavaScript code can perform a logical read of an
HTML element e via accessor methods or direct reads. Examples
include:
document.getElementById, document.body,
document.getElementsByName, document.forms[i],
document.getElementsByTagName, document.images[i],
document.childNodes[i], document.anchors[i],
document.links[i], document.scripts[i]

4.3 Accesses on Event Handlers
The combination of a target element el, event e and event handler
h defines a logical event handler location (el, e, h) ∈ Eloc. Note
that by having h in the logical location instead of only el and e we
allow accesses that manipulate disjoint handlers for the same event
e to not interfere.

Write Accesses The following accesses write an event handler
location:

• Parsing of an element with an event handler content attribute
[10, Section 6.1.6.1], for example:

• Writing the event handler attribute of an element, for example:
document.getElementById("g").onload = "doWorkB()"

• Invoking the addEventListener function on an element
• Invoking the removeEventListener function on an element

Read Accesses An event handler location (el, e, h) is read when
executing event handler h due to an event dispatch of event e with
current target el. An event dispatch could be initiated by a user
(e.g. clicking a button) or programmatically (e.g. calling el.focus()

to dispatch a focus event on element el).

5. Race Detection
In this section, we define the notion of a data race based on our
happens-before relation (Section 3) and memory access model
(Section 4), describe our race detector, and finally discuss WEB-
RACER, our WebKit-based race detector implementation.

5.1 Race Detector
We next define what a race is, and then we present our dynamic
race detector.

Definition of a Race From the definition of happens-before
and memory accesses, we define a race as follows. Let A,A′ ∈
{read, write} ×OpId be memory accesses to some logical loca-
tion m in an execution. A race exists between A and A′ if:

• op(A) 6= op(A′) (accesses performed by different operations).
• op(A) 6≺ op(A′) and op(A′) 6≺ op(A) (the operations are not

in the happens-before).
• kind(A) = write or kind(A′) = write (one of the accesses is

a write).

In the above, op gives the operation identifier for an access, and
kind gives the access type (read or write).

Algorithm Next, we define our race detector at the declarative
level. We maintain two auxiliary maps LastRead and LastWrite
for instrumenting read and write accesses respectively:

LastRead ∈ Loc→ Id

LastWrite ∈ Loc→ Id

Here, Loc = HElem ∪ JSV ar ∪ Eloc and Id =
{⊥} ∪ OpId. We use ⊥ to denote a specially designated value
used for initialization. For each location, the map maintains two
fields: the first field is the identifier of the operation that last read
the location, and the second is the identifier of the last operation
that wrote the location. For convenience we define a functionCHC
to mean Can-Happen-Concurrently as:

CHC ∈ OpId×OpId→ Bool

CHC(A,B) = A 6= ⊥ ∧B 6= ⊥ ∧A 6≺ B ∧B 6≺ A

Intuitively, two operations A and B can happen concurrently
when both are not equal to ⊥ and (A,B) and (B,A) are not in the
happens-before relation.

Our race detection algorithm works as follows: at the start, all
entries in both maps are initialized: ∀e ∈ Loc, LastRead[e] := ⊥
and LastWrite[e] := ⊥.

Then, upon an access A to an element e ∈ Loc:
• If kind(A) = read:

1. Report a race if CHC(LastWrite[e], op(A)) = true.

2. LastRead[e] := op(A).
• If kind(A) = write:

1. Report a race if:
CHC(LastWrite[e], op(A)) = true, or
CHC(LastRead[e], op(A)) = true

2. LastWrite[e] := op(A).

That is, on a read, we check whether the last write (if a write
occurred) can happen concurrently with the read. If this is the
case, we report a read-write race. Similarly, on a write, we check
whether the last read (if a read occurred) or the last write (if a write

occurred) can happen concurrently with the current write, and if so,
we report a read-write or a write-write race respectively.

Note that our race detector only keeps a constant amount of
auxiliary information per memory location: a read or a write access
will always overwrite its corresponding slot in the location. One
advantage of this is that the algorithm will scale well with the
number of operations.

Limitation A limitation of our race detector is that it may some-
times miss races. Consider the following example with three opera-
tions each performing a single access to location e (for convenience
the operation identifier is shown next to the memory access):

1: read e || 2: write e || 3: read e

Assume that 1 ≺ 2, but that otherwise the operations are unrelated
by ≺. If the following sequence of operations occurs: 3 · 1 · 2, the
algorithm will not report the race between 2 and 3, since when 2
executes, the detector only has information about the most recent
read 1 of e. We plan to address this limitation in future work.

5.2 Implementation
Here, we describe WEBRACER, which includes an implementation
of our race detector in WebKit as well as automatic exploration of
functionality for simulating user interactions. We note that although
we describe a particular race detector, our framework is flexible and
allows us to plug in any dynamic race detector (for instance, one
could implement an adapted version of FastTrack [7]).

5.2.1 Instrumentation
It was quite difficult to find all relevant instrumentation points in
WebKit required to capture the happens-before and memory ac-
cesses needed for our race detector. The reason is that WebKit has
no single intermediate representation (IR) where all relevant oper-
ations are exposed (this is in contrast to say JVM bytecodes, where
finding the right bytecodes to be instrumented is straightforward).
While WebKit’s JavaScript interpreter does have an IR, our detec-
tor also requires intercepting HTML parsing, event dispatch, pars-
ing of new JavaScript functions, and so on. Adding instrumenta-
tion required careful study of the WebKit code base. We believe
that in the future, it would be useful to have a well-defined, stan-
dard instrumentation interface for browsers that analysis tools like
WEBRACER could be built upon.

Our instrumentation code communicates events directly to the
race detector, rather than generating a separate event trace. Inter-
nally, the race detector represents the happens-before relation rather
directly as a graph structure. While this representation is simple,
repeated graph traversals contribute to the high overhead of our im-
plementation (see Section 6); we plan to employ a more efficient
vector-clock representation in the future.

5.2.2 Automatic Exploration
WEBRACER allows for manual browsing and interaction with web
sites to discover races. To further automate this process, we also im-
plemented automatic exploration, which systematically dispatches
events corresponding to user actions. Automatic exploration was
quite useful for our experiments, as it avoided having to manually
trigger each event on each site (a tedious process).

Automatic exploration works by generating any event of certain
types for which an event handler was registered by the page. We
do all automatic dispatch of events together after the window load

event is dispatched, simplifying reasoning about WEBRACER’s
output (since all automatically-dispatched events are together).
The events we dispatched automatically were: mouseover, mousemove,
mouseout, mouseup, mousedown, keydown, keyup, keypress, change, input,

focus and blur. Additionally, we also generated clicks on links
which had JavaScript as protocol in their href’s.

We also augmented automatic exploration to expose races on
the contents of text boxes and input fields (like the race in Fig. 2).
Exposing such races was non-trivial, since simply typing in a text
box does not modify the value property of the corresponding DOM
object (the location that can be accessed by scripts). We solved this
problem by adding a handler for the input event to all text boxes
and input fields which effectively contained the code this.value :=

this.value. With this handler, any typing in a text box immediately
updates the corresponding DOM node’s value property. Finally, we
added code to simulate typing into all text boxes.

Overall For instrumentation purposes, we changed roughly 30
.cpp and .h files in the WebKit source. The changes were not very
intrusive – we were able to fairly easily port WEBRACER across
several WebKit versions.10 The total source code for WEBRACER
after all modifications, including the race detector was around 2000
lines of C++ code.

5.3 Filters
We also implemented a system for easily adding post-processing
filters to WEBRACER’s output, to heuristically filter out certain
races. Such filters can be useful, e.g., for helping to focus atten-
tion on races more likely to reflect application bugs. In running
WEBRACER on production web sites written by others, we found
the following two filters to be particularly useful:

Focus on form races This filter suppressed all variable races that
did not involve the value of some HTML form field, e.g., the
value in an <input> text box. Races on form field values have
a high potential to be harmful, as they involve potential side ef-
fects of user inputs (see Fig. 2). As an additional enhancement,
we further filtered out races on HTML form fields in which the
operation(s) writing the form field value v had a read of v pre-
ceding the write. Such reads often check to ensure that the user
has not modified the field, which makes the race harmless.

Focus on single-dispatch events This filter retained only event
dispatch races involving events that dispatch at most once,
e.g., the load event for a window. Races on such events are
more likely to be harmful since once the event is dispatched, an
added handler will never be run. In contrast, a click event on a
button may dispatch multiple times, and missing one of those
clicks is less likely to be a serious issue.

Note that we found these filters to be useful specifically for finding
harmful races in deployed web sites (see Section 6.3). In a scenario
where a developer or tester is checking her own web site for races,
alternative filtering may be more suitable.

6. Evaluation
Here we describe an experimental evaluation of our prototype race
detector, WEBRACER. In our evaluation, we wanted to test the hy-
pothesis that WEBRACER could be used to find bugs in real web
sites, without overwhelming the user with benign race reports. We
also wanted to understand better what techniques web developers
use to manage asynchronous operations in practice. After describ-
ing our experimental configuration (Section 6.1), we present both
raw WEBRACER results (Section 6.2) and results with the filtering
of Section 5.3 enabled (Section 6.3).

10 The evaluated version of WEBRACER was built atop WebKit SVN 91698.

Race type Mean Median Max
HTML 2.2 0.0 112
Function 0.4 0.0 6
Variable 22.4 5.5 269
Event Dispatch 22.3 7.0 198
All 47.3 27.0 278

Table 1. The mean, median, and maximum number of races of
each type across our test web sites.

6.1 Experimental Configuration
We ran WEBRACER on a set of 100 web sites, comprised of
home pages of Fortune 100 companies,11 and manually inspected
the output to find harmful races (to be defined shortly). We ran
WEBRACER with automatic exploration enabled (see Section 5.2)
to simulate user interaction with each site. This experiment was
quite a challenging test, as we were attempting to find bugs in well-
tested, deployed web sites whose code was unfamiliar to us.

A key issue in our evaluation was how to determine if a re-
ported race was harmful, i.e., whether it indicated a web site bug.
In general, making this determination requires knowing the desired
semantics of the web site’s code. However, we found that discover-
ing relevant semantics by reading a site’s code was often infeasible,
due to use of complex JavaScript libraries and obfuscating code-
compression techniques (e.g., shortening of variable and function
names).12 Given this difficulty, we conservatively classified races
as harmful only when they could lead to behavior that was likely to
be undesirable independent of application semantics. We defined
an HTML race (see Section 2.3) as harmful if it could lead to an
attempted update of a yet-to-be-created DOM node, causing a run-
time exception. Similarly, a function race (Section 2.4) was harmful
if it could cause an invocation of a yet-to-be-parsed function. We
discuss harmful variable and event dispatch races in Section 6.3.

6.2 Raw Results
Table 1 gives the mean, median, and maximum number of races
of each type reported by WEBRACER across the test web sites,
without any filtering.13 The average number of HTML and func-
tion races per site was quite low, making manual inspection man-
ageable. (We discuss the results of that inspection in Section 6.3.)
While the median number of variable and event dispatch races per
site was still low, several sites had a large number of these races,
raising the average number of races per site to 47.3.14

Via manual inspection, we found that for many variable races
on these sites, the corresponding code was difficult to understand,
making it hard to determine if the races were harmful. The difficulty
in code understanding stemmed primarily from obfuscation and
sophisticated use of asynchronous, delayed script loading, often
via complex JavaScript libraries like jQuery.15 We believe that if
a developer were using WEBRACER on their own (un-obfuscated)
code, inspection of these variable races would be significantly
easier.

11 At http://www.srl.inf.ethz.ch/webracer, we have made avail-
able the complete list of the sites that we tested.
12 Such compression techniques are often used to speed up script down-
loads.
13 Note that like many other dynamic race detectors, WEBRACER reports at
most one race per location in a given run.
14 The races reported across different runs for the same site had little vari-
ance; our numbers are taken from a typical run.
15 http://jquery.com/

Website HTML Function Variable EventDisp
Allstate 6 (6) 2 (0) 0 0
AmericanExpress 41 (1) 0 0 0
BankOfAmerica 4 (0) 1 (1) 0 0
BestBuy 0 2 (0) 0 0
CiscoSystems 0 1 (0) 0 0
Citigroup 3 (0) 3 (2) 0 1 (0)
Comcast 0 6 (1) 0 0
ConocoPhillips 0 2 (1) 0 0
Costco 3 (3) 0 0 0
FedEx 1 (0) 0 0 0
Ford 112 (0) 0 0 0
GeneralDynamics 0 1 (0) 0 0
GeneralMotors 0 1 (0) 0 0
HartfordFinancial 1 (1) 0 0 0
HomeDepot 0 1 (0) 0 0
Humana 0 0 0 13 (13)
IBM 16 (0) 0 1 (1) 0
Intel 0 3 (0) 0 0
JPMorganChase 3 (3) 5 (0) 0 0
JohnsonControls 1 (1) 0 1 (0) 0
Kroger 1 (0) 0 0 0
LibertyMutual 0 4 (0) 0 1 (0)
Lowes 1 (0) 0 0 0
Macys 0 0 1 (1) 0
MassMutual 1 (0) 0 0 0
MerrillLynch 1 (1) 0 0 0
MetLife 0 0 0 35 (35)
MorganStanley 1 (1) 0 0 0
Motorola 1 (0) 0 0 1 (0)
NewsCorporation 1 (0) 0 0 0
Safeway 0 0 1 (1) 0
Sunoco 11 (11) 0 0 0
Target 2 (2) 0 1 (1) 0
UnitedHealthGroup 0 0 0 1 (0)
UnitedTechnologies 2 (1) 0 0 0
ValeroEnergy 5 (1) 4 (1) 2 (0) 0
Verizon 0 1 (1) 0 0
WalMart 0 0 1 (1) 0
Walgreens 0 0 0 35 (35)
WaltDisney 1 (0) 0 0 0
WellsFargo 0 0 0 4 (0)
Total 219 (32) 37 (7) 8 (5) 91 (83)

Table 2. Races reported by WEBRACER on the test web sites,
after filtering (see Section 6.3). Sites with no races are elided. The
number of harmful races is shown in parenthesis.

We also found that many event dispatch races arose due to
deliberate delays in script loading, making those races “benign”
with respect to the desired semantics. For example, consider a site
s that shows a pop-up menu when the user hovers the mouse over an
image i. If s delays loading of the script implementing the pop-up
menu (to speed loading of the rest of the page), i may be displayed
long before the pop-up menu is available. WEBRACER reports such
behavior as a race, and it may indeed be annoying to a user to have
degraded functionality as the page is loading (particularly over a
slow connection). However, given that the developer must make a
deliberate decision to delay script loading, we do not classify such
races as harmful.

6.3 Results with Filtering
Table 2 shows the number of races reported by WEBRACER after
the filters described in Section 5.3 were enabled, with the number
of harmful races shown in parentheses. With the filters enabled,
the number of variable and event dispatch races were dramatically
reduced, making manual inspection more feasible.

Harmful races We discuss the discovered harmful races of each
type in turn.

HTML We found 32 races on HTML elements that could lead to
a runtime exception due to access of a non-existent DOM node.
They were mostly similar in form to the example in Fig. 3. In
some cases, the script performing the DOM node access was loaded
asynchronously, making the race less obvious.
Function The seven harmful races were similar to the example of
Fig. 4. However, the handler invoking a possibly-undefined func-
tion was typically attached to mouse hover or click events, rather
than load events. Hence, our automatic exploration (which simu-
lated the clicks and mouse events) was key to exposing these races.
Variable We considered a variable race to be harmful if it could
cause user input to be erased, as in the example from Fig. 2. We
found five such harmful races on HTML search boxes, and in each
case verified that user input during page load would be deleted by a
script executing later. The low false-positive rate for this race type
(with filtering enabled) indicates that WEBRACER is already an
effective tool for finding these high-severity bugs.
Event Dispatch We considered an event dispatch race to be harm-
ful if due to the race, a handler attached to an event might never be
executed, in accordance with the intuition behind the corresponding
filter (see Section 5.3). All the harmful races in this category were
due to use of the Gomez performance-monitoring script.16 Gomez
attempts to monitor image load time by checking for new images
in the DOM every 10ms (via setInterval) and attaching an onload

handler to each image as it is added. The problem is that if an im-
age loads very quickly, Gomez may add its handler after an image’s
load event has fired. Gomez may have some separate code to com-
pensate for this issue, but we could not tell from the obfuscated
versions we were able to inspect.

Benign races The primary cause of benign race reports was syn-
chronization between scripts via data dependence. A canonical ex-
ample was the Ford site, where all the 112 benign HTML races
stemmed from a single pattern, similar to the following:
function addPopUp() {
if (document.getElementById("last") != null) {

// mutate many DOM nodes
} else {

setTimeout(addPopUp,250);
}

}

Via setTimeout, the code repeatedly checks if the DOM node last

has been created, and if so, many other DOM nodes are mutated.
The HTML for the page is constructed such that if last has been
created, all the DOM nodes possibly mutated by the script must
exist.

We observe that this commonly used pattern (and variants)
operationally encodes a form of ordering between operations: an
operation can successfully proceed only if some other operation has
executed. To aid human and automated reasoning about such code,
it would be very useful if the web platform had an explicit ordering
construct for expressing such dependencies in a more declarative
manner.

In conclusion, WEBRACER is already an effective tool for find-
ing certain types of harmful races. Further, our data show that be-
nign races are mostly due to either deliberate delays in adding page
functionality (see Section 6.2) or synchronization via data depen-
dencies, suggesting directions for future tool improvement. We ex-
pect that WEBRACER would be even more effective when used as
part of the development process.

Performance WEBRACER was not optimized for performance;
we focused instead on achieving good coverage of the many
browser instrumentation points required (see Section 5.2). Web-
Kit’s just-in-time (JIT) JavaScript compiler was disabled in WEB-

16 http://www.gomez.com/

RACER (as only the interpreter was instrumented), causing a sig-
nificant slowdown even without instrumentation. WEBRACER’s
performance was sufficient for finding races in the web sites that
we looked at, handling pages with tens of thousands of operations
in less than a minute in most cases. However, heavy JavaScript
usage incurred significant overhead—we observed a roughly 500X
slowdown for the SunSpider benchmarks17 compared to running
with the JIT compiler and no instrumentation. In future work, we
plan to develop an optimized implementation that employs more
efficient data structures in the race detector (see Section 5.2) and
that does not require disabling the JIT compiler.

7. Limitations
Although we have added instrumentation for most commonly-used
web features in WEBRACER, we have not yet handled all relevant
features (a difficult task, as new features are being added to the
web platform rapidly). For instance, WEBRACER’s instrumentation
does not yet add all relevant happens-before edges corresponding
to rule 10 from Section 3.3 for AJAX requests. Also, we have not
instrumented calls to clearTimeout and clearInterval calls [2], which
may race with the execution of handlers installed via setTimeout and
setInterval. In general, missing happens-before edges may lead to
false positives. Also, our instrumentation does not yet detect DOM
node mutation due to application of rules from stylesheets.

In some cases, it is unclear whether certain interactions should
be classified as a race. For instance, one can “move” elements with
the function appendChild (i.e. move an element that is already in the
document). If an element is accessed (e.g., via getElementById) in
parallel with being “moved,” then WEBRACER will report a race.
However, it is plausible that this interaction should not be classified
as a race, since the element existed in the document at all times and
was only moved.

Finally, WEBRACER may report false-positive event handler
races in cases where the firing of certain events is disabled. For
instance, say that a button b is inserted into a document with its
visibility set to hidden, disabling clicks. Later, operation 1 adds
an onclick handler for b and makes b visible, and operation 2
represents a user clicking on b. Since our happens-before relation
does not consider the visibility of buttons, we have 1 6≺ 2 according
to our rules, and WEBRACER will report a false-positive race. In
general, detecting disabled events is non-trivial (e.g., clicks may in
effect be disabled by shrinking a button), and more robust handling
is left for future work.

8. Related Work
Several of the concurrency issues we address were identified in-
formally in a position paper by Ide et al. [11], including races from
asynchronous data exchange between a rich client and a Web server
and from interleaved HTML parsing and event handler execution
(all of which we capture). They advocate higher-level abstractions
to handle these issues, but they do not implement either such ab-
stractions or any error-checking tool.

Perhaps the closest work to our own is Zheng et al.’s work
on statically detecting races caused by uses of asynchronous re-
quests (so called “AJAX” calls) in JavaScript code [25]. Their sys-
tem acquires an application’s JavaScript code by extracting it from
the server-side code (currently, PHP is handled). Their static tech-
nique is able to detect AJAX races without having to exercise pro-
gram behaviors, unlike WEBRACER. Also, their system has special
handling for cookie state that we have not implemented; adding
such handling to WEBRACER would be straightforward. WEB-
RACER detects a significantly broader class of races than their sys-

17 http://www.webkit.org/perf/sunspider/sunspider.html

tem (it can catch AJAX races since separate handlers will have
no happens-before edges between them). Also, since WEBRACER
is implemented entirely in a browser, it works for any server-side
technology and for deployed web sites; their current approach re-
quires separate work for each server-side technology. In the future,
we plan to investigate how WEBRACER could be enhanced by in-
corporating static analyses like theirs.

In general, precise detection of the same races found by WEB-
RACER would be very difficult in a purely static approach like that
of Zheng et al., due to pervasive DOM usage (including mutation
that may add new scripts) and hard-to-analyze JavaScript features
(see discussion in Section 1). The most precise static DOM model
we know of is that in Jensen et al. [13], which uses a single ab-
stract representative for all DOM nodes with the same tag (e.g., a
single representative for all <div> nodes). This abstraction would
cause many false positives in a race detector.

There have been several other efforts to detect bugs in JavaScript
programs (e.g., [8, 12, 14, 21]), but we are not aware of any pre-
vious systems aimed at detecting races besides the Zheng et al.
work [25] discussed above.

Recently, a number of novel race detectors for Java-like lan-
guages have been developed. For example, FastTrack [7] is a state-
of-the art race detector using vector clocks augmented with various
optimizations to reduce the space overhead per memory location in
the common case to a constant. In our setting, the language is more
restrictive as it does not support locks (JavaScript execution is an
atomic operation), enabling us to implemented a more specialized
race detector. However, in the future, it may be possible to optimize
our detector even further.

Our automatic exploration mode (see Section 5.2.2) is similar
to the Artemis system [4], which performs feedback-directed exe-
cution of event handlers, aiming to maximizing code coverage. Our
technique currently does a shallower exploration than Artemis, suf-
ficient for exposing many races. We plan on pursuing deeper auto-
matic exploration techniques like Artemis in the future.

Other previous work has focused on better programming mod-
els that enable developers to more easily avoid certain races. Flap-
jax [18] provides abstractions for reasoning about and composing
event streams and behaviors, allowing for code that, e.g., handles
a series of updates from a server without having to manage low-
level details of XMLHttpRequests. The Flapjax programming model
should help programmers avoid some of the data races that we de-
scribe. Mobl [9] takes a somewhat different approach by providing
a more synchronous interface to creating Web applications, again
abstracting away some of the race-prone features of the web plat-
form. While these systems hold promise for future applications,
they do not address the problem of finding races in existing code.

9. Conclusion
The Web platform poses a particular challenge to analyzing con-
currency: there are multiple specifications and implementations
defining the platform, concurrency is introduced in implicit, event-
driven ways, and many different features and APIs are relevant to
concurrency. In this environment, we provide the first core tools for
reasoning about concurrency: a happens-before relation over com-
mon HTML and JavaScript constructs, and a logical model of mem-
ory accesses for capturing state interactions. We show the value of
these tools with WEBRACER, the first dynamic race detector for
Web applications. WEBRACER found numerous races across top
Web sites, including harmful ones capable of causing anomalies
like lost input.

Future work includes further automating the detection and pos-
sibly remediation of data races in Web applications. Also, at the
level of specifications, a precise definition of what concurrent in-
teractions are meant to be allowed would be very useful (we found

defining a reasonable happens-before relation to be surprisingly
challenging). Such a definition must provide more clarity to devel-
opers, but also not overly restrict the concurrency that has become
crucial to performant web applications.

Acknowledgements
We thank Robert O’Callahan for pointing out that concurrency
issues can occur in client web applications and for suggesting
Firefox test cases as candidates for analysis. We also thank Max
Schäfer and the anonymous reviewers for their detailed comments.

References
[1] HTML5 DOM tree. http://dev.w3.org/html5/spec/Overview.

html#dom-trees.

[2] setTimeout specification. http://www.whatwg.org/
specs/web-apps/current-work/multipage/timers.html#
dom-windowtimers-settimeout.

[3] WebKit. http://www.webkit.org/.

[4] Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Møller, and
Frank Tip. A Framework for Automated Testing of JavaScript Web
Applications. In ICSE, May 2011.

[5] Document Object Model (DOM) Level 3 Events Specification. http:
//www.w3.org/TR/DOM-Level-3-Events/.

[6] ECMA. ECMAScript Language Specification, 5th edition, 2009.
ECMA-262.

[7] Cormac Flanagan and Stephen N. Freund. FastTrack: efficient and
precise dynamic race detection. In PLDI, 2009.

[8] Salvatore Guarnieri and V. Benjamin Livshits. Gatekeeper: Mostly
static enforcement of security and reliability policies for JavaScript
code. In USENIX Security Symposium, pages 151–168, 2009.

[9] Zef Hemel and Eelco Visser. Declaratively programming the mobile
web with Mobl. In OOPSLA, 2011.

[10] HTML5 specification. http://www.w3.org/TR/html5/.

[11] James Ide, Ratislav Bodik, and Doug Kimelman. Concurrency con-
cerns in rich Internet applications. In Workshop on Exploiting Con-
currency Efficiently and Correctly (EC2), 2009.

[12] Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav Shacham. An
empirical study of privacy-violating information flows in JavaScript
web applications. In ACM Conference on Computer and Communica-
tions Security, pages 270–283, 2010.

[13] Simon Holm Jensen, Magnus Madsen, and Anders Møller. Modeling
the HTML DOM and browser API in static analysis of JavaScript web
applications. In ESEC/FSE, 2011.

[14] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Interproce-
dural Analysis with Lazy Propagation. In SAS, 2010.

[15] Olav Junker Kjaer. Timing and synchronization in
JavaScript. http://dev.opera.com/articles/view/
timing-and-synchronization-in-javascript/. Accessed
03-November-2011.

[16] Leslie Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Commun. ACM, 21:558–565, July 1978.

[17] Mozilla Developer Network. https://developer.mozilla.org/.

[18] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper,
Michael Greenberg, Aleks Bromfield, and Shriram Krishnamurthi.
Flapjax: a programming language for Ajax applications. In OOPSLA,
2009.

[19] Mozilla Developer Network. Avoiding intermittent oranges.
https://developer.mozilla.org/en/QA/Avoiding_
intermittent_oranges. Accessed 18-October-2011.

[20] Robert O’Callahan, December 2010. Personal communication.

[21] Joe Gibbs Politz, Spiridon Aristides Eliopoulos, Arjun Guha, and Shri-
ram Krishnamurthi. ADsafety: Type-based verification of JavaScript
sandboxing. In USENIX Security Symposium, 2011.

[22] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An
analysis of the dynamic behavior of javascript programs. SIGPLAN
Not., 45:1–12, June 2010.

[23] Henri Sivonen. HTML5 script execution changes in Firefox 4.
http://hsivonen.iki.fi/script-execution/. Accessed 05-
November-2011.

[24] Steve Souders. Even Faster Web Sites: Performance Best Practices for
Web Developers. O’Reilly Media, 2009.

[25] Yunhui Zheng, Tao Bao, and Xiangyu Zhang. Statically locating web
application bugs caused by asynchronous calls. In WWW, 2011.

A. Happens-Before for Events
Here, we describe how event dispatch works in detail and give some
additional (or refined) rules for handling events.

How Events Work Here we briefly sketch event firing; more de-
tails can be found in [10, 15]. Firing an event E is done on an ele-
ment or object T (called a target). Some events can have different
phases associated with it: Capturing, At-Target, Bubbling and De-
fault. The Capturing phase goes through all targets starting at the
top of the DOM tree (at the document/window object) and moving
down towards the event target T . At each target, all handlers which
are registered for that type of event are executed. After the Captur-
ing phase, the At-Target phase follows, which dispatches all han-
dlers on the event target T . Following is the Bubbling phase which
works from the target T up towards the document/window object
and dispatches the event on all targets on the way. At last, there is
the default action which kicks in and dispatches on the target T . For
example, on a link element, the href may be followed or executed
if it is JavaScript code (i.e., of the form href="javascript:...").

To define the happens-before, we first need some definitions. An
inline event dispatch is the act of programmatically firing an event
from JavaScript. An example would be the call element.click() in
JavaScript code, which fires a click event on element. Anything else
is considered as a non-inline event dispatch. An example would be
the mousemove event firing due to the user moving her mouse, the load

event for a window firing or the readystatechange event dispatching on
an XMLHttpRequest object.

Splitting Happens-Before Since script execution is atomic, the
browser will not preempt a script in order to execute a different
script, parse more HTML, etc. However, event-handler execution
could actually be triggered in the middle of JavaScript code due to
an inline event dispatch. LetA be such a JavaScript operation that is
interleaved with event-handler execution. Given an executionA, we
define A[i:j) to mean the subsequence of A starting and including
the i’th transition in A and ending with but not including the j’th
transition (if i < 0, j ≥ |A|, or i = j, thenA[i:j) = ε). Then, given
an executionA interrupted by an inline event dispatch, let the event
dispatch invocation be the k’th transition inA’s execution. LetB be
the set of operations generated by the inline event dispatch. Then:
A[0:k) ≺ B and B ≺ A[k+1:|A|).

When usingA[i:j) in the happens-before, we mean that a unique
operation identifier is created for this sequence of transitions. Then,
in the happens-before as discussed in Section 3.3, we replace
an interleaved operation A with the set {A[0:k), A[k+1:|A|)} ∪ B
(dealing with sets in the happens-before was already explained
earlier).

Event Phasing Happens-Before We denote hop(E,ET, P, T)i

as the set of all operations that are the executions of all handlers
for the ith dispatch of event E dispatched on target ET in phase
P with current target T . Let A ∈ hop(E1, ET1, P1, T1)i and
B ∈ hop(E2, ET2, P2, T2)j . If E1 and E2 are both non-inline
events,ET1 = ET2,E1 = E2, and (i < j or (i = j and (P1 6= P2

or T1 6= T2))), then A ≺ B.

